Moving-Target TSP and Related Problems*

C. S. Helvig, Gabriel Robins, and Alex Zelikovsky]L

Department of Computer Science, University of Virginia, Charlottesville, VA 22903
1 Department of Computer Science, UCLA, Los Angeles, CA 90095
g

Abstract. Previous literature on the Traveling Salesman Problem (TSP)
implicitly assumed that the sites to be visited are stationary. Motivated
by practical applications, we introduce a time-dependent generalization
of TSP which we call Moving-Target TSP, where a pursuer must inter-
cept a set of targets which move with constant velocities in a minimum
amount of time. We propose approximate and exact algorithms for sev-
eral natural variants of Moving-Target TSP. Our implementation of the
exact algorithm of One-Dimensional T'SP is available on the Web.

1 Introduction

The classical Traveling Salesman Problem (TSP) has been studied extensively,
and many TSP heuristics have been proposed over the years (see surveys such as
[4] [7]). Previous works on TSP have assumed that the cities/targets to be visited
are stationary. However, several practical scenarios give rise to TSP instances
where the targets to be visited are themselves in motion (e.g., when a supply
ship resupplies patrolling boats, or when an aircraft must intercept a number
of mobile ground units). In this paper, we introduce a generalization of the
Traveling Salesman Problem where targets can move with constant velocities,
formulated as follows:

The Moving-Target Traveling Salesman Problem: Given a set
S ={s1,...,8,} of targets, each s; moving at constant velocity v; from
an initial position p; € R, and given a pursuer starting at the origin
and having maximum speed v > |v;| for i = 1,...,n, find the fastest
tour starting (and ending) at the origin, which intercepts all targets.

Related formulations consider time-dependent versions of the Vehicle Rout-
ing Problem, where one or more trucks whose speeds vary with time-of-day (due
to traffic congestion) serve customers at fixed locations [5]. These works give
exponential-time algorithms based on a mixed integer linear programming for-
mulation and dynamic programming [5] [6] [9]. One major drawback of such
general formulations is that they do not yield efficient bounded-cost heuristics,

* Professor Robins is supported by a Packard Foundation Fellowship and by National
Science Foundation Young Investigator Award MIP-9457412. The corresponding au-
thor is Gabriel Robins, (804) 982-2207, robins@cs.virginia.edu. Additional related
papers and our code may be found at http://www.cs.virginia.edu/~robins/

since they generalize TSP without the triangle inequality, which admits no effi-
cient approximation bounds unless P = NP [1].

In this paper, we address several natural variants of Moving-Target TSP. In
Section 2, we show that unlike the classical TSP, the restriction of Moving-Target
TSP to one dimension is not trivial, and we give an exact O(n?)-time algorithm.
For Moving-Target TSP instances where the number of moving targets is suffi-
ciently small, we develop a (1 + «)-approximation algorithm, where a denotes
the approximation ratio of the best classical TSP heuristic.

Next, in Section 3, we shift our attention to selected variants of Moving-
Target TSP with Resupply? (where the pursuer must return to the origin for
resupply after intercepting each target, as shown in Figure 1(c)). For these vari-
ants, we assume that targets are moving strictly away from (or else towards) the
origin. We present a surprisingly simple exact algorithm for Moving-Target TSP
when the targets approaching the origin are either far away or slow. We also
consider the case when all targets are moving towards the origin, but with the
additional requirement that the pursuer must intercept all of the targets before
they reach the origin. We show that such a tour always exists and that no tour
which satisfies the constraints is more than twice as long as the optimal tour.

Finally, in Section 4, we generalize Moving-Target TSP with Resupply to
allow multiple pursuers which are constrained to all move with the same max-
imum speed. This problem also can be viewed as a dynamic generalization of
multiprocessor scheduling where the processing time depends on the starting
time of processing a job. We show that the problem is NP-hard, which is a
non-trivial result because our formulation has a total time objective which is
different from the standard makespan and average completion time objectives.
We also develop an approximation algorithm for the case when, if projecting
back in time, all targets would have left the origin simultaneously. Finally, we
present an exact algorithm for the case when all targets have the same speed,
and conclude in Section 5 with some future research directions. Some proofs are
condensed or altogether omitted due to page limitations. See [2] or our Web site
http://www.cs.virginia.edu/-robins/ for a more complete version of this paper.

2 Special Instances of Moving-Target TSP

Since unrestricted Moving-Target TSP is NP-hard®, and because non-optimal
tours can have unbounded error, we consider special variants where Moving-
Target TSP is solvable either exactly or to within a reasonable approximation

2 Our formulation corresponds to a dynamic version of the Vehicle Routing Problem,
defined as follows. Given a set of n targets, each with demand ¢; moving at a constant
velocity v; from an initial position p; € R™ for 2 = 1,...,n, and a set of k¥ pursuers
initially located at the origin and having maximum speed V; and supply C; for
7 =1,...,k, find a tour for each pursuer such that the demand of each target is
satisfied and the total time of vehicles in operation is minimized.

? Note that classical TSP is a special case of Moving-Target TSP where all the veloc-
ities are zero.

3 4} 3 -7
/ e . ple
f - o E‘ - fl' o :;:;‘__E;;:, - o
- N ;o ° i e
Origin / \ N \\\\
S) A o}
o o
. Yxio
4
€) (b) (©

Fig.1. (a) An instance of Moving-Target TSP. (b) A shortest-time tour
(dashed line) which begins at the origin (flag) and intercepts all of the
targets. (¢) In Moving-Target TSP with Resupply, the pursuer must re-
turn to the origin after intercepting each target (the optimal interception
schedule is in the order shown).

ratio. In this section, we consider two variants: (1) when targets are confined to
a single line?, and (2) when the number of moving targets is small. The following
lemma is essential for our analyses of Moving-Target TSP and its variants:

Lemma 1 The pursuer must always move at mazimum speed in any optimal
Mowving-Target TSP tour.

2.1 Moving-Target TSP in One Dimension

In this subsection, we consider Moving-Target TSP where the pursuer and all
targets are confined to a single line, and we develop an O(n?) exact algorithm
based on dynamic programming. To see that this one-dimensional variant is
not trivial, consider the following generalization of the exact algorithm when all
targets are stationary. First, compute the cost of the tour which intercepts all
targets to the left of the origin and then intercepts all targets to the right of
the origin. Next, compute the cost of the tour which intercepts all targets to the
right of the origin and then intercepts all targets to the left of the origin. Finally,
from this pair of possible tours, choose the one with the least cost.
Unfortunately, this simple heuristic can have unbounded error. Consider the
case when there are four targets. Two of the targets are extremely close to the
origin and moving away from the origin very fast, but they are on either side
of the pursuer; the other two targets are again on either side of the origin, but
much further from it, and are so slow as to be almost stationary. If we intercept
the two fast targets immediately, then we spend almost no time in chasing them,
but if we first intercept all of the targets on one side of the origin, then we will
later need to spend much more time chasing the fast target on the other side.

* Historical note: after we submitted this paper to ESA’98, we received an unpublished
technical report [8] that claims to solve the one-dimensional variant in O(n®) time;
our algorithm for the same problem runs in time O(r?).

Lemma 2 In an optimal tour for one-dimensional Moving-Target TSP, the pur-
suer cannot change direction until it intercepts the fastest target ahead of it.

Proof: Suppose towards contradiction that in an optimal tour 7', the pursuer
changes direction at time ¢ before intercepting the fastest target s ahead of
it. There exists some sufficiently small é > 0 such that, in the time period
between ¢ — 6 and t 4 8, the pursuer changes direction only at time ¢. Consider
an alternative tour where the pursuer stops at time ¢ — 6, waits without moving
until time ¢ 4+ 8, and then continues along the original tour. All the targets that
the pursuer would intercept in the time period between t — 6 and t + 6 are
moving slower than s, and therefore cannot pass s. These targets will remain
“sandwiched” between the pursuer and target s, and thus will automatically be
intercepted later by the pursuer on its way to the faster target s. By Lemma 1,
the original tour is not optimal, because it is equivalent to a tour with a waiting
period. n

Thus, we may view a tour as a sequence of snapshots at the moments when
the pursuer intercepts the fastest target which was ahead of it. We will later show
that all of the relevant information in any such snapshot can be represented as a
state (s, sy), where sy, is the target just intercepted, and sy is the fastest target
on the other side. All tours have the same initial state Ag and the same final
state Agfnal. Note that neither Ag nor Agna have corresponding targets s or s;.
States have a time function associated with them, denoted ¢(A), representing the
shortest time in which this state can be achieved. Naturally, we assign t(Ag) = 0
for the initial state.

Note that Lemma 2 implies that there are at most two possible transitions
from any state A = (sg,sy) at assigned time t(A). These two transitions rep-
resent the two possible choices of the next target to be intercepted, either the
fastest to the left of the pursuer or the fastest to the right of the pursuer. The
time of each transition 7, denoted ¢(7), is the time necessary for the pursuer to
intercept the corresponding target (the fastest on the left or on the right) from
the position of target s at time t(A).

Our algorithm works as follows. In the preprocessing step of our algorithm,
we partition the targets into two lists, Left and Right (according to whether
targets are on the left or the right side of the origin, respectively). Then, we
sort the lists according to non-increasing order of their speeds. We traverse both
sorted lists and delete any target from the list which is closer to the origin than
its predecessor. The targets which remain in these two lists are the only targets
for which the pursuer may change direction after intercepting them.

We sort states in ascending order of the sum of the indices of the targets s
and sy (for each state A = (s, sy)) in the Left and Right lists. Our algorithm
iteratively traverses each state in this sorted list. Note that transitions cannot
go backwards with respect to this order.

When we traverse a given state A in the algorithm, we do one of three
things: (1) if the state has no transitions to it, then we proceed to the next
state in the list; (2) if the pursuer has intercepted all of the targets on one
side, we make a transition to the final state Agpar; or (3) make two transitions

which correspond to sending the pursuer after either the fastest target on the
left or the fastest target on the right. We define the time of a state B such that
t(B) = min{t(A)+¢(7)|Vr : A — B}. This is the shortest sequence of transitions
from Ap to B. We need constant time on average to traverse each of the O(n)
transitions.

Once we have visited each of the states, we can traverse the transitions back-
wards from the final state Agna back to the initial state Ag. This gives us the
list of states which describes the turning points for the pursuer in the optimal
tour. For each pair of turning points, we find the subset of targets which are in-
tercepted between them. Once we have partitioned the targets into subsets, we
sort the targets inside the subset by their interception times. Finally, we merge
the sorted subsets into a combined interception order, yielding the solution.

Theorem 3 The above algorithm for One-Dimensional Moving-Target TSP finds
an optimal tour in O(n?) time.

We have implemented this algorithm using the C++ programming language.
Computational benchmarks against an optimal algorithm empirically confirm its
correctness. Qur implementation is available on the Web.

2.2 Heuristics when the Number of Moving Targets is Small

In this subsection, we consider Moving-Target TSP when most of the targets
are stationary (while a few targets may be moving). From among the many
existing approximation algorithms for classical (stationary) TSP [4], choose one
such heuristic, having performance bound «. Using this algorithm for stationary
targets, we can construct an efficient algorithm (see Figure 2) with performance
bound of 1 + @ when the number of moving targets is sufficiently small.

Theorem 4 Moving-Target TSP where at most O(ﬁgo"—n) of the targets are
moving can be approximated in polynomial time with per]gormance bound 1 + «,
where o 1s a performance bound of an arbitrary classical TSP heuristic.

3 Moving-Target TSP with Resupply After Intercepts

In this section, we consider Moving-Target TSP where a single pursuer must
return to the origin after intercepting each target. We call this problem Moving-
Target TSP with Resupply. We assume that targets all move either directly
towards or away from the origin. These assumptions are natural because the
projections of target velocities onto radial lines through the origin are approx-
imately constant when the target is either (1) slow, (2) far from the origin, or
(3) already moving along a radial line.

We define a valid tour to be a tour where no target passes near (or through)
the origin without first being intercepted by the pursuer, and thus the velocities
of all targets may be considered to be fixed with respect to the origin. In Subsec-
tion 3.1, we restrict the problem by considering the scenario when the shortest

\\ ~-_~‘~-‘-1
’ c’j ° o ’ j: ° o
o o) O o)
o o © o o ©
o o
o o) o
@ (b)
2
\\ ‘~-__‘~-‘ 1
S
’ po g .02 Bl g .ot
O ,I \0/ /3 O // \0/ ,5
94 a P d Q @
8 NN ' 10 N [
‘\ /6 LR ‘\ /8 N ,O
o w4 o y 6
7 5 9 7
(© (d)

Fig. 2. (a) In this example, we have two moving targets and the rest are
stationary. (b) First, we find the optimal tour for the moving points by
trying all permutations. (¢) Then, we use a classical TSP algorithm with
performance bound « for intercepting stationary targets. (d) Finally, we
combine both tours into a single tour with performance bound 1+ «a.

tour is valid. In other words, no target will pass the origin for a “sufficiently”
long time (we will later elaborate on how long that is). We show that there is a
simple way to determine the optimal target interception order for this scenario.

We consider a similar scenario in Subsection 3.2, except that we introduce
a new constraint, namely that the pursuer must intercept each target before it
reaches the origin (i.e. the tour must be valid). We formulate the problem in
terms of “defending” the origin from the targets, and show that there is always
a valid tour regardless of the number of targets. Then, we prove that the longest
tour can be only twice the length of the shortest valid tour.

3.1 The Case when Targets Never Reach the Origin

Let d; be the initial distance between the target s; and the origin, i.e. d; = |p;|
where p; is the position of s; in the plane. If the target is moving towards the
origin, then we define v; to be negative, otherwise v; is positive (see Figure 3).

First, we will determine the optimal order to intercept the receding targets,
if all of the targets move away from the origin. Later, we will determine the

q o 52
2
V3
S3O—> o Oc— >

i
<

Fig. 3. Two targets, s; and ss, are moving directly away from the origin
at positive velocities v; and vs, starting at distances d; and ds. A third
target sz approaches the origin, and thus its velocity vz is negative. The
pursuer returns to the origin after intercepting each target.

order for intercepting targets when all targets move towards the origin. Finally,
under the right conditions, we can combine the two orderings to obtain a single
optimal ordering for a mix of approaching and receding targets.

Our solution for the case when targets move away from the origin is to
intercept targets in increasing order of their ratios g—:. Note, that projecting

backward in time, g—’ is the amount of time since the target intercepted the

origin. Thus, the ratio ;l—’ corresponds to what we denote as the age of a target.

The following theorem ioroves that the optimal algorithm must intercept the
targets in non-decreasing order of their ages (i.e. younger targets are intercepted
first).

Theorem 5 In Moving-Target TSP with Resupply when all targets move directly
away from the origin, the optimal tour intercepts the targets in non-decreasing
order of their respective ratios g—:.

Proof sketch: First, we show that the theorem is true when an instance of
Moving-Target TSP with Resupply contains only two targets. Let ¢, » be the
time required to intercept s; and then intercept s,. Similarly, let ¢5; be the
time required to intercept s; and then intercept s;. We assume that s; is younger
(the other case is symmetrical). We would like to show that ¢; » < ?5 1. The time

required for the pursuer to intercept s; is v2:ill. Afterwards, intercepting s» will

take time 2 - (da + 02:111 -v2)/(v —v2). Algebraic manipulation yields t1 o —t21 =
%. If 51 is younger than ss, then % < z—z and dy - vs < ds - vy. This
proves that #; » <51,

Given that Theorem 5 is true for two targets, we show that it is also true for
any number of targets. Assume towards the contradiction that in the optimal
tour, the pursuer intercepts two consecutive targets, first s; and then s;, in non-
increasing order of their ages, i.e. d;/v; > dj/v;. First intercepting s; and then
intercepting s; will require no less time than intercepting them in the reverse
order, namely s; first and then s;. Thus, if the pursuer would alternatively

intercept these two targets s; and s; in the reverse order, it would have time to

wait at the origin right after intercepting the second target, and then continue
the rest of the original tour using the original interception order. But by Lemma
1, this means that the original (presumably optimal) tour is not optimal, since it
can be improved. Thus, all pairs of consecutive targets in an optimal tour must
be intercepted in nondecreasing order of their d;/v; ratios. n

Next, we analyze an analogous variant where all targets are approaching the
origin. This variant is the time reversal of the previous variant where all targets
are receding. The concept of the “age” of a target, however, is replaced with the
concept of the “dangerousness” of a target. The problem of intercepting targets
moving towards the origin can thus be reformulated as requiring a pursuer to
defend the origin (against, e.g., incoming missiles).

The difference between the time reversal of the resupply variant where all
targets move away from the origin and the case when all targets move towards
the origin, is that a target may pass through the origin and then move away
from it. This possibility makes the scenario quite complicated, because it causes
an implicit change in direction which is absent in the first variant. Therefore,
we consider only valid tours where no targets pass through the origin before the
pursuer intercepts them.

Lemma 6 Let all targets move towards the origin, and let T be the tour which
intercepls targets in non-decreasing order of their respective ratios 4. If T is a
valid tour, then it is an optimal tour for Moving-Target TSP with Resupply

Note that if we have a mixture of approaching and receding targets, then we
should intercept the receding targets first. The longer we wait to intercept these
targets, the further away they will be when we do intercept them. Targets that
move towards the origin should be allowed as much time as possible to come
close to the origin. Therefore, if we assume that no targets will pass through
the origin while we are pursuing the targets that move away from the origin,
then we should first intercept targets that are moving away from the origin,
and then intercept targets that are moving towards the origin. Further, if we
can intercept the receding targets and still intercept the approaching targets
in increasing order of their dangerousness before any target crosses the origin,
then the optimal tour for intercepting all of the targets is to first intercept the
receding targets in order of increasing age and then to intercept the approaching
targets in order of increasing dangerousness. This is formalized in the following
theorem.

Theorem 7 Let T be the tour which first intercepts targets moving away from
the origin in non-decreasing order of their ratios ff—’ and then intercepts the

targets moving towards the origin in non-decreasing order of their ratzos L IfT
15 ¢ valid tour, then it is an optimal tour for Moving-Target TSP with Resupply

3.2 “Defending” the Origin Against Approaching Targets

In this subsection, we consider Moving-Target TSP when all targets approach
the origin. We first show that if we intercept targets in order of most dangerous

to least dangerous, we will intercept all of the targets before any of them reach
the origin. Next, we observe that from among all tours which intercept all targets
before they reach the origin, the tour that intercepts targets in order of most
dangerous to least dangerous is the longest. Finally, we can show that even this
longest tour is never longer than twice the optimal tour which intercepts all
targets before they reach the origin.

Although we can prove that the strategy of intercepting targets in order
of least dangerous to most dangerous is optimal when no targets intercept the
origin, it is still open whether there is an efficient algorithm for determining
the optimal intercept order when some targets may pass through the origin
before being intercepted. We can prove, however, that there is always a tour
that intercepts all targets before they reach the origin.

Theorem 8 Let T be a tour that intercepts targets in non-increasing order of
g—:. Then T is the slowest valid tour.

Lemma 6 and Theorem 8 lead to a natural question: what is the shortest valid
tour? (i.e. the tour which intercepts all targets, yet prevents any targets from
passing the origin). A natural strategy would be to always intercept the least
dangerous target unless intercepting that target would allow the most dangerous
target to reach the origin. In this case, we can intercept the least dangerous target
that we can intercept and still obtain a valid tour. Unfortunately, this simple
algorithm does not always return an optimal tour.

There are instances of the Moving-Target TSP for which the slowest tour
may be twice as long as optimal. We can also prove that this bound is tight, i.e.
no valid tour takes time more than twice the optimal valid tour.

Theorem 9 For Moving-Target TSP with Resupply, when all targets move to-
wards the origin, no valid tour is more than twice the optimal valid tour.

Proof: We enumerate the targets in order of least dangerous to most dangerous.
Let T be an optimal valid tour. The slowest valid tour intercepts targets in order
of most dangerous to least dangerous (i.e. sp,...,s1). We will show that the
slowest tour can be no more than twice the length of the optimal valid tour 7" by
iteratively transforming 7" into the slowest tour. Note that this transformation is
equivalent to sorting, since the optimal tour can intercept targets in any order,
and in the slowest order, the targets are sorted in decreasing order of their
indices.

We write the tour 7" as a list of targets where the left-most targets will be
intercepted first and the right-most target will be intercepted last. Our trans-
formation starts with the right-most target in the original optimal tour 7" and
gradually moves to the left, sorting all targets in decreasing order of their in-
dices. In other words, at each step of our transformation, the current target, say
s;, and all targets to the left of s; hold the same positions as in the tour T,
while all of the targets to the right of s; are already sorted in decreasing order
of their indices. The step consists of removing target s; from the current tour
and inserting it into its proper position in the sorted list to the right.

Let ¢; be the time required to intercept the target s; in the original optimal
tour 7. Now, we show that each step of the transformation increases the total
time of the tour by at most ¢;. Note first that removing target s; from the current
tour cannot increase the total time of the tour. Indeed, the pursuer may wait
for time ¢; instead of intercepting the target s;. Inserting the target s; into its
proper place in the sorted list decreases the time for intercepting targets to the
right of its new location, because they will be intercepted later, i.e. when they
will be closer to the origin. Similarly, the time to intercept the target s; in its
new position is at most ¢;. Thus, inserting can increase the total time of the tour
by at most ¢;. Since each step of the transformation increases the cost of the
tour by t; for all s;, the final tour may be at most twice the original cost. n

4 Multi-Pursuer Moving-Target TSP with Resupply

In this section, we address a generalization of Moving-Target TSP with Resupply
when there are multiple pursuers. This generalization can also be considered as
a special dynamic version of the well-known Vehicle Routing and Multiprocessor
Scheduling Problems. We restrict ourselves to the case when targets move strictly
away from the origin and all & pursuers have equal speed (normalized to 1).

In the presence of multiple pursuers, Moving-Target TSP may have different
time objectives. In the Vehicle Routing Problem, the typical objective has been
to minimize the total tour time, i.e. to minimize the sum over all pursuers of all
periods of time in which a pursuer is in operation®. In multiprocessor scheduling,
a common objective has been to minimize the makespan, or in other words, to
minimize the time when the last pursuer returns to the origin.

Note that achieving the makespan objective may be more computationally
more difficult than the total time objective, since for stationary targets, min-
imizing the makespan is equivalent to the NP-hard Multiprocessor Scheduling
Problem, whereas the total time objective is invariant over all schedules. In the
presence of moving targets, the problem of minimizing the total time also be-
comes NP-hard. To show this, we need the following lemma.

Lemma 10 Let d;/v; =t be the same for all targets s;, where i = 1,...,n. For
each target s;, let u; = (14 v;)/(1 — v;). The time required to intercept targets
51, ..., 5p with one pursuer is equal to t - ([T_; u; — 1).

Lemma 10 implies that the problem of distributing n targets between two
pursuers includes as a special case the well-known NP-hard problem of parti-
tioning of a set of numbers into two subsets with each having the same sum.

Theorem 11 Moving-Target TSP with Two Pursuers and Resupply is NP-hard
when the objective is to minimize the total time.

® We assume that each pursuer is in operation starting from the time ¢t = 0 until its
final return to the origin.

4.1 Targets with the Same Age

Lemma 10 yields a reduction of Moving-Target TSP with k pursuers (in the case
when all targets have the same age) to the standard Multiprocessor Scheduling
Problem: given a set of n jobs with processing times ¢; and k equivalent proces-
sors, find a schedule having the minimum makespan.

There are several different heuristics for the Multiprocessor Scheduling Prob-
lem: list scheduling, longest processing, and many others, including a polynomial-
time approximation scheme [3]. Unfortunately, the error estimates for these
heuristics cannot be transformed into bounds for Moving-Target TSP with Re-
supply and multiple pursuers because a multiplicative factor corresponds to the
exponent in such transformations. A tour in which the next available pursuer is
assigned to the next target (to which no pursuer has yet been assigned) from
the list will be called a list tour.

Theorem 12 Let 54 =t be the same for all targets s;, for i = 1,...,n. Then
14v;

1—v;

the list tour takes total time at most max;—y . p times optimal.

This theorem implies that if the speed of any target is at most half the speed of
pursuer, then the list tour interception order has an approximation ratio of 3.

4.2 Targets Moving with Equal Speed

In the case when there are multiple pursuers and all targets have the same
speed v, we can efficiently compute an optimal solution. Similarly to the method
outlined above, we order the targets by increasing value of their d; /v;, but since
v; = v is the same for all targets, this reduces to ordering the targets by increasing
initial distance from the origin. We have found that a very natural strategy
suffices: send each pursuer after the next closest target to the origin at the time
when pursuer resupplies at the origin. We call the resulting tour “CLOSEST”
and we can prove that it is optimal.

Theorem 13 The tour CLOSEST is the optimal tour for Moving-Target TSP
with multiple pursuers when targets have equal speeds.

Proof sketch: It can be shown that the cost of a tour for a single pursuer to
intercept n targets having equal speeds v; = v is T, = Y./, t; ¢+ where
c=14+2-y%= andt; =2 1d_’v (in other words, t; is the time for a pursuer to
intercept a target if it intercepted that target first). In the tour CLOSEST, each
of the k pursuers will intercept targets s;, sgyi,. .., Sk[n/k]+s, Where i = 1,... k.
Given a pair of targets which are intercepted by different pursuers such that each
pursuer has an equal number of targets left to pursue after intercepting them,
the targets may be swapped between the two pursuers (i.e. each pursuer may
intercept its counterpart’s target instead of its own), while keeping the total time
required the same. This allows us to transform any optimal tour into the tour
CLOSEST, by using a sequence of target swappings between different pursuers,
without increasing the total tour time. Therefore, the tour CLOSEST requires
the optimal total time. n

5 Conclusion and Future Research

We formulated a Moving-Target version of the classical Traveling Salesman Prob-
lem, and provided the first heuristics and performance bounds for this problem
and for other time-dependent variants. Topics for future research include provid-
ing approximation algorithms for more general variants of Moving-Target TSP
(e.g. where targets are moving with constant accelerations), or else proving that
that no polynomial-time approximation algorithms exist unless P = N P. Also,
it may be possible to generalize our results for Moving-Target TSP with Re-
supply to cases when the pursuer may service multiple targets before requiring

resupply.

6 Acknowledgements

We thank Piotr Berman for his help in developing the O(n?) dynamic program-
ming algorithm for one-dimensional Moving-Target TSP. We also thank Mike
Nahas for implementing that algorithm and for finding areas where additional
clarification was needed. Finally, thanks go to Bhupinder Sethi and Doug Bate-
man for numerous fruitful discussions.

References

1. T. H. Cormen, C. E. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

2. C. H. Helvig, G. Robins, and A. Zelikovsky. Moving target tsp and related prob-
lems. Technical Report CS-98-07, Department of Computer Science, University of
Virginia, December 1997.

3. D. Hochbaum, editor. Approzimation Algorithms for NP-Hard Problems. PWS
Publishing Company, Boston, MA, 1995.

4. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy, and D. B. Shmoys. The Traveling
Salesman Problem: a Guided Tour of Combinatorial Optimization. John Wiley and
Sons, Chichester, New York, 1985.

5. C. Malandraki and M. S. Daskin. Time dependent vehicle routing problems: For-
mulations, properties and heuristic algorithms. Journal of Transportation Science,
26:185-200, August 1992.

6. C. Malandraki and R. B. Dial. A restricted dynamic programming heuristic algo-
rithm for the time dependent traveling salesman problem. Furopean Journal of
Operations Research, 90:45-55, 1996.

7. G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Applica-
tions. Springer Verlag, Berlin, Germany, 1994.

8. G. Rote. The travelling salesman problem for moving points on a line. Technical
Report 232, Technische Universitat Graz, 1992.

9. R. J. Vander Wiel and N. V. Sahinidis. Heuristic bounds and test problem genera-
tion for the time-dependent traveling salesman problem. Journal of Transportation
Science, 29:167-183, May 1995.

