
An Approach on Hardware Design for Computationally Intensive
Image Processing Applications based on Light Field Refocusing

Algorithm

Jiayuan Meng, Dee A.B. Weikle, Greg Humphreys, Kevin Skadron
Dept. of Computer Science, University of Virginia
{jm6dg, dweikle, humper, skadron}@cs.virginia.edu

UVA Technical Report CS-2007-15

Abstract

This paper describes the performance analysis of the light field refocusing algorithm running on different hardware
specifications, including the Intel Pentium 4, SSE2(Streaming SIMD Extensions), GPU, and also Cell Broadband Engine.
The hardware chosen has unique features, making it interesting to compare their performance on such an application with
each other, and how much advantage or disadvantage each one has over others. By doing so, we attempt to clarify the pros
and cons of each hardware design in its capability of handling computational intensive image processing applications. The
execution time is used as the main metric.

1 Introduction
Light Field Photography is a new technology which trades spatial resolution for directional resolution. It is able to capture
an image which, after computation, reveals the object from different view angles and also at different depth.

With the raw image captured by the camera, the refocusing algorithm [2] computes a new image focused at a user-
specified focal depth. For a 4096*4096 light field image with 256*256 spatial resolution and 16*16 directional resolution,
computation can barely reach real-time with traditional spatial algorithms [2]. Moreover, the size of the image will grow in
the future. In fact, many computationally intensive image processing applications are calling for realtime hardware design.

Most of these image processing applications involve a large amount of memory accesses, and the operations are often
repetitive. We chose the light field refocusing algorithm as a typical and booming image processing application. The repet-
itive behavior denotes a high potential for parallelism. Meanwhile, a variety of hardware has been designed for parallelism,
including SSE2, GPU, and multi-core chips. Although not originally designed for image processing applications, they each
contribute some inspiration for future designs.

The rest part of this paper is organized as follows: Section 2 gives an overview of the light field refocusing algorithm.
Section 3 presents how we implemented the refocusing algorithm on different hardware. Performance is compared and
analyzed in Section 4. Conclusions are drawn in Section 5.

2 Refocusing Algorithm of Light Field Photography

2.1 A Basic Algorithm
The concept of light field photography was originally developed by Ren Ng and Marc Levoy [3]. The image captured
can be regarded as a 4D light field array, with 2 dimensions for spatial resolution and another 2 for directional resolution.
For n light field image of size 4096*4096 captured by a plenoptic camera with a 256*256 microlens array, the spatial
resolution is 256*256 and the directional resolution is 16*16. Behind each microlens, a small 16*16 version of the original
image is formed, which actually correspond to 16*16 sub–apertures. If we extract those pixels corresponding to the same
sub–aperture, then we get a sub-aperture image. In our example, the sub–aperture image is 256*256, and there are 16*16
sub–aperture images. Figure 1 shows a sample light field image [2].



Figure 1: A sample light field image

The basic task of the refocusing algorithm is illustrated in Figure 2. Rays focusing at certain depth will be scattered
and captured with different angles and different microlenses, and thus will be mapped onto a set of pixels. The refocusing
algorithm computes an inverse mapping and adds up all the pixels corresponding to the same position on the refocused
plane.The refocusing algorithm is described in detail in [2].

Figure 2: Refocusing Principle: lights focused at certain depth is scattered and captured by different microlenses. All we
need to do is gather them and summing up!

This refocusing process is referred to by a Photography Operator: For a position(x, y) on the refocused plane, integra-
tion is computed for rays traveling from all the positions (u, v) on the main lens plane to (x, y) on the refocused plane. It is
illustrated in Figure 3.

Figure 3: Illustration of the refocusing algorithm

The Photography Operator can be expressed by:

Pα =
1

α2F 2

∫ ∫
LF (u(1−

1

α
) +

x

α
, v(1− 1

α
) +

y

α
, u, v)dudv (1)

Where LF is the 4D light field captured by the camera, x, y are defined on the refocused plane, u, v are defined on the main
lens’ plane. F is main lens’ focal length. α is a scaling factor which determines the refocusing depth. α*F is the distance
between the refocused plane and the main lens’ principle point. A ray is defined with a vector(x,y,u,v) This operator then
computes which position on the focal plane that the ray corresponds to, since it’s the focal plane where we have a image
formed. We then extract color information from the light field image captured at the focal plane.

2



2.2 A Derived Algorithm
Assume the spatial resolution is N ∗ N . After computation with the basic algorithm, the refocused image has the size of
αN ∗ αN . This is physically correct. Imagine moving the refocus plane in Figure 3 forward and backward, the area which
forms image will vary by a factor of α. If we sample the refocused image at the same rate for different refocusing depth,
the effective image size will vary according to α. However, in [2], Ren showed that the Nyquist resolution is N ∗N with
exact refocusing and less with inexact refocusing. Thus, we may want to adaptively vary the sampling rate according to α
to achieve the best possible resolution.

The new Photography Operator then becomes:

Pα =
1

α2F 2

∫ ∫
LF (u(α− 1) + x, v(α− 1) + y, u, v)dudv (2)

This Photography Operator generate refocused image with a fixed size of N ∗N .
Note that a sub–aperture image is defined as

S(us,vs)(x, y) = LF (x, y, us, vs) (3)

This is very similar to the inner part of Equation 2. The only difference is that in Equation 2, x has an offset of u(α− 1),
and y has an offset of v(α− 1). Thus, we can treat the derived refocusing algorithm as the summing of all the sub-aperture
images with different offsets according to α.

Intuitively, we can think of sub–aperture images as a group of images taken from slightly different angles. Thus, objects
at different depth will be shifted with different amount. The refocusing algorithm computes how much offset each sub-
aperture image has for a certain refocusing depth, and then align the sub–aperture images so that objects at the refocusing
depth overlap in all the images and appear focused, while objects elsewhere do not overlap and appear blurry.

The derived algorithm also improves the performance of the refocusing algorithm, since the offset is fixed for a sub–
aperture image, we don’t have to compute them for every element. It also exploit locality in memory access. Instead of
fetching data ad-hoc, we can process the sub-aperture images in sequence.

This has a tremendous improvement in performance (see Table 1 in Section 4)Since we are targeting at an optimized al-
gorithm as our base for further optimization on different hardware, the derived algorithm is chosen for further development.

Moreover, we used only nearest point interpolation. Note that the offset is a floating point, bilinear interpolation or more
complex interpolation scheme can be applied. Figure 4 compares the image quality between nearest point interpolation and
bilinear interpolation. The raw image is from light field microscopy[1] The results doesn’t show much difference. Since
complex interpolation significantly elongate the execution time(see Table 1 in Section 4), we simply used nearest point
interpolation, which just round the floating point to the nearest integer.

(a) Nearest Point Interpolation (b) Bilinear Point Interpolation

Figure 4: Comparison of Nearest Point Interpolation and Bilinear Point Interpolation

A more detailed comparison of the implementation is shown in Figure 5.

3 Implementation on Different Hardware
We implemented the refocusing algorithm with regular C code, SSE2 instructions, GPU fragment shader, and Cell Broad-
band Engine. A brief introduction of GPU and CBE can be found in [4] and [5]. The plain C code has been shown as the

3



Derived Refocusing Algorithm in Section 2, and is run on Intel Pentium 4 as a standard reference. Let’s now focus on the
other 3 implementations.

3.1 Implementation with SSE2
SSE2 is specialized in vectorized stream data. It has multiple 128 bit registers. In our implementation, data is added column
by column. Each line is processed with SSE2 instructions. Since the offset varies for different sub–aperture image, it is
not possible to align the data once and for all. Therefore, we use those instructions for unaligned vectors. The code and
annotation is shown in Figure 6

3.2 Implementation with Cell Broadband Engine
With CBE [5], we use the master-slave programming model. The refocused image is divided into 8 portion, each portion
is computed by an SPU. There are two pieces of codes, one for PPU, which divides the work and synthesize it at last. The
main code for refocusing algorithm is on SPU. Since CBE processes data with 128 bit aligned vectors, we have to shuffle
the unaligned data. To ease the task, we reorganize each color data as 4 shorts. 3 of them representing RGB channels and
the last is used just for padding. A short in SPU is 16 bits long, the same as char16. With this modification, a 128bit vector
contains 2 pixels’ information. We are using the CBE simulator for testing the performance. We count the cycles and then
convert it to time according to the clock rate. Code is provided in Figure 7 and Figure 8

3.3 Implementation with GPU Fragment Shader
We use CG[4] to program the fragment shader on GPU. The performance of GPU depends heavily on the hardware. Since
the CG compiler has to unroll the loops, our fragment shader is limited by not only texture size, but also the code size. This
limitation depends on specific GPUs. For GPUs with small capacity, we have to do multipass, which increases complexity
and has a significant overhead in performance. We will demonstrate the performance in Section 4.

As a sample code, we demonstrate an implementation with 64 passes, in each pass, 2 ∗ 2 sub-aperture images are
processed. Implementation with less passes only requires a few modifications on the global constants.

The initialization prior to the refocusing is straightforward. The program reads in the light field image and extract sub-
aperture images as before. The sub–apertures images are then tiled into groups to form textures for GPU processing. In our
example, a texture is a square image composed of 2 ∗ 2 sub–aperture images.

We also used render-to-framebuffer technique to store the result from former passes. Figure 9 describes the code in
detail.

4 Performance and Analysis
Table 1 compares the performance of the Basic Algorithm and the Derived Algorithm. We also compare their performance
with gcc’s sse2 compiler option[-msse2]. In addition, bilinear interpolation is also compared.

Spatial&Directional B Bs D D(-msse2) D(bi) D(bi,-msse2)
(200*200),(20*20) 1.219 1.047 0.266 0.266 3.36 4.422
(256*256),(16*16) 1.187 0.984 0.297 0.281 3.562 4.672

Table 1: Performance Comparison of the Basic Algorithm(B) and Derived Algorithm(D), as well as the Derived Algorithm
with bilinear interpolation(bi). Execution time in seconds are used as metrics.

We see that the gcc’s [-msse2] compiler option does improve the performance for the Basic Algorithm. However, it
hardly improves the performance of the optimized Derived Algorithm. It even produces significant overheads in some
cases, e.g. when doing bilinear interpolation.

Indeed, using SSE2 is not always beneficial. SSE2 is based on vectors for stream data. However, many image processing
applications are not stream data. Many of the applications require windowing and involves a large amount of computation
in locality. Implementing this kind of operation in SSE2 requires additional complex operation. In many case a vector has

4



to be split or permuted before computation. SSE3 and SSE4 have added instructions to add and subtract the multiple values
stored within a single register.

Table 2 compares the performance of the algorithm with different hardware specifications described in Section 3. Since
GPU can only hold textures with a size of a power of 2, we have to pad the image with spatial resolution (200*200) to
(256*256). The directional resolution remain the same.

Spatial&Directional SSE2 GPU64passes GPU16passes GPU4passes CBE
(200*200),(20*20) 0.047 0.026 0.026 0.026 0.011
(256*256),(16*16) 0.047 0.013 0.013 0.026 0.00434

Table 2: Performance Comparison of the Basic Algorithm(B) and Derived Algorithm(D), as well as the Derived Algorithm
with bilinear interpolation(bi). Execution time in seconds are used as metrics.

Compare the performance of the manually tuned SSE2 instructions with the compiler generated SSE2 instructions in
Table 1, we can see that the manually tuned SSE2 instructions can still improve the performance significantly.

Cell Broadband Engine is a multi-core exploitation of parallelism. Similar to SSE2, it is also based on vectors. The 8
SPUs compute data in parallel, so it is even faster than SSE2, and is comparable with GPU. However, with 8 SPUs, the
performance is not 8 times that of SSE2. This difference may due to branch miss penalty as well as the Direct Memory
Access overhead. CBE tries to alleviate these negative impacts by introducing branch hint and double buffering. To process
unaligned data, we have to shuffle the bits in different vectors. However, this mechanism also requires many branches,
which introduce a branch penalty which is hard to be alleviated by branch hint.

GPU provides options for a multitude of vector sizes. It is also optimized for texture access in locality. Moreover, it
supports interpolation in hardware level, so the GPU implementation is automatically interpolated. However, in general,
GPU is not as flexible as CBE in many aspects. First, GPU has a fixed programming model — the graphics pipeline.
Parallelism can only be exploited within certain stages, and the resource is not fully utilized for many GPGPU applications.
In our example, only fragment processors are utilized. Moreover, in a single pass, memory writes is limited to vertex
program, and memory reads is limited to fragment program. Multipass is usually implemented for more complex memory
access demands. In addition, GPU performance depends heavily on specific graphics card. Code has to be tuned for capacity
of the particular card with respect of texture size and instruction size. Our experiment is based on NVidia GeForce 7600GS
model. We have tried to tile the sub-aperture images to textures with sizes of 512*512, 1024*1024 and 2048*2048, and for
each size of texture, we need to do 64, 16, and 4 passes. According to Table 2, the performance of 64 passes and 16 passes
are identical. However, with a texture of 2048*2048, the performance drops even if only 4 passes are needed. This is due to
the overhead of image transferring between the main memory to the memory on GPU.

5 Conclusion and Future Work
With respect to image processing applications, we list the strengths and weaknesses of SSE2, CBE and GPU as follows:

SSE2:

• Strengths:

1. Vector level parallelism, work best for stream data

2. Simplicity, integrated well into the single chip, thus less memory transfer and branch miss penalty

• Weaknesses:

1. No chip-level parallelism

2. Difficult to process small vectors(like those with 32 bits or less)

CBE:

• Strengths:

1. Exploited parallelism in both vector level and chip level

5



2. Enable the user to control memory transfer as well as branch hint, give more opportunity to optimize applications

3. Provide flexible programming model for more complex applications. In addition, user can utilize the resources
as much as possible

• Weaknesses:

1. Vectors are most suitable for stream data, operating smaller vectors requires much more effort. Flexibility has
increased complexity.

2. Although efforts has been made to accelerate memory access, the communication between the PPU and SPUs
still accounts for a long time.

GPU:

• Strengths:

1. Exploit parallelism both in multi-chips and in vectors with 16,24,and 32 bits.

2. Locality in memory is handled nicely

3. More basic functions are hardware supported, such as sin/cos, and bilinear interpolation.

4. accessorial processors are closely integrated into the pipeline, there is less memory transfer.

• Weaknesses:

1. Pipeline is fixed, resources cannot be fully utilized. Additional efforts such as multi-pass is required when more
complex computation is involved.

2. Limited memory access in different processing units

Thus, we conclude that an ideal hardware model should have the following features:

• Scalable Parallelism: Vector size varies from 16 bit to 128 bit or more. Chip-level parallelism also benefits given a
good integration

• Simplicity with Speciality: With simplicity comes improvement in speed. A simple unit can achieve the best perfor-
mance for its specialized task. However, simple units alone has limited capability, as described in SSE2 analysis.

• Flexibility: Flexible combination of operations provide possibilities for more complex applications. However, with
flexibility comes complexity. As for the example of CBE, the SPU provide a variety of functions, however, this also
slows down its performance. We often have to trade off simplicity with flexibility.

• Locality-aware Memory Units: A special memory units which can tile a texture into blocks for the ease of computation
in locality.

In the future, a possible method to achieve simplicity, speciality and flexibility at the same time may be that of a pool of
simple but specialized accessorial functional units with programmable connections. The units can be simple vector registers
and ALUs as in SSE2, or can be small processors as vertex and fragment processors in GPU. Programmable connection
between the units can result in better resource utilization as well as flexible pipeline for complex applications. Small units
also alleviate the burden of memory transferring.

6 Appendix: Code Annotation

References
[1] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz. Light field microscopy. ACM SIGGRAPH, 2006.

[2] R. Ng. Fourier slice photography. ACM SIGGRAPH, 2005.

6



[3] R. Ng, M. Levoy, M. Brdif, G. Duval, M. Horowitz, and P. Hanrahan. Light field photography with a hand-held
plenoptic camera. Stanford University Computer Science Tech Report CSTR 2005-02.

[4] J. Owens and D. Luebke. A survey of general-purpose computation on graphics hardware. 2005.

[5] I. Systems and T. Group. Cell broad band engine programming tutorial. Oct. 2005.

7



(a) Code of Basic Refocusing Algorithm

(b) Code of Derived Refocusing Algorithm

Figure 5: Comparison of the Basic Refocusing Algorithm and the Derived Refocusing Algorithm

8



Figure 6: SSE2 Implementation of the Derived Algorithm

9



Figure 7: CBE Implementation of the Derived Algorithm

10



Figure 8: continued: SPU core function of the CBE Implementation

11



Figure 9: CG fragment shader for the Derived Algorithm

12


