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Abstract

Application-specific processor design is a promising
approach for meeting the performance and cost goals of
a system. Application-specific processors are especially
promising for embedded systems (e.g., automobile con-
trol systems, avionics, cellular phones, etc.) where a
small i ncrease in performance and decrease in cost can
have a large impact on a product’s viability. Sutherland,
Sproull , and Molnar have proposed a new pipeline
organization called the Counterflow Pipeline (CFP).
This paper shows that the CFP is an ideal architecture
for fast, low-cost design of high-performance processors
customized for computation-intensive embedded appli -
cations. First, we describe why CFP’s are particularly
well-suited to realizing application-specific processors.
Second, we describe how a CFP tailored to an applica-
tion can be constructed automatically. Third, we present
measurements that show CFP’s elegantly and simply
provide speculative execution, out-of-order execution,
and register renaming that is matched to the applica-
tion. These measurements show that CFP’s speculative
and out-of-order execution allow it to tolerate frequent
control dependences and high-latency operations such
as memory accesses. Finally, we show that asynchro-
nous counterflow pipelines may achieve very high-per-
formance by reducing the average execution latency of
instructions over synchronous implementations. Appli -
cation speedups of up to 7.8 are achieved using custom
counterflow pipelines for several well -known kernel
loops.

1. Introduction

Application-specific processor design is a promising
approach for improving the cost-performance ratio of an
application. Application-specific processors are espe-
cially useful for embedded systems (e.g., automobile
control systems, avionics, cellular phones, etc.) where a
small i ncrease in performance and decrease in cost can
have a large impact on a product’s viability. A new com-
puter organization called the Counterflow Pipeline
(CFP), proposed by Sproull , Sutherland, and Molnar

[25], has several characteristics that make it an ideal tar-
get organization for the synthesis of application-specific
ILP-processors. The CFP has a simple and regular struc-
ture, local control, high degree of modularity, asynchro-
nous implementations, and inherent handling of
complex structures such as register renaming and specu-
lative execution.

Modern ILP-processors must be able to tolerate high-
latency operations and the frequent presence of control
transfer operations. As an example, the 4-way supersca-
lar HP PA-8000 microprocessor [15] tolerates a cache
miss penalty of 50 clock cycles, which may cause the
processor to stall for up to 200 instructions. 

To keep aggressive superscalar designs busy requires
large instruction windows and special structures (e.g.,
register rename buffers, data prefetching support) to
overcome high-latency operations and control depen-
dences. In the PA-8000, this is accomplished with a 56-
entry instruction re-order buffer, data prefetch instruc-
tions, and branch prediction and history tables.

The typical hardware structures for implementing
out-of-order and speculative execution are expensive;
e.g., they consume a large portion of chip area and
power budget, and they complicate microarchitecture
design. In contrast, the counterflow pipeline cheaply
and naturally implements out-of-order and speculative
execution without requiring special hardware structures.
The combination of these features allows the counter-
flow pipeline to achieve high performance at a lower
cost than traditional processor organizations.

To get high-performance, modern superscalar pro-
cessors include multiple functional units for exploiting
instruction-level parallelism. The CFP has a simple and
regular way to incorporate multiple functional units into
a design, which permits fast, low-cost customization of
counterflow pipelines to an application’s resource and
data flow requirements. Furthermore, the counterflow
pipeline may be implemented as an asynchronous
microarchitecture. This improves performance because
average instruction latency is reduced versus synchro-
nous counterflow pipelines.

This paper is organized as follows. The first section
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has introductory material about our custom processor
design strategy and the counterflow pipeline organiza-
tion. The second section describes several design advan-
tages of CFP’s for automatic generation of application-
specific ILP-processors. The third section contains an
explanation of our pipeline customization technique and
experimental results that demonstrate the effectiveness
of speculative and out-of-order execution and custom
asynchronous counterflow pipelines. The fourth section
has related work and the fifth section concludes the
paper. 

1.1. Design Strategy

Most high-performance embedded applications have
two parts: a control and a computation-intensive part.
The computation part is typically a kernel loop that
accounts for the majority of execution time. Increasing
the performance of the most frequently executed portion
of an application increases overall performance. Thus,
synthesizing custom hardware for the computation-
intensive portion of an application may be an effective
technique to increase performance. 

The type of applications we are considering need
only a modest kernel speedup to effectively improve
overall performance. For example, JPEG has a function
j_rev_dct() that accounts for 60% of total execution
time. This function consists of applying a single loop
twice (to do the inverse discrete cosine transformation),
so it is a good candidate for a custom counterflow pipe-
line. Figure 1 shows a plot of Amdahl’s Law [12] for
various speedup values of j_rev_dct(). The figure
shows that a small speedup of the kernel loop of 6 or 7
achieves most of the overall speedup.

We use the data dependency graph of an application’s
kernel to determine processor functionality and inter-
connection network. Processor functionality is deter-
mined from the type of operations in the graph and
processor interconnection is determined by exploring
the design space of all possible interconnection network.

The target system architecture for our synthesis tech-

nique has a single CFP processor that executes the con-
trol and computation portions of an application. Our
work customizes a general-purpose CFP for the kernel
computation to improve performance. This is similar to
software acceleration using a co-processor; however,
there is only one processor in this scheme and, as a
result, overall cost should be lower than with a co-pro-
cessor scheme while still i mproving performance. A sin-
gle CPU architecture has the advantage that it does not
need any support for synchronization with an attached
coprocessor (e.g., interface logic, handling of live-in/out
data, etc.).

For applications where there is not a clearly identifi-
able kernel, the above strategy will not be as effective.
However, most applications we have examined have
execution profiles similar to JPEG—one kernel that
consists of over 50% of the overall execution of the
application. Thus, in this paper we consider only kernel
loops. However, to accommodate the full application,
the custom pipeline should have the functionality
needed by both the kernel and control code.

1.2. Counterflow Pipeline

The counterflow pipeline has two pipelines flowing in
opposite directions. One is the instruction pipeline. It
carries instructions from an instruction fetch stage to a
register file stage. When an instruction issues, an
instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand names, and operand values.
The other is the results pipeline that conveys results
from the register file to the instruction fetch stage. The
instruction and results pipelines interact: instructions
copy values to and from the result pipe. When an
instruction copies a value from the results pipeline, it is
called a garner operation, and when an instruction cop-
ies a value to the results pipeline, it is called an update
operation.

Pipelined functional units, called sidings, are con-
nected to the pipeline through launch and return stages.
Launch stages issue instructions into functional units
and return stages extract results from functional units.
Instructions may execute in either pipeline stages or
functional units. 

A memory unit connected to a CFP pipeline is shown
in Figure 2. Load instructions are fetched and issued
into the pipeline at the instr_fetch stage. A bundle is
created that holds the load’s memory address and desti-
nation register operands. The bundle flows towards the
mem_launch stage where it is issued into the memory
subsystem. 

When the memory unit reads a value, it inserts the
value into the result pipeline at the mem_return stage.
In the load example, when the load reaches the
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mem_return stage, it extracts its destination operand
value from the memory unit. This value is copied to the
destination register value in the load’s instruction bun-
dle and inserted into the result pipe. A result bundle is
created whenever a value is inserted into the result pipe-
line. A result bundle has space for the result’s name (i.e.,
register name) and value. Results from sidings or other
pipeline devices flow down the result pipe to the
instr_fetch stage. Whenever an instruction and a
result bundle meet in the pipeline, a comparison is done
between the instruction operand names and the result
name. If a result name matches an operand name, its
value is copied to the corresponding operand value in
the instruction bundle. That is, the instruction garners
its source operands. When instructions reach the
reg_file stage, their destination values are written
back to the register file and when results reach the
instr_fetch stage, they are discarded. In effect, the
register file stores results that have exited the pipe.

The interaction between instruction and result bun-
dles are governed by special pipeline and matching
rules that ensure sequential execution semantics. These
rules govern the execution and movement of instruc-
tions and results and how they interact.

Arbitration is required between stages so that instruc-
tion and result bundles do not pass each other without a
comparison made on their operand names. In Figure 2,
the blocks between stages depict arbitration logic. A
final mechanism controls purging the pipeline on an
exception. A poison pill is inserted in the result pipeline
whenever a fault is detected. The poison pill purges both
pipelines of all instruction and result bundles. This
purge mechanism can also be used for speculative exe-
cution when a branch target is mispredicted. 

As Figure 2 shows, stages and functional units are
connected in a very simple and regular way. The con-
nections correspond to bundled interfaces of micropipe-
lines. The behavior of a stage is dependent only on the
adjacent stage in the pipeline, which permits local con-
trol of stages and avoids the complexity of conventional
pipeline synchronization.

2. CFP Design Advantages

Counterflow pipelines have several characteristics that
make them suitable for custom ILP-processors: a simple
and regular structure, local control, modularity, and
asynchronous implementations. These characteristics
can be used to achieve higher performance with custom
designs than with general-purpose ones.

2.1. Speculative Execution

Traditional dynamically scheduled ILP microarchitec-
tures use branch prediction and speculative execution to
keep execution pipelines full [16, 23]. This reduces the
impact of control dependences and exposes more
instruction-level parallelism to the hardware. 

The CFP handles speculative execution in an elegant
and simple way. The outcome of branches is predicted at
the beginning of the pipeline during the insertion of new
instruction bundles. Instructions following a branch are
speculatively fetched and inserted into the pipeline.
Branch predictions are resolved by a branch resolution
stage in the pipeline. When the branch resolution stage
detects a misprediction, it inserts a poison pill into the
results pipeline. The poison pill kills all instructions it
meets while flowing down the result pipeline, and when
it reaches the instruction fetch stage, the program
counter is changed to the correct branch address carried
by the poison pill. The degree of speculative execution
is determined by the distance between the instruction
fetch stage and branch resolution stage.

2.2. Out-of-Order Execution

An important issue for instruction-level parallel micro-
architectures is how to tolerate high-latency operations;
especially, memory accesses. Keeping an aggressive
ILP-processor busy during memory accesses is becom-
ing difficult as processor widths and memory latencies
(relative to processor speed) increase. Indeed, some cur-
rent superscalar processors have data cache miss penal-
ties of up to 50 clock cycles, and future implementations
are likely to see penalties in excess of 100 cycles [16,
23].

Superscalar processors use out-of-order execution to
keep functional units busy during high-latency opera-
tions. To achieve high performance with out-of-order
execution requires reservation stations and re-order
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buffers with register renaming [12, 18]. In a conven-
tional microarchitecture, these structures introduce
much complexity; however, the CFP inherently handles
speculative execution and register renaming in a very
simple way. 

In the CFP, instructions are kept in order of issue, but
they may execute out of order. Two instructions can be
executing in different stages of the pipeline at the same
time as long as there is no dependency between them.
There is no order imposed on which instruction finishes
first. Sequential execution semantics are preserved by
writing results back to the register file in instruction
issue order (and by register renaming in the result pipe-
line). To enable out-of-order execution, the results pipe-
line of the CFP implements a type of register renaming.
There can be multiple values with the same register
name in different places of the result pipeline at the
same time. This has the same effect as register renam-
ing: instructions with anti- and output dependencies
may execute concurrently with their dependent instruc-
tions. This type of out-of-order execution and register
renaming is an effective way to hide memory access
latency.

2.3. Asynchronous Custom Pipelines

Local control and the simple and regular structures of
counterflow pipelines makes the organization very mod-
ular. This means that CFP designs can be easily modi-
fied for different application requirements and design
goals. For example, modules that have been optimized
differently (e.g., for speed, area, or power) may be inter-
changed as long as they maintain the same communica-
tion interface.

Asynchronous CFP’s have the advantage that com-
putation proceeds at average-case speed instead of
worst-case speed in synchronous designs [10]. The com-
bination of local control, the absence of global signals,
and asynchronous implementations leads to short com-
munication distances between functional devices in
CFP’s. This suggests that counterflow pipelines may
have very high performance, especially when tailored to
an application’s resource and data flow requirements.

Although counterflow pipelines may be appropriate
for general-purpose processors [17, 19, 25], our research
focuses on how to construct custom ILP-processors for
embedded systems. 

3. Experimental Results

In this section we show how to automatically construct
counterflow pipelines using an application’s data depen-
dency graph. We also demonstrate that the counterflow
pipeline’s elegant mechanisms for speculative and out-
of-order execution are effective, and that asynchronous

custom CFP organizations can significantly improve an
application’s performance.

3.1. Methodology

The performance statistics in this paper were collected
using several common benchmarks. The benchmarks
have three Livermore loops (kernel 1, kernel 5, and ker-
nel 12), vector dot product (dotprod), the finite impulse
response fil ter (fir), memory copy (memcpy), and matrix
multiplication (matmult). Some of our benchmark ker-
nels were extracted from large applications. These loops
include the 2-D discrete cosine transformation (dct)
used in image compression and an implementation of
the Floyd-Steinberg image dithering algorithm (dither).
We also extracted the vector computation a = bc mod d
from RSA encryption (modexp). The benchmarks were
compiled using the optimizing C compiler vpcc-vpo [1]
for the SPARC architecture [24]. 

3.1.1 Pipeline Simulation

We have built a behavioral microarchitecture simulator
for asynchronous counterflow pipelines. The simulator
is highly reconfigurable to permit microarchitecture
experimentation, and it generates a detailed program
execution trace that is post-processed by a separate anal-
ysis tool to collect performance statistics.

To model asynchronous counterflow pipelines our
simulator varies computational latencies. Table 1 shows
the latencies we use in our simulation models. 

The latencies in the table are expressed relative to
how long it takes an instruction or result to move
between adjacent pipeline stages. Using the base values
from Table 1, we derive other pipeline latencies. For
example, a simple instruction operation such as addition
takes 5 time units. High latency operations are scaled
relative to low latency ones, so an operation such as
multiplication—assuming it is four times slower than
addition—takes 20 time units.

3.1.2 Customization Technique

The experiments in this paper use counterflow pipelines
customized to the resource and data flow requirements
of each benchmark. Although we have studied search-
based pipeline customization techniques [2], we use a
different approach in this paper that does not rely on

Operation Latency

Stage copy 1 time unit

Garner, kill , update 3 time units

Return, launch 3 time units

Instruction operation 5 time units

Table 1: Computational latencies
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searching a design space. This approach uses a bench-
mark’s instruction dependency graph to determine pro-
cessor functionality and interconnection network. The
customization process has two steps:

1. Allocate: Every low latency operation in the
instruction dependency graph is assigned an
unique pipeline stage and every high latency
operation is assigned a (possibly shared) func-
tional siding.

2. Arrange: The instruction dependency graph is
scheduled using priority-based list scheduling
[18] and the pipeline stages determined by step 1
are arranged in reverse order of the instruction
schedule.

Step 1 assigns high latency operations to functional
sidings to move their computation out of the main pipe-
line. This avoids stalling subsequent instructions that
may otherwise advance in the pipeline and execute. In
step 2, pipeline stages are placed in the reverse order of
the instruction schedule to ensure that successive loop
iterations overlap in the pipeline. Arranging stages in
reverse order lets the pipeline speculatively issue one
loop iteration while another is finishing.

An example of the customization process is shown in
Figure 3. The dependency graph in (a) has two addition
and two multiplication instructions. According to the
first customization step, two addition stages and one
multiplication siding are generated.

The second customization step arranges pipeline
stages. Using path latency as scheduling priority, local
instruction scheduling gives the instruction sequence in
(b) for the dependency graph. The pipeline stage order is
derived from the reverse order of the schedule, as shown
in (c). Thus, the first stage after instruction fetch is add1
followed by mul_launch and add2. The second multi-
plication instruction is skipped since it shares a siding
with the first multiplication. 

A final issue is where to return multiplication results
into the main pipeline. We use the heuristic that the

number of stages inclusively between launch and return
equals the siding’s pipeline depth. This ensures that the
siding can be fully utilized. In this example, if the multi-
plication siding has a depth of 3, then mul_return is
placed two stages after mul_launch.

3.2. Speculative Execution

The location of branch resolution in a counterflow pipe-
line determines the amount of speculative execution. If
branches are resolved early in the pipeline, then very lit-
tle speculative execution is possible and if branches are
resolved late in the pipeline, then much speculative exe-
cution is possible. However, late branch resolution
impacts the misprediction penalty, which may lead to
overspeculation and an adverse affect on performance. 

Deep counterflow pipelines require accurate branch
prediction. Our CFP designs use dynamic branch pre-
diction to predict branches as they are issued into the
pipeline. The program counter is maintained in the
instruction fetch stage and updated to the appropriate
branch target address whenever a branch is predicted.

The CFP designs we use tag control transfer instruc-
tion bundles with their taken and not-taken target
addresses. For most branch instructions, the taken
address is encoded directly in the instruction (i.e., the
taken target address is PC-relative or absolute). The not-
taken address is the address of the instruction following
the branch. Both target addresses are needed by the
branch resolution stage so that it is able to transmit the
correct target address on a branch misprediction to the
instruction fetch stage. When the branch stage detects a
mispredicted branch, it inserts a poison pill into the
results pipeline that contains the address of the correct
branch target address. The poison pill flows to the
instruction fetch stage carrying the correct target
address, and when it reaches instruction fetch, the pro-
gram counter is updated with the target address.

Figure 4 shows the effect of branch prediction accu-
racy on performance for a custom asynchronous CFP

Figure 3: An example of pipeline customizing.
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for dotprod. The graph plots performance using several
branch prediction rates and branch resolution stage
placements. The prediction rates were varied from 50%
accuracy (i.e., 50 of 100 branches were predicted cor-
rectly) to 99% accuracy and the position of branch reso-
lution was varied from the first pipeline stage to the last
pipeline stage. The data in the figure was collected using
a custom counterflow pipeline and instruction schedule
for dotprod determined by our design methodology. The
instruction schedule was not changed based on the posi-
tion of branch resolution.

The figure verifies the intuitive notion that prediction
accuracy must increase as pipeline length increases to
attain good performance. The figure also shows that per-
formance levels off at branch position 5. This is the
point at which overspeculating instructions begins to
impact performance. It is also the position that places
the branch resolution stage next to the stage that deter-
mines the loop exit condition (i.e., a comparison stage).
This is typically the best position for branch resolution
since there is no need to speculatively execute instruc-
tions beyond the point at which branch outcomes are
known.

The graph in Figure 5 shows the average branch
misprediction penalty for dotprod. For counterflow
pipelines, the misprediction penalty is the time from
when a mispredicted branch is resolved until the instruc-
tion fetch stage begins fetching from the correct branch
target. 

As expected, the graph shows that the misprediction
penalty increases as the distance between instruction
fetch and branch resolution increases. However, the
branch prediction penalty differs at several branch posi-
tions depending on prediction accuracy (e.g., positions 5
through 10). For example, when branch predictions are
resolved at position 8, the misprediction penalty varies
according to prediction rate. In a traditional micropro-
cessor organization, the misprediction penalty is static
and would be the same regardless of prediction accuracy

(e.g., the cluster of bars for position 8 would have the
same values).

The misprediction penalty varies dynamically in a
CFP according to prediction accuracy because the pen-
alty is sensitive to activity in the pipeline. The reason for
the misprediction penalty variance is that a branch’s tar-
get instruction blocks have different instructions, which
affect the pipeline differently. For example, suppose one
branch target has an instruction that stalls in the pipeline
during a garner operation. This blocks results, including
poison pills, from flowing through the stalled pipeline
stage until the garner operation completes. However, the
opposite branch target may not have this behavior. In
this case, results would flow directly through the pipe-
line.

Although the pipeline for dotprod is long (12 stages),
the misprediction penalties in Figure 5 are small enough
that speculative execution is effective. This has also
proven true for other benchmarks. For example, mat-
mult has 26 stages and the branch misprediction penalty
does not impact performance so significantly that the
position of branch resolution is tightly constrained (i.e,
it does not have to be placed closely to instruction fetch
to achieve reasonable misprediction penalties). Indeed,
like dotprod, the best position for branch resolution in
matmult is near comparison operations.

Figures 4 and 5 demonstrate that speculative execu-
tion in counterflow pipelines is one effective way of
achieving high performance in an application without
additional hardware such as history buffers and complex
control mechanisms.

3.3. Out-of-Order Execution

The counterflow pipeline uses out-of-order execution to
tolerate high-latency operations, and as an example of
this, we consider memory accesses in this section. 

In our custom CFPs, memory accesses are launched
early in the pipeline into an attached memory siding.
This moves memory accesses out of the main pipeline
so that subsequent instructions can continue to flow
through the pipeline to a stage where they may execute.
This serves the same purpose as an instruction re-order
buffer, allowing independent instructions to begin exe-
cuting before a memory access completes.

Figure 6 demonstrates how the counterflow pipeline
tolerates increasing memory latency for five bench-
marks. In this experiment, a custom pipeline was gener-
ated for each benchmark using our customization
methodology. The initial pipeline for each benchmark
has a non-pipelined memory siding and a latency of 5.
We assume that the memory siding has no data cache
(i.e., all memory accesses cause a cache miss). In this
experiment, we pipeline the memory siding and vary the
pipeline depth from 2 to 10 stages. Thus, memory
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access latency varies from 10 to 50 time units. The
instruction schedule and main pipeline configuration are
not changed in this experiment; only the memory siding
pipeline depth is changed.

The graph in Figure 6 shows the percentage of mem-
ory latency tolerated by the custom pipelines for the five
benchmarks and 9 different memory siding pipeline
depths (the columns in the figure are arranged left to
right with a depth of 2 to 10 for each benchmark). The
percentage of latency tolerated is the amount of total
memory latency that is hidden by the application. The
percentage is calculated using the equation:

The term depth is the length of the memory pipeline
siding, latency is the stage latency of a memory pipeline
stage, and accesses is the total number of dynamic
memory accesses. The term observed is the execution
latency for a particular benchmark run and baseline is
the execution latency for each benchmark’s initial pipe-
line configuration. The equation calculates memory
latency tolerance by a particular pipeline when depth is
varied.

Figure 6 shows that a large portion of memory
latency is tolerated for the benchmarks. The high toler-
ance is due to the memory siding moving memory
accesses out of the main pipeline. This allows subse-
quent instructions to be inserted into the pipeline and
begin execution. The memory latency is also partly hid-
den by the increase in the number of memory accesses
that can be “in-flight” in the memory siding. As siding
pipeline depth is increased, a siding can accommodate
more accesses, which reduces resource contention for
the siding.

The percentage of latency toleration in Figure 6
decreases as memory latency increases because there is
not enough instruction parallelism in the loops to cover
the change in latency. To increase instruction-level par-
allelism, program transformations such as software
pipelining, if-conversion, etc. [20] could be applied and
the resulting instruction dependency graph could be
used as the basis for pipeline customization.

The experiment in Figure 6 changes only memory
latency by increasing the siding’s pipeline depth. We do
not re-schedule or re-customize a benchmark’s instruc-
tion dependency graph or pipeline. Although this is not
important for these benchmarks because they are small ,
it may be profitable to change the instruction schedule
and pipeline configuration for larger benchmarks that
have many memory accesses per iteration. 

The pipeline configurations used in Figure 6 have
separate stages for initiating load and store instructions:
one stage handles loads and another handles stores. This
permits customizing pipeline stage order to the relative
position of loads and stores in the instruction depen-
dency graph. In most graphs, load operations occur
early in the graph and store operations occur late and are
typically dependent on significant computation. By sep-
arating memory operations into distinct stages, loads
can be launched early in the pipeline and stores can be
launched late after they have garnered their source oper-
ands. In a pipeline configuration that combines load and
store launch stages into a single stage, stores may stall
waiting for their source operands early in the pipeline.
This can degrade performance because instructions fol-
lowing the store can not reach their execution stage.

Figure 7 shows the speedup obtained from separate
load and store launch stages over a combined load and
store launch stage (dotprod is not shown because it does
not have a store instruction in its loop). The kernel 1,

Figure 6: Percentage of memory latency tolerated
when increasing memory pipeline siding depth. For
each benchmark, the columns vary left to right from
a siding depth of 2 to a depth of 10.
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kernel 5, dither, and memcpy benchmarks show a signif-
icant improvement in performance. For fir, matmult,
kernel 12, modexp, and dct, it appears that the store
instruction in the combined stage arrangement acquires
its source operand at about the same point as it does in
the separate load and store stage arrangement. This
means there is little advantage to having a separate stage
for a store. 

Separate load and store launch stages creates a prob-
lem for memory addresses that alias the same location.
The hardware must ensure that a load aliasing a memory
address written to by a store does not launch before the
store completes. In our current system, if we identify
that there are no memory aliases between loads and
stores in a kernel loop, we use separate load and store
stages and when we can not determine that there are no
memory aliases, we use a single stage to launch loads
and stores. However, even in the presence of aliases, it is
possible with the aid of a store address buffer to have
separate load and store stages.

Based on the experiments in this section, we con-
clude that functional sidings are an effective means for
overlapping the execution of high latency operations
with other processing in the pipeline. Indeed, this type
of out-of-order execution is especially attractive because
it does not require hardware structures such as instruc-
tion re-order buffers and register rename tables.

3.4. Asynchronous Custom Pipelines

Counterflow pipelines can be implemented as synchro-
nous and asynchronous microarchitectures. An asyn-
chronous implementation has the advantage that micro-
operations can be separated into several lightweight
functions. For example, a synchronous CFP must be
able to garner source operands and execute an instruc-
tion in a single cycle. This has the disadvantage that an
instruction will see the worst case cycle time regardless
of whether an instruction only garners a source operand.
In an asynchronous implementation, micro-operations
can be separated into distinct phases and an instruction
can be advanced out of a pipeline stage as soon as possi-
ble. For example, if an instruction only needs to pass
through a pipeline stage, it can proceed directly through
the stage very quickly. In a synchronous design, it
would take a full cycle for the instruction to move
through the stage.

Figure 8 shows the speedup of custom asynchronous
counterflow pipelines over a general-purpose synchro-
nous pipeline. The general-purpose pipeline has func-
tional sidings for integer operations, memory
operations, and multiplication. The custom pipelines are
tailored to the data dependency graph using our custom-
ization technique. 

The figure indicates that asynchronous custom pipe-

lines achieve a speedup of up to 6 times over a synchro-
nous general-purpose pipeline. The speedup can be
attributed to three reasons. First, the custom pipelines
are tailored to the resource requirements of the graphs,
which eliminates resource contention. Second, the cus-
tom pipelines have their stages arranged to minimize the
latency of conveying source operands. Finally, the asyn-
chronous pipelines achieve average case execution time. 

The difference in performance between the asynchro-
nous custom pipelines and the synchronous general-pur-
pose pipeline comes partly from the difference in the
way they handle pipeline operations. The synchronous
pipeline takes a full cycle to complete all operations
needed by an instruction in a pipeline stage regardless of
whether an instruction only needs part of a cycle. For
example in a synchronous CFP implementation, if an
instruction only garners a source operand in a pipeline
stage, it is held in the stage for the full cycle. In an asyn-
chronous pipeline, the instruction would be allowed to
proceed as soon as the garner operation completes.

For our simulations, garnering a source operand
takes 3 time units and executing an instruction takes 5
time units. This implies that the clock cycle length in the
synchronous pipeline is 8 time units. Thus, a garner
operation in the asynchronous pipeline takes 3/8 of the
time that a synchronous CFP takes. Asynchronous cus-
tom pipelines take advantage of micro-operation paral-
lelism to improve performance.

Asynchronous CFP implementations are able to
exploit micro-operation parallelism because they have a
smaller operation granularity than synchronous pipe-
lines. The counterflow pipeline has four types of micro-
operations: compare, launch, return, and execute. The
compare operation corresponds to garnering source
operands, updating or killing destination registers, and
handling poison pills. The launch and return operations

Figure 8: Speedup of custom asynchronous CFPs
over a general-purpose synchronous CFP.
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correspond to initiating a pipeline siding operation and
returning a result from a siding. The execute operation
corresponds to executing an instruction (whether in a
siding or in a pipeline stage). For example, an instruc-
tion that executes in a pipeline siding does all four
micro-operations. It first garners its source operands and
then launches, executes, and returns a result.

We have also experimented with asynchronous gen-
eral-purpose counterflow pipelines. Although we do not
report the results here, the asynchronous custom pipe-
lines achieve speedups of up to 2 times over the general-
purpose asynchronous architecture. The combination of
asynchronous CFP implementations and pipeline cus-
tomization leads to a significant performance improve-
ment over synchronous pipelines.

The experiments in this section demonstrate that cus-
tom asynchronous counterflow pipelines achieve higher
performance than synchronous pipelines. This perfor-
mance improvement is very impressive considering that
counterflow pipelines can be customized simply and
quickly to the resource and data flow requirements of a
kernel loop. Furthermore, the advantages of asynchro-
nous processors, such as low power consumption, make
custom high-performance CFP’s an attractive microar-
chitecture for embedded systems.

4. Related Work

In the last ten years, asynchronous microprocessors
have gained much attention because of their promise for
design ease, high performance, and low cost. There have
been several asynchronous microprocessor proposals,
including a design from the Cali fornia Institute of Tech-
nology [26], a decoupled access-execute microarchitec-
ture from the University of Utah [22], and a low-power
implementation of the ARM architecture from
Manchester University [7, 8]. 

Although the counterflow pipeline was proposed as
an asynchronous organization for general-purpose
microprocessors [25], there has also been a proposal for
synchronous version [19]. However, this work adds sig-
nificant hardware structures to the original design to get
good performance on a wide variety of applications. In
our work, we customize counterflow pipelines to a sin-
gle application to get high performance without intro-
ducing new microarchitecture enhancements.

There has also been much interest in automated
design of application-specific integrated processors
(ASIPs) because of the increasing importance of high-
performance and quick turn-around in the embedded
systems market. ASIP techniques typically address two
broad problems: instruction set and microarchitecture
synthesis. Instruction set synthesis attempts to discover
micro-operations in a program (or set of programs) that

can be combined to create instructions [13, 14]. The
synthesized instruction set is optimized to meet design
goals such as minimum program size and execution
latency. Microarchitecture synthesis derives a micropro-
cessor implementation from an application (or set of
applications). Many microarchitecture synthesis sys-
tems use a co-processor strategy to synthesize custom
logic for a portion of an application and to integrate the
custom hardware with an embedded processor core [4,
11, 21]. Another microarchitecture synthesis approach
tailors a single processor to the resource requirements of
the target application [3, 6]. Although instruction set and
microarchitecture synthesis can be treated indepen-
dently, many co-design systems attempt to unify them
into a single framework [9].

Our current research focus is microarchitecture syn-
thesis. We do not presently synthesize an instruction set
for an embedded application. Instead, we customize a
counterflow pipeline microarchitecture to an application
using a standard RISC instruction set and information
about the data flow of the target application. Our micro-
architecture synthesis technique has the advantage that
the design space is well defined (although potentially
very large), making it easier to derive custom pipeline
configurations that meet design goals.

5. Summary

The experiments in this paper demonstrate that counter-
flow pipelines are well -suited for automatic design of
application-specific microprocessors. In the paper, we
describe why counterflow pipelines are an ideal archi-
tecture for custom microprocessors, and we present an
effective and simple approach for customizing counter-
flow pipelines to an application. We also show that
counterflow pipelines handle speculative and out-of-
order execution in a low-cost and elegant way that
allows custom CFP’s to tolerate control dependences
and high-latency operations such as memory accesses.
Finally, this work demonstrates how asynchronous
counterflow pipeline implementations can lead to high
performance. We are continuing to research the perfor-
mance potential of custom CFP’s, including micro-
architecture extensions that may greatly improve perfor-
mance without sacrificing ease of design. 
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