SPECIFICATION OF USER INTERFACES
FOR SAFETY-CRITICAL SYSTEMS

Matthew C. Elder

Computer Science Report No. CS-95-30
July 7, 1995

SPECIFICATION OF USER INTERFACES FOR
SAFETY-CRITICAL SYSTEMS

Matthew C. Elder

Department of Computer Science
University of Virginia
Charlottesville, VA 22903
elder@Virginia.edu

Abstract

Safe operation of a safety-critical computer system depends on appropriate human-
computer interaction, effected through the user interface. Thus, specification of the user
interface is a key task in the development of such a system. This thesis presents a
comprehensive, structured approach to formally specifying user interfaces for safety-
critical systems. Based on a view of an interface as comprising three levels, the approach
decomposes the user interface into multiple components: semantic, syntactic, and lexical,
respectively addressing application function, dialogue control, and presentation. Each
component utilizes a formal notation appropriate to its level, then these component
specifications are integrated systematically. This approach promotes a modularization that
enables prototyping and change at each level and validation of user input, as well as
enabling a correspondence between specification and implementation architectures that
facilitates software development and verification of the implementation. Feasibility of this
specification method was demonstrated using two case studies involving safety-critical
systems: %he Magnetic Stereotaxis System (MSS) and the University of Virginia Reactor
(UVAR).

1. This material is based upon work supported under a National Science Foundation Graduate
Research Fellowship. This work was also supported in part by the National Science Foundation
under grant CCR-9213427, and in part by NASA under grant number NAG1-1123-FDP. Any opin-
ions, findings, conclusions or recommendations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Science Foundation.

Table of Contents

Table of CONtEntsottt e et e i
LSt Of FIgUIESot i i e e e e A%
TINtrodUCHON . ..ottt e e e i e e 1
2 User Interface Structure it 5
20 8SemanticLevel e 5
228yntacticLevel 6
23 Lexical Level . ..o s 6
24 ConCIaSION . .\t ... 6
BLUErature SUIVEYttt e 7
3.1 Lexical Specification o i 7
3.1.1 Screen Prototyping Tools i i i 7

3.1.2 User Action Notationo iiu... e 9

3.2 Syntactic Specification e 10
3.2.1 State Transition Diagramso i i 10

32,2 81ateChartso e 10

3.2.3 Context-Free Grammars e e 11

3.3 Semantic Specification il 11
3.4 General Specification Approaches oL 11

3.5 ANALYSIS . 12

4 User Interface Specification Approacho oo 13
4.1 Desirable Specification Characteristics oo, 13
4.1.1 Separation of CONCEINS vi it 13

4.1.2 Systematic Interaction Between Components 14

4.1.3 Formal NOtalionsottt ciei et 14

4.1.4 Executable NOTAtionS cuviurnrnen i innenneenn 14

4.5 ADAlYSIS . ot e 14

4.1.6 Support for Implementation and Verification 15

417 Error PrOCesSIng . oo vttt it e e 16

4.1.8 Direct-manipulation Interface Capabilities 16

4.2 Specification COMPONENtSvoitiuitie i 16
4.2.1 Presentation Specification i o 16

4.2.2 Input Token Definition i, 17

4.2.3 Presentation Command Interpretation0t 17

4.2.4 Interaction Language Syntax ..., 18

4.2.5 Semantic Specification e 18

4.3 Specification Structure ool 19

5 Case Study AppHCationst e 21
5.1 Magnetic Stereotaxis SYStemo v 21
S.LTSYStem OVeIVIEW . ..o vti ittt it i c i 21

i

5.12UserInterface Overviewottt 23

5.2 University of VirginiaReactor i 24
521 System OVEIVIEW it e 24

5.2.2 User Interface Overview, 26

5.3 Evaluation Techniquet .26

6 Case Study User Interface Specifications oo 27
6.1 Magnetic Stereotaxis SYStemlo i e 27
6.1.1 Semantic Specification i 27

6.1.2 Syntactic Specification o il 30

6.1.3 Presentation Specificationo o il 30

6.1.4 Specification of Token Generation vvenn. 31

6.1.5 Specification of Command Interpretation 31

6.2 University of VirginiaReactoro oo 32
6.2.1 Semantic Specification i 33

6.2.2 Syntactic Specification i 34

6.2.3 Presentation Specification o oo 34

6.2.4 Specification of Token Generationu. 35

6.2.5 Specification of Command Interpretation 35

T EValUAtioN .ot v ittt e e e s 37
7.1 MSS Operator Display Implementationot 37
7.1.1 Description of Implementation il 37

7.1.2 Evaluation of Implementationl 39

7.2 Specification Properties i 40

- 7.2.1 Separationof Concerns i 40

7.2.2 Systematic Interaction Between Components 41

7.2.3 Formal Notations it 41

7.2.4 Executable NOtations ...t 42

2.5 ANALYSIS . o v it e e 43

7.2.6 Support for Implementation and Verification 43

7.2.7 Brror PrOCESSING « . vt ov et ettt ee it 44

B CONCIUSION o\ vttt et it e e 45
R TN ES o ittt et i e e et 49
Appendix A - MSS Operator Display Specification A-1

Appendix B - UVAR User Interface Specificationo, B-1

iv

Fig. 1.
Fig. 2.,
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Fig. 8.

List of Figures

User Interface Specification Structure.
Seed Guidance by the MSS.

Magnetic Stereotaxis System.

MSS Operator Display.

University of Virginia 2.0 MW Research Reactor.

Specification Structure with Notations for the MSS and UVAR.

Mock-up of the UVAR User Interface.

MSS Operator Display Implementation Structure.

19

22

23

24

25

28

32

38

1 Introduction

Computers are introduced into many applications for the advantages they provide:
potential advantages can include greater flexibility, faster operation, enhanced functional-
ity, and decreased cost. Computer-based systems can be found in many application
domains. Often though, the introduction of computers into these systems, in addition to
providing additional capabilities, increases the complexity and the risk of system
failure [29].

Safety-critical systems are those computer-based systems for which the consequences
of failure are extreme. Consequences of failure in these systems could result in death,
injury, loss of property, or environmental damage [29]. Safety-critical systems exist in a
variety of application domains. For example, many computer-based medical applications,
including those involved in robotic activity and surgical assistance, must be considered
safety-critical because they have the property that human life can be endangered by com-
puter failure. In the area of nuclear power, computer-based digital control and shutdown
systems are safety-critical due to the risk posed by system failure to both humans and the
environment. Other examples include fly-by-wire flight control systems in avionics and
many military and aerospace systems.

Despite the variety of application domains, safety-critical computer systems have some
common characteristics. In these systems, the computer must monitor and/or control com-
plex, time-critical physical processes or mechanical devices [29]. The computer has pri-
mary, if not sole, control of the devices that are capable of causing hazards or catastrophic
accidents. The software is often embedded and must perform under real-time constraints.

One other important characteristic of safety-critical systems is that they are often under
the overall control of a human “operator.” The human operator makes a number of deci-
sions involving system operating policy based on relevant information, including that sup-
plied by the computer system. The operator must also provide the proper input responses
to the computer in order to effect control of the entire system. The computer, having cen-
tralized authority over devices, sensors, and other system components, is the primary
means by which the human operator can control the system. Safe operation of the system,
therefore, depends on appropriate interactions between the human and the computer sys-
tem. These interactions take place through what is usually referred to as the user interface.

The user interface of a computer system enables communication between a human user
and a computer system to perform some set of tasks [22]. At the most basic level, the user
interface effects a dialogue between the human and the computer, where the human com-
municates via input devices and the computer communicates via its output devices, often a
graphical display. This dialogue has certain rules that dictate legal and illegal sequences of
user requests and computer responses.

In developing the software for any computer system, specification is an important activ-
ity. Specification is the stage in software development where whart the software must
accomplish is determined; how the software is to accomplish certain functionality is con-
sidered later in the development cycle. It is important to determine exactly what the soft-
ware must accomplish before becoming concerned with the details of designing and
implementing the software. Specification allows users, application engineers, and software
developers to reason at a higher level about the software. For example, a precise specifica-
tion allows users to determine whether all the necessary functionality of a system can in
fact be used as desired. Specification also aids in planning before actual implementation,
and sets forth requirements by which to evaluate the final, implemented software product.

Specifying the entire software system is also important because incorrect specifications
are a major source of defects in computer systems [39]. Many software errors can be traced
to incorrect, incomplete, or ambiguous requirements in the specification. Safety-critical
systems are a class of applications where errors must be prevented to the extent possible
since the cost of failure is very high. Thus, the entire system must be specified correctly,
completely, and precisely to avoid and eliminate defects.

Why worry about the specification of user interfaces? In general, the development of
user interfaces is a difficult and important problem [22, 4, 11]. As safety-critical applica-
tions rely more heavily on increasingly complex user interfaces, the need to specify the user
interfaces of such systems precisely and correctly to ensure freedom from defects becomes
essential. User interface errors can occur in displays; for example, data might be presented
incorrectly or an object on a display might be mislabeled. If this occurs, accidents may
occur because the operator acted on incorrect information. Similarly, user interface errors
can also occur in user input; the operator may request an invalid function to be performed
or perform activities in an incorrect order. If this occurs, accidents may occur because the
system performed an action that it should have prevented. A critical aspect of user interface
development to prevent such errors involves specifying what the user interface is to do.
This is an extremely complicated problem that is a constant source of errors in computer
systems [20]. This work addresses the issue of specifying user interfaces for safety-critical
applications.

Errors that were at least in part attributable to defects in user interfaces have already
been reported in safety-critical systems. One example is the case of the Therac-23, a com-
puterized radiation therapy machine which between June 1985 and January 1987 caused six
known accidents of massive overdoses resulting in serious injuries and deaths [30]. As in
most accidents in safety-critical systems, the cause of the accident is a set of complex inter-
actions between system components and operating procedure. In the case of the Therac-25,
however, a user interface error, in which modification of an incorrectly-typed value on the
screen did not modify internal values, contributed to some of the overdose accidents.

Specification is a critical stage in the construction of user interfaces, not only for the
elimination of defects but also for validation of the user interface. Validation is the activity
in software development concerned with determining whether the system to be built is
really the one that the users need [3]. In other words, validation ensures that the require-
ments specified are actually the correct requirements. User interfaces are subject to a great
need for user evaluation, and user interfaces must change frequently as user requirements

are better understood. The act of specifying a user interface forces the developer to consider
carefully the functions that the system must provide to the user, the dialogue between the
human and the computer, and appearance of the user interface. Specification of the user
interface aids in validating that the requirements are correct.

It is important to understand that specifying a user interface involves much more than
merely stating what the screen(s) should look like. Although the graphics are important, it
is crucial to specify the details of what the various graphic items are used for and how they
change with the circumstances of the application. A critical aspect of this is modelling the
dialogue of the user interface, as well as the functions that the user interface provides to the
user.

This work presents a highly-structured, comprehensive approach to user interface spec-
ification. The user interface is viewed as a dialogue with three distinct portions or levels,
each specified separately with appropriate techniques and notations for each. The applica-
tion functionality provided by the user interface is a distinct component at the highest level
of the specification; the interaction language used for communication between the user and
computer is specified as a separate level; the presentation, typically the graphical display,
is specified at the lowest level of the interface model. For integration of these specification
components, a method for systematic interaction between the different levels of the speci-
fication is provided.

Evaluation of the proposed specification approach occurred on two case study applica-
tions involving safety-critical systems. The experiment undertaken in this work was to
demonstrate the feasibility of the proposed specification approach. Specifications were
composed for user interfaces of both case study safety-critical systems using the proposed
method in order to evaluate the method’s feasibility; further, a user interface implementa-
tion was constructed from the case study specifications for one of the safety-critical systems
to gain additional insight into the utility of the proposed specification approach.

The following chapter introduces and examines the general structure of a user interface.
In addition, the rationale for viewing a user interface as a dialogue with three levels is pre-
sented in Chapter 2.

Chapter 3 explores the existing literature on user interface specification. There is a sur-
prisingly large body of literature pertaining to user interface specification; that work is pre-
sented here and organized according to the user interface structure introduced in Chapter 2.

A specification approach for user interfaces is proposed in Chapter 4. This chapter
describes what needs to be specified, proposes a structure for the specification, and explores
possible notations and techniques for specifying the various portions of a user interface.
The proposed approach draws upon the extensive body of literature on user interface spec-
ification, surveyed in the previous chapter.

Chapter 5 provides a brief overview of two case study safety-critical applications, the
Magnetic Stereotaxis System (MSS) and the University of Virginia Reactor Facility
(UVAR), used in the evaluation of the proposed specification method. The Magnetic Ster-
eotaxis System is a safety-critical medical application for human neurosurgery; the conse-
quences of failure in the MSS are possible patient injury or even death. The University of

Virginia Reactor is a 2-megawatt research reactor, operated by the Department of Nuclear
Engineering for research and industrial experiments. Possible consequences of failure for
the UVAR include dangerous release of radiation associated with core meltdown, posing
threats to both reactor operators and the surrounding community.

In Chapter 6, the specifications for the user interfaces of both the MSS and the UVAR
are presented, describing the specifications produced from application of the proposed
method.

Evaluation of the proposed method follows in Chapter 7. The advantages and limita-
tions of the specification method are assessed, and experiences applying the specification
method to the user interfaces for both the MSS and the UVAR are presented to support
those assessments. As a part of the evaluation, an implementation of the user interface for
the MSS was constructed from the specification; Chapter 7 also explains the observed ben-
efits of this method with respect to implementation.

The final chapter, Chapter 8, presents the conclusions of this research. Futare work is
also discussed.

Finally, Appendices containing the complete specifications of user interfaces for both
the MSS and UVAR are included.

2 User Interface Structufe

Understanding the structure of a user interface aids in developing an appropriate spec-
ification structure. As early as 1974, Foley and Wallace introduced the notion of the user
interface as a conversation, or dialogue [12]. Observing an interactive graphic system, i.e.
a user interface, as a conversation between man and machine, Foley applied language and
psychological principles to justify and guide design techniques for such systems. In the
conversation between human and computer, there exists a language for communication
between the two parties; however, it is explained that this language, rather than using spo-
ken or written words, is composed of graphical objects displayed and manipulated by the
computer and actions relating to those objects performed by the human. This work viewed
three levels of closure for human action or response, lexical, syntactic, and semantic,
roughly corresponding to the complexity of user actions [12]. Later work by Foley and Van
Dam [13] expanded on the notion of three levels of user action; this work presented a model
of the human-computer dialogue having three components, once again, a semantic, a syn-
tactic, and a lexical, relating to the type of information dealt with at each level.

A similar three-level view of the user interface, called the Seeheim interface model,
developed out of work on user interface management systems. The Seeheim model has a
component relating to the application that presents the overall computer application in
terms of the user interface. Another component is responsible for dialogue control, govern-
ing sequencing of events within the user interface. Finally, the Seeheim model contains a
presentation component that deals with the appearance of the display [21].

Viewing the user interface as a conversation whose language of interaction consists of
these three levels is a key structuring mechanism that will be utilized in the proposed spec-
ification architecture. The distinction between these portions of the user interface is
described in more detail in this chapter.

2.1 Semantic Level

The semantic level of the user interface contains the high-level, system functions that
are available to the user: application functionality provided by the user interface. Literally,
the semantics defines the meaning of the actions that the user interface performs or pro-
vides, not the sequence or form of those actions [13]. The corresponding component of the
Secheim model relates to problem-data management, or the “application [10].”

Given a conventional word processing program as the application, an example of the
semantic level would be editing functions, such as “cut” or “paste.” These functions could
be part of a dialogue between the computer and the user, and the semantic level is con-
cerned with providing that functionality and determining the information necessary to
effect those actions.

2.2 Syntactic Level

The syntactic level of the user interface is the structure of the human-computer dia-
logue. A dialogue can be viewed as a language with well-defined syntax or grammar: rules
to determine legal sentences in that language. Sentences in a grammar are composed of
words, called fokens. Tokens are units of meaning, which cannot be further decomposed
without losing their meaning [13], just as words in conventional language are composed of
letters and a word loses its meaning when decomposed into individual letters. The grammar
in the syntactic level of the user interface defines legal sequences of these tokens, i.e. sen-
tences. The corresponding level in the Seeheim model is called “dialogue control [10].”

In the case of a user interface, the language corresponds to the interaction between
human and computer, so the syntax of that language defines valid sequences of user input
and computer output [13]. Tokens in the human-computer interaction language are user
input, typically commands and information the user provides, and computer output that
provide responses to the user through screen manipulation.

For the word processor example, the syntactic Jevel of a user interface would include
the rules that govern the usage of such functions as “cut” or “paste.” A possible rule defin-
ing a legal sequence of user input would be that the “paste” operation must follow a “cut™
operation. There would also be rules for computer output, such as the appropriate computer
action after a “cut” request is to remove the text from the screen.

2.3 Lexical Level

The lexical level of the user interface is concerned with exactly how the user interface
effects its dialogue. To continue the language analogy, the lexical level is concerned with
token definition, or defining precisely how tokens are formed from the available input and
output capabilities of the interface [13]. For user input tokens, the lexical level binds pat-
ticular user commands to specific input devices and graphical items. For computer
responses to user requests, the lexical level defines exactly how computer responses are
conveyed to the user through manipulation or alteration of the graphical interface. The See-
heim model defines this level as “presentation [10].”

Once again, in the case of the word processor, the lexical level would determine how
functions such as “cut” or “paste” are presented to the user. A possible lexical issue would
be whether to present the “cut” function as a butfon or a menu option. An example lexical
issue for computer response would be how the application indicates to the user that text is
highlighted: choices include whether to change the color of the text or use reverse-video.

2.4 Conclusion

The user interface is shown to have an inherent three-level structure based on the type
of information in a dialogue. A specification method for user interfaces must utilize this
information to provide a natural structuring mechanism for the specification architecture.
The importance of this view of the user interface will be shown in the proposed specifica-
tion approach.

3 Literature Survey

Given the view of the user interface presented in Chapter 2, existing specification tech-
niques and notations in the literature can be explored and evaluated according to which
level(s) of the user interface are best described by the various methods. Some methods
address more than one level of specification, of course; this chapter classifies methods
according to what portion of the user interface they best specify. In addition, some systems
for user interface construction address more than specification of the user interface. In par-
ticular, user interface management systems (UIMS’s) comprise the entire development of
an interactive software system’s human-computer interface, including specification,
design, prototyping, implementation, evaluation, and maintenance [21]. There is an exten-
sive body of literature on user interface specification and construction, and this chapter can-
not summarize all previous work, but rather surveys a large subset, including the major
advances and techniques. |

3.1 Lexical Specification

As mentioned previously, the lexical level of the user interface is concerned with how
the user interface effects its dialogue. The lexical level describes how input tokens are
formed from the various input devices and their actions upon graphical objects. This level
also describes how output responses are formed from output capabilities, primarily manip-
ulation or alteration of on-screen graphics. In other words, how the screen looks and
changes with respect to application operation is described in the lexical level of the speci-
fication. Various methods and notations for specifying this are described in this section.

3.1.1 Screen Prototyping Tools

The appearance of the screen has been the focus of much work in user interface speci-
fication and development. For various reasons, great importance 1s placed on the on-screen
graphics. The appearance of the screen display is important to the users [20] as a significant
portion of usability concerns. Some usability questions, such as ease of use, can be
addressed at the level of the appearance or arrangement of the display. In addition, there is
a need for the users to visualize the user interface, and, especially for systems with many
different users, it is difficult to design an interface acceptable to all parties [20].

A popular technique which addresses the appearance of the display is the use of screen
prototyping tools. Prior to the availability of these tools, developers would produce paper
drawings of screens to convey ideas to users; this was a costly and ineffective
technique [20]. Screen prototyping tools allow the graphics of the user interface to be con-
structed quickly and efficiently.

Prototyping tools offer many advantages for software system construction, in general,
and user interface construction, in particular. As mentioned previously, communication
between the designer and user is facilitated and made possible earlier in the development
effort. This rapid feedback from users aids in the development effort and can help to reduce
costs. In addition, validation of the user interface is assisted by prototyping tools; prototyp-
ing allows visualization of the user interface in order to evaluate, in this case, the specifi-
cation of the presentation {31].

There are two major categories of screen prototyping tools: interactive screen editors
and high-level notations for screen definition [20]. Each of these techniques will be
described in detail in this subsection, in addition to an extended capability supported by
some screen prototyping tools for handling scenarios.

Interactive Screen Editors

Interactive screen editors enable the user interface builder to construct mock-ups of the
graphical display. Typically, the developer can choose predefined graphical objects and
arrange these on the screen to construct the display. For text-based interfaces, these tools
provide a framework for arranging text on the screen where the interface is a form or series
of forms. Screen editors for graphical user interfaces enable graphical objects to be created
and positioned on the screen interactively. These tools must also provide a method for
attaching functionality to these graphical objects. In some tools, source code can be gener-
ated for the constructed display, or the displays can be integrated into part of the larger
application without additional coding.

Many screen editors have been proposed and developed for various applications and
purposes {33, 47, 6, 11. Work done by both Mittermeir [33] and Van Hoeve [47] enables
prototyping of the user interface through easy specification of a form template layout, in
the domains of business data processing applications and interactive information systems,
respectively. Buxton et al. developed a menu-based dialogue system, called Menulay,
which generates C code [6]. Aaram’s work relates to interactive information systems, pre-
senting a system that allows a hierarchy of menus to be defined for the user interface [1].

Screen editors for graphical user interfaces include HyperNews, a UIMS capable of
specifying and generating interfaces in a rapid prototyping environment [41]. HyperNews,
being a UIMS, has the capability to specify and implement all portions of the user interface,
i.e., the presentation, dialogue control, and application interface. HyperNews strength,
however, is as a screen generator, by which the developer may use or modify preexisting
graphical objects, in addition to creating new objects, and arrange them to generate the
screen. Functionality is then attached to these objects and dialogue conirol can be
included [41].

An example of a domain-specific screen generator is LabVIEW, by National Instru-
ments Corporation [36]. The domain of this screen generator is scientific and engineering
instrumentation; the application provides facilities to construct a user interface that mimics
actual hardware instrumentation. LabVIEW provides facilities for integrated data acquisi-
tion, instrument control, analysis, and presentation. With respect to presentation, LabVIEW
provides predefined, modifiable, graphic controls and indicators, such as strip charts and

knobs; the functionality of these applications, actual control and monitoring of hardware
instrumentation, can then be attached to the graphical objects [36].

High-Level Notations

An alternative to interactive construction of the graphical display is the usage of high-
level notations for screen definition. Hekmatpour and Ince cite two manners in which these
notations can be implemented: either using an interpreter that produces a screen prototype
from the high-level notation, or providing a collection of library routines accessible from a
programming language [20].

Christensen and Kreplin present a high-level notation for prototyping user interfaces in
which a specification framework is provided that can be interpreted to get textual, form
displays {8]. A more recent interpreted notation for user interfaces is Tcl [37]. Tcl is a
scripting language for developing graphical user interfaces; it comes with an interpreter to
generate displays rapidly. Tk is a toolkit for X Windows that provides an extension to Tcl
so the developer can write Tcl scripts instead of C code. Both Tcl and Tk are written in C,
so the notations can be used as C libraries and embedded in code, in addition to being inter-
preted.

Borland ObjectWindows is a library of C++ classes provided for graphical user inter-
face construction [5]. Although not usually considered a specification language, a specifi-
cation of the display can be written by merely inheriting off of these library classes. The
class definitions of the interface can be considered an object-oriented specification, higher-
level and structured more modularly than typical graphics code would be.

Scenarios

A capability that some screen prototyping tools support is the generation of scenarios.
A scenario is an operational example that simulates the sequence of events a user would
experience in performing the tasks that constitute the operation of a system [23]. Scenarios
can be supported by either interactive screen generators or high-level notation prototyping
tools.

Hooper and Hsia advocated scenarios for prototyping of data processing applications;
however, they did not propose a method for generation of the screens in those
scenarios [23]. Mason and Carey took the scenario-based approach further, building user
interface specifications through scenarios [32]. Their work included a tool to produce sce-
nario prototypes rapidly. Little or no application logic is included within a scenario, so the
sequence of events are predetermined, but scenarios enable the user to explore a system
prototype without the developer commiiting extensive resources {20].

3.1.2 User Action Notation

An alternative to describing screens and their graphical construction is to specify user
~ interaction from the behavioral view of the user. User Action Notation (UAN), devised by
Hartson, Siochi, and Hix, is a detailed specification language which describes the physical
behavior of the user and the interface together [22]. UAN is implemented with scenarios,
sequencing screens, and textual representations of user actions, such as pressing a button

10

or moving the cursor to an icon. The textual representations of user actions reflect physical
operations on hardware devices manipulating screen objects; these specifications become
very detailed descriptions of input tokens and output responses.

3.2 Syntactic Specification

Chapter 2 presented the syntactic level of the user interface as the structure of the dia-
logue between the user and the computer. This dialogue is part of a language composed of
~rules that determine legal sentences in that language. The syntactic portion of the specifi-
cation has been described in the literature many times, using various notations explored in
this section.

3.2.1 State Transition Diagrams

Several existing techniques rely on state transition diagrams as the primary notation for
specification. As early as 1969, Parnas suggested the use of state transition diagrams for
specification of command language interfaces [38]. Extensions to the transition diagrams
and textual representations for these diagrams are often proposed, as in the work of Casey
and Dasarathy [7]. Many specification methods based on state transition diagrams have
been proposed for different interface types in different domains.

In the domain of interactive information systems, Wasserman developed a methodol-
ogy, called User Software Engineering (USE), for specification and implementation of such
systems. Wasserman’s system used extended state transition diagrams for specification of
the human-computer dialogue [48]; USE included automated tools for specification of
those transition diagrams, as well as the capability to execute the dialogue specified.
Because the functionality of the information system was encapsulated primarily in database
queries, the focus of Wasserman’s work was specification of the dialogue and generation of
the prototype interface [49]. USE supported textual interfaces, providing facilities to posi-
tion text on the screen and receive character input.

Work very similar to Wasserman’s is that of Jacob, who developed the State Diagram
Specification Interpreter [25]. Jacob also uses state transition diagrams for specification of
the dialogue, and provides extensions to generate prototypes of the interface. Initial work
pertained to conumand language interfaces, but later work applied state transition diagrams
to specifications for direct-manipulation (graphical) interfaces [26].

3.2.2 Statecharts

An extension of stale transition diagrams that can be used for syntactic specification is
statecharts [19]. Statecharts address some of the limitations of state transition diagrams:
state transition diagrams tend to become complicated and unwieldy for large interfaces,
concurrency is not easily represented, and modularity using subgraphs is not always
possible [43]. Statecharts allow grouping of states in what is called a roundtangle, which
in user interfaces allows transitions to the same destination state from multiple states to be
factored into the surrounding roundtangle [50].

1t

3.2.3 Context-Free Grammars

An alternative notation to state transition diagrams explored extensively in the litera-
ture is a context-free grammar. Context-free grammars, often used to describe program-
ming languages, seem a natural notation for specification of the syntactic level of the user
interface, the interaction language.

Reisner proposed the use of a context-free grammar to specify the language denoted by
a user interface [40]. The input tokens of the grammar are abstract actions, such as pushing
a button or selecting a color, that permit any style of interface to be specified; unfortunately,
only the input language is included in the grammar. It should be stated, however, that the
focus of Reisner’s work was evaluating grammar specifications as a predictive tool for the
relative performance capabilities of competing user interfaces.

Shneiderman proposed an extension to context-free grammars, called multiparty gram-
mars, to clearly differentiate between user input tokens and computer output
responses [42]. Multiparty grammars include an identifier in front of each nonterminal to
indicate which party produces the string, typically either the computer or the user.

3.3 Semantic Specification

The semantic level of the user interface describes the application functionality provided
by the user interface. Less work has focused on specifying the functionality of the user
interface than on specification of the other levels. Some of the aforementioned work, while
not focusing on semantic specification, did provide or account for this level of specification.
For example, Wasserman’s USE encapsulated application functionality in database calls, a
benefit of the interactive information systems domain [48]. HyperNews also mentioned
separation of graphical specification from interface functionality, but no explicit notations
were mentioned for semantic specification [41].

Work by Foley et al. deals directly and primarily with the semantics of a user interface.
The User-Interface Design Environment focuses on a higher-level representation of the
interface, rather than dealing with presentation and interaction language [15]. A represen-
tation, called Interface Definition Language, is provided for describing the objects that
make up the semantics of the interface [14]. Algorithms for transforming the specification
and a method for executing the specification are explored in Foley’s work. Foley also cites
other work which deals with semantic specification, such as Green’s method using pre- and
post-conditions [18].

The use of formal methods in human-computer interaction also deals with semantic
specification. An example is the work of Sufrin and He, who use the formal specification
janguage Z to model the states and objects of an interactive system {44]. The display and
input devices are also modelled in Z, but the focus of the work is modelling how user oper-
ations affect the state of the system.

3.4 General Specification Approaches

Many other user interface specification approaches exist besides the ones presented in
the previous sections. Other methods for specification may use a different model of the

12

interface or focus on other goals in addition to specification. This section will explore some
techniques that do not fall conveniently into the structure of the user interface presented in
Chapter 2.

One technique with a different emphasis than previously presented methods is Moran’s
Command Language‘(}rammar (CLG) [34]. CLG is a specification method for command
language interfaces that describes four levels of the user interface: task, semantic, syntactic,
and interaction. The additional level, task, describes the operations the user wants to per-
form, but not in terms of objects and manipulations found in the semantic level, CLG has
an additional purpose to specification: this method enables description of the interface from
the perspective of the user’s mental model as well as for interaction evaluation and design.

Abowd and Dix use formal specification languages to describe the user interface in
terms of status and events [2], rather than the three levels discussed at length. Status refers
to persistent information, while events are atomic, non-persistent occurrences. Abowd and
Dix use formal specification to integrate the two types of information for a more natural
expression of user interface behavior, with a focus on mulii-user systems. The work
explores specifying these two types of information, not dealing explicitly with semantic or
syntactic issues.

Ege and Stary explore task-oriented specification, focusing on user action rather than
system components and their structure [10]. Their work integrates the Seeheim model of
the interface with object-oriented mechanisms for implementation. The specification nota-
tion used is the Interaction Management Network, which models tasks, subtasks, and
sequencing information.

Finally, there is an entire class of applications, User Interface Management Systems
(UIMS’s), devoted to the entire development life cycle of user interfaces. The focus of
UIMS’s is to improve interface developer productivity and ensure that the interface devel- -
oper can be a non-programmer. These are not issues in construction of user interfaces for
safety-critical systems: dependability is the focus of any work relating to safety-critical sys-
tems. Some of the specification systems surveyed above are considered UIMS’s; tradition-
ally, UIMS’s have tended to focus on the appearance of the user interface, but more recent
- work has dealt with complicated interaction dialogues and devices [21]. UIMS’s are a very
important and rapidly growing area of user interface work that must be monitored for con-
tributions to specification and development techniques.

3.5 Analysis

A great deal of work has occurred regarding user interface specification. Of the work
surveyed, most of the techniques only addressed a particular level of the user interface
structure. The focus of some of the techniques was not specification so much as prototyping
or usability, which, while important, is not the focus of this work dealing with the concerns
of safety-critical software development. A comprehensive approach to user interface spec-
ification must be developed to address all the components of the user interface structure.
The body of work surveyed here can be utilized in the development of a comprehensive
approach to specification.

4 User Interface Specification Approach

A user interface is a complex entity; specifying such an entity is correspondingly com-
plex. The interface is far more than the graphics or the dialogue or even these two com-
bined. As observed in Chapter 2, there are multiple levels to a user interface, each of which
must be specified.

This chapter explores and proposes a comprehensive approach to user interface speci-
fication. First, characteristics that a specification approach should possess are described.
Next, the components that must be present in an interface specification are discussed, and
appropriate notations for specifying these components are proposed. Finally, a structure for
the specification approach is presented and explored.

4.1 Desirable Specification Characteristics

Based on knowledge of the structure of a user interface and general specification prin-
ciples, it is possible to determine desirable characteristics for a comprehensive approach to
user interface specification. These characteristics are explored in this section.

4.1.1 Separation of Concerns

Separation of concerns means that portions of the user interface that address different
concerns are specified, and implemented, in distinct components. Because the human-com-
puter dialogue has three distinct levels, the specification should enforce this logical separa-
tion, and the implementation can, and should, correspond. Separation of concerns involves
specifying the user interface in distinct components, so that each component concerned
with different levels is independent of the others. For example, graphic specification should
be separated from dialogue specification except for the necessary interfaces that the model
requires.

A major advantage of this separation is that it enables multiple specification solutions
to be developed for a particular level while maintaining the remainder of the user interface
specification. For example, the separation of levels into distinct components permits the
entire graphic element of the user interface to be changed, allowing vastly different graphic
interface displays to be specified for the same application if desired. Exploring multiple
specification solutions facilitates validation and usability testing.

This separation also aids prototyping of levels; having separate specifications allows
the implementor to prototype one level at a time, rather than having to worry about the
entire user interface. Typically, the choice of low-level implementation of the graphics can
be put off, while what the user interface must accomplish can be concentrated on. In fact,
once the semantics of the user interface are determined, multiple specifications of the syn-
tax, or dialogue, can be developed, so long as they provide the necessary functionality. Sim-

13

14

ilarly, multiple lexical specifications, or graphical displays, can be explored so long as they
provide the tokens needed to effect the syntactic dialogue.

Finally, separation of concerns enables testing of the user interface implementation at
each level, in addition to comprehensive user interface testing. It is possible to generate
faults at each level of the user interface to determine how the receiving level copes with the
faults.

4.1.2 Systematic Interaction Between Components

Given separate specification components, another desirable characteristic of a specifi-
cation approach is support for necessary and appropriate interactions between the various
components of the specification. For example, the syntax of the interaction language con-
tains a set of tokens, received from both the user and the computer system; the graphic spec-
ification must define the user actions that effect those input tokens and the interface to the
application program must define the composition of its computer response tokens.

4.1.3 Formal Notations

Formal notations are mathematically-based, semantically-rigorous languages for spec-
ification, In software engineering, it is often the case that specifications are written in nat-
ural language. Natural language is notoriously ambiguous and not readily amenable to
analysis [24]. Formal notations address the limitations of natural language: because formal
notations are mathematically-based the meaning of a given statement is unambiguous. It is
sometimes possible to mechanically generate an implementation from a specification in a
formal notation. In addition, specifications written in a formal notation can be analyzed
using mechanical theorem provers. These advantages present formal notations as desirable
for specification.

4.1.4 Executable Notations

Some formal notations have the added benefit that they can be executed, as well as pro-
viding the benefits of precision. Known as executable specification languages, the ability
to be executed directly enables rapid prototyping.

- One drawback of executable specifications, however, is that in order to effect an imple-
mentation design details sometimes must be incorporated into the specification. The trade-
off involved in exposing design decisions must also be evaluated.

4.1.5 Analysis

An extremely desirable characteristic of any specification method, including one for
user interfaces, is that it enables various types of analysis to be performed on the specifica-
tion. The types of analysis possible on a specification are dependent, in part, on the degree
of formality of the notation.

Analysis during the specification stage of software development may catch design
flaws or errors in the specification that would be more expensive to correct if caught at later

15

stages [39], or may go undetected if such analysis is absent. Of course, in a safety-critical
application, no such errors should escape detection.

With respect to user interfaces, some desirable user interface characteristics can be
checked for in the specification given adequate notation. An example is a check for consis-
tency; consistency means that similar operations in the user interface are performed in a
similar manner. If the specification indicates an inconsistent user interface, that problem
can be corrected in the specification before it propagates to later stages of development.
Other general properties of user interfaces that can be subject to analysis in the specification
are redundancy, where, undesirably, the same action may be performed in multiple ways,
and incompleteness, where it is not possible to perform certain necessary functions in the
given user interface. Reisner’s work used analysis of the specification for evaluation of the
user interface design {40].

Some analyses on user interfaces might be particular to the given application, or a given
class of applications, such as safety-critical applications. An example of an application-spe-
cific property would be that for a safety-critical application there must always be a means
on the user interface to bring the application to a safe state. It would be useful to be able to
prove in the specification that the means by which to achieve this safe state is always active;
i.e. the user interface is never trapped in a state where it is not immediately possible for the
user to cause a transition to some safe state.

4.1.6 Support for Implementation and Verification

A specification approach is only useful insofar as it facilitates implementation: specifi-
cation is not done for its own sake; it is only in the context of the entire software develop-
ment process, where the goal is a final executable product, that specification is important.
Based on the structure of the specification, an implementation can be constructed with a
corresponding architecture. The clear separation of user interface levels into specification
components enables a clean, highly-structured implementation.

A specification approach should also support verification. Verification asks the question
“are we building the product right [3]7” In other words, verification is the act of ensuring
that the implementation is built correctly, i.e., that it implements all of the requirements put
forth in the specification.

The structural correspondence possible between the specification and implementation
aids verification. The correspondence enables mapping the portions of the specification to
the portions of the implementation; therefore, the verification can be broken down into
more manageable pieces, verifying each portion of the user interface separately.

The use of formal notations also supports implementation and verification. When using
formal notations for specification, often the underlying formal semantics enables a refine-
ment process to be applied in order to verify incrementally that the implementation matches
the specification [53]. The process begins with a formal specification (i.e. a specification in
a formal notation), then a series of mechanical steps can be applied to generate the design,
the detailed design, and the implementation. At each stage the product is verified to match
the previous stage, so by transitivity the implementation is verified against the specifica-
tion. The use of executable specification notations works similarly.

16

4.1.7 Error Processing

Another desirable characteristic of a user interface specification approach is provision
for the detection and handling, in a meaningful manner, of all illegal sequences of user and
computer actions. This entails determination of legality each token generated by either the
user or computer at the particular point in the grammar the user interface is in upon recep-
tion of the token.

An example of an error handling mechanism is the prevention of illegal commands
being entered by the user through “graying out” particular graphical items, i.e., disabling
portions of the interface that are not to be available at a given point in the dialogue. The
syntax defined for the user interface should facilitate determination of the legal and illegal
commands.

4.1.8 Direct-manipulation Interface Capabilities

A specification approach for user interfaces must support direct-manipulation inter-
faces. Much of the work surveyed in Chapter 3 pertained to only command language or
menu-based interfaces; the interfaces of today are much more complex and require speci-
fication techniques to manage that complexity.

4.2 Specification Components

For a user interface specification to be, in any sense, complete, multiple components
must be described. The components correspond roughly to the levels of the user interface:
the lexical, syntactic, and semantic, as described in Chapter 2. In addition, interfaces
between the levels must be described. This section enumerates the components that must
be specified for a user interface, and presents appropriate notations for each component in
the proposed specification approach.

4.2,1 Presentation Specification

A specification of the presentation describes the layout of the screen, meaning the
appearance of the display and the arrangement of graphical objects on the display. The pre-
sentation component of the specification corresponds to part of the lexical level of the user
interface.

The proposed approach employs Borland’s ObjectWindows for specification of the
graphical displays. This notation enables a display to be easily described by inheriting off
of classes of graphical objects in the ObjectWindows class library. An additional advantage
of this notation is that it can be compiled and executed to produce a mock-up of the display.

A high-level notation was chosen to describe this component rather than an interactive
screen editor or set of scenarios for various reasons. Typical presentation specification is
done with some sort of visualization of the graphical display, specification using
ObjectWindows provides this capability through compilation and execution. The mock-up
created from the ObjectWindows specification lacks all application functionality and dia-
logue control; it is solely presentation. Specification using the textual notation of Borland
ObjectWindows provides an opportunity for formal analysis that cannot be provided for

17

merely generating screens. In addition, inclusion of the Borland ObjectWindows Library
documentation defines precisely the base classes used in the specification and the meaning
of actions manipulating those graphical objects; for example, what in particular constitutes
a button press can be determined from that documentation.

Finally, the particular high-level notation chosen, ObjectWindows, compares favorably
in its ability to generate screens rapidly for evaluation and execution, the primary advan-
tage of screen editors. Being a reuse-oriented solution, generation of displays is convenient
by inheriting off the preexisting graphical classes.

4.2.2 Input Token Definition

The syntactic level of the user interface contains user input tokens and computer
response tokens which comprise the language of interaction. A component of the user inter-
face specification must be input token definition; this involves specifying precisely what
user manipulations of the interface cause what aspects of the dialogue to be recognized. For
example, the question of whether a particular function is effected by a button or menu item
must be specified for all user interface inputs.

This specification component employs a table to relate the enumeration of input tokens
from the syntactic level of the specification with how each token is effected. Using the pre-
sentation specification, each input token is associated with the particular graphical object
or operation that generates that token.

An enumeration of computer response tokens would complete a specification of token
definition. Because the generation of computer response tokens is in the application pro-
gram, external to the user interface, an enumeration of those tokens is sufficient.

4.2.3 Presentation Command Interpretation

The commands issued from the semantic level to the presentation of the user interface
must also be defined. Certain actions resulting from valid combinations of tokens necessi-
tate some manipulation of the graphical display. For these presentation commands, this
involves specifying precisely what manipulations of graphical objects and other output
devices (e.g. sound, mechanical devices) are associated with various system activities.

This specification component utilizes a table to associate the enumeration of presenta-
tion commands to the graphical objects, specified in the presentation component, that effect
those commands.

Commands issued from the semantic specification might prompt action from the appli-
cation program; once again, the commands that the application program provides must be
enumerated to complete command specification, but the system-level actions associated
with these commands are an application program concern.

18

4.2.4 Interaction Language Syntax

The interaction language syntax describes the valid sequences of user and computer
actions, i.e. the grammar defining the rules of the interaction language. This component of
the specification corresponds to the syntactic level of the user interface.

A context-free grammar is proposed for this component of the specification. A grammar
is a concise notation, amenable to analysis, that describes legal sequences of events natu-
rally. State transition diagrams and statecharts would work also, but the use of these nota-
tions requires additional technology for convenient manipulation and analysis. In addition,
for large dialogue descriptions, the textual notation of context-free grammars are more
manageable than state transition diagrams. The use of a context-free grammar also enables
leveraging off of compiler technology and tools that are readily available. For example,
there are parser generators, such as YACC [27], to construct parsers for context-free gram-
mars.

There is a context-sensitive component and a context-free component to any interaction
language. The context-free component is modelled using the grammar; the context-sensi-
tive component is addressed in the semantic specification.

4.2.5 Semantic Specification

The semantic specification describes the system-level functionality that the user inter-
face provides. A substantial amount of system-level functionality is in the form of system
operations provided by the application program,; for that reason an important portion of the
semantic specification is describing the structure of the interaction between the user inter-
face and the application software. In addition, the semantic component includes any state
information necessary to effect system-level operations. Often, of course, the application
and the user interface are merged into a single software entity, but even in these situations
it is possible, and helpful, to view a logical separation between the application and user
interface. The semantic level of the user interface is described by this component of the
specification.

The “state” of the user interface that is modelled in the semantic specification consists
of persistent data, or information that must be kept throughout operation of the user inter-
face. Included in this state information may be data to help model context-sensitive aspects
of the dialogue. As mentioned previously, the context-free component of the interaction
language is modelled in the syntactic portion of the user interface specification; context-
sensitive issues are dependent upon data obtained from operations, so context-sensitive
interaction is included in the semantic specification along with that data.

The high-level operations that are modelled in the semantic specification are comprised
of three things. The first is the information that is input to the operation; this is information
that arrives with the token and is passed when the token is recognized as part of a legal sen-
tence. The other two aspects of high-level operations that must be modelled are interfaces
with the application program and presentation. The effect of a high-level operation will be
some action involving either the application program or the presentation. Therefore, the
functions that the application program provides the user interface and any information nec-
essary to perform those functions must be described. Similarly, the methods and informa-

19

‘ CommanDst
Presentation | 1
Interpreter 1
|
1
Presentatio Dialogue/ Application/ ! o
Lexicon Syntax Semantics I Application

Program

Token
Generation

TOKENS

Fig. 1. User Interface Specification Structure.

tion involved in the interaction with the presentation must be described; this interface is
specified in the presentation interpreter. It should be noted that what actions these methods
actually perform are not specified in this portion of the document; only their existence is
utilized.

The formal specification language Z is used for the semantic specification component.
Z is a mathematically-rigorous notation with formal semantics, based on set theory and
first- order predicate calculus [9]. Z models the state of a system and operations that act
upon the state of the system, which is precisely what is necessary for the semantic level of
the user interface.

4.3 Specification Structure

In a comprehensive approach to user-interface specification, all of the above compo-
nents need to be addressed, and the specification technique must deal with each aspect com-
pletely and consistently.

Given the view of the user interface dialogue as three levels and the necessary specifi-
cation components presented in the previous section, a corresponding three-part structure
for the structure of the user interface specification is presented. Fig. 1 shows the structure
in which each level can be specified independently, using different notations best-suited to
what is being specified. Interactions between levels of the specification are also be mod-
elled systematically.

At the center of the user interface is the dialogue syntax specifying the legal sequences
of actions. The syntactic specification is a grammar defining the rules of the language, built
on both input tokens coming from the user and computer response tokens from the appli-
cation program.

The lexical specification defines the input and output capabilities of the interface,
including how the graphical display looks and what objects are present on the display. Fig.

20

1 shows how the Iexical component of the interface communicates with the syntactic com-
ponent, generating the user input tokens of the grammar.

The semantic component of the specification is a high-level abstraction of the applica-
tion functionality provided by the user interface. The semantic level’s relation to the syn-
tactic level is that the semantic level defines the operations of the interface and the
information necessary to perform those operations. The dialogue syntax specifies a partic-
ular ordering of those operations. In addition, the input tokens received by the syntactic
level contain state information that must be used by the semantic level to perform the oper-
ations.

A portion of the semantic specification is the interface to the application program.
Many of the interface operations result in system functions being performed; the semantic
level models these “commands” sent to the application program and the information pro-
vided by the user necessary for execution of these system functions. The application pro-
gram might also return information to the user interface; these computer responses are
received by the user interface in the form of tokens, which are processed by the grammar
and checked for legality.

The exchange of tokens between the syntactic and lexical levels yields systematic com-
munication between those components of the user interface. The semantic and syntactic
levels of the user interface are related through the operations that the user interface pro-
vides: the semantic level models the operations and their effect on the state of the user inter-
face, while the syntactic level specifies legal sequencing for those operations. The semantic
specification requests commands to be performed with respect o the presentation, but this
communication is handled completely through the presentation interpreter. Finally, the
application program is isolated from the user interface specification structure and relates
through generation of tokens and acceptance of commands.

This proposed specification approach will be evaluated in two case study applications
that are introduced in the following chapter.

5 Case Study Applications

Given a proposed approach to specifying user interfaces for safety-critical systems,
work must be done to evaluate the approach. The specification technique introduced in the
previous chapter has been evaluated using two case study applications, the Magnetic Ster-
eotaxis System (MSS) and the University of Virginia Reactor (UVAR), both of which are
described in this chapterT.

5.1 Magnetic Stereotaxis System

Evaluation of the user interface specification technique occurred on a safety-critical
medical application called The Magnetic Stereotaxis System (MSS) [52]. The MSS is an
investigational medical device for performing human neurosurgery, being developed in a
joint effort between the Department of Physics at the University of Virginia and the Depart-
ment of Neurosurgery at the University of Iowa [16]. Stereotaxis is a neurosurgical tech-
nique for directing an instrument to a specific location in the brain for treatment of
neurological disorders. Conventional stereotaxis techniques require a direct path to the
location of treatment; often, though, a direct path is blocked by critically important or easily
damaged brain tissue. Magnetic stereotaxis overcomes the limitations of conventional ste-
reotaxis by providing an indirect path to the location of the brain requiring treatment [28].

The MSS operates by manipulating a small permanent magnet (known as a “seed”)
within the brain using an externally applied magnetic field, as shown in Fig. 2. By varying
the magnitude and gradient of the external field, the seed can be moved along a non-linear
path and positioned at a site requiring therapy. Envisioned therapy includes chemotherapy
by using the seed to deliver drugs to a site within the brain and induction of hyperthermia
for treatment of inoperable brain tumors by radio-frequency heating of the seed from an
external source. The state of the MSS is that the concept is fully defined, the majority of the
basic research in physics is complete, and a fully-functional prototype is nearing comple-
tion for demonstration and evaluation. Preliminary animal trials using the prototype will be
conducted soon, and human clinical trials are planned at the Barnes Hospital of Washington
University in St. Louis in the future [51].

5.1.1 System Overview

The MSS hardware system that effects and monitors movement of the magnetic seed
within the patient’s brain is shown in Fig. 3. The patient is positioned at the center of six
superconducting electromagnetic coils; power supplies and current controllers regulate the
amount of electric current in the electromagnets, which produces a magnetic field that acts

+. Thank you to Kevin Wika for permission to use the figures in this chapter from his
dissertation [51].

21

22

Permanent Magnet (Seed) Superconducting Coils

=——u4

Treatment Site
Desired Path

X-Ray Cameras

N ——

Fig. 2. Seed Guidance by the MSS.

on the seed and induces its movement. Along each axis perpendicular to the patient’s body,
an X-Ray source and camera produce fluoroscopic images for tracking the seed. Markers,
affixed to the patient’s skull and visible on the X-Ray images, enable the position of the
seed to be determined [51].

Computer control is necessary in order to provide all of the functionality present in the
MSS. During an operation with the MSS, a neurosurgeon directs the movement of the seed
from a console that displays preoperative Magnetic Resonance (MR) images. The com-
puter takes movement requests and computes the electromagnet current values required to
produce the desired seed movement. A computer vision system analyzes the X-Ray images
to locate the markers affixed to the patient’s skull. Visible on both the MR and X-Ray
images, the markers enable the position of the seed to be transformed into the MR frame of
reference and subsequently superimposed on the preoperative MR images [51].The com-
puter control system that has been developed for the prototype MSS includes multiple
graphical displays. The main control module of the MSS is called the Control Program.
The Control Program monitors all physical devices, accepts requests from and distributes
information to all displays, and maintains state information on the entire system. The pri-
mary display, or user interface, is the Operator Display, through which an operator controls
calibration and surgical procedures. Other optional displays include the Field Display,
which displays a visualization of the magnetic field produced by the coils, and the Engi-
neering Display, which presents items of engineering data.

23

Display Consoles

Patient’s

Control Software

Vision System

——— o w ML M e e

| Display Management To

fm == Devices
Coil Current Control i

[L R

[L R L

Device Monitoring @ "~ Phosphor
Screen

MR Images,
Patient Data, etc.

Fig. 3. Magnetic Stereotaxis System.

5.1.2 User Interface Overview

The Operator Display, the primary user interface to the MSS, was the subject of case
study investigation. As part of the prototype computer system for the MSS, a prototype user
interface existed prior to the case study specification of the Operator Display. A picture of
the prototype Operator Display is shown in Fig. 4.

The Operator Display provides the majority of the functionality of the MSS. The Oper-
ator Display contains mechanisms for system calibration prior to a surgical operation. Cal-
ibration functions primarily involve determination of vision system parameters necessary
to accurately locate the markers and seed on the X-Ray images.

The Operator Display also provides patient data functionality, such as choosing a par-
ticular patient and loading that patient’s preoperative MR images. In order to display the
seed position on the MR images during an operation, the operator must identify the marker
positions on both the MR images and the X-Ray images; the Operator Display includes
capabilities for this identification to be accomplished.

Finally, mechanisms for performing surgical procedures are provided by the Operator
Display. The user interface supplies a method for choosing the desired direction and dis-
tance of seed movement, displays the calculated movement from those values, and provides

24

Fig. 4. MSS Operator Display.

a means of going ahead with that seed movement. The seed location within the patient’s
skull is then tracked and displayed on the preoperative MR images.

5.2 University of Virginia Reactor

The second case study application used for evaluation of the specification technique is
the University of Virginia Reactor (UVAR). The UVAR is a nuclear research reactor oper-
ated by the Department of Mechanical, Aerospace, and Nuclear Engineering, which began
operation in 1960 at a power level of 1 MW using Highly Enriched Uranium (HEU) fuel
elements. In 1971, its power level was upgraded to 2 MW, and in 1994 the reactor was con-
verted to use Low Enriched Uranium (LEU) fuel elements. The reactor is used for the train-
ing of nuclear engineering students, service work in the areas of neutron activation analysis
and radioisotope generation, neutron radiography, radiation damage studies, and other
research [45]. Despite being a research reactor and not a power reactor, the UVAR is a com-
plex system facing many of the same issues as a full-scale reactor.

5.2.1 System Overview

A diagram of the primary components of the UVAR system is shown in Fig. 5. As the
figure shows, the UVAR is a light-water cooled, moderated, and shielded “pool”
reactor [45]. The primary component of the reactor is the reactor core, an assembly that
contains fuel elements, control rod elements, graphite reflector elements, and possible in-

25

Safety Rods Regulator Rod

Cooling
Tower Control

-~ Console

Experiments “

Sensor Data

Reactor Core

® Header
e

Pump

Fig. 5. University of Virginia 2.0 MW Research Reactor.

core experiments. The reactor core is loaded under approximately 22 feet of water onto an
8x8 grid-plate that is suspended from the top of the reactor pool. The reactor core loading
contains a variable number of fuel elements and in-core experiments; it always includes 4
control rod elements. Three of these control rods, designated as Shim rods (or Safety rods)
are designed for gross control and safety. Shim rods are magnetically coupled to their drive
mechanisms and drop into the core by gravity on a scram signal, activated by either the
operator or the reactor protection system; this shuts down the reactor in less than one sec-
ond. The fourth rod is a regulating rod that is fixed to its drive mechanism and is therefore
non-scramable. The regulating rod, only a weak absorber of neutrons, is used for fine con-
trol of the power to compensate for small changes in reactivity associated with normal
operations [46].

The heat capacity of the pool is sufficient for steady-state operation at 200 kW with nat-
ural convection cooling. When the reactor is operated above 200 kW, however, the water
in the pool must be pumped down through the core through a header located beneath the
grid-plate to a heat exchanger that transfers the heat generated in the water to a secondary
system. A cooling tower located on the roof of the facility exhausts the heat and the cooled
primary water is returned to the pool [46].

The current control system is primarily analog instrumentation to monitor and regulate
operating parameters over all ranges of operation, from start-up to full power. A digital

26

computer control system is being designed for the UVAR and is currently in the specifica-
tion stage.

5.2.2 User Interface Overview

The current user interface for the UVAR is the control console. A first-generation pro-
totype user interface for a digital computer control system will replicate the functionality
of the current control console. The majority of that functionality is the display of process
variables, including but not limited to gross output, neutron flux and period, differential
temperature about the core, control and regulating rod positions, primary system flow, and
pool level [51]. The control console also provides input to the reactor system, including
control of the regulating and safety rods, a means to test instrumentation, and responses to
unsafe conditions.

5.3 Evaluation Technique

Evaluation of the proposed specification approach occurred on the two case study
safety-critical systems presented above. The experiment undertaken in this work was to
demonstrate the feasibility of the proposed specification approach. Specifications were
composed for user interfaces of both case study safety-critical systems using the proposed
method in order to evaluate the method’s feasibility; further, a user interface implementa-
tion was constructed from the case study specifications for one of the safety-critical systems
to gain additional insight into the utility of the proposed specification approach.

A concern in software engineering research is how generally applicable are the methods
and techniques explored in any work. It is often not possible (o reason across all software
systems about proposed software engineering methods, so evaluation occurs on case stud-
ies. The applicability of the case study must be considered when surveying research in soft-
ware engineering.

This work benefits from evaluation on two very complex case study applications. Both
systems are real safety-critical systems, the MSS in an advanced experimental stage and the
UVAR operational in the current analog control system configuration. Both systems require
complicated user interfaces. In addition, the two safety-critical systems are in different
application domains and this aids assessment of general applicability. Finally, the user
interfaces of the two applications have fundamental differences that further test the utility
of the proposed specification approach.

Of course, it must be acknowledged that two data points still offers simply anecdotal
evidence of a method’s quality. In this work, the goal of the experiment is to prove either
the feasibility or infeasibility of the proposed approach to specifying user interfaces for
safety-critical systems. Further, the characteristics of the case study applications can be
assessed in order to reason about the advantages and disadvantages of the specification
technique. The validity of the two applications used in this application lends credence to
the conclusions drawn through experience working with the systems.

6 Case Study User Interface Specifications

Given the approach to user interface specification proposed in Chapter 4, specifications
were written employing that method for the user interfaces of both safety-critical case study
applications, the Magnetic Stereotaxis System (MSS) and the University of Virginia Reac-
tor (UVAR). Both user interfaces employ the same structure, as presented in Chapter 4, for
their specifications. That structure is shown in Fig. 6, including the notations utilized for
the primary components; the same notations were used for both case studies. Descriptions
of both specifications are presented in this chapter; the complete specifications for both user
interfaces can be found in the appendices.’

6.1 Magnetic Stereotaxis System

The user interface for the MSS, the Operator Display, was the subject of the first case
study. An overview of the Operator Display specification is presented in the following sub-
sections; the entire specification is provided in Appendix A.

6.1.1 Semantic Specification

The semantic specification, a specification of the high-level functionality of the user
interface, is written in the formal specification language Z. For an overview of formal spec-
ification using Z, the reader is referred to Diller [9].

The specification, found in Section A.1 of the Appendix, consists of eight sections,
described in detail below. The first two sections of the Z specification are the Axiomatic
Descriptions and Set Definitions. Z is an extensible language, and these two sections aug-
ment the given types of this language with types particular to the Operator Display and
MSS. The next two sections, the State Description and Initialization Schema, describe the
state of Operator Display using a state schema and an initialization schema. A schema is a
mechanism in Z for grouping relevant information of a state description, which is merely a
collection of sets and objects and some predicates on the state [9]; the state schema models
the state of the user interface and the initialization schema models the initial state of the
system. The final four sections specify the operations available in the user interface,
grouped roughly according to the phases of MSS functionality: Setup, Patient Data, Iden-
tifications, and Surgical Procedures. These sections model the operations of the Operator
Display using schemas that specify the effect of each activity on the state of the user inter-
face.

+. Special thanks to Charles Odell for his assistance with the presentation specifications written in
Borland ObjectWindows. Mr. Odell generated mock-ups for the MSS Operator Display from the
previous Operator Display prototype constructed by the author; he generated a mock-up for the
UVAR user interface from sketches designed by the author and nuclear engineering representative.
The code for Mr. Odell’s ObjectWindows mock-ups is presented as specification in the appendices.

27

28

. ComMMANDS ¥
Presentation | |
Interpreter I
i
I
Presentatio Dialogue/ | o
(Object- (CFG) 1 Application

Program

Windows)

Token
Generation

TOKENS

Fig. 6. Specification Structure with Notations for the MSS and UVAR.

Axiomatic Descriptions

An axiomatic description in Z is a declaration that introduces one or more variables
combined with an optional predicate to constrain the values of the variable(s) in the
declaration [9]. For example, in the MSS, there are six electromagnetic coils which control
the motion of the seed; the Operator Display must display the values of the currents through
each of the six coils, therefore a type Coil Currents is provided using an axiomatic descrip-
tion that consists of six real-number values.

Set Definitions

Set definitions in Z can be either given sets or enumerated sets. Given sets are real-
world, user-defined types used in the specification but not described any further, i.e. prim-
itive types; enumerated sets are collections of elements where all the elements of the set are
listed [9]. An example of a given set used in the specification of the Operator Display is
[Message]; the Operator Display communicates with an application program interface and
the interface to the graphical display, the presentation interpreter, using messages, but the
composition of a Message is not detailed any further in this specification component. An
example of an enumeration is the View set, which presents the three views of the patient’s
skull in the Operator Display’s images, the Axial, Sagittal, and Coronal.

State Description

The following section of the specification is the state description. Although the appli-
cation functionality of the MSS is contained in a separate program, the Control Program,
the Operator Display coniains its own data values that it maintains and acts upon during
operation. Much of this information is for determining valid sequencing of operations, 1e.
context-sensitive language specification; other variables contained in the state schema con-
tain intermediate values for high-level operations that must be stored until the operation can
be effected through a call to the Control Program. The proposition section of this schema

2%

presents the invariants of the Operator Display; these invariants all pertain to context-sen-
sitive sequencing of the state the Operator Display can be in.

Initialization Schema

The initialization schema in the next section specifies initial values for those variables
of the state schema that require them. The system mode is set to InitSetup and all variables
pertaining to patient images and identification procedures, which have not occurred yet, are
set to 0. All context-sensitive variables that indicate whether or not particular events have
occurred are set to false.

Setup Operations

Setup operations for the MSS currently consist of activities to calibrate the vision sys-
tem; the Operator Display provides the means by which to perform these operations. Exam-
ple setup operations are calibration of cameras and sources on each axis. The action
associated with most of these operations is to send a message to the control program. There
is extensive context-sensitive modelling in this section: all of these operations must be per-
formed in order to proceed to further MSS functionality, but there are multiple, distinct
sequences in which these operations can be performed. The grammar of the Syntactic Spec-
ification specifies the possible ordering, while this specification checks that all calibration
operations are performed. ‘

Patient Data Operations

Patient data operations are the loading and closing of patient data, and the Control Pro-
gram response to a load request. The action associated with loading patient data is simply
to send a message to the Control Program. The Control Program responds by sending data;
this action is modelled in the CPLoadPatientData schema, which models reception of data
from the Control Program and the sending of a message to the presentation interpreter with
that data. Finally, closing patient data consists of re-initializing some of the data elements
of the Operator Display state schema and sending a message to the presentation interpreter.

Ideniification Operations

There are two types of identifications necessary to register the position of the seed on
pre-operative MR images: identification of objects on the x-rays and identification of mark-
ers on the MR images. The x-ray identifications must be performed for both axes, and the
MRI identifications must be performed for all three views. There are schemas for ensuring
that all necessary identifications were performed, in addition to schemas to choose which
marker or object is being identified and schemas to set the position of that marker or object.

Surgical Procedure Operations

The surgical procedure operations break down into two groups: schemas associated
with user actions and -schemas associated with computer response to those actions. For
example, possible user operations that were modelled include locating the seed, moving the
seed, and manipulating the slice displayed in any of the three views. The Control Program

30

sends back messages in response to user actions; these responses usually involve data that
must be passed on to the presentation interpreter in the form of messages for manipulation
of the graphical display.

6.1.2 Syntactic Specification

The syntactic specification, Section A.2 of the Appendix, presents the interaction lan-
guage of the user interface; legal sequences of user actions and computer responses are
specified. A context-free grammar is used for the specification of the interaction language.

The grammar for the Operator Display syntax consists of 84 productions and 42 tokens.
The grammar was put in a format by which YACC could generate a parser for the grammar
and this process revealed that the grammar has no shift/reduce or reduce/reduce conflicts.
The YACC-generated parser contains 118 states.

Relative to grammars used for describing programming languages, the language
describing the Operator Display is rather primitive: the tokens of the grammar have most
of the actions associated with them, rather than reductions of rules. Tokens are generated
by both the user through graphical actions and the computer through messages from the
Control Program.

The syntactic specification maps conveniently into the semantic specification due to the
simplicity of the language. Tokens that terminate rules in the grammar have semantic
actions associated with them; these actions are specified by the operation schemas in the Z
specification, and the schemas in Section A.1 of the Appendix are mapped to the rules to
which they correspond.

6.1.3 Presentation Specification

The presentation component of the Operator Display is specified using Borland
ObjectWindows. For a complete specification of the graphical display, in addition to the
description in Section A.3 of the Appendix, the documentation for the Borland ObjectWin-
dows Library must be included. The definitions of base objects used in the specification
may be found in the ObjectWindows documentation, in addition to definitions for the
semantics of actions, such as button presses.

In addition to the textual Borland ObjectWindows specification, a visual presentation
of the interface may be constructed by compilation with the ObjectWindows Library and
subsequent execution. The specification is for presentation only; therefore no application
functionality or dialogue control is included, and compilation would create simply a mock-
up of the display. The mock-up defined by this specification looks very much like the pre-
vious prototype user interface, shown in Fig. 4 of Chapter 5.

The specification of the Operator Display consists of five sections, corresponding to the
five files needed to describe the entire visual representation. The first section presents med-
sys.rc, which is a resource file automatically generated from a graphical mock-up of a
portion of the display. Graphical information for the definition of the menus and temporary
button panels of the Operator Display is defined in this file.

31

The second section presents the medsys . h file. This file contains the primary class of
the Operator Display, MedSysWindow. The MedSysWindow class contains declarations
for the buttons, slider, three canvasses (one for each view), and other graphical objects of
the Operator Display.

The next section of the presentation specification is for the medsys . cpp file. In this
section is defined the constructor for the MedSysWindow class, which in turn instantiates
the graphical objects declared in the class definition found in the previous section. In addi-
tion, the Paint function for this class displays a status string for the Operator Display and a
box for input of seed direction values.

The fourth section contains the file bmpview.h, which defines the TCanvas class for
displaying bit-mapped images. The bit-mapped images can display either the pre-operative
MRI images or x-ray images.

* The final section presents the bmpview.cpp file, which contains the constructor,
destructor, and Paint function for the TCanvas class. The Paint function creates lines on the
images for representation of the electromagnetic coil positions, a label identifying each
view, and positions to display the actual coil current values.

6.1.4 Specification of Token Generation

Tokens can be generated by either the presentation or the application program. The
tokens that the presentation produces map that portion of the specification to the context-
free grammar. Typically, for tokens generated by the presentation it is the graphical object’s
callback function which generates the token. An enumeration of the tokens and the objects
that generate each of those tokens specifies the token generation.

A table in Section A.4 of the appendix relates each of the 42 tokens of the context-free
grammar to either the application program or objects from the presentation specification.
The callback function of the graphical object is assumed to generate presentation tokens;
in cases where this is not the case, the particular method is specified with the object. Many
tokens are generated by multiple graphical objects; for example, there is a single token for
CALIB_CAMERA but two objects listed because camera calibration must be performed
for both axes. The tokens denoted “Control Program” signify that they are generated by the
application program.

6.1.5 Specification of Command Interpretation

There is an enumerated set of messages specified in the semantic component whose
destinations are the application program or the presentation interpreter. The messages to the
presentation interpreter instruct the interpreter to alter the on-screen graphical display in
some way. Each of these messages can be mapped to the particular graphical object they
manipulate and the method(s) called on that object.

The messages to the application program are enumerated in section A.5 of the appen-
dix; this is simply an extraction from the semantic specification to make explicit this inter-
face. The messages to the presentation interpreter are related to the graphical objects or
methods of the presentation that they affect in Table 3 of Appendix A.

32

An important piece of command interpretation is “‘graying out” those graphical objects
that are not legal at a particular point in the dialogue. Given the context-free grammar for
the syntactic specification, it is possible to determine for every step in the dialogue the set
of tokens that could legally be generated by the user. When this information is passed to the
presentation interpreter, that component could invalidate all other graphical objects through
“graying out” or some equivalent function. This makes it impossible for the user to generate
illegal tokens. Bach graphical object in the presentation has a means by which it can be
“grayed out,” but this is not a part of the specification in the appendix.

6.2 University of Virginia Reactor

The user interface for the University of Virginia Reactor (UVAR) was the subject of the
second case study. An overview of the UVAR user interface specification is presented in
this section; the entire specification is provided in Appendix B. The structure of the speci-
fication is the same as that of the MSS Operator Display, including the notations used for
each component, shown in Fig, 6.

As a case study for safety-critical research in general, the UVAR is far less mature than
the MSS. Currently, the UVAR possesses an analog control system; design of a computer-
controlled digital control system for the UVAR is in the specification stage. The initial ver-
sion of the prototype software for a digital control system will simply replicate the present
functionality; therefore, the current control panel was studied to determine the functionality
required of the UVAR user interface.

Fig. 7. Mock-up of the UVAR User Interface.

33

The specification for the UVAR user interface pertains to the reactor running in normal
operating mode. There is an elaborate, pre-operation safety procedure that requires operator
interaction with the user interface not included in the specification; however, this procedure
follows a set checklist, so specifying this interaction would merely involve replicating the
current checklist procedures. The user interface specification presented in this work con-
tains the majority of operator inputs required for the user interface running under normal
operation, and the associated computer responses to those inputs. The mock-up for the
specified display is shown in Fig. 7.

6.2.1 Semantic Specification

The semantic specification of the UVAR user interface, like that of the MSS Operator
Display, is written in Z. This specification, found in Appendix Section B.1, is composed of
five sections, the first four of which are the same as those found in the MSS Operator Dis-
play Z specification: the sections for Axiomatic Descriptions and Set Definitions introduce
types pertaining to the UVAR, and the following two sections for the State Description and
Initialization Schema describe the model of the UVAR user interface, including the state
information maintained by the user interface during reactor operation and the initial values
of those data items. Finally, the fifth section of the semantic specification contains the oper-
ations provided by the UVAR user interface and their effects upon the state schema.

The five sections of the semantic specification are described in further detail below.

Axiomatic Descriptions

The axiomatic descriptions for the UVAR user interface include some types that are
similar to those found in the MSS Operator Display specification; for example, there is a
message type to an application program and one to a presentation interpreter as in the MSS
Operator Display. Other axiomatic descriptions are derived from the UVAR system details,
such as the SafetyRodHeights and MagneticCurrents. The UVAR has three safety shim
rods, each of which has a height and magnetic current that can be set and displayed, hence
the three real-number values for each of those types.

Set Definitions

The only given set in the UVAR user interface specification provides the message type,
just as introduced in the MSS Operator Display specification. The first enumerated set pre-
sents the three modes the reactor system may be in: StartUp, Operating, and ShutDown.
Other enumerated sets include the possible alarms flagged by the reactor system and the
two possible modes pertaining to the regulating rod, Auto and Manual. The possible mes-
sages that can be sent to the application program and the presentation interpreter are also
enumerated.

State Description

The state description section contains the state schema for the UVAR user interface.
The information contained in the state schema is that which the operator can manipulate
through operations provided by the user interface; for example, the safety rod heights are

34

stored in the state schema and there are operation schemas that alter those values. The user
interface displays much more information than is modelled in the state schema, but it is not
necessary that the user interface maintain those values. The state schema also contains an
invariant, which is that set of alarms still sounding and the set of current alarms are always
subsets of those alarms that have not been acknowledged.

Initialization Schema

The initialization schema in the next section sets all real-numbered values to 0.0 before
operation, as required by the reactor system. In addition, it initializes the regulating rod
control to Manual, the power level setting to the lower of the two, 200KW, and all alarm
sets to empty sets. Finally, the reactor system is modelled to begin operation in StartUp
mode.

Operations

Most of the operations modelled in the semantic specification pertain to inputs to the
system that the user may provide. For example, there are schemas for setting the heights of
the safety shim rods, putting the regulating rod in automatic control mode, and setting a tar-
get power value to maintain while in automatic regulating mode. There are also operations
associated with system alarms: there is a schema that models reception of the current set of
alarms from the application program, and there are schemas to silence the sound associated
with an alarm and to clear acknowledged alarms.

6.2.2 Syntactic Specification

A context-free grammar is used to specify the legal sequences of events in the UVAR
user interface. The grammar for this user interface, in Section B.2 of the Appendix, consists
of 40 productions and 21 tokens. The relative brevity of this component compared to the
MSS Operator Display syntax specification is due to the nature of the display: the MSS
Operator Display is more of an interactive user interface, while the UVAR requires prima-
rily a vehicle for displaying sensor values.

The grammar for the UVAR user interface is also in a form by which YACC could pro-
cess it. Analysis with YACC revealed the grammar has no shift/reduce or reduce/reduce
conflicts. A YACC-generated parser would contain 55 states, which is considerably smaller
than the MSS Operator Display parser.

6.2.3 Presentation Specification

The presentation of the UVAR user interface is specified using Borland ObjectWindows
and can be found in Appendix Section B.3. The specification describes, and generates, a
display mock-up lacking all functionality; the mock-up is shown in Fig. 6.

This user interface specification component consists of five sections. The first section
is the reactor . rc file, which contains graphical information for the definition of the user
interface menus.

35

The second section presents the reactor . b file. The primary class of the UVAR user
interface, MainReactorWindow, is defined in this section. This class contains declarations
of all the other graphical objects on the display: visual enumerations of scram and alarm
conditions, buttons for alarm response, and classes for control rod and fission chamber
information and manipulation. These classes pertaining to the control rods and fission
chamber are also defined in this file.

The next section contains the file reactor . cpp, which has the constructors, destruc-
tors, and paint functions for each of the classes defined in the previous section. The con-
structor for the MainReactorWindow instantiates the graphical objects on the display.

The fourth section presents the file 1ight .k, which defines the Light class. The Light
class is used to display status information in each of the control rod and fission chamber
objects; it replicates light indicators on the analog control panel, being a text box that turns
a different color to indicate status on.

The final section of the presentation specification contains light . cpp; the construc-
tor, destructor, and functions to change color for the Light class are presented in this file.

6.2.4 Specification of Token Generation

The table in Section B.4 of the appendix relates each of the 21 tokens of the context-
free grammar to either the application program or objects from the presentation specifica-
tion. The callback function of the graphical object is assumed to generate presentation
tokens: in cases where this is not the case, the particular method is specified with the object.
There is a single token denoted “Application Program,” which is a token generated by the
application program involving the current alarm conditions.

6.2.5 Specification of Command Interpretation

The messages to the application program are enumerated in section B.5 of the appen-
dix; this is simply an extraction from the semantic specification to make explicit this inter-
face. The messages to the presentation interpreter are related to the graphical objects or
methods of the presentation that they affect in Table 3 of Appendix B.

36

7 Evaluation

Having composed specifications for both case study safety-critical applications, assess-
ment of the experiences must occur. One measure of a specification method is how well it
supports construction of an implementation. As mentioned previously, specification occurs
in the context of software development, where the end goal is an executable program. For
one of the case studies, the MSS Operator Display, an implementation was constructed
using the specification; the first section of this chapter examines the experiences imple-
menting the Operator Display based on the specification composed using the proposed
approach. The effects of the specification method upon implementation will be explored.

The second section of this chapter evaluates the two case study specifications with
respect to the desirable specification characteristics presented in Section 4.1. The specifi-
cation approach will be evaluated according to how well these goals were supported, draw-
ing on experiences from the two case studies.

7.1 MSS Operator Display Implementation

Prior to specification of the MSS Operator Display, a fully-operational prototype soft-
ware system existed for the MSS, including a user interface, This version of the user inter-
face was implemented in C++, using an in-house library of graphical objects to provide an
object-oriented interface to X/Windows running Motif. This library provides classes to
inherit off of for basic graphical objects, such as buttons and menus. There was no specifi-
cation for this prototype user interface.

- The Operator Display was specified using the proposed specification approach, as
described in the previous chapter, and then a new implementation constructed. More pre-
cisely, some components from the original prototype user interface were reused or modified
and restructured within a new implementation architecture based on the specification.
Other components were written from the specification or generated directly off of the spec-
ification. The new, resulting implementation is described below.

7.1.1 Description of Implementation

The structure of the revised Operator Display implementation is shown in Fig. 8. The
implementation of the Operator Display is written primarily in C++ and uses the same in-
house class library to interface with X/Windows. The dotted lines in Fig. 8 enclose sepa-
rately-executing processes. The Control Program is the application program for the MSS;
communication between the Operator Display and Control Program is via a socket connec-
tion, A parser generated by YACC is a separate process from the Operator Display proper
but is logically a part of the Operator Display.

37

38

At the lowest level is the code for the graphics. The graphical object library used to
implement the graphics of the Operator Display works in a similar manner as Borland
ObjectWindows. A graphical object can be created and placed on the display, then to add
functionality to that object, its callback function must be defined.

All of the callback functions of the graphical interface generate tokens, which are sent
to the parser; further, the callback functions do nothing more than generate tokens. It is
important to note that this is very different from most graphical user interfaces employing
the traditional callback structure.

Central to the implementation is the parser. A parser was generated directly from the
grammar of the syntactic specification using YACC, a widely-known parser generator. The
parser receives tokens from both the graphical objects and the application program inter-
face, known as the net_cd.

Because the parser was generated by YACC, it most naturally functions as a stand-alone
process. This necessitates an interface to the parser from the Operator Display; an object in
the Operator Display serves as an interface to the YACC-generated parser, passing tokens
and any necessary state information to the parser via a pipe. The parser consumes the token
if its legal, saves any state information received with the token, and returns to the C++
parser interface object via a pipe the validity of the token, any necessary state information,
and a set of graphical objects to be grayed out. The C++ parser interface object then per-
forms the actions associated with the token if it was legal, this involves sending commands
to either the net_cd or presentation interpreter or both. This includes passing the gray-out
set to the presentation interpreter.

The net_cd is the interface to the MSS application program, the Control Program. The
net_cd sends messages to the Control Program to effect certain system operations and
receives messages from the Control Program to display the results of system operations.

SOCKET

OPERATOR DISPLAY R
i i :
GRAPHICS commands NET_CD | 1
! F‘—— INTERPRETER | » |
| | i i
: GRAPHICS : i I
I tokens PARSER - I § |
| [TOKENG. 1 T ™ InTereace tokens - j i
| PO
PiPE CONTROL
r——~pF==" PROGRAM

| I YACC-

i PARSER | | GENERATED
[| PARSER

L——mm——J

Fig. 8. MSS Operator Display Implementation Structure.

39

The messages the net_cd sends are the results of tokens consumed by the parser; all
requests to send messages come from the parser. Similarly, all messages received by the
net_cd, including the information from the Control Program, are passed to the parser in the
form of a token. The parser treats tokens from the Control Program just as it does those
from the user produced by callback functions: their validity at that point in the dialogue is
checked and commands issued only if they are legal.

The presentation interpreter receives action requests associated with legal operations
from the parser. This object manipulates the graphical objects on the screen, including gray-
ing out those objects whose callbacks are not valid at a particular point in operation.

7.1.2 Evaluation of Implementation

The implementation of the Operator Display based on the specification presented in the
previous chapter proved to be well-organized and cleanly-structured in such a manner as to
facilitate understanding of the interface. The characteristics of the specification that con-
tributed to such a clean, well-structured implementation are explored in this subsection.

The previous prototype of the Operator Display was implemented in a manaer similar
to many user interfaces: graphical objects possess callback functions, which effect the func-
tionality of the objects. This structure requires that each graphical object also possess the
state information necessary to perform its operation, which may involve information from
other graphical objects. In addition, any syntactic checking of whether or not the operation
is legal at that point in the dialogue requires syntactic information to be possessed by each
graphical object as well. Frequently, syntactic checking is omitted entirely. The result of
this structure in the prototype user interface was the intermingling of semantic information
and syntactic checking in graphics code; the inclusion of syntactic and semantic informa-
tion necessitated a great deal of duplicate code throughout the interface that increased the
complexity of the implementation. Unfortunately, this complexity is unavoidable in situa-
tions where dialogue control is not centralized. This amalgamation of concerns led to an
apparently disorganized and overly complex implementation.

The revised implementation constructed from the new Operator Display specification
possesses a structure similar to that of the specification. The YACC-generated parser per-
forms all syntactic checking in a centralized piece of software, and all state information is
removed to that portion of the user interface as well. Graphic code remains separate from
syntax enforcement and semantic actions. In addition, because the sole effect of all call-
backs is to generate tokens, it is ensured that no action is performed without first checking
its Iegality in the context of the current dialogue, i.e. no syntactic checking is omitted. This
improved implementation architecture is a direct result of the structure imposed by the user
interface specification.

A similar improvement in the new Operator Display implementation involves central-
ization of all code to manipulate the graphical display. The effect of some actions that must
be performed in a user interface is to alter the presentation in some way. In the previous
implementation, because all the actions performed were contained in the callback func-
tions, those functions had to possess the means by which to alter the presentation of the
graphical objects its functionality affected. Therefore, access to all of the graphical objects

40

that were affected by the operation had to be provided, in addition to all the additional syn-
tactic and semantic information mentioned previously.

The use of the presentation interpreter in the revised Operator Display implementation
eliminates the need for graphical objects to access each other. The presentation interpreter
possesses access to any graphical objects that are affected throughout the course of the dia-
logue; this centralizes alteration of the display. In addition, because alteration of the display
is basically a semantic action initiated by the parser, the presentation interpreter provides a
well-defined interface between the parser and the graphics code.

One final improvement in the revised implementation concerns error handling. With
respect to handling of syntactic errors, i.e. the user requesting invalid commands, in the pre-
vious implementation a large portion of syntactic checking was omitted due to the com-
plexity of distributed syntax checking discussed earlier. This means that errors were often
not detected, much less handled properly.

In the new implementation, because the interaction language is modelled using a con-
text-free grammar, the legal user input tokens can be determined for any particular point in
the dialogue. This information enables user input syntax errors to be completely prevented
through the use of “graying out” those graphical objects whose input tokens are not valid.
An additional benefit was that no error recovery was necessary in the parser that enforced
the grammar, because no invalid tokens could be generated. Once again, this is possible
because the specification models the interaction language explicitly.

7.2 Specification Properties

Desirable specification properties were explored in Chapter 4. A specification approach
was introduced that, if successful, would produce specifications with those desirable char-
acteristics. Given that the specification approach has been applied to the two safety-critical
case study applications, it is possible to determine for those two data points whether or not
the approach successfully introduced those properties into the resultant specifications. Fur-
ther, the advantages and disadvantages brought about by the given properties can be
explored, drawing on experience from the two case studies.

7.2.1 Separation of Concerns

Separation of concerns means that portions of the user interface that address different
concerns are specified in distinct pieces. In the case of the Operator Display, this separation
of concerns further enabled different concerns to be implemented in distinct pieces of code.
With respect to the specification, the human-computer dialogue has three distinct levels.
The specification enforces this logical separation, and, as mentioned above, the implemen-
tation corresponds. Separation of concerns involves specifying the user interface in three
distinct levels, so that each level is independent of the other two.

A major advantage of this separation is that it enables multiple specification solutions
to be developed for a particular level while maintaining the remainder of the user interface
specification. In the MSS case study, this separation of the graphics makes it possible to
specify either a two-dimensional or three-dimensional graphic display for digital imagery

41

without altering any of the remainder of the specification. In fact, this approach permits
entirely different display devices to be incorporated into the specification with only mini-
mal change.

Specifying the user interface in three Jevels also enables prototyping of levels. Proto-
typing is a technique where an implementation is built very quickly to help determine what
the correct requirements are. In the UVAR case study, having three separate specifications
allowed specification and prototyping of one level at a time, rather than having to worry
about the entire user interface. The presentation specification underwent extensive proto-
typing, receiving feedback from a nuclear engineer, until a mock-up was arrived at which
addressed all his concerns.

Finally, separation of concerns enables testing of the user interface implementation at
each level, in addition to comprehensive user interface testing. It is possible to generate
faults at each level of the user interface to determine how the receiving level copes with the
faults.

Experience in testing of the MSS shows the advantages of this specification approach,
with its corresponding implementation structure. Previous to this specification strategy, a
test harness was built for the system that generated user actions by simulating graphical
actions. This necessitated access to all of the graphic functions although these were not
readily available. The resulting complication in the test harness led to mistakes and likely
inaccuracies in testing. Using the new user interface structure, the test harness for system
testing became merely a generator of tokens to the syntax analyzer because the effect of
each graphic function now was solely to generate a token. This simplified the design of the
test harness and increased confidence in the testing procedures.

7.2.2 Systematic Interaction Between Components

Interaction between components of the specification is quite systematic, as alluded to
in the previous chapter. At the highest level is the semantic specification, written in Z. The
operations of the user interface are modelled using schemas, and these schemas map almost
one-for-one to the tokens of the context-free grammar. The reason for this is that the user
actions are all produced by the callback functions, which solely generate tokens in the cur-
rent implementation. The simplicity of the language is the reason that the composition of
tokens does not equate to more rules with semantic actions.

The interaction with the presentation is systematized by interface components for com-
munication both to and from the presentation component. The graphics generate the tokens
of the context-free grammar, mapping from the presentation to the syntax. In the opposite
direction, the graphics must be acted upon in response to certain tokens received from the
application program. The presentation interpreter enumerates the possible manipulation
requests upon the graphics and identifies the associated graphic objects and methods that
effect those operations.

7.2.3 Formal Notations

Formal notations were employed for each component of the user interface specification
in both case study applications. The formal specification language Z was used to describe

42

the semantic component of the user interface. Z enabled the state of the user interface to be
modelled, in addition to providing the capabilities to make a precise statement of the oper-
ations and their effect on the state. Part of the state described in Z was information used for
context-sensitive sequencing of operations that could not be easily modelled by the partic-
ular notation used for the syntactic component of the user interface. The formal semantics
associated with Z offers the possibility of analysis being performed on this specification,
such as type-checking.

The formal notation employed for describing the rules of the interaction language was
a context-free grammar. This type of formal grammar, used for the context-free portion of
the interaction language, allows a clear, unambiguous statement of possible ordering of
operations. The notation is also easily accessible to the application engineer, specifier, and -
implementor, so communication regarding legal and illegal command sequences is facili-
tated. For both case studies, the context-free grammar was presented to the application
engineer and feedback regarding its correctness was received. In the case of the UVAR, a
nuclear engineer unfamiliar with this notation was presented this portion of the specifica-
tion and a beneficial exchange occurred between this nuclear engineer and the specifier
regarding possible operator input requests.

Another advantage of context-free grammars is that an abundance of tools exist for pro-
cessing and analysis, due to the utility of this notation in compilers for programming lan-
guages. An automated tool was used to generate the parser from the grammar of the
specification for this portion of the Operator Display implementation. Other analysis is dis-
cussed in a later subsection. ‘

Finally, the formal notation utilized for presentation specification was Borland
ObjectWindows. Typical methods for specifying the presentation aspect of the user inter-
face are display mock-ups or scenarios, which are basically collections of pictures or dis-
play mock-ups. ObjectWindows provides this capability to visualize the display, but
because it is a textual notation it offers advantages over using only a visualization. Pictures
provide an operational definition of the interface, which an ObjectWindows specification
also provides when compiled with its class libraries and executed. This operational descrip-
tion allows rapid learning through experimentation. It is possible, however, to reason about
a formal notation in ways not possible with pictures. A textual notation is amenable to anal-
ysis; there is a formal semantics associated with the classes of the ObjectWindows library,
and the semantics of object-oriented specification, including concepts such as inheritance,
are well-understood. Even when screen generating systems for presentation specification
produce code, a notation amenable to analysis, there is no guarantee it will be readable. This
approach offers a framework for formal reasoning.

7.2.4 Executable Notations

The advantage of using a notation such as Borland ObjectWindows for presentation
specification is that it can provide a visualization of the interface in addition to providing
all the advantages mentioned above as a formal notation. The ability to compile and execute
the specification written in Borland ObjectWindows is what provides this mock-up capa-
bility.

43

One of the primary purposes of executable specifications is rapid prototyping, in this
case of display mock-ups. ObjectWindows provides this capability: the mock-ups of the
Operator Display were produced in a matter of hours. In the case of the UVAR user inter-
face, multiple display mock-ups were rapidly generated in order to assist validation of the
presentation requirements. With a library of classes to inherit off of for most graphical
objects, this reuse-based solution makes construction of display mock-up sufficiently fast.

7.2.5 Analysis

The use a parser generator to mechanically generate a parser for the grammar provides
automatic analysis performed by the generating tool. For example, using YACC on the
grammar for the Operator Display identified shift/reduce conflicts; this analysis enabled the
elimination of those conflicts and simplified the grammar. In addition, YACC will generate
an enumeration of all the tokens used in the grammar; this enumeration can be used to
ensure that the presentation has a means to generate all of those tokens.

Analysis of the grammar itself is necessary in order to ensure consistency, complete-
ness, and the absence of redundancy in the dialogue. The specification must also be ana-
lyzed to ensure that all necessary operations of the user interface offered in the semantic
level are included in the grammar,

Finally, it should be possible to mechanically generate the set of syntactically valid
tokens at any particular point in the grammar, using the action table produced for the parser
and looking at the entries with valid entries for the state the grammar is in. Unfortunately,
the action table used by YACC is encoded, which puts it in a format not readily read and
used for mechanical generation of these sets. For the grammar of the Operator Display, it
was possible to perform human analysis on the grammar to generate these sets of syntacti-
cally valid tokens. This formal inspection of the grammar for the Operator Display revealed
instances where tokens were not valid in the grammar specified that needed to be.

There are also tokens that are syntactically valid but not semantically meaningful, based
on context-sensitive information. Inspection of the grammar revealed tokens that were sup-
posedly valid in the dialogue because the grammar modelled only the context-free interac-
tion; the “gray out” set was expanded to include semantically invalid tokens as well.

7.2.6 Support for Implementation and Verification

Based on the structure of the specification, an implementation can be constructed with
a corresponding architecture. The clear separation of user interface levels in the specifica-
tion enables a clean, highly-structured implementation. This was demonstrated for the case
study involving the Operator Display, and those experiences were explored earlier in the
chapter.

The structural correspondence between the specification and implementation also aids
verification. Verification is the act of ensuring that the implementation is built correctly, i.e.,
that it correctly implements all of the requirements put forth in the specification. Because
the specification structure and implementation structure correspond, verification of the
entire user interface can be divided into manageable pieces, verifying each portion of the
user interface separately.

44

The verification that the grammar is implemented correctly is trivial. The use of a parser
generator to implement the grammar ensures that the parser correctly implements the gram-
mar, assuming the particular tool used, YACC, is correct. YACC is a widely-used parser
generator that has been in existence for many years, providing informal assurance that it
operates correctly. The importance of this trivial verification must be stressed: for the Oper-
ator Display, the interaction language consists of 85 productions, describing a non-trivial
language. It is unreasonable to believe that the syntax enforcement of such a complicated
language could be performed under a traditional user interface structure, where enforce-
ment is distributed amongst the various graphical objects. The language is sufficiently com-
plicated that programming a parser, for example a recursive-descent parser, based on the
grammar would be a significant undertaking and it would be difficult to verify this hand-
generated parser. The use of a parser generator guarantees syntax enforcement is imple-
mented correctly in the user interface.

Verification of the presentation should also be simple because the same executable
notation, Borland ObjectWindows, could be used for both the specification and the imple-
mentation; the only modifications that would have to be made to the presentation specifi-
cation would be to add a token generation call to each graphical callback, which are not
defined for the display mock-up. Currently in the Operator Display, the graphic implemen-
tation uses a different notation because the MSS runs on the Sun platform and Borland
ObjectWindows runs under Microsoft Windows on IBM personal computers and compati-
bles. This could be resolved by porting the entire Operator Display to Windows; this is dis-
cussed as future work in the final chapter.

7.2.7 Error Processing

A complicated issue in user interfaces is the error processing, detection of errors and
meaningful handling of those errors. The proposed specification approach provides the
means by which invalid sequences of user input can be completely prevented through the
use of “gray out” sets. As mentioned previously, the set of valid tokens can be determined
at any point in the dialogue through analysis of the grammar; the graphical objects that pro-
duce tokens not in this set comprise the “gray out” set.

The Operator Display demonstrated the feasibility of this approach. It is not possible
for the user to request an invalid operation in the Operator Display because all but the valid
operations are grayed out on the display.

8 Conclusion

This report presents a comprehensive, highly-structured approach to specification of
user interfaces for safety-critical systems. The user interface is observed to be comprised
of three distinct levels, the semantic, the syntactic, and the lexical, which relate to applica-
tion functionality, dialogue control, and presentation, respectively. Drawing on this view of
a user interface structure, a specification approach with the following characteristics is
described:

-

multiple components corresponding to the various levels of the user interface.

each component utilizing appropriate formal notations for that which is being
described.

systematic integration of specification components.

separation of concerns that facilitates verification, testing, prototyping, and change
at each level.

validation of user input through “gray out” sets of invalid functions, generated from
the syntactic specification, to prevent user input syntax efrors.

The specification approach provides numerous advantages with respect to implementa-
tion as well, demonstrated on the Magnetic Stereotaxis System case study. These advan-
tages include the following:

strong correspondence between specification and implementation, which aids veri-
fication.

jsolation of presentation-related code from all syntax-enforcement and semantic
functionality, due to similar architecture in the specification and implementation.

automatic generation of a parser, using existing compiler technology, to enforce the
grammar describing the syntax of the user interface.

trivial verification of automatically generated component, the parser.
centralized dialogue enforcement in a distinct portion of the user interface.

generation of tokens, and no other functionality, by graphical object callback func-
tions.

well-defined interface between the presentation and dialogue control, due to the
generation of tokens by graphical objects.

assurance that all user commands are checked for syntactic validity.

45

46

Feasibility of this specification method was demonstrated using two case studies
involving safety-critical systems, the Magnetic Stereotaxis System (MSS) and the Univer-
sity of Virginia Reactor (UVAR). A specification was composed for the Operator Display,
the primary user interface for the MSS, and this specification possesses many of the desir-
able properties the proposed approach intended to deliver. In addition, a successful imple-
mentation for the Operator Display was constructed using the specification, demonstrating
definitively the feasibility of the specification approach on this case study. A specification
was also composed for the user interface to the UVAR, validating the feasibility of the
approach on a second case study.

Future work includes construction of an implementation based on the specification for
the UVAR user interface. Construction of a well-organized implementation will conclu-
sively demonstrate the success of the specification approach for the second case study. This
work will proceed as development of the entire software system progresses.

Future work on the Operator Display includes utilizing the specification of the presen-
tation for the implementation. The presentation specification is written using Borland
ObjectWindows; the specification can be compiled with the Borland ObjectWindows
library and executed in order to provide display mock-ups. Because the specification is con-
cerned only with presentation, none of the callback functions for the graphical objects are
defined. The only extension necessary for the presentation specification to serve as the
implementation is each callback must be defined to generate a token, which is sent to the
parser.

The larger obstacle in using Borland ObjectWindows code for both specification and
implementation is that ObjectWindows runs under Microsoft Windows and the existing
MSS software runs under SunOS. The Operator Display communicates to the rest of the
MSS software via a socket connection, though, so only the Operator Display would need
to be ported over to Microsoft Windows and it could then communicate with the remainder
of the existing software still running under SunOS.

Finally, a great deal of future work remains in the area of analysis and tool support. The
semantic specification, written in Z, could have various forms of analysis performed on it.
There exist tools for analysis of Z specifications, for example, type checkers; the possibility
of converting the Z specification presented in this work into a form able to be processed by
existing tools should be studied.

With respect to the syntactic specification, an obvious target for tool support involves
the generation of valid token sets for the dialogue. For a context-free grammar, these sets
can be determined from the action table of the parser. The tool used for generation of a
parser, YACC, provides its action tables but encodes them. Understanding the format of
these action tables in order to build a tool for generation of the gray out sets is a definite
area for future study.

Lastly, automatic analysis could be performed with respect to interfaces between com-
ponents in either the specification or implementation. Regarding the relationship between
the presentation code and the parser, there should be a mechanical check performed that all
of the tokens of the grammar are generated by some graphical object callback. Also, a
mechanical check could be performed relating all messages defined in the semantic speci-

47

fication to the interfaces with the application program and the presentation interpreter; all
messages should be mapped to capabilities provided by each of those entities.

48

10.

11.

12.

13.

14.

15.

References

Aaram, I., “The BOP Prototyping Concept,” Approaches to Prototyping, eds. R
Budde et al., Springer-Verlag, 1984, pp. 179-187.

Abowd, G. and Dix, A., “Integrating Status and Event Phenomena in Formal Spec-
ifications of Interactive Systems,” ACM SIGSOFT, Vol. (Dec. 1994), pp. 44-52.

Boehm, B., Software Engineering Economics, Prentice-Hall, 1981, p. 37.

Borenstein, N., Programming as if People Mattered, Princeton University Press,
1991.

Borland International, Borland ObjectWindows for C++ Programmer’s Guide,
1993,

Buxton, W., Lamb, M., Sherman, D., and Smith, K., “Towards a Comprehensive
User Interface Management System,” Computer Graphics, Vol. 17-3 (July 1983),
pp. 35-42.

Casey, B. and Dasarathy, B., “Modelling and Validating the Man-Machine Inter-
face,” Software-Practice and Experience, Vol. 12-6 (June 1982), pp. 557-569.

Christensen, N., and Kreplin, K., “Prototyping of User-Interfaces,” Approaches to
Prototyping, eds. R. Budde et al., Springer-Verlag, 1984, pp. 58-67.

Diller, A., Z: An Introduction to Formal Methods, John Wiley and Sons, Inc., 1990.

Ege, R and Stary, C., “Designing Maintainable, Reusable Interfaces * IEEE Soft-
ware, Vol. 9-6 (Nov. 1992), pp. 24-32.

Engler, N., “Turning GUI Into Gold,” Unix World’s Open Computing, Vol. 11-3
(March 1994), pp. 68-74.

Foley, J. and Wallace, V., “The Art of Natural Graphic Man-Machine Conversa-
tion,” Proceedings of the IEEE, Vol. 62-4 (April 1974), pp. 462-471.

Foley, J. and Van Dam, A., Fundamentals of Interactive Computer Graphics, Add-
ison-Wesley, 1982, pp. 217-242.

Foley, J., Kim, W., and Gibbs, C., “Algorithms to Transform the Formal Specifica-
tion of a User-Computer Interface,” in Proceedings of Second IFIP Conference
Human-Computer Interaction, IFIP, Geneva, 1987, pp. 1001-1006.

Foley, J., Kim, W., Kovacevic, S., and Murray, K., “Defining Interfaces at a High
Level of Abstraction,” IEEE Software, Vol. 6-1 (Jan. 1989), pp. 25-32.

49

16.

17.

18.

. 19.
20.

21

22,

23.

24.

25.

26.

27.

28.

29.

30,

31.

32.

33,

50

Gillies, G. T. et al, “Magnctic‘Manipalation Instrumentation for Medical Physics
Research,” Review of Scientific Instruments, Vol. 63-3 (March 1994), pp. 533 - 562.

Grady, M. S. et al, “Preliminary Experimental Investigation of in vivo Magnetic
Manipulation: Resulis and Potential Application in Hyperthermia,” Medical Phys-
ics, Vol. 16-2 (March/April 1989), pp. 263 - 272.

Green, M., “The Design of Graphical User Interfaces,” Tech. Report CSRI-170,
Computer Systems Research Institute, University of Toronto, 1985.

Harel, D., “On Visual Formalisms,” CACM, Vol. 31-5 (May 1988), pp. 514-530.

Hekmatpour, S. and Ince, D., Software Prototyping, Formal Methods, and VDM,
Addison-Wesley Publishing Company, 1988, pp. 26-35.

Hix, D., “Generations of User-Interface Management Systems,” IEEE Software,
Vol. 7-5 (Sept. 1990), pp. 77-87.

Hix, D. and Hartson, R., Developing User Interfaces: Ensuring Usability Through
Product and Process, John Wiley and Sons, Inc., 1993.

Hooper, J. and Hsia, P., “Scenario-Based Prototyping for Requirements Identifica-
tion,” ACM SIGSOFT, Vol. 7-5 (Dec. 1982), pp. 88-93.

Ince, D., An Introduction to Discrete Mathematics and Formal System Specifica-
tion, Clarendon Press, 1983.

Jacob, R., “Using Formal Specifications in the Design of a Human-Computer Inter-
face,” CACM, Vol. 26-4 (April 1983), pp. 259-264.

Jacob, R., “A Specification Language for Direct-Manipulation User Interfaces,”
ACM Transaction on Graphics, Vol. 5-4 (Oct. 1986), pp. 283-317.

Johnson, S., “YACC - Yet Another Compiler Compiler,” Computing Science Tech-
nical Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975,

Kienzle, D., “Software Safety: A Formal Approach,” M.S. Thesis, University of
Virginia, Charlottesville, VA, May 1992.

Leveson, N., “Software Safety: Why, What, and How,” Computing Surveys, Vol.
18-2 (June 1986), pp. 125-163.

Leveson, N.G., and Turner, C.S., “An Investigation of the Therac 25 Accidents,”
IEEE Computer, Vol. 26-7 (July 1993), pp. 18-41.

Lugi, and Royce, W., “Status Report: Computer-Aided Prototyping,” IEEE Soft-
ware, Vol. 6-6 (Nov. 1989), pp. 77-81.

Mason, R. and Carey, T., “Prototyping Interactive Information Systems,” CACM,
Vol. 26-5 (May 1983), pp. 347-354.

Mittermeir, R., “HIBOL: A Language for Fast Prototyping in Data Processing Envi-

34.

35.

36.

37.
38.

39.
40.

41.

42.

43.

44.

45.
46.

47.

48.

51

ronments,” ACM SIGSOFT, Vol. 7-5 (Dec. 1982), pp. 133-140.

Moran, T, “The Command Language Grammar: A Representation for the User
Interface of Interactive Computer Systems,” International Journal Man-Machine
Studies, Vol. 15 (1981), pp. 3-30.

Myers, B., “User-Interface Tools: Introduction and Survey,” IEEE Software, Vol. 6-
1 (Jan. 1989), pp. 15-23.

National Instruments Corporation, “LabVIEW 2: The Complete Instrumentation
Software System,” IEEE-488 and VXIbus Control, Data Acquisition, and Analysis,
pp. 1:5-1:14.

Ousterhout, 1., Tel and the Tk Toolkit, Addison-Wesley Publishing Company, 1994.

Parnas, D., “On the Use of Transition Diagrams in the Design of a User Interface
for an Interactive Computer System,” in Proceedings of the 24th National Confer-
ence of the ACM, 1969, pp. 379-385.

Potter, B. et al, An Introduction to Formal Specification and Z, Prentice Hall, 1991.

Reisner, P., “Formal Grammar and Human Factors Design of an Interactive Graph-
ics System,” IEEE Transactions on Software Engineering, Vol. 7-2 (March 1981),
pp. 229-240.

Rudolf, J. and Waite, C., “Completing the Job of Interface Design,” IEEE Software,
Vol. 9-6 (Nov. 1992), pp. 11-22.

Shneiderman, B., “Multiparty Grammars and Related Features for Defining Inter-
active Systems,” JEEE Transactions on Systems, Man, and Cybernetics, Vol. 12-2
(March/April 1982), pp. 148-154.

Shneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley Publishing Company, 1992, pp. 506-517.

Sufrin, B. and He, J., “Specification, Analysis, and Refinement of Interactive Pro-
cesses,” Formal Methods in Human-Computer Interaction, eds. M. Harrison and H.
Thimbleby, Cambridge University Press, 1990, pp. 153-200.

University of Virginia Reactor, The University of Virginia Nuclear Reactor Facility
Tour Information Booklet, http: //minerva.acc.virginia.edu/~reactor.

University of Virginia Reactor Safety Committee, University of Virginia Reactor
Safety Analysis Report, http: / /minerva.acc.virginia.edu/~reactor.

Van Hoeve, F. and Engmann, R., “The TUBA-Project: A Set of Tools for Applica-
tion Development and Prototyping,” Approaches to Prototyping, eds. R. Budde et
al., Springer-Verlag, 1984, pp. 202-213.

Wasserman, A., “Extending State Transition Diagrams for the Specification of
Human-Computer Interaction,” IEEE Transactions on Software Engineering, Vol.

49,

50.

51.

52.

53.

52

11-8 (Aug. 1985), pp. 699-713.

Wasserman, A. and Shewmake, D., “Rapid Prototyping of Interactive Information
Systems,” ACM SIGSOFT Sofiware Engineering Notes, Vol. 7-5 (Dec. 1982), pp.
171-180.

Wellner, P, “Statemaster: A UIMS Based on Statecharts for Prototyping and Target
Implementation,” in Proceedings CHI ‘89 Conference - Human Factors in Com-
puter Systems, ACM, New York, 1989, pp. 177-182.

Wika, K., “Safety Kernel Enforcement of Software Safety Policies,” Ph.D. Disser-
tation, University of Virginia, Charlottesville, VA, May 1995,

Wika, K. and Knight, J., “Software Safety in a Medical Application,” in Proceed-
ings of the First International Symposium on Medical Robotics and Computer
Assisted Surgery, Pittsburgh, PA, 1994.

Wing, J., “A Specifier’s Introduction to Formal Methods,” IEEE Computer, Vol. 23-
9 (Sept. 1990), pp. 8-24.

Appendix A

A-1

MSS Operator Display Specification

This is the specification of the Operator Display, the user interface to the Magnetic Ste-
reotaxis System. The specification of the Operator Display consists of various component
specifications which comprise different aspects of the user interface. The sections of the
Operator Display specification with their associated specification notations are shown in
Table 1.

Table 1: Operator Display Specification Components

Section Component Technology
ar | Semanics |z |
A2 Syntax Context-Free Grammar
A3 Presentation Borland OWL |
A4 Token Generation Tables
A5 Command Interpretation Tables

A.1 Semantic Specification

The functionality of the Operator Display is specified in the formal specification lan-
guage Z. For an overview of formal specification using Z, the reader is referred to Diller.

The semantic specification consists of the following sections:

Axiomatic Descriptions

Set Definitions

State Description

Initialization Schema

Setup Operations

Patient Data Operations

Operations for X-Ray Object and MRI Marker Identification

Surgical Procedure Operations

The first four sections define the basic types used in the specification and describe the
state of the Operator Display as modelled in this specification. The latter four sections
model the operations that the user interface provides and their effect upon the state of the
system. These four sections group operations roughly according to phases in the operation
of the MSS; numbers above the operation schemas refer to the production numbers in the
grammar of Section A.2. Most schemas map to either a token or a rule reduction in the con-
text-free grammar.

Axiomatic Descriptions

ImageViewSeq seqlmageSeq
i#[mageWewSeq = 3
ImageSeq seqSlices
I#ImageSeq = 13
Slices seq Pixel
Xraylmage seq Pixel
Position seq R
#Position = 2
Coordinate segR
#Coordinate = 3
CoilCurrents : SeqR
#CoilCurrents = 6

A-3

String

MessageToCP .

MessageToGl .

seqChar

MethodsToCP X N X R X String X Position +> Message

MethodsToGI x N X R x Axis X View X Xray X String X
Position X Coordinate X ImageViewSeq -+ Message

A-4

Set Definitions

[Message, Pixel]
Char

Modes

Axis

View

MethodsToCP

MethodsToGI .

= {a.z, 0.9}
= {InitSetup,

== {Xaxis, Yaxis}
= {Axial, Sagittal,

PatientData, Identifications,

Coronal}

Surgery}

== {AcquireXrayBackX, AcquireXrayBackY, CalibrateCameraX,

CalibrateCameraY, CalibrateSourceX, CalibrateSourcel,
InitiateXrayObjldX, InitiateXrayObjldX,

LoadPatientData,
SetinitObjPositsX,
CancelXrayObjldy,
SetMotion,

= {LoadPatient,

ReorientArrow,
MoveFeature,
DeleteMRIPanel,
DismissXray,
ViewDown,
ViewFront,
SetReqColl,

SetlnitObjPositsY, CancelXrayObjldX,
LocateSeed, MoveSeed,

Quit}

IDXraylmageObjs, CreateArrow,
DisplaySlices, CreateCircle,
ClosePatient, DeleteVisPanel,
CreateMRIPanel, DisplayCurrentXray,
ShutDown, ViewUp,

ViewRight, ViewLeft,

ViewBack, SliderVal,
ChangeMRIBuitonColor,

ChangeVisButtonColor)

State Description

— OperatorDisplay

mode Modes
axelems, sagelems, corelems N

axslice, sagslice, corslice N

sliderval R

curview View

curaxis Axis

numids N

idposits seq Position
idflag seq Boolean
markslice seg N
idinprog N

reqeurrs CoilCurrents
backx, backy, camx, srcx, camy, S¥Cy Boolean
patientloaded Boolean
donexrayid, xaxisdone, yaxisdone Boolean
donemriid, axdone, sagdone, cordone Boolean
(mode = PatientData) = (backx A backy A camx A SFCX A camy A $rcy)
(mode = Identifications) =» patientloaded

(mode = Surgery) = (donexrayobjid » donemrimarkid)
donexrayobjid = (xaxisdone A yaxisdone)
donemrimarkid =2 (axdone A sagdone A cordone)

Initialization Schema

— InitOperatorDisplay

OperatorDisplay’

mode’ = InitSetup

axelems’ = sagelems’ = corelems’ = 0

axslice’ = gsagslice’ = corslice’ = 0

sliderval’ = 0.0

numids’ = 0

idposits’ = ()

idflag’ = ()

markslice’ = ()

idinprog = 0

regeurrs’ = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

backy’ = backy’ = camx’ = srcx’ = camy’ = srcy’ = false
patientloaded” = false

donexrayobjid = xaxisdone’ = yaxisdone’ = false
donemrimarkid’ = axdone’ = sagdone’ = cordone’ = false

Setup Operations

*+ 2: vis_params

— VisionFarams
E OperatorDisplay

mode = InitSetup

» 4: backgrnd

— AcquireXrayBackground
A OperatorDisplay
msgtocp! : MessageloCP
whichaxis? . Axis

mode = InitSetup
(((whichaxis? = Xaxis) = (backx’ A msgtocp(AcquireXrayBackX)))

Y
((whichaxis? = Yaxis) = (backy’ A msgtocpl(AcquireXrayBackY))))

* 6: cam_calib

— CalibrateCamera
A OperatorDisplay
msgtocp! . MessageToCP

whichaxis? : Axis

mode = InitSetup

(((whichaxis? = Xaxis) => (camx’ A msgtocpl(CalibrateCameraX)))
v

((whichaxis? = Yaxis) = (camy” A msgtocpl(CalibrateCameraY))))

A-8

«7: src_calib

— CalibrateSource
A OperatorDisplay
msgtocp! . MessageToCP
whichaxis? : Axis

mode = InitSetup

(((whichaxis? = Xaxis) => (srex’ a msgtocpl(CalibrateSourceX)))
v

((whichaxis? = Yaxis) =» (srcy’ A msgtocpl(CalibrateSourceY))))

*» 3: check_calib, 5: check_axis

— DoneVisionCalib
A OperatorDisplay

mode = InitSetup
(backx A backy A camx A srcx A camy A srcy) = (mode’ = PatientData)

A9

Patient Data Operations

* 11: load_pat

— LoadPatientData
= OperatorDisplay
msgtocp! 1 MessageToCP

filename? . String

mode = PatientData
msgtocp!(LoadPatientData, filename?)

* 10: pat_data

—~ CPLoadPatientData

A OperatorDisplay

setofimages? . ImageViewSeq

msgtogi! . MessagelToGl

mode = PatientData

axelems’ = #(setofimages?(1))

sagelems’ = #(setofimages(2))

corelems’ = #(setofimages?(3))

axslice’ = gsagslice’ = corslice’ = 1
patientloaded’

mode” = Identifications
msgtogi(LoadPatient, setofimages?)
+ 82: close_pat

— ClosePatient

A OperatorDisplay

msgtogi! : MessageloGl

mode = Surgery

axelems’ = sagelems’ = corelems’ = 0
axslice’ = sagslice’ = corslice’ = 0
~patientloaded’

msgtogil(ClosePatient)

mode’ = PatientData

A-10

Operations for X-Ray Object and MRI Marker Identification

Identifications = (DoneVisID 5 CheckBothIDsDone)

v

(DoneMRIID; CheckBothlDsDone)
* 12: check_both_ids

— CheckBothIDsDone
A OperatorDisplay

mode = Identifications
(donexrayobjid n donemrimarkid) => (mode’ = Surgery)

» 14: 42: vis_done

~ DoneVisID
A OperatorDisplay

(mode = Identifications) v (mode = Surgery)
(xaxisdone A yaxisdone) => donexrayobjid’

» 15; 43: mark_done

~— DoneMRIID
A OperatorDisplay

(mode = Identifications) v (mode = Surgery)
(axdone A sagdone A cordone) => donemrimarkid’

— IDCleanup
A OperatorDisplay

(mode = Identifications) v (mode = Surgery)
numids’

idinprog’
idposits’
idflag’

| |
PN N s I
S M

A-11

* 19: init_obj

— InitiateXrayObjectID
= OperatorDisplay
msgtocp! : MessageToCP
whichaxis? © Axis

(mode = Identifications) v (mode = Surgery)

(((wWhichaxis? = Xaxis) => msgtocp!(InitiateXrayObjldX))
v

((whichaxis? = Yaxis) = msgtocp!(InitiateXrayObjldY)))

« 18: cp_init_o

—— CPIdentifyXrayObjects

A OperatorDisplay

whichaxis? : Axis
animage’! : Xraylmage
numobjects? N

names? . seq String
posits? . seq Position
objidd? : seq Boolean
msgtogi! : MessageloGI
(mode = Identifications) v (mode = Surgery)
curaxis’ = whichaxis?
numids’ = numobjects?

Y/ posit : Position | posit € posits? e idposits’ = idposits’ ~ {posit)

V flag : Boolean | flag € objidd? e idflag’ = idflag’ ~ {flag)

msgtogil(IDXrayImageObjs, whichaxis?, animage?, numobjects?, names?,
objidd?)

* 25, 26: select_o

— SelectObject

A OperatorDisplay

whichobj?, prevobj? : N

msgtogi! : MessageloGI

(mode = Identifications) v (mode = Surgery)
idinprog’ = whichobj?
msgtogil(Change VisButtonColor, idinprog’, prevobj?, idflag(prevobj?))

+ 22: obj_posit

— GetObjectPosition
A OperatorDisplay
objectposit? . Position
msgtogi! : MessageToGl

(mode = Identifications) v (mode = Surgery)
=(idinprog = 0)

idposits(idinprog)’ = objectposit?
idflag(idinprogy

idinprog® = 0
msgtogi!(ChangeVisButtonColor, idinprog)

DoneAxis = SetlnitialObjectPositions A IDCleanup
CancelAxis = CancellnitialObjectPositions A IDCleanup

*» 23: done_obj

— SetlnitialObjectPositions

A OperatorDisplay
msgtocp! 1 MessageToCP
msgtogi! : MessageToGl

(mode = Identifications) v (mode = Surgery)
(Y objidd : Boolean | objidd € idflag ® objidd) =
(msgtogil(DeleteVisPanel)
A
(((curaxis = Xaxis) =»
(xaxisdone’ A msgtocp!(SeddnitObjPositsX, idposits, numids)))
v
((curaxis = Yaxis) =
(vaxisdone® A msgtocp\(SetlnitObjPositsY, idposits, numids) n)

 24: cancel_obj

— CancellnitialObjectPositions

A OperatorDisplay |
msgtocp! . MessageloCP
msgtogi! . MessageToGl

(mode = Identifications) v (mode = Surgery)

msgtogil(DeleteVisPanel)

(((curaxis = Xaxis) = msgtocp(CancelXrayObjldX))
v

((curaxis = Yaxis) = msgtocp!(CancelXrayObjIdY)))

* 29: init_mark

~— Initiate MRIMarkerID

A OperatorDisplay

whichview? . View

nummarks? : N

names? . seq String

posits? . seq Position

markidd? : seq Boolean

msgtogi! . MessageToGl

(mode = Identifications) v (mode = Surgery)
curview’ = whichview?

numids’ = nummarks?

Y marks: N | marks € markslice ® markslice’ = markslice’ — {0)

Y posit : Position| posit € posits? e idposits’ = idposits’ = {posit)
Y flag : Boolean | flag € markidd?e idflag’ = idflag” ~ (flag)
msgtogil(CreateMRIPanel)

* 35: 36: slct_mark

— SelectMarker

A OperatorDisplay

whichmark?, prevmark? : N

msgtogi! : MessageToGl

(mode = Identifications) v (mode = Surgery)
idinprog’ = whichmark
msgtogi(ChangeMRIButtonColor, idinprog’, prevmark?, idflag(prevmark?))

*» 32: mrk_posit

— GetMarkerPosition
A OperatorDisplay
markerposit? . Position
slicenum? . N

msgtogi! . MessageToGI

(mode = Identifications) v (mode = Surgery)
= (idinprog = 0)

idposits(idinprog)’ = markerposit?
markslice(idinprog)’ = slicenum?
idflag(idinprog)’

idinprog® =

msgtogil(ChangeMRIButtonColor, idinprog)

DoneView = SetMarkerPosits A IDCleanup
CancelView = CancelMarkerPosits A IDCleanup

+ 33: done_mark

—— DoneView
A OperatorDisplay
msgtogil . MessageToGl

(mode = Identifications) v (mode = Surgery)
(Y markidd : Boolean | markidd € idflag’ markidd) =
msgtogil(DeleteMRIPanel) A
(markslice’ = {)) A
(((curview = Axial) = axdone’) v
((curview = Coronal) = cordone’) v
((curview = Sagiital) => sagdone’))))

* 34: cancel_mark

~— CancelView
A OperatorDisplay
msgtogi! . MessageToGI

(mode = Identifications) v (mode = Surgery)
markslice’ = ()
msgtogit(DeleteMRIPanel)

Surgical Procedure Operations

* 41: locate_seed

— LocateSeed
E OperatorDisplay
msgtocp! . MessageToCP

mode = Surgery
msgtocp!(LocateSeed)

* 50; move_seed

— MoveSeed
= OperatorDisplay
msgtocp! . MessageToCP

mode = Surgery
msgtocp(MoveSeed)

» 50: 51: set_slider_val

— SetSlider
A OperatorDisplay
distance? . R
msgtogi! 1 MessageloGl

mode = Surgery
sliderval’ = distance?
msgtogil(SliderVal, distance?)

» 49: direction

- SetSendDirection
= OperatorDisplay
msgtocp! : MessageToCP
phi?, theta? R

mode = Surgery
msgtocp!(SetMotion, phi?, thetal, sliderval)

A-16

ViewlUpOp = ViewUp A ViewUpFail
ViewDownOp & ViewDown A ViewDownlkail
ViewRightOp = ViewRight A ViewRightFail
ViewLeftOp & ViewLeft A ViewLeftFail
ViewFrontOp & ViewFront A ViewFrontFail
ViewBackOp & ViewBack n ViewBackFail
* 69: view_upp

— ViewlUp

A OperatorDisplay
msgtogil : MessageToGl

(mode = Identifications) v (mode = Surgery)
axslice < axelems

axslice’ = axslice + 1
msgtogi!(ViewUp)

« 70; view_down

— ViewDown
A OperatorDisplay
msgtogi! . MessageToGI

(mode = Identifications) v (mode = Surgery)
axslice > 1

axslice’ = axslice-1
msgtogil(ViewDown)

<71 view__right

— ViewRight
A OperatorDisplay
msgtogi! : MessageToGI

(mode = Identifications) v (mode = Surgery)
sagslice < sagelems

sagslice’ = sagslice + 1
msgtogi!(ViewRight)

A-17

» 72: view_left

— ViewLeft
A OperatorDisplay
msgrogil : MessageloGI

(mode = Identifications) v (mode = Surgery)
sagslice > 1

sagslice’ = sagslice - 1
msgtogil(ViewLeft)

« 73: view_front

— ViewFront
A OperatorDisplay
msgtogi! : MessageloGl

(mode = Identifications) v (mode = Surgery)
corslice < corelems

corslice’ = corslice + 1
msgtogil(ViewFront)

« 74: view_back

— ViewBack
A OperatorDisplay
msgtogi! : MessageloGl

(mode = Identifications) v (mode = Surgery)
corslice > 1

corslice’ = corslice -1
msgtogi!(ViewBack)

— ViewUpFail
E OperatorDisplay

axslice >= axelems

— ViewDownFail
= OperatorDisplay

axslice <= 1

—— ViewRightFail
EOperatorDisplay

sagslice >= sagelems

—— ViewLeftFuil
= OperatorDisplay

sagslice <= 1

— ViewFrontFail
= OperatorDisplay

corslice >= corelems

— ViewBackFuail
B OperatorDisplay

1corslice <= 1

¢ 52: 54: cp_c_artr

— CPCreateArrow
= OperatorDisplay

featureid?, zvall, stat?, vis?, color?, width? : N

lentoimg? R

UCSPos?, direction? Position
msgtogi! MessageToGI

mode = Surgery
msgtogil(CreateArrow, featureid?, zval?, statl, vis?, color?, width?, lentoimg?,

UCSPos?, direction?)

A-19

A-20

* 53: 55: cp_r_arr

— CPReorientArrow
E OperatorDisplay
featureid? : N
direction? . Position
msgtogi! . MessageloGI

mode = Surgery
msgtogil(ReorientArrow, featureid?, direction?)

* 61: 64: cp_slices

~— CPDisplaySlices
= OperatorDisplay
UCSposition? . Position

msgtogil . MessageToGl

mode = Surgery
msgtogil(DisplaySlices, UCSposition?)

* 62: 65: cp_c_circ

— CPCreateCircle
E OperatorDisplay
newid?, az?, status?, vis? N
color?, radius?, width?, fill? - N
UCSpos? . Position
msgtogil MessageToGl
mode = Surgery
msgtogil(CreateCircle, newid?, az?, status?, vis?, color?, radius?, width?,
fill?, UCSpos?)

A-21

¢ 63: 66: cp_m_feat

— CPMoveFeature

Z OperatorDisplay
Jeatureid? N
UCSpos? : Position
msgtogi! : MessageToGIl

mode = Surgery
msgtogit(MoveFeature, featureid?, UCSpos?)

« 77: inc_coil

~— IncrementCoil
A OperatorDisplay
whichcoil? : N
msgtogi! © MessageToGl

mode = Surgery
regeurrs(whichcoil?) = regcurrs(whichcoil?) + 1
msgtogil(SetReqCoil, reqcurrs(whichcoil?))

+78: dec_coil

— DecrementCoil

A OperatorDisplay
whichcoil? . N
msgtogil . MessageToGl

mode = Surgery
regeurrs(whichcoil?y = reqcurrs(whichcoil?) - 1
msgtogil(SetReqCoil, regeurrs(whichcoil?))

* 79: set_coil

— SetCoil
A OperatorDisplay
whichcoil? : N
newval?l : R
msgtogi! ¢ MessageToGI

mode = Surgery
reqcurrs(whichcoil?) = newvall
msgtogil(SetReqCoil, newval?)

A-22

* 81: curr_xray
— CurrentXray

E OperatorDisplay

newxray? . Xraylmage
axis? o Axis

msgtogi! MessageToGI

mode = Surgery
msgtogil(DisplayCurrentXray, axis?, newxray?)

* 80: bye_xray

e DismissXray

= OperatorDisplay
msgtogi!

MessageToGl

mode = Surgery
msgtogi(DismissXray)

» 83: quit
— QuitQD
% OperatorDisplay
msgtocp! MessageToCP
msgtogi! MessageToGI

msgtocp{(Quir)
msgrogil(ShutDown)

A-23

A.2 Syntactic Specification

interface.

1l: mss

2 set_up

3: viz_calibrate
4: acg_backgr
5: calib_axis
6 calib_cam
E calib_src
8: operations
9:

10: load_pat
il: pat_data
12: idents

13:

14: an_id

15:

16: x_obj.id
17

18: init_obi_id
19: init_token
20: id _obis
21

22: obi_token
23:

24

25 select_obj
26:

27: m_mark_id
28:

29: init_mark_id
30: id_marks
31:

2]

il

A context-free grammar (Backus-Naur Form) is used to specify the syntax of the user

set_up operations quit_seq
vis_calibrate VIS_PARAMETERS

acq backgr acg backgr calib_axis calib _axis
ACQ BACKGR

calib_cam ¢alib_src

CALIB_CAMERA

CALIB SOURCE

operations load _pat ldents surg_prec close pat
loadmpat idents surg _proc close palb
pat_data CP_PAT _DATA

LOAD PAT_DATA

idents an_id

an_id

x_okj_id VIS_ID_DONE

m_mark _id MRI_ID_DONE

x_obj_id init_obj_id id_objs
init_obj_id id_objs

init_token CP_ID_XRAY OBJS

INIT OBJ_ID

id_obis obj_token

obij_token

select_obi OBJECT_POSIT
DONE_AXIS_ID

CANCEL_AXIS ID

gselect_ob]j SELECT_OBJ

SELECT OBJ

m_mark_id init_mark _id id _marks
init_mark_id id_marks

INIT_MARK_ID

id_marks mark_token

mark_token

A-24

32: mark_token = select_mark MARKER_POSIT
33: | DONE_VIEW_ID

34: | CANCEL_VIEW_ID

35: select_mark := select_mark SELECT_MARK

36: ! SELECT_MARK

37z surg_proc = move_seed surg_actions

38: surg_actions 1= surg_actions surg_act

39: | surg_act

40: gurg_act .= get_dist_dir move_seed

41: i LOCATE_SEED_REQ

42 : | =_obj_id VIS_ID_DONE

43 | m_mark_id MRI_ID_DONE

44 : | disp_token

45: | view_xray

46: set_dist_dir := gset_dist_dir dist_dir_seg
47: | dist_dir_seq

48: dist_dir_seq 1= get glider dir_token cp_dist resp opt_adjust
49 dir_token := DIRECTION_INFO

50: set_slider ;= geb_slider SLIDER_VALUE

51: { SLIDER_VALUE

52: cp_dist_resp 1= cp_dist _resp CP_CREAT_ARROW
53: | cp_dist_resp CP_RECRNT_ARROW
54: | CP_CREAT_ARROW

55 | CP_REORNT_ARROW

56: opt_adjust = adj_display

57: | adj_currents

58: {

59: move_seed := move_Loken cp_move_resp

60: move_token = MOVE_SEED_REQ

61: cp_move_resp 1= op_move_resp CP_DISP_SLICES
82 | cp_move_resp CP_CREAT_CIRCLE
63 | op.move_resp CP_MCV_FEATURE
64: { CP_DISP_SLICES

65: | CP_CREAT_CIRCLE

66:
671
68:
69:
70:
71l
72
73
74
75:
76:
77
78:
791
80:
81:
82:
83:
84:

adi_display

disp_token

adi_currents

curr_token

view xXray
disp _XxXray
close_pat
quit_seq

quit_confirm

A-25

CP_MOV_FEATURE
adi_display disp_ token
disp. token

VIEW_UPP

VIEW_DWN

VIEW_RT

VIEW LT

VIEW_FRT

VIEW_BCK

adij_currents curr_token
curr_token

INCR_COIL

DECR_COTIL

RESET_COIL

disp_xray BYE_XRAY
DISP_CUR_ERAY
CLOSE_PAT _DATA
qguit_confirm QUIT O D

QUIT_CONFIRM

A-26

A.3 Presentation Specification

The presentation component of the Operator Display is specified using Borland
ObjectWindows. For a complete specification of the graphical display, in addition to the
description found in this section, the documentation for the Borland ObjectWindows
Library must be included. The definitions of base objects used in the specification may be
found in the ObjectWindows documentation, in addition to definitions for the semantics of
actions, such as button presses.

In addition to the textual Borland ObjectWindows specification, a visual presentation
of the interface may be constructed by compilation with the ObjectWindows Library and
subsequent execution. The specification is for presentation only; therefore no application
functionality or dialogue control is included, and compilation would create simply a mock-
up of the display.

The specification of the Operator Display consists of five sections, corresponding to the
five files needed to describe the entire visual representation. The first section presents red-
svs.re, which is a resource file automatically generated from a graphical mock-up of a por-
tion of the display. Graphical information for the definition of the menus and temporary
button panels of the Operator Display is defined in this file.

The second section presents the medsys . » file. This file contains the primary class of the

Operator Display, MedSysWindow. The MedSysWindow class contains declarations for

_the buttons, slider, three canvas (one for each view), and other graphical objects of the
Operator Display.

The next section of the presentation specification is for the medsys . cpp file. In this sec-
tion is defined the constructor for the MedSysWindow class, which in turn instantiates the
graphical objects declared in the class definition found in the previous section. In addition,.
the Paint function for this class displays a status string for the Operator Display and a box
for input of seed direction values.

The fourth section contains the file tmpview.n, which defines the TCanvas class for dis-
playing bit-mapped images. The bit-mapped images can display either the pre-operative
MRI images or x-ray images.

The final section presents the bmpview. cpp file, which contains the constructor, destruc-
tor, and Paint function for the TCanvas class. The Paint function creates lines on the images
for representation of the electromagnetic coil positions, a label identifying each view, and
positions to display the actual coil current values.

medsys.rc

A-27

/**************W*************************%************W**********************

medsys . rc

produced by Borland Resource Workshop

R**W**********w**************************i**************W**************/

f#include "medsys.rh”

MEDSYS_MENU MENU
{
POPUP "Patient"

{
MENUGITEM "Load Patient Data”,

MENUITEM "Close Patient Data",

PORPUP "MRI"

{
MENUITEM “Axial",
MENUITEM "Sagittal®,
MENUITEM “Corcnal”,
MENUITEM "Done™,

POPUP "Visgion®
{

MENUITEM "Acquire ¥ Background",
MENUITEM "Acguire Y Background",

MENUITEM SEPARATOR
MENUITEM "X Camera”,
MENUITEM "Y Camera",
MENUITEM SEPARATOR
MENUITEM *X Socurce",
MENUITEM "Y Source",
MENUITEM SEPARATOR
MENUITEM "X Objects®,
MENUITEM "Y Objects",
MENUITEM SEPARATOR
MENUITEM *"Current X7,
MENUITEM "Current Y",
MENUITEM SEPARATOR
MENUITEM "Image Parameters",
MENUITEM "Done",

POPUP "Quit"
{
MENUITEM "Quit”,

OBJECTS_DIALOG DIALOG

CM, PATIENT _LOADDATA
CM__PATIENT_CLOSEDATA

CM_MRI_AXIAL
CM_MRI_SAGITTAL
CM_MRI_CORONAL
CH_MRI_DONE

CM_VISION, XBACRGROUND
CM_VISION_YBACKGROUND

CM_VISION_XCAMERA
CM_VISION_YCAMERA

CM_VISION_XSOURCE
CM_VISION YSOURCE

CM_VISION _XOBJECTS
CM_VISION_YOBJIECTS

CM,_VISION_CURRENTX
CM_VISION_CURRENTY

CM_VISION, IMAGEPARAMETERS
CM_VISICHN, DORE

CM_QUIT

OBJ_DIALOG_X,

STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE |

CAPTION "Objects on X Cbject Axis"
FONT 8, "MS Sansg Serif"

{
DEFPUSHBUTTON "OK",

PUSHBUTTON *Cancel",

PUSHBUTTON "Seed', :

PUSHBUTTON *Left Temporal",

PUSHBUTTON "Coronal",

PUSHBUTTON “"Right Temporal",

PUSHBUTTCN "New Image”,

GROUPBOX """,

CONTROL "Use Identified Positions®

A-28

OBJ_DIALCG_Y,
OBJ_DIALLOG_WIDTH,
OBJ_DIALOG_HEIGHT

WS_CAPTION | WS_SYSMENU

IDOK,

Q¥ BUTTON_X,
OX_BUTTON,_ Y,
CKCANCEL_BUTTON, _WIDTH,
CRCANCEL_BUTTON HEIGHT

IDCANCEL,
CANCEL_BUTTON_X,
CANCEL_BUTTON_Y,
ORCANCEL,_ BUTTCON_WIDTH,
OKCANCEL_BUTTON_ _HEIGHT

IDC_SEED,
BUTTON_X,

SEED _BUTTON_Y,
DG, BUTTON_WIDTH,
DG_BUTTON, HEIGHT

IDC_LEPT _TEMPORAL,
BUTTON_X,
LEFT_TEMP, _BUTTON_Y,
DG_BUTTON_WIDTH,
DG_BUTTON_HEIGHT

IDC_CORCNAL,
BUTTCON, X,
CORONAL_BUTTON_Y,
DG_BUTTON_WIDTH,
DG_BUTTON_HEIGHT

IDC_RIGHT TEMPORAL,
BUTTON_X,

RIGHT TEMP_BUTTON_Y,
DG_BUTTON_WIDTH,
DG_BUTTON_HEIGHT

IDC_NEW_IMAGE,
BUTTON_X,
NEW_IMAGE_BUTTON_Y,
oG, BUTTON_WIDTH,

DG _BUTTON_HEIGHT

IDC_GROUE,
GROUP_X,
GROUP_Y,
GROUP,_WIDTH,
GROUP_HEIGHT,
BS_GROUPROX

IDC_USE_ID_OBJECTS,
' BUTTON™,
BS_AUTORADIOBUTTON,

CONTROL “Locate Objects",

MARKERS_DIALOG DIALOG

A-29

RADIO X,

OBRJ_RADIO Y,
RADIO_WIDTH,
RADIO_HEIGHT

IDC LOC_CBJECTS,
*RUTEON™,
B8_AUTORADIOBUTTON,
RADIC_X,
LOC_RADIO_Y,
RADIO_WIDTH,
RADIO_HEIGHT

0BJ, DIALOG_X,
OBJ_DIALOG_Y,
CRJI_DIALOG_WIDTH,
OBJ_DIALOG_HEIGHT

STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "Objects on ¥ Object Axig"

FONT 8, *MS Sans Serif”
{
DEFPUSHBUTTON "OK",

PUSHBUTTON "Cancel",

PUSHRBUTTON "Left Temporal™,

PUSHBUTTON *Coronal®,

PUSHBUTTON *Right Temporal",

GROUPBOX "',

IBCK,

CE__BUTTON_X,
OK_BUTTON_Y,
QKCANCEL_BUTTON_WIDTH,
QKCANCEL_BUTTON_HEIGHT

IDCANCEL,

CANCEL, BUTTON_X,
CANCEL_BUTTON_ Y,
COKCANCEL_BUTTON WIDTH,
QKCANCEL_BUTTON HEIGHT

IDC_MARK_LEFT _TEMPORAL,
BUTTON_X,
LEFT_TEMP_BUTTON_Y,
DE_BUTTON_WIDTH,
DG__BUTTON_HEIGHT

IDC_MARK CORONAL,
BUTTON_X,

CORONAL_BUTTON_Y,
DG_BUTTON_WIDTH,
DG_BUTTON_HEIGHT

IDC, MARK_RIGHT_TEMPORAL,
BUTTON_X,

RIGHT _TEMP, BUITTON_Y,
DG_BULTON_WIDTH,
DG_BUTTON_HEIGHT

IDC MARK _GROUP,
GROUP_X,
GROUP_Y,
GROUP_WIDTH,
GROUP_HEIGHT,
BS_GROUPBOX

CONTROL "Use Identified Positions",

CONTROL “Locate Objects",

QUIT, DIALOG DIALOG

IDC_MARK USE_ID_OBJECTS,
"BUTTON",
BS_AUTORADIOBUTTON,
RADIO_X,

CBJ_RADIO_Y,
RADIO_WIDTH,
RADIO_HEIGHT

IDC, MARK_LOC_CBJECTS,
*BUTTON",
BS_AUTORADIOBUTTON,
RADIO_X,

LOC_RADIO_Y,
RADIO_WIDTH,

RADIO_ _HEIGHT

QUIT _DIALOG_X,
QUIT_DIALOG_Y,
QUIT_DIALOG _WIDTH,
QUIT DIALOG_HEIGHT

STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "Quitre"
FONT 8, "MS Sang Serif"

{
DEFPUSHBUTTON "Yes",

PUSHBUTTON "No",

' LTEXT "Are vou sure you want to guit?",

IDOK,
YES_BUTTON_X.,
YES_BUTTON_Y,

QUIT RBUTTON_ WIDTH,
QUIT_BUTTON_HEIGHT
IDCANCEL,
NO_BUTTON_X,
NO_BUTTON Y,
QUIT_BUTTON_WIDTH,
QUIT, BUTTON_HEIGHT
..1’

TEXT_X,

TBEXT_Y,

TEXT _WIDTH,
TEXT_HEIGHT

A-30

medsys.h

#include
#include
#include

#include
#include
#include

const
const
const
const
const
consgt

const
const
const
const

const
congt
const

const
const
const

const
const

const
const

const
const

const
const
congt
const

const
const
const

const
const
const
const
const
const
const

int
int
int
int
int
ing

int
int
int
int

int
int
int

int
int
int

int
int

int
int

int
int

int
inkt
int
int

int
int
int

int
int
int
int
int
int
int

<owl/applicat.h>
<owl /owlpch. h>
<owl/framewin. h>

‘medsys.rh”
<owl/static.h>
"bpview.h"

ID _AXTIAL_UP
ID_AXTIAL_ DOWN

ip SAGITTAL_RIGHT
ID _SAGITTAL LEFT
ID_CORONAIL_FRONT
ID_CORCNAL_BACK

ID_MOVE_SEED
ID_LOC_ _SEED
ID_HOZSLIDER
ID, DISMISS_XRAY

NUM_AXIAL_FILES
NUM_SAGITTAL_FILES
NUM_CORONAL, FILES

BIG_PANE_SIZE
LITTLE_PANE SIZE
MEDSYS_ORIGIN

AXIAL VIEW _LEFT
AXTAL_VIEW_TOP

SAGITTAL_VIEW_LEFT
SAGITTAL_VIEW_TOP

CORCONAL_VIEW LEFT
CORCNAL_VIEW_TOP

ANGLEBOX_LEFT
ANGLEBCX_TOP
ANGLEBOX RIGHT
ANGLEBOX_BOTTOM

BIG_PANE _BUTTON_WIDTH
LITTLE_PANE _BUTTON_WIDTH
VIEW _BUTTON_HEIGHT

AX _UP_BUTTON_LEFT
AX_Up_BUTTON_TGCF
A¥_DN_BUTTON_LEFT
AX_DMN_BUTTON_TOP
8G_RT_BUTTON_LEFT
SG_RT_BUTTON,_TOP
8@ _LT_BUTTON_ _LEFT

801;
802
803 ;
804 ;
805;
806;

822,
824,
825;
826;

512;
256;
0;

MEDSYS_ORIGIN;
MEDSYS_ORIGIN;

600 ;
MEDSYS_ORIGIN;

MEDSYS_ORIGIN;
550;

400;
600;
760;
780;

BIG_PANE SIZE / 2;
LITTLE PANE_SIZE / 2:

CORONAL_VIEW _TOP - BIG_PANE_SIZE;

MEDSYS_ORIGIN;
BIG_PANE_SIZE;

BIG _PANE BUTTON WIDTH;
BIG_PANE SIZE;
SAGITTAL_VIEW_LEFT;
BIG_PANE_ SILZE;
SAGITTAL_VIEW_LEFT +
BIG_PANE_BUTTON _WIDTH;

A-31

const
const
const
const
const

const
const
const
const
const
const
const

const
const

const
const

const
const
consT
const

const
const
const
const

const
constc
const
const

const
const

¢class

{
pub

int
int
int
int
int

int
int
int
int
int
int
int

int
int

ing
int

int
int
int
int

int
int
int
int

int
int
int
int

int
int

MedSysWindow

lic:

SE_LT_BUTTON_TOP
CO_ FT _BUI'TON_LEFT
CO_FTI_BUTTON_TOP
CO_BE_ BUTTON_LEFT
CO_BEK_RBUTTON_TOP

MOVE_SEED_LEFT
MOVE_SEED_TOP
SEED_ CFFSET
SEED_BUTTON_WIDTH
SEED_BUTTON_HEIGHT
LOC_SEED _LEFT
LOC_SEED_TOP

STATUS LABEL_ LEFT
STATUS_LABEL_TOP

STATUS_LABEL_RIGHT
STATUS_LABEL BOTTOM

SLIDER_LEFT
SLIDER_TOP
SLIDER_WIDTH
SLIDER_HETIGHT

COPYRIGHT _LEFT
COPYRIGHT_TOP
COPYRIGHT _WIDTH
COPYRIGHT_HEIQHT

SLIDER _MIN
SLIDER _MAX
SLIDER_PERCENTILE
SLIDER_POS

BOX_LABEL_WIDTH
BOX_LABEL_HEIGHT

public TWindow

MedSysWindow () ;
~MedSysWindow() ;
Paint {TDC&, BOOL, TRect&};

void
void
void
void
void

void
private:

TCanvasg®
TCanvas®
TCanvas®
TRect*

TButton*
TButton*

CriVisionXObiects {)
CrivisionCurrentX ()
CrniVigion¥Objects ()
CmQuit{);
DismissXRay{);

axial_view;
gagittal_view;
coronal_view;
angle box;

axial_up_button;
axial_down_button;

r
H

;

A-32

BIG_PANE_SIZE;

MEDSYS_ORIGIN;

LITTLE_PANE_SIZE + CORONAL_VIEW_TOP;
LITTLE_PANE BUTTON_WIDTH;
LIMLYE_PANE_SIZE + CORCNAL_VIEW_TOP;

790;

500

10;

180;

30;

MOVE_SEED_LEFT;

MOVE_SEED_TCP + SEED_BUTTON_HEIGHT +
SEED_OFFSET;

MOVE_SEED_LEFT:

LOC_SEED_TQP + SEED_BUTTON_HEIGHT +
SEED, _OFFSET;

MOVE_SEED, LEFT + 500;
STATUS_LABEL_TOP + 30;

ANGLEBOX_LEFT;

ANGLEBOX_BOTTOM + 30;
ANGLEBOYX_RIGHT -~ ANGLEBOX_LEFT;
40;

0;

SLIDER_TOP + SLIDER_HEIGHT + 20;
900 ;

30;

C;
400;
5;
0;

30;
20;

A-33

TButton* sagittal_right_button;
TButton* gsagittal _left button;
TRutton® coronal front_button;
TButton* coronal_back button;
TButton* move_geed _button;
TButton* locate_seed_button;
TBRutton* dismisgs_ Xray_ button;
THSLider* hoz_glider;

TStatic* copyright_label;
MagColl magcoil;

TDil** axial files;

TDib*#* sagittal_files;
TDib** coronal_files;

DECLARE_RESPONSE_TABRLE {MedSysWindow) ;
1;

clagss MedSysApp : public TApplication
{
public:
MedSysapp() : Tapplication{) (}
void InitMainWindow() ;

Ti

medsys.cpp

#include "medsys.h"

DEFINE_RESPONSE_TABLEL (MedSysWindow, TWindow)

EV_WM_PAINT,

EV_COMMAND {CM_VISION_XOBJECTS, CmVisionXObjects),
BY_COMMAND {CM_VISTION_CURRENTX, CnVisionCurrentX),
EV_COMMAND (CM_VISION YOBJECTS, CnVision¥Objects),
EV_COMMAND (CM_QUIT, CmQuit),
EV_COMMAND (ID_DISMISS_XRAY, DismissXRay).

END_RESPONSE_TAEBLE;

MedsSysWindow: :MedSysWindow ()

TWindow (0,0,0)
{
Attr.Style

= WS_BORDER | WS _MAXIMIZE;

magcoil . XA
magcell (XB
magooll . YA
magecolil .YB
mageoil . ZA
mageolil (2B

axial_files
axial_files{0]
sagittal files
sagittal files(0]
coronal_files
coronal_files[0]

axial_view

sagittal_view

coronal_view

angle _box

axial_up_ button

[T o o T o T e Y e
oo TN n B o [wie L = S s
~

new
new
new

= new

new
neaw

new

new

new

new

new

TDib* [NUM_AXIAL _FILES]:
TDib{"4:an024.bmp") ;

TDib* [NUM_SAGITTAL _FILES];
TRik ("5 :2n075.bmp") ;

TDib* {NUM_CORONAL_FILES];
TDib{"3:cn0l9 . bmp") ;

TCanvas{this, AXTAL, AXIAL VIEW_LEFT,
AXTIAL VIEW TOP, BIG_PANE SIZE,
BIG_PANE_SIZE, &magcoll,
axial files{01);

TCanvas (this, SAGITTAL, SAGITTAL_VIEW _LEFT,
SAGITTAL_VIEW_TOP, BIG_PANE_SIZE,
BIG_PANE_SIZE, &magcoil,
gagittal_Ffiles{0]}):

TCanvas (this, CORONAL, CORONAL_VIEW_LEFT,
CORONAL_VIEW T0P, LITTLE PANE_SIZE,
LITTLE_PANE_SIZE, &magcoil,
coronal_files[0]};

TRect (ANGLEBCX_LEFT,
ANGLEBCX _TOP,
ANGLEBOX_RIGHT,
ANGLEBOX_BOTTOM) ;

TButton(this, ID_AXIAL Up, *Up",
AX _UP_BUTTON_LEFT,
AX_UP_BUTTON_TOF,
RIG_PANE_BUTTCN_WIDTH,

A-34

A-35

VIEW _BUTTON, HEIGHT) ;

axial_down_button = new TButton{this, ID_AXIAL_DOWN, "Down",
A¥X DN_BUTTON_LEFT,
AX_DHN_BUT'TON_TOP,
BIG _PANE_BUTTON_WIDTH,
VIEW_BUTTON HEIGHT) ;

[H

new TButton(this, ID_SAGITTAL_RIGHT, "Right",
8G_RT, BUTTON_LEFT,
8G_RT_BUTTCON_TOP,
RIG_PANE_BUTTON WIDTH,
VIEW BUTTON_HEIGHT) ;

sagittal_right bubtton

sagittal_left button = new TButton(this, ID_SAGITTAL_LEFT, "Left”,
8G_L7T _BUTTON_LEFT,
8G_ILT_BUTTON_TOP,
BIG_PANE_RUTTON_WIDTH,
VIEW BUTTON_HEIGHT) ;

coronal_front_button = new TButton (this, ID_CORONAL_FRONT, "Froant",
CO_F7T_BUTTON_LEFT,
CO_FT BUTTON_TOP,
LITPLE_PANE_RBUTTON_WIDTH,
VIEW _BUTTON _HEIGHT) :

coronal_back _button = new TButton(this, ID_CORCONAL_BACK, "Back",
CC_BK_BUTTON_LEFT,
CO_BEK_BUTTON_TOP,
LITTLE _PANE_BUTTON WIDTH,
VIEW BUMON_HEIGHT) ;

move seed_button = new TButton{this, ID_MOVE_SEED, "Move Seed",
MOVE_SBED_LEFT,
MOVE_SEED_TCP,
SEED_BUTION_WIDTH,
SBRED_BUTTON_HEIGHT) ;

locate_seed_button = new TButton(this, ID_LOC_SEED, "Locate Seed’,
LOC_SEED _LEFT,
LOC _SEED_TOP,
SEED BUTTON WIDTH,
SEED_BUTTON_HEIGHT) ;

hoz_slider = new THSlider (this, ID_HOZSLIDER,
SLIDER_LEFT,
SLIDER_TOP,
SLIDER_WIDTH,
SLIDER_HEIGHT};

hoz_slider-»SetRange(SLIDER MIN, SLIDER_MAX};
hoz_glider->%etRuler (SLIDER PERCENTILE, FALSE) ;
hoz_slider->SetPosition(SLIDER, POS);

copyright label = new TStatic{this, -1,
»(C)} 1995 University of Virginia Board of Vigitors",
COPYRIGHT LEFT,
COPYRIGHT_TOP,

COPYRIGHT WIDTH,

COPYRIGHT_HEIGHT) ;

1

MedSysWindow: : ~MedSysWindow()
{
delete awial_ view;
delete sagittal_view;
delete goronal_view;
delete angle box;
delete axial_up_button;
delete awial_down_button;
delete sagittal_right _button;
delete sagittal left button;
delete coronal front_button;
delete coronal_ back_button;
delete move_geed butten;
delete locate_seed button;
delete hoz_sglidex;:

}

void MedSysWindow::Paint (TDhCs dc, BOOL, TRects)

; .
do.FillRect {*angle box, TBrush (TColor::LtRed));
TRect text_region(0,0,0,0);

do.SelectCbiect {(TPen(TColox: :Black) };

text_region.Set (STATUS LABEL _LEFT,
STATUS_LABEL_TO?,
STATUS_LABEL_RIGHT,
STATUS_LABEL_BOTTOM) ;

de .DrawText ("Operator Display Ready®., -1, text_region,

text_r@gion.Set(ANGLEBOXWLEFT - BOX_LABEL_WIDTH,

ANGLEBOX _TOP,

ANGLEBOX_LEFT,

ANGLEBOX_TOP + BQX_LABELWHEIGHT);
de ,Drawlext ("180", -1, text_region, DT_CENTER);
textmregion.Set(ANGLEBOX_LEFT - BCX LABREL_WIDTH,

ANGLEBOX_ROTTOM - BOX_LABEL_HEIGHT,

ANGLEBOX LEFT,

ANGLERBOX_BOTTOM) ;
dc .DrawText {(“0", -1, text_region, DT_CENTER);
text_region.Set {(ANGLEBOX_RIGHT,

ANGLEBOX_BOTTOM - BOX_LABEL_HEIGHT,

ANGLEBOX_RIGHT + ROX_LABEL_WIDTH,

ANGLEBOX_BOTTOM) ;
de . DrawText ("360", -1, text_region, DT_CENTER);

void MedSysWindow::CmVisionXObjects ()
{

DT _LEFT) ;

Thialog* obiject dialog = new Thialog (this, OBJECTS_DIRLOG) ;

object_dialog->Create(};
}

void MedSysWindow::CmVisionVObjects()
{

Thialog* marker dialog = new TDialog{this, MARKERS_DIALOG);

A-36

marker_dialog->Create();
}

void MedSysWindow: :CmVisionCurrentX{)
{
dismiss_Xray button = new TButton(this, ID_DISMISS_XRAY,
"Dismiss",
BIG_PANE SIZE,
BIG _PANE_SIZE,
SAGITTAL_LEFT -~ BIG_PANE_SIZE,
VIEW_BUTTON_HEIGHT) ;
dismiss_¥ray_button->Create();
1

void MedSvsWindow::DismissXRay {)
{ .

delete dismiss_ Xrav_button;
}

void MedSysWindow::CmQuit{)

{
TDialog* quit_dialog = new TDialog{this, QUIT_DIALOG);
int retval = quit_dialog->Execute(};

if (retval == IDOK) {
CloseWindow () ;

void MedSyslpp: :InitMainWindow{}
{

MainWindow = new TFrameWindow(0, *Operator Display".new MedsysWindow() };

MainWindow->AssignMenu (MEDSYS_MENU)} ;
}

int OwlMain{int, char* []}
{
MedSvsApp MyMedSysApp;
return MyMedSysapp.Runl();

A-37

bmpview.h

#ifndef _BMPVIEW
#define _BMPVIEW

#include <owllowlpch.h>
#include <owllapplicat.h>
#inciude <owl\dc.h>
#include <owilgdiocbjec.h>
#include <owlichooseco. h>
#include <owlichoosefo.h>
#include <owl\opensave.h>
#include <owl\editfile.rh>
#inciude <owl\point.h>
#include <stdio.h>
#include <dir.h>

const int LABEL_HEIGHT =
const int LABEL_WIDTH =
const int LABEL_OFFSET =
const int AREA _OFFSET =

const int XA_COIL_TOP =
XA _COIL_BOTTOM =
YA_COIL_TOP =
YA _COIL_BOTTOM =
YB_COIL, TCP =
YB_COIL_BOTTOM =
XB _COIL_TOP =
XB_COTIL_BOTTOM =
ZA, COIL_LEET =
ZA_COIL _RIGHT =
ZB_COIL_LEFT =
ZB. . COIL._RIGHT =

const int NUM_COILS =
const int NUM_REGION_PCINTS =

const int FONT SIZE =
typedef enum ViewType {AXIAL, SAGITTAL, CORONAL};

struct MagColl {
flioat XA;
float XB;
float Ya;
float YB;
£loat Z4;
fioat ZB;

3;

clags TCanvas : public TWindow
{
public:
Toanvas {TWindow* parent, ViewType new_type,
int X, int ¥, int W, int H,
MagCoil* magcoil, TDib* this file);
~PCanvas () ;

A-38

A-39

protected:
void Paint (TDC&, BOOL, TRect&);
void EvSize (UINT, 'TSize&);
BOOL EvEraseBkgnd (HDC hDC) ;
void EvMouseMove (UINT modKeys, TPointk point);
volid BvSysColorChange ()
private:
BOOL Drawing;
TBrush* BkBrush;
Viewlvpe view_type:
Thib* current_Ffile;
TPoint* endpoints;
MagCoil* my_mag, coll;

DECLARE_RESPONSE_TABLE(TCanvas);
¥

#endif

A-40
bmpview.cpp

// ObjectWindows - (C) Cepyright 1991, 1993 by Berland International
/r Example paint program

#include "bmpview.h"

DEFINE_RESPONSE_TABLEL (PCanvas, TWindow)
EV_WM_ERASEBKGND,
EV_WM_SIZE,
EV_ WM_DROPFILES,
EV_WM_SYSCOLORCHANGE,
END_RESPONSE_TABLE;

TCanvas: : TCanvas {TWindow* parent,
ViewTvpe new, view,
int X, int ¥, int W, int H,
MagCoil* magcolil,
Thib* this_file)
TWindow(pareﬁt,0,0),
Drawing (FALSE)

{
BkBrush = 0;
Ev8ysColorChange();
view type = new_view;
current_file = this_file;
my_mag_coil = mageoll;
Attr.X = X
Attr.Y = Y;
Attr.wW = W
Attr.H = I
endpoints = new TPoint[NUM_COILS*2];
endpoints [XA_COIL TCP] = TPoint (Attr .W/3 ,Attr . H/8);
endpoints [XA_COIL_BOTTM] = TPoint (Attr .W/8, Attr . H/3);
endpoints {YA_COIL_TOP] = TPoint (2*Abtr.W/3, Attr.H/8};
endpoints (YA COIL _BOTTOM] = TPoint{7*Attr.W/8, Attr.H/3);
endpoints [YB _COIL_TOP] = TPRoint (Attr.W/8, 2¥Attr.H/3);
endpoints [YB, COIL_BOTTOM] = TPoint{Attr.w/3, 7*Attr.H/8);
endpoints [XB_CCIL _TOP] = TPoint {7*Attr.W/8, 2*Attr.H/3);
endpoints [XB_COIL_BOTTOM] = TPoint (2*Attr.W/3, T*Attr.H/8);
cendpoints [ZA_COIL_LEFT} = TPoint (Attr W/3, Attxr . H/B);
endpointg {ZA_COIL_RIGHT] = TPoint (2%Attr.W/3, Attr.H/8};
endpoints [2B, COIL_LEFT] = TPoint (Attr.W/3, 7T*Attr.H/8)
endpoints [ZB_COIL_RIGHT] = TPoint (2*Attr . W/3, T*Attr.H/8);
3

TCanvas: : ~T'Canvas ()
{
delete BkBrush;
delete endpoints;

void TCanvas: :EvSize(UINT SizeType, TSize& Size)
{

TWindow: :EvSize (SizeType, Size);
1

BOOL TCanvasg: :EvEraseBkgnd (HDC)

{
return TRUE;

}

void TCanvas: :EvSysColorChange ()

{
delete BkBrush;

BkBrush = new TBrushi{::GetSysColor (COLOR_APPWORKSPACE)) //COLORMWINDOW

void TCanvas: :Paint (TDC& dc, BOOL, TRect&)

{
TRect drect (TPoinkt(0,0), current _file->8ize(})
TRect crect = GetClientRect():

i

TPalette* current_palette = new TPalette(*current_file);

de . SelectObiect (*current_palette);
dc.RealizePalette) ;

dc . SetDIBitsToDevice (drect, TPoint{0,0), *current_file};

do.8electObiject (*BkBrush) ;

de . PatBlt (TRect (drect .right, 0, crect.right, crect.bottom));

dc.PatBlt (TRect (0, drect.bottom, crect.right,

de.SelectObiect (TPen{TColor: :LtRed)) ;
delete current_palette;

if (view_ type == AXIAL) {
de . MoveTo (endpoints [XA_COIL _TOP]};
dc.LineTo {endpoints [XA_COIL_BOTTCM]) ;
do Move'To (endpoinks [YA_COIL_TOR]) ;
do . LinaTo {endpoints [YA_COIL, BOTTOMI) ;
dec .MoveTo (endpoints [YB_COIL_TOPI);
dc . LineTo {endpoints [YB_COIL _BOTTCOM]} ;
dc .MoveTo {endpoints [XB_COIL_TOPR]) ;
dc.LineTo (endpoints [XB_COIL_BOTTOM});
} else {
de .MoveTo (endpoints [EA_COIL _LEFT]) ;
dc.LineTo (endpoints [ZA_COIL_RIGHT]) ;
dc .MoveTo (endpoints [ZB_COIL._LEFT]) ;
de . LineTo {endpoints [2B COLL_RIGHT]) ;
}

dc.SetBkColor (TColor: :White) ;
do.SelectObject {TFont ("Courier New”, FONT_SIZE)
TRect textreg{0,0.0.,0);

char* my_buffer = new char[20];
if (view_type == AXIAL} {
textreg.Set (0, 0, LABEL_WIDTH, LABRL_HEIGHT)

crect.bottom));

b

H

A-41

A-42

sprintf (my_buffer, "XA Act = %g", my, mag_coll->XA);
de . DrawText {my_buffer, -1, textreg, DT _CENTER);

textrey.Set (LABEL _WIDTH, 0, 2Z*LABEL_WIDTH, LABBL,_ HEIGHT) ;
sprintf (my buffer, °XA Reqg = %g", my_mag _coil->XA);
dc .DrawText (my_buffer, -1, textreg, DT_CENTER):

textreyg.Set (Attr.W - Z*LABEL_WIDTH, 0, Attr.W - LAREL_WIDTH, LABEL HEIGHT);
gprintf (my_buffer, "YA Act = %g", my_mag coil->YA);
dc .DrawText {my_buffer, -1, textreyg, DT_CENTER);

textreg.Set (Attr.W - LABEL_WIDTH, 0, Attr.W . LABEL_HEIGHT);
gprintf (my_buffer, "YA Req = %g", my_mag coil->YR);
de . DrawText (my_buffer, -1, textreg, DT_CENTER};

textreg.Set (0, Attr.H - LABEL_HEIGHT, LABEL_WIDTH, Attr.H);
sprintf (my_buffer, "YB Aot = %g", my mag_coil->¥B);
de .DrawText {(my_buffer, -1, textreg, DT _CENTER);

textreg.Set (LABEL _WIDTH, Attr.H - LABEL_HEIGHT, 2*LABEL_WIDTH, Attr.H);
sprintf (my_buffer, "YB Req = %g", my.mag_coil->¥B);
de . DrawText (my_buffer, -1, textreg, DT_CENTER);

textreg.Set (Attr.W - 2*LABEL_WIDTH, Attyx.H - LABEL_HEIGHT,
Attr.W - LABEL_WIDTH, Attr.H);:

sprintf (my_buffer, "XB Act = %g". my_mag <oil->XB);

de .DrawText {(my_buffer, -1, textreg, DT_CENTER);

textreg.Set {Attyr.W - LABEL_WIDTH, Atty.H - LABEL_HEIGHT, Attr.W, Atir.H);
sprintf (my_buffer, "XB Reg = %g", my_mag_coil->%¥B);
de . DrawText (my_buffer, -1, textreg, DT_CENTER);

delete my buffer;
} eilse {

textreg.Set {0, 0, LABEL_WIDTH, LABEL_HEIGHT);
sprintf (my_buffer, "ZA Act = %g", my_mag_coll->ZA);
de . DrawText (my_buffer, -1, textreg, DT_CENTER);

textreg.Set (Attr.W - LABEL_WIDTH, 0, Attr.W, LABEL_HEIGHT) ;
sprintf (my_buffer, "Za Reg = %g", my mag_coil->ZA);
de .DrawText (my_buffer, -1, textreg, DI_CENTER);

textreg.Set {0, Attr.H - LABEL_HEIGHT, LABEL_WIDTH, Attxr.H);
gprintf (my_buffer, “ZB Act = %g*, my_mag,coil->ZB);
de . PrawText (my_buffer, -1, textreg, DT_CENTER};

textreyg.Set (Attr.W - LABEL_WIDTH, Attr.H - LAREL_HEIGHT, Attr.W, Attr.H):;
sprintf (my_buffer, "IB Req = %g", my_mag, coil->28);
dc .DrawText {my_buffer, -1, textreyg, DI _CENTER);

delete my_buffer;
3

textreg.Set (Attr.W/2 -~ LABEL_WIDTH/2, Attr.H - LABEL_HEIGHT,
Attr.W/2 + LABEL_WIDTH/Z, Atty.H):

switch {view type) {

A-43

case AXIAL:
dc.DrawText ("AXIAL VIEW", -1, textreg, DT CENTER) ;
break;

case SAGITTAL:
de . DrawText ("SAGITTAL VIEW®, -1, textreg, DT_CENTER);
break;

case CORONAL:
dec . Drawlext ("CORONAL VIEW®, -1, btextreyg, DT _CENTER);
break;

dc.RestoreObijects{);
}

A-44

A.4 Specification of Token Generation

Tokens can be generated by either the presentation or the application program. The
tokens that the presentation produces map that portion of the specification to the context-
free grammar. Typically, for tokens generated by the presentation it is the graphical object’s
callback function which generates the token. An enumeration of the tokens and the objects
which generate each of those tokens specifies the token generation.

Table 2 relates each of the 42 tokens of the context-free grammar to either the applica-
tion program or objects from the presentation specification. The callback function of the
graphical object is assumed to generate presentation tokens; in cases where this is not the
case, the particular method is specified with the object. The tokens denoted “Control Pro-
gram” signify that they are generated by the application program.

Table 2: Token Generation

Token Object/Method

VIS_PARAMETERS | CM_VISION IMAGEPARAMETERS

CM_VISION_XBACKGROUND
CM_VISICN_YBACRGROUND

ACQ_BACKGR

CM_VISION XCAMERA
CM_VISION_YCAMERA

CALTB_CAMERA

CM, VISION_XSOURCE
CM_VISION_YSOURCE

CALIB_SOURCE

LOAD PAT DATA CM_FPATIENT LOADDATA

CP_PAT_ DATA Control Program

CM_VISION_XOBJFECTS
CM_VISION_YOBJECTS

INIT_OBJ_ID

VIS _TID _DONE CM_VISION_DONE

CM_MRI_AXTAL
CHM_MRI_SAGITTAL
CM_MRI_CORONAL

INIT _MARK_ID

MRTI_ID _DONE

CM _MRI_DONE

CP__ID_XRAY OBJS

Control Program

SELECT_OBJ

IDC_SEED

IDC_LEFT TEMPORAL
IDC_CORONAL

IDC, RIGHT _TEMPORAL

DONE_AXIS ID

OBJECTS_DIALOG, IDOK

CANCEL_AXIS TD

QBJECTS_DIALOG, IDCANCEL

Table 2: Token Generation

Token

Object/Method

OBJECT_POSIT

axial view->EvLButtonDown
sagittal_view->EvLButtonDown
coronal view->EvLButtonDown

SELECT _MARK

IDC_MARK_LEFT TEMPORAIL
IDC_MARK_CORONAL
IDC_MARK _RIGHT_ TEMPORAL

DONE_VIEW_I1D

MARKERS_DIALOG, IDOK

CANCEL_VIEW_ID

MARKERS_DIALOG, IDCANCEL

MARKER_POSIT

axial_ view->EvLButtonDown
sagittal_view-»EvLButtonDown
coronal view->EvLButtonDown

LOCATE_SEED_REQ

locate_seed _button

SLIDER_VALUE

hez_slider

DIRECTION_INFO

angle_box

CP_CREAT_ARROW

Control Program

CP_REORNT_ARROW

Control Program

MOVE_SEED_REQ

move, seed_button

CPp _DISP_SLICES

Control Program

CP_CREAT CIRCLE

Control Program

CP_MOV_FEATURE

Control Program

VIEW_UPP axial_up_button

VIEW_DWN axial down_button

VIEW _RT sagittal_right button

VIEW LT sagittal left_button

VIEW _FRT coronal_front button

VIEW BCEK coronal_back_button

INCR_COIL axial_view->EvLButtonDown
sagittal_view->EvLButtonDown
goronal_view->EvLButtonDown

PDECR_COIL axial_view->EvLButtonDown

sagittal_view->EvLButtonDown
coronal_view->EvLButtonDown

A-45

Table 2:' Token Generation

Token Object/Method
SET COIL axial_wview->EvLButtonDown
sagittal_view->EvLButtonDown
coronal_view~>EvLButtonDown
BYE XRAY dismiazs Xray button

DISP_CUR_XRAY

CM, VISION_CURRENTX
CM, VISION_CURRENTY

CLOSE_PAT DATA

CM_PATIENT, CLOSEDATA

QUIT, O_D

QUIT_DIALCG, IDOXK

QUIT CONFIRM

CM_QUIT

A-46

A-47

A.5 Specification of Command Interpretation

There is an enumerated set of messages specified in the semantic component whose
destinations are the application program or the presentation interpreter. The messages to the
presentation interpreter instruct the interpreter to alter the on-screen graphical display in
some way. Each of these messages can be mapped to the particular graphical object they
manipulate and the method(s) called on that object.

The messages to the application program are enumerated below; this is simply an
extraction from the semantic specification to make explicit this interface. The miessages to
the presentation interpreter are related to the graphical objects or methods of the presenta-
tion that they affect in Table 3.

MethodsToCP == {AcquireXrayBackX, AcquireXrayBackY, CalibrateCameraX,
CalibrateCameraY, CalibrateSourceX, CalibrateSourceY,
LoadPatientData, InitiateXrayObjIdX, InitiateXrayObjldX,
SetInitObjPositsX, SetlnitObjPositsY, — CancelXrayObjldX,
CancelXrayObjldY, LocateSeed, MoveSeed,
SetMotion, Quit}

Table 3: Presentation Interpreter

Command Object/Method

LoadPatient axial_ view-»current_ file
sagittal_view->current file
coronal_ view->current_file

IDXraylmageObjs OBJECTS_DIALOG
CreateArrow MoveTo () ; LineTo();
ReorientArrow MoveTo () ; LineTo();
DisplaySlices axial_view->current_ file

sagittal view->current file
coronal_view->current_file

CreateCircle Ellipse(}:
MoveFeature Ellipse();
ClosePatient axial_view->current file

saglttal_view->current_file
coronal_view->current_file

DeleteVisPanel OBJECTS_DIALOG

DeleteMRIPanel MARKERS. DIALOG

Create MRIPanel MARKERS_DIALOG

Table 3: Presentation Interpreter

Command Object/Method

DisplayCurrentme axial view-rcurrent_file
sagittal_view->current_file

DismissXray axial_view->current file
sagittal _view-»current file

ShutDown MedSvsWindow

ViewUp axial_view-rcurrent file

ViewDown axial _view->current_file

ViewRight sagittal view->current file

ViewLeft sagittal_view->current file

ViewFront coronal _view->current_file

ViewBack coronal view->current_file

SliderVal hoz_slider

SetReqCoil axial_view->my_mag. coil
gsagittal_view->my_mag _coill
coronal view->my_mag_coil

ChangeMRIBuf[onColor MARKERS_DIALCG, IDC_MARK_LEFT_TEMPORAL
MARKERS_DIALCG, IDC_MARK_CORCNAL
MARKERS_DIALOG, IDC_MARK RIGHT TEMPORAL

ChangeVisButtonColor OBJECTS_DIALOG, IDC_SEED

ORJECTS_DIALOG,
OBJECTS_DIALOG,
CBJECTS_DIALOG,

IDC_MARE _LEFT_TEMPCRAL
IDC _MARK_CORONAL
IDC_MARK _RIGHT_ TEMPORAL

A-48

Appendix B

B-1

UVAR User Interface Specification

This is the specification of the user interface for the University of Virginia Reactor
(UVAR). The specification of the UVAR user interface consists of various component
specifications which comprise different aspects of the user interface. The sections of the
UVAR user interface specification with their associated specification notations are shown
in Table 1.

Table 1: UVAR User Interface Specification Components

Section Component Technology
51| Semantos |z
B.2 Syntax Context-Free Grammar
B.3 Presentation Borland OWL
B4 Token Generation Tables
B.5 Command Interpretation Tables

B-2

B.1 Semantic Specification

The functionality of the UVAR user interface is specified in the formal gpecification
language Z. For an overview of formal specification using Z, the reader is referred to Diller.

The semantic specification consists of the following sections:

+ Axiomatic Descriptions

+ Set Definitions

+ State Description

» Initialization

* Operations

The first four sections define the basic types used in the specification and describe the

state of the UVAR user interface as modelled in this specification. The last section models
the operations that the user interface provides and their effect upon the state of the system,
numbers above the operation schemas refer to the production numbers in the grammar of

Section B.2. Most schemas map to either a token or a rule reduction in the context-free
grammar.

Axiomatic Descriptions

String . seqChar
MagneticCurrents : SeqR
#MagneticCurrents = 3
SafetyRodHeights : seqR
#SafetyRodHeights = 3

MessageToAP : MethodsToAP x N X R X PowerSettings +> Message

MessageToPI . MethodsToPI x P AlarmSet +> Message

B-3

Set Definitions

[Message]
Modes

Char
RegRodMode
PowerSettings

AlarmSet

MethodsToAP

MethodsToPI

== {Scram,

CoreGammaHigh,
DeminRoomDoor,
SecondPumpOff,

= {NewPowerLevel,

SafetyRodHeight,
NewTripPoint}

= { DisplayAlarms,

== {StartUp, Operating, ShutDown}
= {a.z 0.9}

== {Auto, Manual}
= {200KW, 2MW}

B-4

ServoRodCntrlLost, MonitorHigh,

ConstAirMonitor,

HeatExchRoomDoor,

CoreDiffTempHigh, DeminCondHigh,

HotThimblelemp}

NewMagCurr,
NewlargetPower,

SilenceAlarms,

NewFissionHeight,
SwitchAutoReg,

ClearAlarms)

State Description

e UVARUserInterface

modes Modes
targetpower R

alarmtrippt R

MAZCUTTS MagneticCurrents
safetyrodhis SafetyRodHeights
fisschambht R

regrodht R

regrodcontrol RegRodMode
powerlevel PowerSettings
curralarms P AlarmSet
unackdalarms P AlarmSet
soundingalarms P AlarmSet
soundingalarms unackdalarms

curralarms unackdalarms

Initialization
— InitUVARUserInterface
UVARUserInterface’
mode = StartUp
targetpower’ = 0.0
alarmtrippt = 0.0
magcurrs’ = {0.0, 0.0, 0.0)
safetyrodhis’ = (0.0, 0.0, 0.0)
fisschamht’ = 0.0
regrodht’ = 0.0
regrodcontrol’ = Manual
powerlevel’ = 200KW
curralarms’ =
unackdalarms® = ©
soundingalarms’ = &

Operations
2:
- SwitchPower
A UVARUserInterface
msgtoap! : MessageToAP
newpower? . PowerSettings

((mode = StartUp) v (mode = ShutDown))
newpower? # powerlevel

powerlevel’ = newpower?
msgtoap!(NewPowerLevel, newpower?)

7.8:9:

— SetMagneticCurrent

A UVARUserlInterface

msgtoap! : MessageToAP
newcurrval? : R
whichcurr? : N

mode = StartUp
magcurrs(whichcurr?y = newcurrvall
msgtoap!(NewMagCurr, whichcurr?, newcurrval?)

4:

— FissionUp
AUVARUserInterface
msgtoap! © MessageToAP
newheight? S

mode = StartUp
fisschamht’ = newheight?
msgtoap\(NewFissionHeight, newheight?)

B-7

12: 13: 14: 29: 31: 33:

~ SafetyRodUp

A UVARUserInterface .

msgtoap! : MessageToAP

newheight? : R

whichrod? : N

((mode = StartUp) v ((mode = Operating) A (regrodcontrol = Manual)))
newheight?! > safetyrodhis(whichrod?)
safetyrodhts(whichrod?y = newheight?

msgtoap!(SafetyRodHeight, whichrod?, newheight?)

39: 40: 41: 30: 32: 34

— SafetyRodDown

A UVARUserInterface
msgrtoap! : MessageIoAP
newheight? R

whichrod? : N

((mode = ShutDown) v ((mode = Operating) A (regrodcontrol = Manual)))
newheight? < safetyrodhts(whichrod?)
safetyrodhts(whichrod?)’ = newheight?

msgtoap!(SafetyRodHeight, whichrod?, newheight?)

15:

- SetTargetPower
A UVARUserInterface
msgtoap! . MessageToAP
newpower? : R

((mode = StartUp) v (mode = Operating))
targetpower’ = newpower?!
msgtoap!(NewTurgetPower, newpower?)

15:

— AutoRegulationOn
AUVARUserlInterface
msgtoap! . MessageToAP

((mode = StartUp) v (mode = Operating))
regrodcontrol # Auto

regrodcontrol’ = Auto

((mode = StartUp) = (mode’ = Operating))
msgtoap!(SwitchAutoReg)

24:

— AutoRegulationOff
A UVARUserInterface
msgtoap! . MessageToAP

((mode = StartUp) v (mode = Operating))
regrodcontrol % Manual
regrodcontrol’ = Manual
msgtoap!(SwitchAutoReg)

19:

— SetTripPoint
AUVARUserInterface

msgtoap! . MessageToAP
newtrippt? S

mode = Operating
alarmtrippt’ = newtrippt?
msgtoap!(NewTripPoint, newtrippt?)

B-9

21:
— APReceiveAlarm
A UVARUserInterface
msgtopil . Messagelopi
alarmset? . P AlarmSet
mode = Operating
curralarms’ = glarmset?
unackdalarms’ = unackdalarms U (alarmset?\ curralarms)
soundingalarms® = soundingalarms U (alarmset? \ curralarms)

msgtopil(DisplayAlarms, alarmset?)

22:
— SilenceAlarm
A UVARUserlnterface
msgtopil . MessageToPI
mode = Operating
soundingalarms® = @
msgtopil(SilenceAlarms)

23:
— ClearAlarm
A UVARUserInterface
msgtopit : MessageToPl
mode = Operating
unackdalarms® = wunackdalarms\ curralarms

((soundingalarms # @) = ((soundingalarms’ = @) A
msgtopil(SilenceAlarms)))
msgtopil(ClearAlarms, unackdalarms’)

35:

= ShutDown
AUVARUserInterface

((mode = Operating) n (regrodcontrol = Manual))
mode’ = ShutDown ‘

B-10

B.2 Syntactic Spécification -

interface.

iz uvar

2: start_up
3:

4: thru_fiss
5: mag. currs
6:

T me_val

8

9:

10: pull rods
11:

12: pull_one
13:

i4:

i5: auto_on
16; operation
17:

18: op_acts
19:

20:

21:

22:

23:

24:

25:

26: manip_rods
27

28:

29: sril_act
30:

31: sr2_act

A context-free grammar (Backus-Naur Form) is used to specify the syntax of the user

1= gtart_up operation shut_ _down
:= thru_fiss puli_rods SWITCH_PWR pull_rods auto_on
| thru fiss pull_rods auto_on
r= mag_currs pull _rods FISS_UP
1= mMAag. currs mo_val

i me_wval

:= SET _MC1

I suT_MC2

| SET_MC3

:= pull_rods pull_one

| pull_one

= SAFETY1_UP

| SAFETY2 UP

| SAFETY3_UP

:= SET_POWER AUTO_REG_ON

= operation op_dcts

| op_acts

= mo_val

| SET_TRIP

| auto_on

| AP_RCV_ALRM

| SIL_ALRM

! CLR_ALRM

| AUTO_REG_OFF

| manip_rods

1= srl_act

| sr2_ act

| sr3_act

:= SAFETY1_UP

| SAFRTYL_DWN

:= SAFETYZ_UP

32:
33:
34:
35;:
36:
37
38:
39:
40:
41:

sri_act

shut_down

insert_rods

insert_cne

B-12

SAFETYZ_DWN

SAFETYI _UP

SAFETY3, DWN

SHUTDOWN ingert rods SWITCH_PWR insert_rods OFF
SHUTDOWN insert rods OFF

insert_rods insert_one

insert_one

SAFBETYL_DWN

SAFETYZ_DWN

SAFETY3_DWN

B-13

B.3 Presentation Specification

The presentation of the UVAR user interface is specified vsing Borland ObjectWin-
dows. For a complete specification of the graphical display, in addition to the description
found in this section, the documentation for the Borland ObjectWindows Library must be
included. The definitions of base objects used in the specification may be found in the
ObjectWindows documentation, in addition to definitions for the semantics of actions, such
as button presses.

In addition to the textual Borland ObjectWindows specification, a visual presentation
of the interface may be constructed by compilation with the ObjectWindows Library and
subsequent execution. The specification is for presentation only; therefore no application
functionality or dialogue control is included, and compilation would create simply a mock-
up of the display.

This user interface specification component consists of five sections. The first section
is the reactor. re file, which contains graphical information for the definition of the user
interface menus.

The second section presents the reactor.h file. The primary class of the UVAR user
interface, MainReactorWindow, is defined in this section. This class contains declarations
of all the other graphical objects on the display: visual enumerations of scram and alarm
conditions, buttons for alarm response, and classes for control rod and fission chamber
information and manipulation. These classes pertaining to the control rods and fission
chamber are also defined in this file.

The next section contains the file reactor.cpp, which has the constructors, destruc-
 tors, and paint functions for each of the classes defined in the previous section. The con-
structor for the MainReactorWindow instantiates the graphical objects on the display.

The fourth section presents the file 1ight .h, which defines the Light class. The Light
class is used to display status information in each of the control rod and fission chamber
objects; it replicates light indicators on the analog control panel, being a text bhox which
" tumns a different color to indicate status on.

The final section of the presentation specfication contains light . cpp; the constructor,
destructor, and functions to change color for the Light class are presented in this file.

B-14

reactor.rc

/**‘k ek de e & R ok ok ok ok e e e R e e A vk ok ok ok o ok o ok ok ok o ok e e ok ke W Rk ok ko ke ok SRk ke ke ke ok o e e e ok ok ok ke e ke ke ok e e ok

raactor.rc

produced by Borland Resource Workshop

PR R AR LR R R TR R R R R R A T AR R T AL AR RS R k*/

#include "reactor.rh”®

MAIN_REACTOR_MENU MENU

{
POPUP "&Log"

{

MENUITEM "&Researcher", CM_LOG_RESEARCHER
MENUITEM "&Operator", CM_LOG_OPERATOR
MENUITEM "&Maintainexr", CM_LOG_MAINTAINER

POPUP "&Data"

{
MENUITEM "&Histories", CM_DATA_HISTCORIES

POPUP "&View"

{
MENUITEM "&lameras”, CH_VIEW_CAMERAS

POPUP "&Control®

{
MENUITEM “"&Auto", CM_CONTROL_AUTO
MENUITEM "&Manual", Ch_CONTROL _MANUAL
MENUITEM "&Switch Powex", CM_SWITCH _POWER

}

POPUP "&Security"
{ .
MENUITEM "Set &User™, CM_SECURITY_SETUSER

MENUITEM "Change &Password", CM_SECURITY_ CHANGEPASS

reactor.h

#include
#include
#include
#include
#include
#include
#include
#$include
#include
#include
#include
#include
#inciude

const
const
const
const

conse
const
const
const

const
const
const
const
const
const

const
const
const
conso
const
const
const
const
congst
const
const
const
const
const
const
const

const
const
const
const

const

TColox
TColox
TColor
TColer

int ID_
ID CLEAR

ID SILENCE
ID_

int
int
ink

int

"reactor.rh"
<gtdlib.h>
<gtdio.h>
<ijomanip.h>

<owl /owlpch. x>
<owl /buttonga. h>
<owl /gadgetwi . h>
<owl /applicat.h>
<owk/framewin, h>
<owl/point .h>
<owl /de. h»
<owl/edit.h>
“light.h"

Yellow (255,255, 0} ;
Violet (255, 0, 255) ;
Cyan(0,285%,255);
DkCray (160,160, 164) ;

AUTO_CONTROL:

RESET

LIGHT_ COFFSET

int TEXT CFFSET

int

LIGHT _HEIGHT

int LIGHT _WIDTH
int ALARNM_HEIGHT
int ALARM_WIDTH

int CONTROL_ROD_ TOF
int CONTROL_HEIGHT
int CONTROL_WIDTH

int
int

CR1_LEFT
CR2_LEFT

int CR3_LEFT
int REG_ROD_TOP

int
int

SCRAM_BOX_TOP
SCRAM, BOX_LEFT

int ALARMS _TOP
int ALARMS_LEFT

int
int

CLEAR_LEFT
SILENCE_LEFT

int ALARM _BUTTON_HEIGHT
int ALARM_BUTTON_WIDTH
ing ALARM _BUTTON_TOPR

int RESET_LEFT
int RESET_HEIGHT

int
int

char®* SCRAMS{20] = {

RESET_TOP
RESET _WIDTH

“Power

540;
541;
542;
543

5;
10;
30;
120,
30;
80;

T00;

200;

400;

0;

4G0;

800;

CONTRCL_RCD_TCP -~ CONTROIL._HEIGHT;
REG _ROD_TOP -~ 10*LIGHT_HEIGHT;
12*ALARM WIDTH;

REG_ROD_TOP -~ 2*ALARM_HEIGHT;

0; ’
ALARMS_LEFT + 11*ALARM_WIDTH;

0;

ALARM HEIGHT;

80C;

ALARMS_TOP - ALARM_BUTTCN_HEIGHT;

SCRAM_BOX_LEFT;

60;

SCRAM _BOX_TOP - RESET_HEIGHT;
2*LIGHT _WIDTH

Range",
"Pool Level 17,

“Pool Level 2",
*Pri. Pump On",
*Pri. Pump Off",
"Bridge Rad"',
"Face Rad",
"Range Switch®,
"Header Down",
"Alry to Head",
"Truck Open®™,
"Escape Open",
"Min Irx",
"Manual -Room",
"Manual ~Back",
"Evacuation®,
"Fire",

*Pool Temp".
“Int Period",
"Low Filow" };

const char* ALARMS([12] = { "Scram",
"Saexrvo Rod*®,
"Argon",
"Core Gamma®,
"Not Used",
"Air Mon",
"Heat EX",
"Demin. ",
"Core Temp",
"Cong. High",
"Sec Pump Of£",
"Hot Thimble" };

class ControlBox : public TWindow

{

public:
ControlBox (TWindow*, chax*, int, int, int,
~ControlBox();
void Paint (THC &, BOOL, TRect&);
void Withdraw (TDC &, StatusType);
void Insert (TDC &,StatusType);

protected:
char® NAIIRS;
char* buffer;
int width;
int height;
float rod _height;
float reqg height;
Light* inserting light;
Light* withdrawing light;

DECLARE_RESPONSE_TABLE (ControlBox) ;
1

clase ControlRod : public ControlBox
{
public:
ControlRod (TWindeow*, char*, int, int, int,

int};

int);

B-16

~ControlRod ()} ;
vold Paint{TDC &, BOOL, TRect &};

protected:
float mag,_current ;
Light* up, light;
Light* down_light;
Light* seated_light;
Light* mag_eng. light:

DECLARE_RESPONSE_TABLE{ControlRed) ;
1

class FigsionChamber : public ControlBox

{

public:
FissionChamber (TWindow*, char*, int, ink, int, int);
~FigsionChamber () ;
void Paint (TDC &, BOCL, TRect &);

private:]
Light¥* up_light;
Light* dovn, light;

DECLARE_RESPONSE_TABLE (FissionChamber);
1

class RegulatingRod : public ControlBox

{

public:
RegulatingRod (TWindow*, char*, int, int, ing, int);
~RegulatingRodl();
void Paint (TDC &, BOOL, TRect &);

private:
Light* up_light;
Light™* down_light;
TButton®* auto_control;
Light* ac_on_light;
Light* ac_off_light;

DECLARE_RESPONSE_TABLE (RegulatingRod) ;
+;

clags MainReactorWindow : public TWindow
{
public:
MainReactorwWindow () ;
~MainReactorWindow () ;
vold Paint{TDC&, BOOL, TRect &);

private:
fioat reg power;
fioat setpoint_temp;
Light** scram_box_array;
Light#* alarm_array;
TRutton* clear_button;

TButton* gilence button;

C TButton® reget bubton;
RegulatingRod* reg_rod;
ControlRod* control _rod_ 1;
ControlRod* control_rod_2;
ControlRod* control_rod_3;

FissiconChamber* fission_chamber;

DECLARE_RESPONSE_TABLE (MainReactorWindow) ;
1i

class Reactorkpp: public TApplication
(
public:
Reactorapp{) : Tapplication{) {}
void InitMainWindow();
Yi

reactor.cpp

#include "reactor.h”

DEFINE_RESPONSE_TABLEL {(ControlBox, TWindow)
EV_WM_PAINT,
END_RESPONSE_TABLE;

DEFINE_RESPONSE_TABLEL (ControlRod, ControlBox)
BV _WM_PAINT,
END_RESPONSE_TABLE;

DEFINE_RESPOMSE_TARLEL (FissionChamber, ControlBox)}
EV_WM,_ PAINT,
END_RESPCNSE_ TABLE;

DEFINE_RESPONSE_TABLEL (RegulatingRod, ControlBox)
BY_WM_PAINT,
END_RESPONSE_TABLE;

DEFINE _RESPONSE_TABLEL (MainReactorWindow, TWindow)
EV_WM._PAINT,
END_RESPONSE_TABLE;

ControlBoxX: :ControlBox (TWindow* parent, char* title,
int ¥, int Y, int W, iat H)
TWindow (parent, 0, 0}

name = title;

buffer = new chaxr[20];

rod_height = 0.0;

reqg _height = 0;

Attr X = X;

Attr.Y = ¥;

Attr.W = W;

Attr . H = H;

inserting_light = pnew Light((2*AtLr . W/3)+LIGHT, OFFSET,

Attr.H/2+LIGHT_OFFSET,
Attr . W-LIGHT _OFFSET,
Attr H/Z2+LIGHT HEIGHT+LIGHT CFFSET,
"INSERT",
TColor: :LtGray,
Cyan);
withdrawing_light = new Light{({2*Attr.W/3)+LIGHT_OFFSET,
Attty H/2+LIGHT_HEIGHT+LIGHT OFFSET,
Attr .W-LIGHT CFFSET,
Attr H/2+2*LIGHT _HEIGHT+LIGHT QFFSET,

"WITHDRAW",
TColor: :LLGray,
Violet);

}

ControlBox: :~ControiBox {)
{
delete inserting_light;
delete withdrawing_ light;

B-19

B-20

3

void ControlBox::Withdraw{TDC & dc,StatusType status)
(
if (status == ON)
withdrawing_light->TurnOn(dc);
else
withdrawing light->TurnOff (dc¢) ;

void CeontrolBox::Insexrt (TDC & do, StatusType status)
{
if (status == ON)
inserting light->TurnOn(de);
alse
inserting_light->Turn0ff (de);
}

vold ControlBox::Paint (TDC& do, BOOL, TRectk)
{
TRect text_region(0,0,Attr .W,Attr.H);
TBrush lt_gray brush(TColor: :Ltlray);
de . .FillReck (text_region, it gray. brush);
de . SetBkColor (TCelor: :LtGray) ;

text region.Set (0, TEXT _OFFSET ,
Attr.W , Attr.H/4 ~ TEXT _CFPSET};
de . DrawText (name, -1, text_region, DT _CENTER E DT _VCENTER) ;
text _region.Set (Attr.W/3, Attr H/4, :
2¥ALtYr . .W/3, 3*ALtr.H/8);
de . DrawText ("Height:", -1, text_region, DT_CENTER § DT_VCENTER) ;
text_region.Set (Attr . W/3, 3*Attr.H/S8,
Z*¥ACEr.W/3, Attr H/2};
sprintf (buffer, "%g", rod_height};
de . DrawText {(buffer, -1, fext_region, DT_CENTER i DT_VCENTER) ;

text_region.Set (2*Attr.W/3, Attr.H/4,
Actr.W - 20, 3*Attr.H/8);
do.DrawText ("Reqg. Height:*,-1, text region, DT_CENTER | DT _VCENTER} ;
text_region.Set (2*Attx.W/3, 3*Attr H/S,
Attr.W - 20, Attr.H/2);
de . 8etBkColor (TColor: :White) ;
dc.DrawText (buffer, -1, text_region, DT_CENTER | DT_VCENTER) ;

delete buffer;
dc.SelectObject (TPen{TColor: :Black)) ;

dc . MoveTo {0,0);

de . LineTo (Attr.W, 0}

de . LineTo (Attr.W, Attr.H);
de . LineTo (0, Attr.E}:;
de.LineTo (0,0} ;

dc.8electObject (TPen(TColox: :White)) ;
de . MoveTo {1,Attr.H~1);

de.LineTo {1, 1);

do . LineTo (Attyr . W-1, 1);
do.SelectCbhiject (TPen{DkGray) }
de.LineTo (Attyr . W-1, Attr.H-1};

B-21

do.LineTo{l, Attxr . H-1);

withdrawing_light->DrawRect (dc¢);
ingerting light->DrawRect{dc);

ControlRod: :ControlRed{TWindow* parent, char* title,

int X, int ¥, int W, int H}

ControlBox(parent, title,X,Y,W,H}

mag_current = 0.0;

up_light = new Light(5, Attr.H/4 + LIGHT OFFSET,

mag._eng light

down, light

seated

}

Attr.W/3 - LIGHT OFFSET,

Attr H/4 + LIGHT_ OFFSET + LIGHT_HEIGHT,
SUPY,

TColor: :LtGray,

TColor: :LEBlue) ;

H

new Light (LIGHT_OFFSET,
Attr.H/4 + LIGHT_OFFSET + LIGHT_HEIGHT,
Attty . W/3 - LIGHT_OFFSET,
Attr.H/4 + LIGHT OFFSET + 2*LIGHT_HEIGHT,
"MAG ENGY,
TColor: : LtGray,
TColor: :LtGreen) ;

new Light {(LIGHT OFFSET,
Attr.H/4 + LIGHT OFFSET + Z2*LIGHT_HEIGHT,
Attr . W/3 - LIGHT_OFFSET,
Attr.H/4 + LIGHT OFFIET + 3*LIGHT _HEIGHT,
"DOWN" ,
TColor:: LtGray,
TColor: :White);

light

new Light (LIGHT _OFFSET, _
Attr.H/4 + LIGHT;OFFSET + 3*LIGHT _HEIGHT,
Attr.W/3 - LIGHT _OFFSET,
Attr.H/4 + LIGHT_CFFSET + 4*LIGHT _HEIGHT,
"SEATEDY,
TColor::LtGray,
Yellow)};

ControlRod: :~ControlRod ()

{
delete
delete
delete
deiete
h

up_light;
down_light;
seated_light;
mag_eng light;

void ControlRod::Paint{TDC & dc, BOOL state, TRect& rect)

{

ControlBox: :Paint (dc, state, rect);

deo . SetBkCelor (TColor: :LtGray) ;

char* buffer = new char[20];

B-22

TRect text _region(0,C,0,0);
do.RestoreCbiects () ;
text region.Set (Attr.W/3, Attr.H/2,
Z¥Attr.W/3, S5*Attr.H/8);
do . DrawText {"Mag. Current:", -1, text_ region, DIT_CENTER] DT_VCENTER) ;
text_region.Set (Attr.W/3, S*Attr.H/S,
2*Abtr W/3, 3*Attr.H/4);
sprintf (buffer, "%g", mag_current);
do.DrawText (buffer, -1, text_region, DT_CENTER | DT VCENTER) :

text_region.Set {Attr.W/3, 3¥Attr.H/4,
2*Attr.W/3, TrAttr . H/8);
de . DrawText ("Reg. Mag. Curr.",-1, text_region, DT _CENTER j DT_VCENTER) ;
text_region.Set {Attr.W/3, 7¥*Attr.H/8,
2¥Attr . W/3, Attr.H);
dc.SetBkColor (TColoxr: :Whikte) ;
de.DrawText (buffer, -1, text region, DT_CENTER | DT_VCENTER);

delete buffer:

up_light->DrawRect(de) s

down_light->DrawRect {dc) ;
seated_light->TurnOn(dc);
mag_eng_light~>TurnOn (dc);

FigsionChamber: :FissionChamber (I'Window* parent, char* title,
int X, int ¥, int W, int H)
ControlBox{parent,title, X, ¥, W, H)

[H

new Light (LIGHT_OFFSET,
Attr.H/2 + LIGHT_OFFSET,
Attr.W/3 - LIGHT OFFSET,
Attr . H/2 + LIGHT_QOFFSET + LIGHT HEIGHT,
rURT,
TColor: :LtGray,
Tolor: :LtBlue);

up_light

new Light (LIGHT_OFFSET,
Attr.H/2 + LIGHT _OFFSET + LIGHT_HEIGHT,
Attr.W/3 ~ LIGHT _OFFSET,
Attty . H/2 + LIGHT_OFFSET + 2*LIGHT BEIGHT,
"DOWN ™,
TColor: LtGray,
TColoxr: :White);

il

down_light

FissionChanber: :~FissionChambey (}
{

delete up_light;

delete down_light;

void FigsionChamber::Paint (TDC & dc, BOOL state, TRect & rect)

{
ControlBox: :Paint (dc, state, rect);

up_light->DrawRect (de);

B-23

down, light->DrawRect (dc} ;
Ingert (de, ON);
Withdraw{dc,ON) ;

RegulatingRod: :RegulatingRod (TWindow* parent, char* title,
int X, int Y, int W, int H)
ControlBox(parent, title,X,¥Y,W,H)

i

up_light new Light {LIGHT_OFFSET,
Attr.H/2 + LIGHT_OFFSET,
Attr . W/3 - LIGHT_OFFSET,
Attr.H/2 + LIGHT _OFFSET + LIGHT HEIGHT,
“up",
TColoxr: :LtGray,
TColor: :LtBlue);

down_Jlight = new Light (LIGHY_OFFSET,
Attr. .H/2 + LIGHT _OFFSET + LIGHT_HEIGHT,
AtLr . W/3 - LIGHT_OFFSET,
Attr H/2 + LIGHT _OFFSET + 2*LIGHT _HEIGHT,
"DOWN",
TColor: :LtGray,
TColox: :White) ;

auto_control = new TButton(this, ID_AUTOC_CONTRCL, "Auto",
. 0, Attr.H/4 + 5,
Attr W/6,
Atbr . H/4 - 10);

ac_on_light = new Light (Attr.W/6,
Attr.H/4 + 5,
Artr . W/6 + Attr W/1i2,
Attr.H/2 - 5,
"ON",
TColor: :LtGray,
TColor: :LtGreen) ;

ac_off_light = new Light (Attr . W/6 + Abtr.W/1l2,
Attr H/4 + 5,
Attr.W/6 + 2*Attr.wW/l2,
Attr.H/Z - 5,

n OFF [.
TColor: :LEGray,
TColor: :LEGreen) ;

RegulatingRod:: ~RegulatingRod()
{

delete up_light;

delete down_light;

delete auto_control;

delete ac_on_light;

delete ac_off light;
}

void RegulatingReod::Paint (TDC& dc, BOOL state, TRect & rect)
{

ControlBox: :Paint {(dc, state, rect);

B-24

up_light->Turnon(de);
down_light->TurnOn{dc);
ac_on_light->DrawRect (dc);
ac_cff _light->TurnOn{dc) ;

MainReactorWindow: :MainReactorWindow ()
TWindow (0, 0, 0}

Attr.X = 50;

Artr.Y = 50;

Attr W = 1200;

Attr.H = 900;

getpoint_temp = (,0;

redg_power = 0.0;

reg_rod = new RegulatingRod{this, *Regulating Rod",

CR1_LEFT, REG_ROD_TOP,
CONTROL,_WIDTH, CONTROL_HEIGHT);
control_rod_ 1 = new ContrelRed{thisg, "Control Rod 17,
CR1_LEFT, CONTROL_ROD_TOP,
CONTROL_WIDTH, CONTROL_HEIGHT);
control_rod_2 = new ContrclRod{thig, "Control Rod 27,
CR2 _LEFT, CONTRCL_ROD_TOP,
CONTROL,_WIDTH, CONTROL_HEIGHT) :;
contrel_rod_ 3 = new ContrelRod{thig, "Control Rod 3,
CR3_LEFT, CONTRCL_RCD_TOCP,
CONTROL, _WIDTH, CONTROL_HEIGHT);
fission_chanmber = new FigsionChamber (this, *"Fission Chamber",
CRZ_LEFT, REG_ROD_TCP,
CONTROL_WIDTH, CONTROL_HEIGHT);

gcram_box_array =.new Light*[20];
for {int i = 0; i < 10; i++) {
for {(int j = 0; 4 < 2; Hd++) {
gcram_box_arrayi(2*i)+3] = new Light{SCRAM_BOX_LEFT+j*LIGHT_WIDTH,

SCRAM_BOX_'TCP + (LIGHT_EEIGHT)*i,
SCRAM _BOX_LEFT+ (§+1) *LIGHT_WIDTH,
SCRAM_BCX_TOP+ (LIGHT_ HEIGHT)* (i+1),
{char*} SCRAMS[(2*i)+31,
TColor::White,
TColoxr::LtRed);

}

alarm_array = new Light*{24];

for (i = 0; i < 12; i++} {

alarm_array[2*1] = new Light (ALARMS_LEFT + i*ALARM WIDTH,

ALARMS TGP,
ALARMS_LEFT + (i+1)*ALARM WIDTH,
ALARMS_ TGP + ALARM_HEIGHT,
{char*) ALARMSI[i],
TColor::White,
TColor: :LtRed) ;

alarm_array[(2*1)+1] = new Light (ALARMS_LEFT + i*ALARM_WIDTH,
ALARMS_TOP + ALARM_HEIGHT,
ALARMS_LEFT + (i+1)*ALARM WIDTH,
ALARMS_ TOP + 2*ALARM _HEIGHT,

B-25

{(char*) ALARMS[i),
TColor::White,
Yellow) ;
}
clear_button = new TButton(this, ID CLEAR, "Clear", CLEAR_LEFT,
ALARM RUTTON_TOP, ALARM BUTTON WIDTH,
ALARM_BUTTON_HEIGHT) ;
silence_button = new TButton(this, ID_SILENCE, “"Silence”, SILENCE_LEFT,
ALARM BUTTON_T0OP, ALARM BUTTON_WIDTH,
ALARM_RUTTON _HEIGHT} ;
reset_button = new TButton (thig, ID RESET, "Reset Scrams", RESET_LEFT,
RESET_TOP, RESET_WIDTH, RESET_HEIGHT):
} .

MainReactorWindow: : ~MainReacterWindow ()
{
delete reg_rod;
delete control_rod_1;
delete control_rod 2;
delete control_xrod _3;
delete fission_chamber;
delete scram box _array;
delete alarm_array;
delete clear_pbutton;
delete silence_button;
delete reget button:

void MainReactorWindow: :Paint(TDC& paint_dc, BOOL, TRect &)
(‘
TRect info_area (CR3_LEFT,REG_ROD_TOP, CR3_LEFT + CONTROL _WIDTH,
CONTROL_ROD_TOP) ;
paint_dc.FillRect{info_area, TBrush(TColor: :LiGray));
paint_dc. SelectCbject (TPen (T'Color: :Black)),

paint_dc. SetBkColor (TColor:: LtGray);
info_area.Set (CR3_LEFT, REG_ROD_TOP + 10,

CR3_LEFT + {CONTROL _WIDTH/2),

REG_ROD_TOP + (CONTROL_HEIGHT/4) - 10);
paint_dc.DrawText ("Diff Core Temp = 212 F", ~1, info_area,

DT_CENTER | DT _VCENTER}
info_area.Set (CRI_LEFT+ (CONTROL_WIDFTH/2), REG_ROD_TOF,

CR3_LEFT + CONTROL_WIDTH, REG_ROD_TOP + (CONTROL_HEIGHT/8));
paint_dc.DrawText ("Setpoint Temp:",-%,info_area, DT _CENTER} ;
info_area.Set (CRI_LEFT+ (CONTROL_WIDTH/2), REG _ROD_TOP + (CONTROL_HMEIGHT/8),

CR3_LEFT + CONTROL_WIDTH, REG_ROD_TOP + {(CONTROL_HEIGHT/4));
char* tenp_buffer = new char[20];
paint_de.SetBkColoxr {TColor: :White) ;
sprintf (temp_buffer, "%g", setpoint temp);
paint_dc.DrawText (temp_ buffer, -1, info_area, DT _CENTER);
paint_dc. 8etBkColor {(TColoxr: : LEGray) ;
delete temp_buffer;
info_area.Set (CR3I_LEFT, REG_ROD_TOP + CONTROL_HEIGHT/4 + 10,

CR3. . LEFT + CONTROL_WIDTH,

REG_ROD_TOP + 2* {CONTROL_HEIGHT/4)-10};
paint_dc.DrawText ("Bulk Pool Temp = 134 F*, - 1, info_area,

DT_CENTER | DT_VCENTER) ;
info_area.Set {CRI_LEFT, REG_ROD_TOP + 2*(CONTROL_HEIGHET/4) + 10,

paint_dc.

CR3_LEFT + CONTROL_WIDTH,
REG_ROD_TOP + 3*(CONTROL_HEIGHT/4)-10);
DrawText ("Power Level = 2 MW", -1, info_area,
DT_CENTER | DI'_VCENTER) ;

info_area.Set {CR3_LEFT, REG_ROD_TOP + 3*{CONTROL_HEIGHT/4),
CR3_LEFT + CONTROL_WIDTH, REG_RCD_TOP+7* (CONTROL_HEIGHT/8));

paint_dc.

DrawText {"Reg Power:", -1, info_area, DT_CENTER);

info_area.Set (CR3_LEFT, REG_ROD_ TOP + 7*{CONTROL_HEIGHT/8),

CR3_LEFT + CONTROL_WIDTH, CONTRCL_ROD _TOP;};

temp buffer = new char([20];
sprintf {temp buffer, "%g MW", reg_power):;

paint_dc.
paint_dc.
paint_dc.

SetBkColor (TColor::White) ;
DrawText (temp buffer, -1, info_area, DT CENTER);
SetBkColor (TColor: : LtGray) ;

delete temp_ buffer;

soram _box_array[l2}~>TurnOn{paint_dc);

for (int

i=0; i < 10; i++4) {

for (int j = 0; j < 23 j++) {
scram _box_array[(2*1i)+]j]->DrawRect (paint_dc) ;

3

alarm_array[6]->TurnOn{paint_dc) ;
alarm_array[7]->TurnOn {paint_dc) ;

for {i =

0; 1 < 24; i++) {

alarm_arrayl[i]->DrawRect (paint_dc) ;

paint_dc.
MoveTo (CR3_LEFT + CONTROL_WIDTH - 1, REG_ROD_TOP);

paint_dc

paint_dc.
paint_dc.
paint_dc.

paint_ dc.
MoveTo (CR3_LEFT + CONTROL_WIDTH ~ 1,

paint_de

paint dc.
MoveTo (CR3_LEFT + CONTROL_WIDTH ~ 1,

paint_de

paint_dc.

paint_dc.
paint_dc.
paint_dec.
paint_Jc.
paint_dc.

paint dc.
paint dc.

paint_dc.
paint_dc.

paint_dc.

paint_dc.
paint_dc.

SelectObject (TPen (TCclor: :White) };

LineTo { (CR3_LEFT)+1l, REG_ROD_TOP + 1):

LineTo { (CR3_LEFT) +1, CONTROL_ROD_TQP - 1);

MoveTeo (CRI_LEFT + CONTROL_WIDTH - 1,
CONTROL_RCD_TOP - (CONTROL_HEIGHT/4) + 1);

B-26

LineTo { (CR3_LEFT)+1, CONTROL _ROD_TOP - (CONTROL HEIGHT/4) + 1);

CONTROL_ROD_TOP - (2*(CONTROL_HEIGHT/4}) + 1);

LineTo{ (CR3 _LEFT)+1, CONTROL_ROD TOP - (2% (CONTROL _HEIGHT/4))

CONTROL_ROD_TOP - (3* (CONTROL_HEIGHT/4}) + 1);:

+ 1),

LineTo ((CR3_LEFT)+1, CONTROL_ROD_TOP - (3* (CONTROL_HEIGHT/4)) + 1);

SelectObject (TPen (DkGray)) ;
MoveTo (CR3I_LEFT + CONTROL_WIDTH - 1, CONTROL_ROD_TOP - 1)
LineTo ({CR3_LEFT)+1, CONTROL_ROD_TOP - 1);
LineTo ({CR3_LEFT)+1, REG _ROD_TOP + 1);
MoveTo (CR3_LEFT + CONTROL_WIDTH - 1,

CONTROL_ROD_TOP - (CONTROL_HEIGHT/4} -~ 1);

LineTo ({CR3_LEFT) +1l, CONTROL _ROD_TOP - {CONTROL HEIGHT/4) - 1);

MoveTo (CR3_LEFT + CONTROL _WIDTH - 1,

CONTROL_ROD_TOP -~ (2% (CONTROL_HEIGHT/4)) - 1};
LineTo ({CR3_LEFT) +1, CONTROL_ROD_TOP - 2* (CONTROL_HEIGHT/4)
MoveTo {(CR3_LEFT + CONTROL_WIDTH - 1,

CONTROL_ROD_TOP - {3* {CONTROL_HEIGHT/4)) - 1):
LineTo { (CR3_LEFT)+1, CONTROL_ROD_TOP - 3* (CONTROL_HEIGHT/4)

SelectObiect (TPen (TColoxr: :Black) }:
MoveTo {CR3_LEFT + CONTROL_WIDTH, CONTROL_RCD_TOP};

1)

1}

B-27

paint_dec.LineTo ((CR3_LEFT), CONTROL_ROD_TOP);
paint_dc.Move'To ((CR3_LEFT), CONTROL_ROD _TOP - CONTROL_BEIGHT):
paint_de.LineTo (CR3I_LEFT + CONTROL_WIDTH, CONTROL_ROD_TOP - CONTROL_HEIGHT);

paint dec.MoveTo {(CR3_LEFT + CONTROL_WIDTH,

CONTROL_ROD_TOP ~ (CONTROL_HEBIGHT/4)};
paint_dc.LineTo { (CR3_LEFT}, CONTRCL_ROD_TOP -~ (CONTROL_HEIGHT/4));
paint_dc.MoveTo {CR3I_LEFT + CONTROL_WIDTH,

CONTRCOL_ROD_TOP ~ (2% (CONTROL_BEIGHT/4)));
paint_dc. LineTo { (CR3_LEFT}, CONTRCL_ROD_TOP - 2* {(CONTROL_HEIGHT/4));
paint dc.MoveTo {CR3 LEFT + CONTROL_WIDTH,

CONTROL_ROD_TFCP ~ (3% (CONTROL_HEIGHT/4}));
paint_dc.LineTo ({CR3_LEFT}, CONTROL_ROD_TOP - 3* (CONTROL_HEIGHT/4));

vold ReactorApp::InitMainWindow()

{
MainWindow = new TFrameWindow(0, "Reactor Mockup", new MainReactorWindow());
MainWindow->AssignMenu (MATN_REACTOR_MENL) ;

1

int OowlMain (int, char* [1)
{

return Reactor2pp(} .Run(};

light.h

#include <owl/point. h>
#inciude <owl/dc.h>
#inciude <owl/color.h>
#include <owl/gdiobjec.h»>

typedef enum StatusType { ON, OFF };

class Light : public TRect
{
public:
Light (char* text,
TColor off_color = TColor::LtBiue,
TColor on_color = PTColor::LtRed);
Light (const RECT far,
char* text,
TColor off_color = TColor::LtBiue,
TColor on_color = TColor::LtRed};
Light{int, int, int, int,
char* text,
TColor off _color = TColor::LtRBlue,
TColor on_color = TColoxr::LtRed};
Light (const TPoint&, const TPointé,
char* text,
TColor off color = TColor::LtBlue,
TColor on_color = TColor::LtRed);
Light (const TPoint&, const TSizek,
char* text,
TColor off color = TColor::LtBlue,
TColor on_color = TColor::LtRed);
~Light ();
veid TurnOn (TDC&) ;
void TurnOf£ (TDC&);
void DrawRect (TDC&) ;

private:
char* title;
StatusType status;
TColoxr <ff coloxr;
TColor on_color;
TBrush* on_brush;
TBrush* off_brush;
Y

B-28

B-29

light.cpp

#include "light.h"

Light: :Light (char* text, TColor 0ffCeclor,
TColoxr OnColor)

TRect ()
{
off color = OffColor;
on_golor = OnColor;
status = OFF;
title = text;
of f_brush = new TBrush(off_color);
on, brush = new TBrushl(on_color);

Light: :Light {(congt RECT far& rect,
char* text,
TColor OffColor,
TColor OnColor)
TRect (rect)

off_color = OffColor;

on_color = CnColor;

title = text;

status = OFF;

off_brush = new TBrush(off_coloxr};
on_brush = new TBrush{on_color);

}

Light::Light{int left, int top, int right, int bottom,
char* text,
TColor OffColor,
TColor OnColor)
TRect (left, top, right, . bottom)

off_color = QffColor;

on_color = OnColor;

titlie = text;

gstatus = QFF;

off_brush = new TBrush(off_coclor);
on_brush = new TBrushl{on_color):

}

Light::Light(const TPoint& upleft, const TPoint& loRight,
char* text,
TColor COffColor,
TColor OnCeolor)
TRect (upLeft, loRight)

{
off color = DffColor;
on_color = OnColor;
title = Lext;
status = QFF;
off_brush = new TBrush(off color):;

on_brush = pnew TBrush(on_color);

Light::Light{censt TPoint& origin, const T8izek extent,
char* text,
TColor OffColor,
TColor CnColor)
TRect (origin, extent)

{

off_color = OffColor;

on_coloxr = OnColor;

title = Lext;

status = QOFF;

off_brush = new TBrush{off_color);

on_brush = new TBrush{on_color);
}

Light: :~Light{) {
//delete off_brush;
//delete on_brush;

vold Light: :TurnOn{TDCE deo)
{

status = ON;

DrawRect {dc);

void Light::TurnOff (TDC& dc)
{
status = OFF;
DrawRect{dc);

vold Light: :DrawRect (TDC& do}
{
dce . SetBkColor{off _color);
dc . 8electObject (TPen(TColor: :Black)) ;

if {gtatus == ON) {
de.FillRect (*this, *on_brush};
dc.SetBkColor (on_color):;

} else {
de.FillRect (*this, *cff_brush);
dc.SetBkColor (off_color) ;

dc.SelectObject (TFont ("Courier New", 15));
dc . .DrawText (title, -1, *this, DT_CENTER);

de . MoveTo (left, top);
do.LineTo (right, top):
de.LineTo (right, bottom);
do.LineTo{left, bottom)};
de.LineTo(left, top) ;

B-30

B-31

B.4 Specification of Token Generation

Tokens can be generated by either the presentation or the application program. The
tokens that the presentation produces map that portion of the specification to the context-
free grammar. Typically, for tokens generated by the presentation it is the graphical object’s
callback function which generates the token. An enumeration of the tokens and the objects
which generate each of those tokens specifies the token generation.

Table 2 relates each of the 21 tokens of the context-free grammar to either the applica-
tion program or objects from the presentation specification. The callback function of the
graphical object is assumed to generate presentation tokens; in cases where this is not the
case, the particular method is specified with the object. There is a single token denoted
“Application Program,” which is a token generated by the application program involving
the current alarm conditions.

Table 2: Token Generation

Token Object/Method
SWITCH_PWR COM_SWITCH_POWER
FISS_UP fission_chamber.reg height
SET_MC1 control_rod_i.mag_current
SET_MC2 control_rod 2.mag, current
SET_MC3 control_rod_3.mag_current
SAFETY1_UP control_rod_l1.req height
SAFETY2 UP control_rod_2.recq height
SAFETY3 UP control_rod_3.req height
SET_TRIP getpolnt_temp
AUTO_REG_ON reg_rod->auto_control
AUTO_REG_OFF reg_rod->auto_control
SET_POWER req_power
AP_RCV_ALRM Application Program
SIL_ALRM silerice_button
CLR_ALRM clear_button
SAFETY!1 DWN control_rod_ l.req height
SAFETY2 DWN control_rod 2.req height

Table 2: Token Generation

Token

Object/Method

SAFETY3_DWN

control_rod _3.reqg _height

SHUT DOWN

CM_DATA_HISTORIES

KEY_OUT

MainReactoxrWindow

B-32

B-33

B.5 Specification of Command Interpretation

There is an enumerated set of messages specified in the semantic component whose
destinations are the application program or the presentation interpreter. The messages to the
presentation interpreter instruct the interpreter to alter the on-screen graphical display in
some way. Each of these messages can be mapped to the particular graphical object they
manipulate and the method(s) called on that object.

The messages to the application program are enumerated below; this is simply an
extraction from the semantic specification to make explicit this interface. The messages to
the presentation interpreter are related to the graphical objects or methods of the presenta-
tion that they affect in Table 3, with the exception of SilenceAlarms which pertains to sound
capabilities not modelled in this specification.

MethodsToAP == { NewPowerLevel, NewMagCurr, NewFissionHeight,
SafetyRodHeight, NewlargetPower, SwitchAutoReg,
NewTripPoint}

Table 3: Presentation Interpreter

Command Object/Method
DisplayAlarmS alarm_array
SilenceAlarms n/a

ClearAlarms alarm_array

