
RELIABILITY MECHANISMS FOR ADAMS

Sang H. Son
John L. Pfaltz

IPC-TR-88-002
March 20, 1988

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

To appear Proceedings of third conference on Hypercube
concurrent Computers and Applications Pasadena, Califor-
nia (January 1988)

This research was supported in part by JPL under contract
#957721.

Reliability Mechanisms for ADAMS

Sang H. Son
John L. Pfaltz

Institute for Parallel Computation and Department of Computer Science
University of Virginia

Charlottesville, VA 22903

ABSTRACT

The goal of checkpointing in database manage-
ment systems is to save database states on a separate
secure device so that the database can be recovered
when errors and failures occur. This paper presents a
non-interfering checkpointing mechanism being
developed for ADAMS. Instead of waiting for a con-
sistent state to occur, our checkpointing approach con-
structs a state that would result by completing the tran-
sactions that are in progress when the global check-
point begins. The checkpointing algorithm is executed
concurrently with transaction activity while construct-
ing a transaction-consistent checkpoint on disk, without
requiring the database quiesce. This property of non-
interference is highly desirable to real-time applica-
tions, where restricting transaction activity during the
checkpointing operation is in many cases not feasible.
Two main properties of this checkpointing algorithm
are global consistency and reduced interference, both
of which are crucial for achieving high availability.

1. Introduction

ADAMS (Advanced DAta Management System)
is the name of the database system being developed for
hypercube-based parallel computer systems by the
database group of the Institute for Parallel Computation
at the University of Virginia. Currently, ADAMS is
being implemented on a disk farm for the NCube 10
system. In this paper, we concentrate on a presentation
of an efficient and robust reliability mechanism
developed for ADAMS, which is essential to a parallel
database system in order to satisfy the requirement of
high reliability.

The need for having recovery mechanisms in
database systems is well acknowledged. In spite of
powerful database integrity checking mechanisms
which detect errors and undesirable data, it is possible
that some erroneous data may be included in the data-
base. Furthermore, even with a perfect integrity check-
ing mechanism, failures of hardware and/or software at
the processing nodes may destroy the consistency of
the database. In order to cope with those errors and
failures, database systems provide recovery mechan-
isms, and checkpointing is a technique frequently used
in such recovery mechanisms.

The goal of checkpointing in database manage-
ment systems is to save a consistent state of the data-
base on a separate secure device. In case of a failure,
the stored data can be used to restore the database.
Checkpointing must be performed so as to minimize
both the costs of performing checkpoints and the costs
of recovering the database. If the checkpoint intervals
are very small, too much time and resources are spent
in checkpointing; if these intervals are large, too much
time is spent in recovery.

Since checkpointing is performed during normal
operation of the system, the interference of checkpoint-
ing with transaction processing must be kept to a
minimum. It is highly desirable that users are allowed
to submit transactions while the checkpointing is in
progress, and the transactions are executed in the sys-
tem concurrently with the checkpointing process. In
parallel database systems this requirement of non-
interference makes the checkpointing more compli-
cated because we need to consider the coordination
among the autonomous nodes of the system. A quick
recovery from failures is also desirable to many appli-
cations of parallel databases. For achieving quick
recovery, each checkpoint needs to be globally con-
sistent so that a simple restoration of the latest check-
point can bring the database to a consistent state. In a
parallel environment, this desirable property of global
consistency increases the complexity of the checkpoint-
ing algorithm and the workload of the system.

Recently, the possibility of having a checkpoint-
ing mechanism that does not interfere with the

transaction processing, and yet achieves the global con-
sistency of the checkpoints, has been studied [2, 5, 19].
The motivation of non-interfering checkpointing is to
improve the system availability, that is, the system
must be able to execute user transactions concurrently
with the checkpointing process. The basic principle
behind non-interfering checkpointing mechanisms is to
create a diverged computation of the system such that
the checkpointing process can view a consistent state
that could result by running to completion all of the
transactions that are in progress when the checkpoint
begins, instead of viewing a consistent state that actu-
ally occurs by suspending further transaction execu-
tion.

In the rest of this paper, we briefly discuss our
approach for checkpointing which efficiently generates
globally consistent database state, and its associated
recovery logic for ADAMS. Given our space limita-
tions, our objective is to intuitively explain this
approach and not to provide details. The details are
given in separate papers [20, 21].

2. Model of Computation

2.1. Data Objects and Transactions

A database consists of a set of data objects. Each
data object has a value and represents the smallest unit
of the database accessible to the user. All user requests
for access to the database are handled by the database
system. We consider a parallel database system imple-
mented on a computing system where several auto-
nomous computing elements (called nodes) are con-
nected via a communication network. The set of data
objects in a parallel database system is partitioned
among its nodes. A database is said to be consistent if
the values of data objects satisfy a set of assertions.
The assertions that characterize the consistent states of
the database are called the consistency constraints [4].

The basic units of user activity in database sys-
tems are transactions. Each transaction represents a
complete and correct computation, i.e., if a transaction
is executed alone on an initially consistent database, it
would terminate in a finite time and produce correct
results, leaving the database consistent. A transaction is
the unit of consistency and hence, it must be atomic.
By atomic, we mean that intermediate states of the
database must not be visible outside the transaction,
and all updates of a transaction must be executed in an
all-or-nothing fashion. A transaction is said to be com-
mitted when it is executed to completion, and it is said
to be aborted when it is not executed at all. When a
transaction is committed, the output values are finalized
and made available to all subsequent transactions. We
assume that the database system runs a correct transac-
tion control mechanism (e.g., atomic commit

algorithm[17] and concurrency control algorithm[18]),
and hence assures the atomicity and the serializability
of transactions.

Each transaction has a time-stamp associated
with it [10]. A time-stamp is a number that is assigned
to a transaction when initiated and is kept by the tran-
saction. Two important properties of time-stamps are
(1) no two transactions have the same time-stamp, and
(2) only a finite number of transactions can have a
time-stamp less than that of a given transaction.

2.2. Failure Assumptions

A parallel database system can fail in many dif-
ferent ways, and it is almost impossible to make an
algorithm which can tolerate all possible failures. In
general, failures in parallel database systems can be
classified as failures of omission or commission
depending on whether some action required by the sys-
tem specification was not taken or some action not
specified was taken. The simplest failures of omission
are simple crashes in which a node simply stops run-
ning when it fails. The hardest failures are malicious
runs in which a node continues to run, but performs
incorrect actions. Most real failures lie between these
two extremes.

In this paper, we do not consider failures of com-
mission such as the "malicious runs" type of failure.
When a node fails, it simply stops running (fail-stop).
When the failed node recovers, the fact that it has
failed is recognized, and a recovery procedure is ini-
tiated. We assume that node failures are detectable by
other nodes. This can be achieved either by network
protocols or by high-level time-out mechanisms in the
application layer. We also assume that network parti-
tioning never occurs. This assumption is reasonable for
most local area networks and some long-haul networks.

3. Non-Interfering Checkpoint Creation

3.1. Motivation of Non-interference

The motivation of having a checkpointing
scheme which does not interfere with transaction pro-
cessing is well explained in [2] by using the analogy of
migrating birds and a group of photographers. Suppose
a group of photographers observe a sky filled with
migrating birds. Because the scene is so vast that it can-
not be captured by a single photograph, the photogra-
phers must take several snapshots and piece the
snapshots together to form a picture of the overall
scene. Furthermore, it is desirable that the photogra-
phers do not disturb the process that is being photo-
graphed. The snapshots cannot all be taken at precisely
the same instance because of synchronization prob-
lems, and yet they should generate a ‘‘meaningful’’
composite picture.

In a parallel database system, each node saves
the state of the data objects stored at it to generate a
local checkpoint. We cannot ensure that the local
checkpoints are saved at the same instance, unless a
global clock can be accessed by all the checkpointing
processes. Moreover, we cannot guarantee that the glo-
bal checkpoint, consisting of local checkpoints saved,
is consistent. Non-interfering checkpointing algorithms
are very useful for the situations in which a quick
recovery as well as no blocking of transactions is desir-
able. Instead of waiting for a consistent state to occur,
the non-interfering checkpointing approach constructs
a state that would result by completing the transactions
that are in progress when the global checkpoint begins.

In order to make each checkpoint globally con-
sistent, updates of a transaction must be either included
in the checkpoint completely or not at all. To achieve
this, transactions are divided into two groups according
to their relations to the current checkpoint: after-
checkpoint-transactions (ACPT) and before-
checkpoint-transactions (BCPT). Updates belonging to
BCPT are included in the current checkpoint while
those belonging to ACPT are not included. In a central-
ized database system, it is an easy task to separate tran-
sactions for this purpose. However, it is not easy in a
parallel environment. For the separation of transactions
in a parallel environment, a special time-stamp which is
globally agreed upon by the participating nodes is used.
This special time-stamp is called the Global Check-
point Number (GCPN), and it is determined as the
maximum of the Local Checkpoint Numbers (LCPN)
through the coordination of all the participating nodes.

An ACPT can be reclassified as a BCPT if it
turns out that the transaction must be executed before
the current checkpoint. This is called the conversion of
transactions. The updates of a converted transaction are
included in the current checkpoint.

3.2. The Algorithm

There are two types of processes involved in the
execution of the algorithm: checkpoint coordinator
(CC) and checkpoint subordinate (CS). The checkpoint
coordinator starts and terminates the global checkpoint-
ing process. Once a checkpoint has started, the coordi-
nator does not issue the next checkpoint request until
the first one has terminated.

The variables used in the algorithm are as fol-
lows:

(1) Local Clock (LC): a clock maintained at each
node which is manipulated by the clock rules of
Lamport[10].

(2) Local Checkpoint Number (LCPN): a number
determined locally for the current checkpoint.

(3) Global Checkpoint Number (GCPN): a globally
unique number for the current checkpoint.

(4) CONVERT: a Boolean variable showing the
completion of the conversion of all the eligible
transactions at the node.

Our basic checkpointing algorithm, called CP1,
works as follows:

(1) The checkpoint coordinator broadcasts a
Checkpoint Request Message with a time-stamp
$LC sub CC$. The local checkpoint number of
the coordinator is set to $LC sub CC$, and the
coordinator sets the Boolean variable CON-
VERT to false:

$CONVERT sub CC$:= false
$LCPN sub CC$:= $LC sub CC$

All the transactions at the coordinator node with
the time-stamps not greater than $LCPN sub
CC$ are marked as BCPT.

(2) On receiving a Checkpoint Request Message,
the local clock of node m is updated and
$LCPN sub m$ is determined by the checkpoint
subordinate as follows:

$LC sub m$:= max($LC sub CC$ + 1, $LC sub m$)
$LCPN sub m$:= $LC sub m$

The checkpoint subordinate of node m replies to
the coordinator with $LCPN sub m$, and sets
the Boolean variable CONVERT to false:

$CONVERT sub m$:= FALSE

and marks all the transactions at the node m
with the time-stamps not greater than $LCPN
sub m$ as BCPT.

(3) The coordinator broadcasts the GCPN which is
decided by:

GCPN := max($LCPN sub n$) n = 1,..,N

(4) For all nodes, after LCPN is fixed, all the tran-
sactions with the time-stamps greater than
LCPN are marked as temporary ACPT. If a
temporary ACPT wants to update any data
objects, those data objects are copied from the
database to the buffer space of the transaction.
When a temporary ACPT commits, updated
data objects are not stored in the database as
usual, but are maintained as committed tem-
porary versions (CTV) of data objects. The data
manager of each node maintains the permanent
and temporary versions of data objects. When a
read request is made for a data object which has

committed temporary versions, the value of the
latest committed temporary version is returned.
When a write request is made for a data object
which has committed temporary versions,
another committed temporary version is created
for it rather than overwriting the previous com-
mitted temporary version.

(5) When the GCPN is known, each checkpointing
process compares the time-stamps of the tem-
porary ACPT with the GCPN. Transactions that
satisfy the following condition become BCPT;
their updates are reflected into the database, and
are included in the current checkpoint.

LCPN < time-stamp(T) $<=$ GCPN

The remaining temporary ACPT are treated as
actual ACPT; their updates are not included in
the current checkpoint. These updates are
included in the database after the current check-
pointing has been completed. After the conver-
sion of all the eligible BCPT, the checkpointing
process sets the Boolean variable CONVERT to
true:

CONVERT := true

(6) Local checkpointing is executed by saving the
state of data objects when there is no active
BCPT and the variable CONVERT is true.

(7) After the execution of local checkpointing, the
values of the latest committed temporary ver-
sions are used to replace the values of data
objects in the actual database. Then, all commit-
ted temporary versions are deleted.

The above checkpointing algorithm essentially
consists of two phases. The function of the first phase
(steps 1 through 3) is the assignment of GCPN that is
determined from the local clocks of the system. The
second phase begins by fixing the LCPN at each node.
This is necessary because each LCPN sent to the
checkpoint coordinator is a candidate of the GCPN of
the current checkpoint, and the committed temporary
versions must be created for the data objects updated
by ACPT. The notions of committed temporary ver-
sions and conversion from ACPT to BCPT are intro-
duced to assure that each checkpoint contains all the
updates made by transactions with earlier time-stamps
than the GCPN of the checkpoint.

When a participant receives a Transaction Initia-
tion Message from the coordinator, it checks whether
or not the transaction can be executed at this time. If
the checkpointing process has already executed step 5
and time-stamp(T) $<=$ GCPN, then a reject message
is returned, and the transaction is aborted. Therefore in

order to execute step 6, each checkpointing process
only needs to check active BCPT at its own node, and
yet the consistency of the checkpoint can be achieved.

3.3. Termination of the Algorithm

The algorithm described so far has no restriction
on the method of arranging the execution order of tran-
sactions. With no restriction, however, it is possible
that the algorithm may never terminate. In order to
ensure that the algorithm terminates in a finite time, we
must ensure that all BCPT terminate in a finite time,
because local checkpointing in step 6 can occur only
when there is no active BCPT at the node.

Termination of transactions in a finite time is
ensured if the concurrency control mechanism gives
priority to older transactions over younger transactions.
With such a time-based priority, it is guaranteed that
once a transaction $T sub i$ is initiated, then $T sub i$
is never blocked by subsequent transactions that are
younger than $T sub i$. The number of transactions
that may block the execution of $T sub i$ is finite
because only a finite number of transactions can be
older than $T sub i$. Among older transactions which
may block $T sub i$, there must be the oldest transac-
tion which will terminate in a finite time, since no other
transaction can block it. When it terminates, the second
oldest transaction can be executed, and then the third,
and so on. Therefore, $T sub i$ will be executed in a
finite time. Since we have a finite number of BCPT
when the checkpointing is initiated, all of them will ter-
minate in a finite time, and hence the checkpointing
itself will terminate in a finite time. Concurrency con-
trol mechanisms based on time-stamp ordering as in
[18] can ensure the termination of transactions in a
finite time.

4. Consistency of Checkpoints

In this section we give an informal proof of the
correctness of the algorithm. In addition to proving the
consistency of the checkpoints generated by the algo-
rithm in the global mode, we show that the algorithm
has another desirable property that each checkpoint
contains all the updates of transactions with earlier
time-stamps than its GCPN. This property reduces the
work required in the actual recovery, which is dis-
cussed in Section 5. A longer and more thorough dis-
cussion on the correctness of the algorithm is given in
[19].

The properties of the algorithm we want to show
are

(1) a set of all local checkpoints with the same
GCPN represents a consistent database state,
and

(2) all the updates of the committed transactions
with earlier time-stamps than the GCPN are
reflected in the current checkpoint.

Note that only one checkpointing process can be
active at a time because the checkpointing coordinator
is not allowed to issue another checkpointing request
before the termination of the previous one.

A database state is consistent if the set of data
objects satisfies the consistency constraints[4]. Since a
transaction is the unit of consistency, a database state S
is consistent if the following holds:

(1) For each transaction T, S contains all subtran-
sactions of T or it contains none of them.

(2) If T is contained in S, then each predecessor T’
of T is also contained in S. (T’ is a predecessor
of T if it modified the data object which T
accessed at some later point in time.)

For a set of local checkpoints to be globally con-
sistent, all the local checkpoints with the same GCPN
must be consistent with each other concerning the
updates of transactions that are executed before and
after the checkpoint. Therefore, to prove that the algo-
rithm satisfies both properties, it is sufficient to show
that the updates of a global transaction T are included
in $CP sub i$ at each participating node of T, if and
only if time-stamp(T)$~<= $ GCPN($CP sub i$). This
is enforced by the mechanism to determine the value of
the GCPN, and by the conversion of the temporary
ACPT into BCPT.

A transaction is said to be reflected in data
objects if the values of data objects represent the
updates made by the transaction. We assume that the
database system provides a reliable mechanism for
writing into the secondary storage such that a writing
operation of a transaction is atomic and always suc-
cessful when the transaction commits. Because updates
of a transaction are reflected in the database only after
the transaction has been successfully executed and
committed, partial results of transactions cannot be
included in checkpoints.

The checkpointing algorithm assures that the
sequence of actions are executed in some specific
order. At each node, conversion of eligible transactions
occurs after the GCPN is known, and local checkpoint-
ing cannot start before the Boolean variable CON-
VERT becomes true. CONVERT is set to false at each
node after it determines the LCPN, and it becomes true
only after the conversion of all the eligible transactions.
Thus, it is not possible for a local checkpoint to save
the state of the database in which some of the eligible
transactions are not reflected because they remain
unconverted.

We can show that a transaction becomes BCPT if
and only if its time-stamp is not greater than the current
GCPN. This implies that all the eligible BCPT will
become BCPT before local checkpointing begins in
step 6. Therefore, updates of all BCPT are reflected in
the current checkpoint.

>From the atomic property of transactions pro-
vided by the transaction control mechanism (e.g. com-
mit protocol in [17]), it can be assured that if a transac-
tion is committed at a participating node then it is com-
mitted at all other participating nodes. Therefore if a
transaction is committed at one node, and if it satisfies
the time-stamp condition above, its updates are
reflected in the database and also in the current check-
point at all the participating nodes.

5. Discussion

The desirable properties of non-interference and
global consistency not only make the checkpointing
more complicated in parallel database systems, but also
increase the workload of the system. It may turn out
that the overhead of the checkpointing mechanism is
unacceptably high, in which case the mechanism
should be abandoned in spite of its desirable properties.
The practicality of non-interfering checkpointing,
therefore, depends partially on the amount of extra
workload incurred by the checkpointing mechanism. In
this section we consider practicality of non-interfering
checkpointing algorithms, and discuss the robustness
and recovery methods associated with the algorithm
CP2.

5.1. Practicality of Non-interfering Checkpoints

There are two performance measures that can be
used in discussing the practicality of non-interfering
checkpointing: extra storage and extra workload
required. The extra storage requirement of the algo-
rithm is simply the committed temporary version
(CTV) file size, which is a function of the expected
number of ACPT of the node, the number of data
objects updated by a typical transaction, and the size of
the basic unit of information:

CTV file size $mark =~ N sub A times$(number of updates)
$times$(size of the data object)

where $N sub A$ is the expected number of ACPT of
the node.

The size of the CTV file may become unaccept-
ably large if $N sub A$ or the number of updates
becomes very large. Unfortunately, they are deter-
mined dynamically from the characteristics of transac-
tions submitted to the database system, and hence can-
not be controlled. Since $N sub A$ is proportional to
the execution time of the longest BCPT at the node, it
would become unacceptably large if a long-lived

transaction is being executed when a checkpoint begins
at the node. The only parameter we can change in order
to reduce the CTV file size is the granularity of a data
object. The size of the CTV file can be minimized if we
minimize the size of the data object. By doing so, how-
ever, the overhead of normal transaction processing
(e.g., locking and unlocking, deadlock detection, etc)
will be increased. Also, there is a trade-off between the
degree of concurrency and the lock granularity[14].
Therefore the granularity of a data object should be
determined carefully by considering all such trade-offs,
and we cannot minimize the size of the CTV file by
simply minimizing the data object granularity.

There is no extra storage requirement in intrusive
checkpointing mechanisms[1, 8, 15]. However this pro-
perty is balanced by the cases in which the system must
block ACPT or abort half-way done global transactions
because of the checkpointing process.

The extra workload imposed by the algorithm
mainly consists of the workload for (1) determining the
GCPN, (2) committing ACPT (move data objects to the
CTV file), (3) reflecting the CTV file (move committed
temporary versions from the CTV file to the database),
and (4) making the CTV file clear when the reflect
operation is finished. Among these, workload for (2)
and (3) dominates others. As in extra storage estima-
tion, they are determined by the number of ACPT and
the number of updates. Therefore, as far as the values
of these variables can be maintained within a certain
threshold level, non-interfering checkpointing would
not severely degrade the performance of the system. A
detailed discussion on the practicality of non-
interfering checkpointing is given in [19].

5.2. Node Failures

So far, we assumed that no failure occurs during
checkpointing. This assumption can be justified if the
probability of failures during a single checkpoint is
extremely small. However, it is not always the case,
and we now consider the method to make the algorithm
resilient to failures.

During the global mode of operation, the algo-
rithm CP2 is insensitive to failures of subordinates. If a
subordinate fails before the broadcast of a Checkpoint
Request Message, it is excluded from the next check-
point. If a subordinate does not send its LCPN to the
coordinator, it is excluded from the current checkpoint.
When the node recovers from the failure, the recovery
manager of the node must find out the GCPN of the
latest checkpoint. After receiving information of tran-
sactions which must be executed for recovery, the
recovery manager brings the database up to date by
executing all the transactions whose time-stamps are
not greater than the latest GCPN. Other transactions are
executed after the state of the data objects at the node is

saved by the checkpointing process.

An atomic commit protocol guarantees that a
transaction is aborted if any participant fails before it
sends a Precommit message to the coordinator. There-
fore, node failures during the execution of the algo-
rithm cannot affect the consistency of checkpoints
because each checkpoint reflects only the updates of
committed BCPT.

In the local mode of operation, a failure of a par-
ticipant prevents the coordinator from receiving OK
from all the participants, or prevents the participants
from receiving the decision message from the coordi-
nator. However, because a transaction is aborted by an
atomic commit protocol, it is not necessary to make
checkpointing robust to failures of participants.

The algorithm is, however, sensitive to failures
of the coordinator. In particular, if the coordinator
crashes during the first phase of the global mode of
operation (i.e., before the GCPN message is sent to
subordinates), every transaction becomes ACPT,
requiring too much storage for committed temporary
versions.

One possible solution to this involves the use of a
number of backup processes; these are processes that
can assume responsibility for completing the
coordinator’s activity in the event of its failure. These
backup processes are in fact checkpointing subordi-
nates. If the coordinator fails before it broadcasts the
GCPN message, one of the backups takes the control.
A similar mechanism is used in SDD-1 [7] for reliable
commitment of transactions. Proper coordination
among the backup processes is crucial here. In the
event of the failure of the coordinator, one, and only
one backup process has to assume the control. The
algorithm for accomplishing this assumes an ordering
among the backup processes, designated in order as $p
sub 1$, $p sub 2$, ..., $p sub n$. Process $p sub {k-1}$
is referred to as the predecessor of process $p sub k$
(for k > 0), and the coordinator is taken as the prede-
cessor of process $p sub 1$.

We assume that the communication service
enables processes to be informed when a given node
achieves a specified status (simply UP or DOWN in
this case). Initially, each of the backup processes
checks the failure of its predecessor. Then the follow-
ing rules are used.

(1) If the predecessor is found to be down, then the
process begins to check the predecessor of the
failed process.

(2) If the coordinator is found to be down, the first
backup process assumes the control of check-
pointing.

(3) If a backup process recovers, it ceases to be a
part of the current checkpointing.

(4) After each checkpoint, the list of backup
processes is adjusted by including all the UP
nodes.

These rules guarantee that at most one process,
either the coordinator or one of the backup processes,
will be in control at any given time. Thus a checkpoint-
ing will terminate in a finite time once it begins.

5.3. Recovery

The recovery from node crashes is called the
node recovery. The complexity of the node recovery
varies in parallel database systems according to the
failure situation[15]. If the crashed node has no repli-
cated data objects and if all the recovery information is
available at the crashed node, local recovery is enough.
Global recovery is necessary because of failures which
require the global database to be restored to some ear-
lier consistent state. For instance, if the transaction log
is partially destroyed at the crashed node, local
recovery cannot be executed to completion.

When a global recovery is required, the database
system has two alternatives: a fast recovery and a com-
plete recovery. A fast recovery is a simple restoration
of the latest global checkpoint. Since each checkpoint
generated by the algorithm is globally consistent, the
restored state of the database is assured to be con-
sistent. However, all the transactions committed during
the time interval from the latest checkpoint until the
time of crash would be lost. A complete recovery is
performed to restore as many transactions that can be
redone as possible. The trade-offs between the two
recovery methods are the recovery time and the
number of transactions saved by the recovery.

Quick recovery from failures is critical for some
applications of parallel database systems which require
high availability (e.g., ballistic missile defense or air
traffic control). For those applications, the fate of the
mission, or even the lives of human beings, may
depend on the correct values of the data and the acces-
sibility to it. Availability of a consistent state is of pri-
mary concern for them, not the most up-to-date con-
sistent state. If a simple restoration of the latest check-
point could bring the database to a consistent state, it
may not be worthwhile to spend time in recovery by
executing a complete recovery to recover some of the
transactions.

For the applications in which each committed
transaction is so important that the most up-to-date
consistent state of the database is highly desirable, or if
the checkpoint intervals are large such that a lot of tran-
sactions may be lost by the fast recovery, a complete
recovery is appropriate to use. The cost of a complete

recovery is the increased recovery time which reduces
the availability of the database. Searching through the
transaction log is necessary for a complete recovery.
The second property of the algorithm (i.e., each check-
point reflects all the updates of transactions with earlier
time-stamps than its GCPN) is useful in reducing the
amount of searching because the set of transactions
whose updates must be redone can be determined by
the simple comparison of the time-stamps of transac-
tions with the GCPN of the checkpoint. Complete
recovery mechanisms based on the special time-stamp
of checkpoints (e.g., GCPN) have been proposed in [9,
20].

6. Concluding Remarks

During normal operation of the database system,
checkpointing is performed to save information neces-
sary for recovery from a failure. For better recoverabil-
ity and availability of parallel database systems, check-
pointing must be able to generate a globally consistent
database state, without interfering with transaction pro-
cessing. Autonomy of processing nodes in parallel
database systems makes the checkpointing more com-
plicated than in single processor database systems. In
this paper, a new checkpointing algorithm for parallel
database systems is presented and discussed. The
correctness of the algorithm is shown, and the practi-
cality of the algorithm and recovery procedures associ-
ated with it are discussed.

A non-interfering checkpointing is desirable in
many applications, and it has been shown that it can be
a viable solution if the extra workload and storage
requirement remain in an acceptable range. Two
important parameters in making a non-interfering
checkpointing practical are the mean number of tran-
saction arrivals and the average number of updates of a
transaction. As far as they remain below certain thres-
hold values, the overhead of non-interfering check-
pointing can be justified. The properties of global con-
sistency and non-interference of checkpointing result in
some overhead on the one hand, and increase the sys-
tem availability on the other hand. For the applications
where the ability of continuous processing of transac-
tions is so critical that the blocking of transaction pro-
cessing for checkpointing is not feasible, we believe
that the checkpointing algorithm presented in this paper
provides a practical solution to the problem of con-
structing globally consistent states in parallel database
systems.

ACKNOWLEDGEMENTS

This work was supported in part by the Office of
Naval Research under contract no. N00014-86-K-0245,

and by the Jet Propulsion Laboratory of the California
Institute of Technology under contract no. 957721 to
the University of Virginia.

REFERENCES

[1] Attar, R., Bernstein, P. A. and Goodman, N., Site
Initialization, Recovery, and Backup in a Distri-
buted Database System, IEEE Trans. on Software
Engineering, November 1984, pp 645-650.

[2] Chandy, K. M., Lamport, L., Distributed
Snapshots: Determining Global States of Distri-
buted Systems, ACM Trans. on Computer Sys-
tems, February 1985, pp 63-75.

[3] Dadam, P. and Schlageter, G., Recovery in Dis-
tributed Databases Based on Non-synchronized
Local Checkpoints, Information Processing 80,
North-Holland Publishing Company, Amster-
dam, 1980, pp 457-462.

[4] Eswaran, K. P. et al, The Notion of Consistency
and Predicate Locks in a Database System, Com-
mun. of ACM, Nov. 1976, pp 624-633.

[5] Fischer, M. J., Griffeth, N. D. and Lynch, N. A.,
Global States of a Distributed System, IEEE
Trans. on Software Engineering, May 1982, pp
198-202.

[6] Gelenbe, E., On the Optimum Checkpoint Inter-
val, Journal of ACM, April 1979, pp 259-270.

[7] Hammer, M. and Shipman, D., Reliability
Mechanisms for SDD-1: A System for Distri-
buted Databases, ACM Trans. on Database Sys-
tems, December 1980, pp 431-466.

[8] Jouve, M., Reliability Aspects in a Distributed
Database Management System, Proc. of AICA,
1977, pp 199-209.

[9] Kuss, H., On Totally Ordering Checkpoints in
Distributed Databases, ACM SIGMOD Interna-
tional Conference on Management of Data,
1982, pp 293-302.

[10] Lamport, L., Time, Clocks and Ordering of
Events in Distributed Systems, Commun. ACM,
July 1978, pp 558-565.

[11] McDermid, J., Checkpointing and Error
Recovery in Distributed Systems, 2nd Interna-
tional Conference on Distributed Computing Sys-
tems, April 1981, pp 271-282.

[12] Mohan, C., Strong, R., and Finkelstein, S.,
Method for Distributed Transaction Commit and
Recovery Using Byzantine Agreement Within
Clusters of Processors, 2nd ACM

SIGACT/SIGOPS Symposium on Principles of
Distributed Computing, August 1983.

[13] Ricart, G. and Agrawala, A. K., An Optimal
Algorithm for Mutual Exclusion in Computer
Networks, Commun. of ACM, Jan. 1981, pp 9-17.

[14] Ries, D., The Effect of Concurrency Control on
The Performance of A Distributed Data Manage-
ment System, 4th Berkeley Conference on Distri-
buted Data Management and Computer Net-
works, Aug. 1979, pp 221-234.

[15] Schlageter, G. and Dadam, P., Reconstruction of
Consistent Global States in Distributed Data-
bases, International Symposium on Distributed
Databases, North-Holland Publishing Company,
INRIA, 1980, pp 191-200.

[16] Shin, K. G., Lin, T.-H., Lee, Y.-H., Optimal
Checkpointing of Real-Time Tasks, 5th Sympo-
sium on Reliability in Distributed Software and
Database Systems, January 1986, pp 151-158.

[17] Skeen, D., Nonblocking Commit Protocols, ACM
SIGMOD International Conference on Manage-
ment of Data, 1981, pp 133-142.

[18] Son, S. H., On Multiversion Replication Control
in Distributed Systems, Computer Systems Sci-
ence and Engineering, Vol. 2, No. 2, April 1987,
pp 76-84.

[19] Son, S. H. and Agrawala, A., Practicality of
Non-Interfering Checkpoints in Distributed Data-
base Systems, IEEE Real-Time Systems Sympo-
sium, New Orleans, Louisiana, December 1986,
pp 234-241.

[20] Son, S. H. and Agrawala, A., An Algorithm for
Database Reconstruction in Distributed Environ-
ments, 6th International Conference on Distri-
buted Computing Systems, Cambridge, Mas-
sachusetts, May 1986, pp 532-539.

[21] Son, S. H., "An Adaptive Checkpointing Scheme
for Distributed Databases with Mixed Types of
Transactions," Fourth International Conference
on Data Engineering, Los Angeles, February
1988, pp 528-535.

