Comparing the Performance of Database Selection Algorithms

James C. French Allison L. Powell*
Department of Computer Science
University of Virginia
Charlottesville, VA
{french|alp4g}@cs.virginia.edu

Charles L. Viles[‡]
School of Information and Library Science
University of North Carolina, Chapel Hill
Chapel Hill, NC
viles@ils.unc.edu

Jamie Callan[†]
Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts
Amherst, MA
callan@cs.umass.edu

Travis Emmitt Kevin J. Prey §
Department of Computer Science
University of Virginia
Charlottesville, VA
{te3d|kjp4f}@cs.virginia.edu

Yun Mou¶
Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts
Amherst, MA
ymou@cs.umass.edu

Abstract We compare the performance of two database selection algorithms reported in the literature. Their performance is compared using a common testbed designed specifically for database selection techniques. The testbed is a decomposition of the TREC/-TIPSTER data into 236 subcollections. We present results of a recent investigation of the performance of the CORI algorithm and compare the performance with earlier work that examined the performance of gGlOSS. The databases from our testbed were ranked using both the gGlOSS and CORI techniques and compared to the RBR baseline, a baseline derived from TREC relevance judgements. We examined the degree to which CORI and gGlOSS approximate this baseline. Our results confirm our earlier observation that the $gGlOSS\ Ideal(l)$ ranks do not estimate relevancebased ranks well. We also find that CORI is a uniformly better estimator of relevance-based ranks than gGlOSS for the test environment used in this study. Part of the advantage of the CORI algorithm can be explained by a strong correlation between gGlOSS and a size-based baseline (SBR). We also find that CORI produces consistently accurate rankings on testbeds ranging from 100-921 sites. However for a given level of recall, search effort appears to scale linearly with the number of databases.

1 Introduction

The proliferation of online resources, the growing need to conduct search across many of these resources, and the de-facto requirement of pruning the resource set of interest to manageable size has increased attention on retrieval in the distributed environment. Distributed information retrieval encompasses many important problems, including:

- database or collection selection [7, 11, 15, 13, 18, 24, 25, 14];
- collection fusion or results merging [2, 7, 8, 23, 22]; and
- dissemination of collection information to increase retrieval effectiveness [10, 21, 20].

^{*}This work supported in part by DARPA contract N66001-97-C-8542 and NASA GSRP NGT5-50062.

[†]This work supported in part by NSF, the Library of Congress, and the Department of Commerce under agreement EEC-9209623, and by the U.S. Patent and Trademark Office and DARPA/ITO under contract F19628-95-C-0235.

[‡]This work supported in part by DARPA contract N66001-97-C-8542.

 $[\]fint8$ This work supported in part by DARPA contract N66001-97-C-8542.

[¶]This work supported in part by NSF, the Library of Congress, and the Department of Commerce under agreement EEC-9209623, and by the U.S. Patent and Trademark Office and DARPA/ITO under contract F19628-95-C-0235.

In this paper we focus on database selection as a fundamental problem in the distributed environment, providing the first direct comparison of two database selection techniques described in the literature. The problem can be stated intuitively as the process of selecting a (hopefully) small set of databases to which to send a query. Database selection is the first step in a process that continues with search at the distributed sites and fusing or merging of result lists from the sites. The primary goal in this step is to select as small a set of collections as possible to send a query to without sacrificing retrieval effectiveness.

Evaluation of database selection techniques has involved two approaches, one based in the IR research community and the other in the Database research community. The IR approach, embodied in Callan et al. [7], French et al. [9], and Xu and Callan [24] has focused on the importance of including relevance information either in the evaluation of the ranked list of collections to send the query to, or in the eventual lists of documents returned by all collections. The DB approach, embodied in the work of Gravano et al.[13, 14] does not include relevance information and compares the selection technique against an "ideal" ordering that represents the behavior of the individual search systems. The rationale is that a selection technique can't do better than the underlying constituent systems.

Several techniques for database selection have been proposed and independently evaluated; however the test environments have varied in both the underlying data and the evaluation methods. There is very little literature on the direct comparison of competing techniques. This study directly compares two techniques, $gGlOSS[13,\ 14]$ and CORI[7], in a common test environment using the same data and evaluation techniques. We had two goals for this study. The first goal was to demonstrate a sound methodology for the systematic study of these algorithms and their relative performance. The second, and more important, goal was to gain insight into both the collective and individual behavior of these algorithms. We believe that this study achieves both goals.

2 Database Selection Experiment

This section describes some comparative experiments in database selection. In earlier work[9] we described a testbed and methodology for examining the behavior of algorithms such as these. We also proposed metrics and analyses that were designed to illuminate the behavior of the algorithm under study. The testbed and metrics are reviewed below.

Our earlier work concentrated on measuring the performance of gGlOSS in our test environment. In the present paper we are concerned with determining how gGlOSS compares with another database selection algorithm, CORI.

2.1 The Problem

Distributed searching is composed of three fundamental activities: (1) choosing the specific databases to search; (2) searching the chosen databases; and (3) merging the results into a cohesive response. In this paper we focus specifically on the first activity. Callan et al.[7] call this the collection selection problem while Gravano et al.[15] refer to it as the text database resource discovery problem. In French et al.[9] we refer to this as database selection and will retain that terminology here for consistency.

In our experiments we investigate the gGlOSS[13] and CORI[7] methodologies in a common test environment and compare their performance to a relevance-base ranking (RBR) ¹ This and other baselines are described more fully later.

2.2 The Testbed

A number of researchers have been working on issues in distributed information retrieval systems but the test environments are idiosyncratic in both data and evaluation measures, making it impossible to compare results. In French et al.[9] we proposed a test environment for the systematic study of distributed information retrieval algorithms. Our testbed is based on the TIPSTER data used in the TREC[16] conferences. We decompose the large collections into smaller subcollections that serve as hypothetical "sites" in our distributed information retrieval test environment. The data is decomposed by source, year, and month resulting in 236 sites. We used TREC topics 51-150 as the test queries in our earlier study[9]. The characteristics of this testbed, the queries used, and other details can be found in French et al.[9].

2.3 The Algorithms Considered

gGlOSS

Gravano et al.[15] proposed GlOSS, the Glossary-of-Servers Server, as an approach to the database selection problem for the Boolean IR model. Later GlOSSwas generalized to gGlOSS[13] to handle the vector space information retrieval model. This generalization can be used for any IR model that computes a score to determine how well a document satisfies a query, provided that certain collection statistics can be made available to gGlOSS.

gGlOSS assumes that the databases can be characterized according to their goodness with respect to any particular query. gGlOSS's job is then to estimate the goodness of each candidate database with respect to a particular query and then suggest a ranking of the databases according to the estimated goodness.

¹This was called *optimal* ranking by Callan *et al.*[7].

Goodness for each database, db, is defined as follows.

$$Goodness(l,q,db) = \sum_{d \in \{db \mid sim(q,d) > l\}} sim(q,d) \quad (1)$$

where sim(q,d) is a function that calculates the similarity between a query q and a document d. Once Goodness(l,q,db) has been calculated for each database db with respect to q at threshold l, the ideal rank for the query at threshold l, Ideal(l) can be formed by sorting the databases in descending order of their goodness.

Note that gGlOSS does not compute Ideal(l) rather it is advanced as the goal to which gGlOSS estimated ranks Max(l) and Sum(l), defined in [13], will be compared. In French et al.[9] we showed that qGlOSS Max(l) and Sum(l) estimators do a good job of estimating Ideal(l). We also showed that Ideal(l) is not well-correlated to relevance.

Complete details for calculating the Max(l) and Sum(l) estimators are given in [13] and are not reproduced here. But, for later reference we note that

$$Max(0) = Sum(0) = Ideal(0), \tag{2}$$

that is, at threshold l=0 both estimators give identically the Ideal(0) ranking of databases for all queries. In addition, l = 0 allows a consistent comparison of Ideal(l) rankings when comparing different underlying retrieval systems that produce differently scaled similarity values (i.e. sim(q, d) in Equation 1). Hence, in the evaluation to follow we will use Ideal(0) as the gGlOSS estimate since gGlOSS can compute this exactly.

Note that gGlOSS needs two vectors of information from each database db_i in order to make its estimates.

- 1. the document frequency df_{ij} for each term t_j in db_i ; and
- 2. the sum of the weight of each term t_i over all documents in db_i , that is, the column sums of the document-term matrix.

If the underlying database cannot be made to divulge this information directly, it is in principle possible to recover the information by issuing a single-term query for each vocabulary term. Our choice of Ideal(0) obviates this; we can compute Ideal(0) directly from the databases by simply issuing the test queries.

CORI

Given a set of databases to search, the CORI approach creates a database selection index in which each database is represented by its terms and their document frequencies df. Databases are ranked for a query q by a variant of the Inquery document ranking algorithm.

The belief $p(r_k|c_i)$ in collection c_i due to observing query term r_k is determined by:

$$T = \frac{df}{df + 50 + 150 \cdot cw/\overline{cw}} \tag{3}$$

$$T = \frac{df}{df + 50 + 150 \cdot cw/\overline{cw}}$$
(3)
$$I = \frac{\log\left(\frac{|C| + 0.5}{cf}\right)}{\log\left(|C| + 1.0\right)}$$
(4)

$$p(r_k|c_i) = 0.4 + 0.6 \cdot T \cdot I \tag{5}$$

where:

is the number of documents in c_i containing r_k ,

cfis the number of collections containing r_k ,

|C|is the number of collections being ranked,

cwis the number of words in c_i , and

is the mean cw of the collections being ranked. The belief in a collection depends upon the query structure, but is usually just the average of the $p(r_k|c_i)$ values for each query term [7].

The CORI approach to ranking collections can be summarized as df.icf, where icf is inverse collection frequency.

The Experiment 2.4

In our earlier evaluation we determined that qGlOSSestimates Ideal(l) well, but that Ideal(l) does not estimate relevance-based rankings very well. The first step in the current study was to determine how well CORI estimated relevance-based rankings.

We tested the CORI algorithm against our testbed using the full 236 subcollections of the TREC data described earlier. We used the TREC topics 51-150 as the test query set.

2.5Controlling the Indexing Vocabulary

In [9] we prepared the test collection by using SMART version 11.0[3] using the same parameters as Gravano et al.[13]. Note that for those experiments each of the 236 sites used the same parameters and search engine (SMART) to process queries. Then we prepared a union vocabulary incorporating all the terms appearing at any of the separate collections. This gave us a canonical global vocabulary with which to store the document frequencies and weight sums required by gGlOSSto make its estimates.

To control the CORI evaluation properly it was necessary to guarantee that the same indexing vocabulary was used by gGlOSS and CORI. Sources of variability arise from: parsing the original TREC documents; tokenizing a document into words; stemming algorithm; and stoplist. To control for all these factors we synthesized pseudo-documents for each collection. We used the stemmed and stopped vocabulary from the SMART indexing done in [9], emitted each term tf times, and

padding the document back to it original length with a fake word. *Inquery* was then run with stemming off and a single word stoplist. It was also necessary to handle special characters differently. The end result was that *Inquery* indexed exactly the same vocabulary that SMART did in the earlier experiments.

We note that it is possible that the steps we took to control the indexing vocabulary hindered the CORI performance. Specifically, CORI using the default Inquery tokenizer or stemmer may have produced better results.

2.6 Evaluation—Baselines for Comparison

We refer to a number of baselines in the evaluation below, specifically: the gGlOSS baseline, Ideal(0); the relevance-based ranking (RBR); and the size-based ranking (SBR). They are defined as follows.

Ideal (0): This ranking is produced by processing each query at each of the 236 subcollections and then using the goodness (see Equation 1) to rank the subcollections.

RBR: These rankings were produced for each query by using the relevance judgements supplied with the TREC data. In the RBR baseline databases are simply ordered by the number of relevant documents they contain.

SBR: Databases are ordered by the total number of documents they contain. Note that this ranking is constant for all queries.

2.7 Evaluation—Metrics for Comparison

As in our earlier work we use mean squared error, two recall metrics, \mathcal{R}_n [13] and $\widehat{\mathcal{R}}_n$ [9], and a precision measure, \mathcal{P}_n [13]. In addition we will also use the Spearman coefficient of rank correlation[12]. These are discussed below.

Mean Squared Error

Given a group of N databases to rank, for any candidate ranking we compute

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (base_rank(db_i) - est_rank(db_i))^2$$

where $base_rank(db_i)$ is the baseline or desired rank and $est_rank(db_i)$ is the predicted rank for db_i .

Recall and Precision Analogs

In [9] we discussed performance metrics that are analogous to the well known IR metrics of *recall* and *precision*. We briefly review the metrics here.

We provide a baseline ranking, B, that represents a desired goal for each query. An algorithm produces some estimated ranking for the query, E, and our goal is to decide how well E approximates B. We assume that each database db_i in the collection has some merit, $merit(q, db_i)$, to the query q. The baseline is expressed in terms of this merit; the estimate is formed by implicitly or explicitly estimating merit.

Let db_{b_i} and db_{e_i} denote the database in the *i*-th ranked position of rankings B and E respectively. Let

$$B_i = merit(q, db_{b_i}) \text{ and } E_i = merit(q, db_{e_i})$$
 (7)

denote the merit associated with the i-th ranked database in the baseline and estimated rankings respectively. In the results that follow we have the following convention. For the Ideal(l) calculations we have merit(q,db) = Goodness(l,q,db); for RBR we define merit(q,db) to be the number of relevant documents in db; and for SBR we define merit(q,db) to be the total number of documents in db.

Gravano et al.[13] defined \mathcal{R}_n as follows.

$$\mathcal{R}_n = \frac{\sum_{i=1}^n E_i}{\sum_{i=1}^n B_i}.$$
 (8)

This is a measure of how much of the available merit in the top n ranked databases of the baseline has been accumulated via the top n databases in the estimated ranking.

An alternative definition[9] is given by

$$\widehat{\mathcal{R}}_n = \frac{\sum_{i=1}^n E_i}{\sum_{i=1}^{n^*} B_i}$$
 (9)

where

$$n^* = \max k \text{ such that } B_k \neq 0. \tag{10}$$

Intuitively, n^* is the breakpoint between the useful and useless databases. The denominator is just the total merit contributed by all the databases that are useful to the query. Thus, $\widehat{\mathcal{R}}_n$ is a measure of how much of the total merit has been accumulated via the top n databases in the estimated ranking. Lu $et\ al.[17]$ have also suggested using this measure.

Gravano et al.[13] have also proposed a precision-related measure, \mathcal{P}_n . It is defined as follows.

$$\mathcal{P}_n = \frac{|\{db \in Top_n(E)| merit(q, db) > 0\}|}{|Top_n(E)|}$$
(11)

This gives the fraction of the top n databases in the estimated ranking that have non-zero merit.

Spearman Coefficient of Rank Correlation

The Spearman coefficient of rank correlation, ρ , is given by

$$\rho = 1 - \frac{6\sum_{i=1}^{n} D_i^2}{n(n^2 - 1)} \tag{12}$$

where D_i is the difference in the *i*-th paired ranks. We have $-1 \le \rho \le 1$ where $\rho = 1$ when two rankings are in perfect agreement and $\rho = -1$ when they are in perfect disagreement.

3 Results

In the results that follow, we report the comparison of two database selection techniques gGlOSS and CORI; we use the baseline Ideal(0) to represent gGlOSS. We use four metrics, MSE, \mathcal{P}_n , \mathcal{R}_n and $\widehat{\mathcal{R}}_n$ to perform the comparison. We then examine potential reasons for differences in performance and discuss a heuristic for a lower bound on performance.

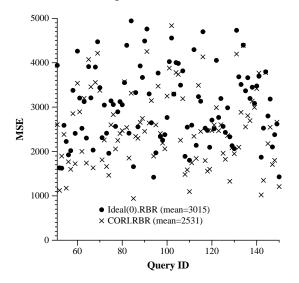


Figure 1: MSE values for CORI and Ideal(0) approximating RBR.

3.1 CORI Evaluation

The first step was to evaluate the performance of the CORI database selection algorithm using the evaluation measures described in French et~al.[9]. The evaluation measures include mean-squared error, a precision analog, \mathcal{P}_n and two recall analogs, \mathcal{R}_n and $\widehat{\mathcal{R}}_n$. CORI was evaluated using all four measures. For comparison, we also show the performance of gGlOSS~Ideal(0) [9] for all measures.

For these experiments, we used the RBR baseline as the standard against which to compare algorithm performance; the best possible performance under a given measure is to approximate RBR exactly.

We first considered the mean-squared error of the differences between the Ideal(0) and CORI rankings and the RBR baseline. MSE can provide a general impression of the similarity of rankings on a query by

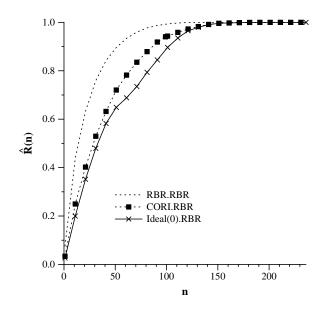


Figure 2: CORI results compared to gGlOSS and maximum achievable performance.

query basis. Figure 1 shows the MSE values for CORI and Ideal(0). The MSE values for both approaches are in the same range; however, the MSE values for CORI are lower on average with CORI having MSE values less than Ideal(0) for 84% of the queries. This suggests that CORI may approximate RBR more closely than qGlOSS.

We then evaluated CORI using the \mathcal{P}_n , \mathcal{R}_n and \mathcal{R}_n measures. These measures can help reveal the nature and degree of the discrepancies shown by MSE. The results for $\widehat{\mathcal{R}}_n$ are shown in Figure 2; results for \mathcal{P}_n and \mathcal{R}_n are included in summary Figures 5 and 6.

Our graph labeling convention needs a word of explanation. We label each curve E.B where E is the database selection algorithm (estimator) employed and B is the baseline to which E is being compared. A curve labeled B.B, e.g, RBR.RBR, is intended to show the best possible behavior, that is, when the baseline is used to estimate itself.

In Figures 2, 3, 5, 6 and 7, the plots for Ideal(0) and CORI should be compared to the plot RBR.RBR. For all measures CORI approximates the RBR baseline more closely than $gGlOSS\ Ideal(0)$.

3.2 \mathcal{R}_n Difference

To get a different perspective on the impact of the performance difference, we examined the data plotted in Figure 2. Figure 2 displays the average performance over 100 queries of the $\widehat{\mathcal{R}}_n$ measure. This measure shows the rate at which relevant documents can be accrued as additional collections are considered. Another

way to view this data is to determine how many collections from a ranking must be considered to reach a given value for $\widehat{\mathcal{R}}_n$. Table 1 shows the values for CORI and gGlOSS Ideal(0) compared with the highest achievable value.

Examining Figure 2, it is readily apparent that fewer collections need be considered to reach each level of $\widehat{\mathcal{R}}_n$ when the CORI ranking was used than when the Ideal(0) ranking was used. This is reinforced by Table 1. However, it is more apparent from Table 1 that the CORI ranking has a greater advantage for $\widehat{\mathcal{R}}_n$ values of 0.7 and above. If the goal is exhaustive searching, using the CORI ranking will be more efficient.

There are three regions of interest in Figure 2. These regions can also be seen in Figures 5, 6 and 7. For all measures, for n roughly less than 50, the performance of all of the algorithms is fairly close. For n greater than roughly 120, all algorithms are faced with a situation in which most of the relevant documents have been located and little improvement is possible. However for n in the range of 50-120, CORI has a more evident advantage, as seen in Table 1.

$\widehat{\mathcal{R}}_n$	Number of collections required					
	to achieve $\widehat{\mathcal{R}}_n$					
	CORI	Ideal(0)	Best Achievable			
0.1	4	5	2			
0.2	9	12	4			
0.3	15	18	7			
0.4	21	25	10			
0.5	29	33	14			
0.6	38	43	19			
0.7	49	64	26			
0.8	64	83	36			
0.9	86	102	52			
1.0	209	225	145			

Table 1: $\widehat{\mathcal{R}}_n$ for CORI and Ideal(0)

4 Analysis and Discussion

4.1 CORI and gGlOSS Comparison

The immediate question was why CORI approximated the RBR baseline more closely than $gGlOSS\ Ideal(0)$. Our initial observation was that the performance differences could be due to indexing differences. Our initial gGlOSS experiments were intended to reproduce the experimental setup of Gravano and Garcia-Molina [13]. As a result, we used the exact underlying retrieval engine and parameter settings reported—SMART using ntc weights for document terms and nnn weights for query terms.

It has been shown that using different weights and normalization approaches in SMART improves retrieval performance for the large TREC collections [4, 5, 19], so we considered that the improvement shown by CORI could be due simply to better-tuned indexing information. Therefore, we used the underlying Inquery collection indexes—used to generate the CORI inference net—to generate an additional Ideal(0) baseline based upon the Inquery indexing information. We will refer to the new Ideal(0) baseline as Ideal(0)-inquery. If *Ideal(0)-inquery* approximated RBR more accurately than Ideal(0), it would imply that the indexing weights used by Inquery provided a better input to the gGlOSSalgorithm. In this case, it would be more representative to compare the CORI performance to that of Ideal(0)inquery than to that of Ideal(0). The comparisons of Ideal(0) and Ideal(0)-inquery to baseline RBR for evaluation measure \mathcal{R}_n is shown in Figure 3. The comparisons for \mathcal{P}_n and \mathcal{R}_n are included in summary Figures 5

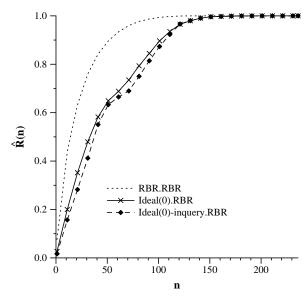


Figure 3: The two Ideal (0)s

Note that, in fact, the performance of gGlOSS declined when the Inquery weighting information was used. Therefore, we conclude that the improved in performance of Inquery is not due to differences in term weighting. At present, we are not certain what aspect of the CORI database selection algorithm is responsible for its performance difference. We have conjectured that to gGlOSS a database with many documents of low similarity may appear more useful than a database with a few documents of high similarity [9]. It is possible that CORI is utilizing a better length normalization strategy that allows it to avoid this difficulty.

4.2 Formulation of SBR

Our 236 collection testbed is produced by partitioning the TREC data by publishing source, year and month. As a result, the number of documents in a collection varies widely for our testbed. During a detailed examination of results from our gGlOSS experiments [9], we noted some recurring themes in the rankings produced by Ideal(0).

It appeared that the Ideal(0) routinely ranked highly collections with very large numbers of documents. An examination of the RBR baseline revealed that collections with a large number of documents also tended to have a good representation of relevant documents. Voorhees noticed a similar phenomenon in her work[22], specifically that the distribution of relevant documents was uneven across document sources. She noted that a strategy of retrieving from AP and WSJ was often very effective with TREC data. In our decomposition, subcollections derived from AP and WSJ tend to have a large number of documents.

We created a new baseline, size-based ranking (SBR), in which databases are ordered by the total number of documents that they contain. We used the SBR baseline to determine if a correlation between collection size and Ideal(0) or RBR did in fact exist.

The value of Spearman's ρ ranges from -1 to 1 with -1 denoting strong negative correlation, 0 denoting no correlation and 1 denoting strong positive correlation. We used Spearman's ρ to measure the correlation between Ideal(0) and SBR and between RBR and SBR. The results are shown in Figure 4.

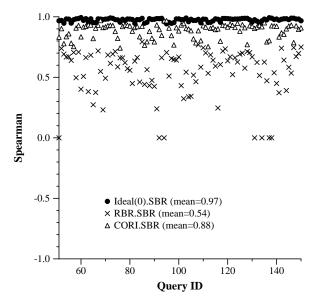


Figure 4: Spearman's ρ values for Ideal(0) and RBR compared to SBR.

We noted that there is a very strong positive correla-

tion between Ideal(0) and SBR for all queries. The correlation between CORI and SBR is not as pronounced, but still strong. There is also a moderate positive correlation between RBR and SBR for most queries. SBR is a simple heuristic that is constant for all queries and therefore not at all computationally intensive. We will show later that SBR can closely approximate the performance of Ideal(0) for this testbed. We consider SBR a useful lower bound on database selection performance for this collection.

4.3 Relationship between SBR and Ideal(0)

gGlOSS computes collection scores by summing over documents in a collection. As a result, gGlOSS favors collections with a large number of documents. For this testbed, the performance of gGlOSS Ideal(0) is strongly influenced by this feature of the algorithm. Ideal(0) is strongly positively correlated with SBR. Evidence of this correlation can be seen in Figures 5, 6 and 7. The approximation of RBR by Ideal(0) closely tracks the approximation of RBR by SBR. Note however, that Ideal(0) does consistently outperform SBR.

Figures 5, 6 and 7 also show how all of the approaches discussed here approximate RBR. For all measures, CORI outperforms gGlOSS. Also note that SBR represents a useful lower bound for performance in this testbed.

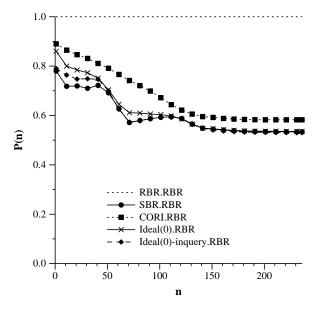


Figure 5: CORI results compared to gGlOSS and maximum achievable performance using \mathcal{P}_n .

The CORI and Ideal(0) plots appear similar in Figure 7, making it difficult to judge the performance difference between CORI and Ideal(0). Examining the plotted data, we determined that CORI shows at least

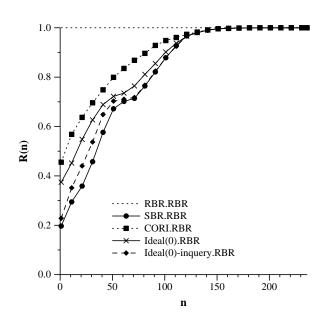


Figure 6: CORI results compared to gGlOSS and maximum achievable performance using \mathcal{R}_n .

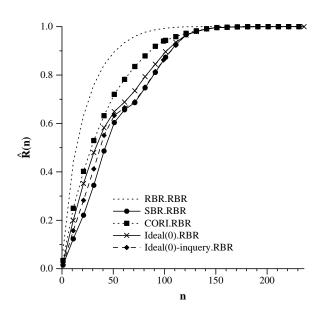


Figure 7: CORI results compared to gGlOSS and maximum achievable performance using $\widehat{\mathcal{R}}_n$.

Num. DB	Source	Queries	Total Size (GB)	Total Docs
100	TREC $1+2+3$	51-100	3.3	1,078,166
236	TREC 1+2+3	51-150	2.7	691,058
921	TREC-6 VLC	301-350	20.1	7,492,048

Table 2: Characteristics of testbeds used in scaling experiments.

25% improvement over Ideal(0) for $n \le 10$ and approximately 10% improvement for $n \le 90$. We also note that Ideal(0) shows at least 20% improvement over SBR for n < 50; however, at approximately n = 50, Ideal(0) begins to track SBR much more closely.

Future experiments will need to examine the implications of the correlation between Ideal(0) and SBR. For this testbed and the experiments reported here, it is not clear if the preference for large collections degraded the performance of gGlOSS; for this testbed there was also a positive correlation between SBR and RBR. However, given a testbed with a negative correlation between SBR and RBR, a preference for large collections could degrade the performance of gGlOSS or any other database selection algorithm with this feature.

In future experiments, we will create additional testbeds in which the number of documents in a collection will be held constant. This will allow us to examine algorithm performance when collection-size preference is controlled for.

5 Scaling Up Database Selection Algorithms

Database selection algorithms become increasingly necessary as the number of databases grows from O(10), to O(100), to O(1,000) databases. Early research on database selection was based on testbeds of O(10) databases [7, 15], and suggested that selection algorithms were very accurate. However, as the algorithms were improved and applied to testbeds of O(100) databases, the experimental results became more ambiguous [13, 17, 24]. A high priority for our recent research has been to determine whether the CORI algorithm remains effective as the number of databases increases.

5.1 Testbeds

Experiments were conducted with the 236 collection testbed used throughout this paper, as well as two additional testbeds of 100 collections and 921 collections. Summary characteristics of these three testbeds are provided in Table 2.

The 100 collection testbed was created by dividing TREC CDs 1, 2, and 3 into 100 smaller databases of roughly equal size (about 30 megabytes each). Each database contained documents from a single source, ordered as they occur on the TREC CDs; hence documents in a database were also usually from similar timeframes. CD 1 contributed 37 databases, CD 2 contributed 27 databases, and CD 3 contributed 36 databases.

The 921 collection testbed was created by dividing the TREC-6 VLC corpus into 921 smaller databases of roughly equal size, subject to the same source and document adjacency constraints used for creating the 100 collection testbed.

Queries were based on TREC topics 51-150 and 301-350. We used query sets INQ001, INQ026, and INQ411, all created by the UMass CIIR as part of its participation in TREC and Tipster evaluations [1, 6]. Queries in these sets are long, complex, and have undergone automatic query expansion.

The relevance assessments were the standard TREC relevance assessments supplied by the U.S. National Institute for Standards and Technology. Relevance judgements for the VLC data are relatively sparse, so additional relevance judgements for 20 queries were gathered by trained undergraduates. The additional relevance judgements had little impact on results, and so were not used in the results reported here.

5.2 Experiments

The effectiveness of the CORI database selection algorithm was measured with R and \hat{R} , described above. In these tests, R and \hat{R} were applied to the *percentage* of databases searched, so that experiments on testbeds of different sizes could be compared. We call these variations R(p) and $\hat{R}(p)$, where p=n/N, and N is the number of databases in the testbed.

5.3 Results

Figures 8 and 9 summarize the experimental results. Measurements with $\hat{R}(p)$ (Figure 8) show that on all testbeds the collections ranked highly by the CORI selection algorithm contain a large percentage of the relevant documents. This is an encouraging sign.

It may appear that the algorithm is *more* effective as more databases are available for searching, but this is an artifact of the distribution of relevant documents across the databases. Measurements with R (Figure 9), which normalizes \hat{R} by the best result possible from searching that percentage of databases, show that effectiveness on the 100 and 921 collection testbeds is very similar. The only difference is when a very small percentage of collections is searched; in this case, effectiveness with the large testbed is substantially lower.

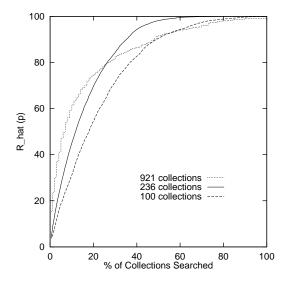


Figure 8: Database selection accuracy on testbeds of different sizes.

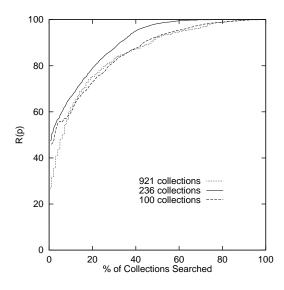


Figure 9: Scaled database selection accuracy on testbeds of different sizes.

The 236 collection testbed appears to be a slightly easier testbed than the 100 collection and 921 collection testbeds, but the results are otherwise similar.

The effectiveness of the CORI algorithm appears to be related consistently to the percentage of databases searched, irrespective of the testbed size. This is not inappropriate for recall-oriented metrics such as \hat{R} and R, but it implies that a tenfold increase in available databases requires a tenfold increase in search effort to achieve a given level of recall. We would prefer a less linear relationship between testbed size and search effort, which suggests that additional research on database selection algorithms is required.

6 Conclusions

We have examined the performance of two database selection algorithms, gGlOSS and CORI. We have demonstrated the high correlation between Ideal(l) ranks and the SBR baseline. This supports our conjecture [9] that to gGlOSS a database with very many documents of marginal similarity will appear, in aggregate, to be more useful than a database having a few documents with large similarity. We have shown that CORI is a better estimator of RBR than qGlOSS and is at least 10% more effective through $\widehat{\mathcal{R}}_n$ levels of 90%. In part this may be due to a better length normalization strategy so that CORI is not as confounded by databases with many documents of small similarity. We have also shown that the difference in performance between CORI and gGlOSS is not due to Inquery weighting versus SMART weighting.

In our experiments, the CORI approach required fewer databases to be searched than gGlOSS on average to achieve a specific recall level. This implies that CORI will be more cost-effective in large, distributed environments having lower latency for searches.

Our experiments investigating how well the CORI algorithm scales to large numbers of databases produced a more mixed message. The CORI selection algorithm produced consistently accurate rankings on testbeds ranging from 100 to 921 collections. This is clearly a positive result. However, consistency was observed in the percentage of databases searched, not in the number of databases searched. For a given level of recall, search effort appears to scale linearly with the number of available databases. A less linear relationship is desirable, and perhaps required, in environments containing very large numbers of databases. Our results suggest that further research on database selection algorithms is required.

We have demonstrated a systematic methodology for examining database selection algorithms. This is the first study of this kind. We can now investigate other database selection algorithms in the same framework and be able to compare performance in a common experimental environment.

It will be instructive to repartition our testbed into a similar number of sites, but with each site having about the same number of documents. There are a number of ways to do this, but each has drawbacks. Such a partition would completely defeat the SBR baseline because every site would have equal merit and thus all sites would be equally useful under the SBR baseline. We think that this might be a more demanding search environment and offer greater insight into the behavior of these kinds of algorithms.

References

- J. Allan, J. P. Callan, W. B. Croft, L. Ballesteros, D. Byrd, R. Swan, and J. Xu. INQUERY does battle with TREC-6. In The Sixth Text REtrieval Conference (TREC-6).
- [2] N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. Combining the Evidence of Multiple Query Representations for Information Retrieval. *Information Pro*cessing and Management, 31(4):431-448, 1995.
- [3] C. Buckley. SMART version 11.0, 1992. ftp://ftp.cs.cornell.edu/pub/smart.
- [4] C. Buckley, J. Allan, and G. Salton. Automatic routing and ad-hoc retrieval using SMART: TREC 2. In Proceedings of the Second Text REtrieval Conference (TREC-2), pages 45-56, March 1994.
- [5] C. Buckley, G. Salton, and J. Allan. Automatic retrieval with locality information using SMART. In Proceedings of the First Text REtrieval Conference (TREC-1), pages 59-72, March 1993.
- [6] J. P. Callan, W. B. Croft, and J. Broglio. TREC and TIPSTER experiments with INQUERY. *Information Processing & Management*, 31(3):327-343, 1995.
- [7] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed Collections with Inference Networks. In Proceedings of the 18th International Conference on Research and Development in Information Retrieval, pages 21-29, 1995.
- [8] E. A. Fox, M. P. Koushik, J. Shaw, R. M. odlin, and D. Rao. Combining Evidence from Multiple Searches. In *The First Text Retrieval Conference (TREC-1)*, pages 319–328, November 1992.
- [9] J. C. French, A. L. Powell, C. L. Viles, T. Emmitt, and K. J. Prey. Evaluating Database Selection Techniques: A Testbed and Experiment. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 121-129, August 1998.
- [10] J. C. French and C. L. Viles. Ensuring Retrieval Effectiveness in Distributed Digital Libraries. *Journal of Visual Communication and Image Representation*, 7(1):61-73, 1996.
- [11] N. Fuhr. A Decision-Theoretic Approach to Database Selection in Networked IR. ACM Transactions on Information Systems. to appear.

- [12] J. D. Gibbons. Nonparametric Methods for Quantative Analysis. Holt, Rinehart and Winston, 1976.
- [13] L. Gravano and H. Garcia-Molina. Generalizing GIOSS to Vector-Space Databases and Broker Hierarchies. In Proceedings of the 21st International Conference on Very Large Databases (VLDB), 1995.
- [14] L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: Text-source discovery over the internet. ACM Transactions on Database Systems, To appear.
- [15] L. Gravano, H. Garcia-Molina, and A. Tomasic. The Effectiveness of GIOSS for the Text Database Discovery Problem. In SIGMOD94, pages 126-137, May 1994.
- [16] D. Harman. Overview of the Fourth Text Retrieval Conference (TREC-4). In Proceedings of the Fourth Text Retrieval Conference (TREC-4), 1996.
- [17] Z. Lu, J. P. Callan, and W. B. Croft. Measures in collection ranking evaluation. Technical Report TR-96-39, Computer Science Department, University of Massachusetts, 1996.
- [18] A. Moffat and J. Zobel. Information Retrieval Systems for Large Document Collections. In Proceedings of the Third Text Retrieval Conference (TREC-3), pages 85– 94, 1995.
- [19] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 21-29, August 1996.
- [20] C. L. Viles and J. C. French. TREC4 Experiments Using DRIFT. In Proceedings of the Fourth Text Retrieval Conference (TREC-4), 1996.
- [21] C. L. Viles and J. C. French. Dissemination of Collection Wide Information in a Distributed Inform ation Retrieval System. In Proceedings of the 18th International Conference on Research and Development in Information Retrieval, pages 12-20, July 1995.
- [22] E. Voorhees, N. K. Gupta, and B. Johnson-Laird. Learning Collection Fusion Strategies. In Proceedings of the 18th International Conference on Research and Development in Information Retrieval, pages 172–179, 1995.
- [23] E. Voorhees, N. K. Gupta, and B. Johnson-Laird. The Collection Fusion Problem. In Proceedings of the Third Text Retrieval Conference (TREC-3), pages 95-104, 1995.
- [24] J. Xu and J. Callan. Effective Retrieval with Distributed Collections. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 112–120, August 1998.
- [25] B. Yuwono and D. L. Lee. Server Ranking for Distributed Text Retrieval Systems on Internet. In Proceedings of the Fifth International Conference on Database Systems for Advanced Applications, pages 41– 49, April 1997.