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ABSTRACT

A k-extremal point set is a point set on the boundary of a &-sided rectilinear convex hull. Given
a k-extremal point set of size », we present an algorithm that computes a rectilinear Steiner
minimal tree in time O{k*n). For constant k, this algorithm runs in O{n) time and is
asymptotically optimal, and for arbitrary £, the algorithm is the fastest known for this problem.
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1. Introduction

Given a set § of » terminals in the plane, the rectilinear Steiner minimal tree problem is to find a minimum-Jlength
interconnection for § using only vertical and horizontal edges. In finding this tree, new points called Sieiner points
can be created. The decision problem associated with the reciilinear Steiner minimal tree problem is NP-complete
{6]. Nevertheless, the optimization problem is important enough that substantial research activity has focused on
heuristic and special-case algorithms, as well as discovering new properties of Steiner trees [9].

In this paper, we devise an algorithm to construct a rectilinear Steiner minimal tree when § lies on the
boundary of its rectilinear convex hull. A rectilinear convex hull Reonv (§) is a smallest-area simply-connected
figure containing a shortest path between every pair of terminals in S, where paths consist of horizontal and vertical
edges. Equivalently, if one places a coordinate axis at any point on the boundary of Rconv (S), at least one of the
guadrants is empty [3]. The boundary B (8) of Rconv () consists of vertical and horizontal edges.

Let B =B(§). Call a point set which lies on B extremal. Our contribution is a Steiner tree algorithm for &~
extremal point sets; a k-extremal point set is an extremal point set where B has exactly £ sides. We give an
algorithm that finds a rectilinear Steiner minimal tree for k-extremal point sets of size # which runs in O (k* 1) time.
If k is a constant, our algorithm runs in time linear in the number of input points, If k is near », it is as efficient as

the fastest known algorithm for this problem.



Algorithms for an extremal point sets appear in Bern [3] and Provan [12]. Given an extremal point set of size
n, Bern’s algorithm runs in O (#°) time and Provan’s in O (n®) time. Neither algorithm depends on £. In addition to
the work of Bern and Provan, some relevant work on special-case rectilinear Steiner minimal tree algorithms
appears in the literature. Aho, Garey, and Hwang [2] give a linear-time algorithm when S lies on two parailel lines,
and they give a cubic-time algorithm when § lies on the boundary of a rectangle, The latter result was subsequently
improved to linear time by Agarwal and Shing {1} and Cohoon, Richards, and Salowe [4]. Richards and Salowe
[13] simplify results of Aho, Garey, and Hwang [2] and Hwang [8] and study L- and T-shaped rectilinear convex
hulls. All of the algorithmic results above are subsumed or improved on by this paper.

The remainder of the paper is divided up into five sections. In Seciion 2, the theoretical underpinnings of the
algorithm are prescnted. The main result is Theorem 1, which describes a canonical form for rectilinear Steiner
minimal trees. With Theorem 1, we are able 1o restrict how connected components of a “*canonical’’ tree appear in
the interior of Reonv(§). One such case is the simple Steiner tree: a simple Steiner tree is a Steiner tree whose
intersection with the interior of Rconv (S) is a set of nonintersecting line segments, each of which only has endpoints
on B. In Section 3, an algorithm for simple Steiner trees is given; simple Steiner trees form the basis for a dynamic
programming algorithm for the remainder of the forms in Theorem 1; this algorithm is given in Section 4. The
chief result of Section 4 is Theorem 2 which shows that the connected components can be made 1o lie on a limited
number of grid lines called ‘*blue’’ grid lines. We show that there are O (k) blue grid lines, and each subproblem is
bounded by at most four blue grid lines, giving a total of O (k*) subproblems to solve. Each subproblem takes
O (k* + n) time, giving an O (k% + k* n) time algorithm. In Section 5, we reduce the time complexity to O (¢* n)
by combining subsolutions more carefully. Section 6 summarizes the results and gives directions for further
research.

2. A Canonical Form for Steiner Minimal Trees

In this section, we prove several resulis to restrict our search for rectilinear Steiner minimal trees. This section is
divided up into two subsections. The first subsection presents terminology that will be used throughout the paper,
and the second subsection gives the theoretical results describing the canonical form,

2.1. Terminology

Let the set § of input points be called terminals. Define the grid graph for § in the following manner, Draw vertical
and horizontal lines through each terminal; the vertices of the grid graph are the intersection poeints of these lines,
and the edges are line segments connecting two adjacent grid points. The grid points will sometimes be called
Hanan grid points. Hanan [7] proved that there is a rectilinear Steiner minimal tree which is a subset of the grid
graph. Yang and Wing [14] further proved thal there is 2 rectilinear Steiner minimal tree which is a subset of the
grid graph within Reonv (§).

We further restrict the search for rectilinear Steiner minimal trees by developing and applying tie-breaking
rules. Among the set T of rectilinear Steiner minimal trees for § lying on the grid graph within Reonv (§), we prefer
certain trees and prove that in such trees, forms and positions of Steiner tree edges are limited. Given 1,let 1y ¢t
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be the wees which maximize length along the boundary B. Let 1, < 1; be the trees where in addiiion the veriex
degree of the terminals and the ‘‘inner boundary corners’ of B is maximized. The terminals and the inner boundary
comers of B will be called nodes. (Inner boundary corners of B are defined below; this tie-breaking rule is called
node degree.) Finally, let 13 ¢ T, be trees which are leftimost in the sense described below. Trees in 15 are called
optimal Steiner trees. For future reference, we highlight and abbreviate the tie-breaking rules in the order they are
applied:

1. Boundary Length.

2. Node degree.

3. Leftmost trees.

There are three fundamental operations that will be performed on Steiner irees in this paper: sliding, flipping,
and ransplanting. The sliding operation is performed on H-shaped subtrees as indicated in Figure 2.1, The crossbar
edge can be slid, back and forth, without increasing length, The flipping operation is performed on interior corners
(a pair of lines incident at a degree two vertex which is not a terminal). The two edges forming the corner can be
flipped as depicted in Figure 2.1. Finally, in the transplanting operation, an edge ¢ is added to a tree to form a single
cycle, and an edge ¢ on the cycle is deleted, where the length of e is less than or equal to the Iength of ¢”. None of
these operations increases the length of the Steiner free,

We need to be more specific in defining slides and flips to say when trees are leftmost. There are four
directions to slide in and four directions to flip in. The directions and two examples are shown in Figure 2.1, For a
tree 1o be leftmost, it is not possible to make a sequence of N- and S-slides ending in a NW-flip, a SW-flip, or a W-
slide in the interior of B.

Let a comer whose horizontal edge is to the right of its vertical edge be called a right-bending corner and ail
others lefi-bending corners. One consequence of the definition of leftmost trees is the following fact about comers
in the interior of B: All corners in the interior of B must bend towards the right since a NW- or SW-flip can be

N
NW NE :
- Wslide
W E
sw o \ NW-flip

Figure 2.1 — Directions to Slide and Flip



applied to a left-bending corner.

An interior edge is an edge inside B that does not properly contain any terminals or Steiner points. An
interior line consists of one or more adjacent, collinear interior edges. A complete interior line (sometimes called a
complete line when the context is clear) is an interior line which streiches completely across Rconv ($). The
relative interior of a line does not include the endpoints, but the closure does. Similarly, the relative interior of a
figure does not contain the boundary, but the closure does. Edges are said to be properly incident to a line if they

mtersect the relative interior.

A "non-terminal” of degree two is called a corner-vertex, a Steiner point of degree three is called a T-vertex,
and a Steiner point of degree four is called a cross-vertex, Steiner points which are connected by a single edge are
said to be adjacent. Two interior lines I, and [, are said to alternate off a third line 1 if I; and [, intersect the
relative interior of [ at two adjacent T-vertices, and [, and [, are on opposite sides of . Edges are said to alternate
off of 1if every adjacent pair of lines incident to the relative interior of [ aliernates.

As mentioned, a comer consists of two lines incident to a corner-vertex. These lines are called the legs of the
comner. A corner is a complete corner if the corner is inside B, but both legs intersect B. A T consists of three lines
intersecting at a T-vertex. The two collinear lines are called the head of the T, and the third line is called the body.

The boundary contains a series of boundary edges. Boundary edges can meet at terminals or boundary
corners. With respect to the interior of Rconv (S), an inner boundary corner is a reflex angle, and an outer
boundary corner is a convex angle. Note that all outer boundary corners are terminals. There are at most four
special boundary lines, or serics of collinear, adjacent boundary edges, called tabs. Tabs connect two outer
boundary corners and are at the positions as far to the north, south, east, and west as possible on B,

2.2, The Canonicai Form
In this subsection, we present results (o restrict the forms of optimal Steiner trees.

In general, there are only four extreme points, so tabs may be degenerate and contain only one point, There is
another type of degeneracy where regions in Reonv {§) of nonzero area are connected by rectilinear lines. These
two degeneracies are depicted in Figure 2.2. In order to remove these degeneracies, we preprocess the rectilinear
convex hull, Suppose the left tab is degenerate, and let a be the single lefimost point in Reonv (S). By the result of
Yang and Wing, we can add a new terminal b as depicted in Figure 2.2 and remove the edge to @ to get a new
problem with a nondegenerate tab. All tabs can be processed in this manner. Similarly, if regions of nonzero area
are separated by rectilinear lines, Yang and Wing’s result implies that the rectilinear convex hull can be separated
inlo two or more nondegenerate subproblems. Nole that the nonempty regions can be identified with a simple

linear-time scan[11]. We will therefore assume in the text below that no degeneracies are present,

Lemma 1: Let p; and p, be two adjacent Steiner points lying on interior line L In an optimal Steiner tree, the
lines incident to p, and p, perpendicular to / must be on opposite sides of L.



Degenerate Tab

Two Regions With Nonzero Area

Figure 2.2 — Two Degeneracies

Proof: Let ¢, and e, be perpendicular to [ and incident to py and p,, respectively. Assume to the contrary e,
and e, lie on the same side of I; if either line crosses [ we ignore the other portion. One of the two lines, say ¢,
ends first; that is, ¢ is no Jonger than ¢,. Note e, cannot end at either a comer-veriex bending towards ¢, or a T-
vertex; otherwise, the portion u of / between e and e, can be slid to decrease total length. (Note that no portion of
the Steiner tree can be between e, and e, and reachable by sliding u. This observation will be used implicitly in
several proofs.) If e, ends at a corner-vertex with the corner pointing away from e, the corner can be flipped to
decrease total length, Therefore, e, must hit the boundary at point a.

There are two boundary edges incident to point g. If one of the edges is perpendicular to e and between ¢;
and e,, shiding u to @ increases boundary length; if not, e; ends at a boundary corner, and sliding # to a increases
node degree, U]

Lemma 2: In an optimal Steiner tree, edges properly incident to a leg of a corner must alternate. The edge
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closest 1o the corner-vertex must point in the direction opposite of the other leg of the corner.

Proof: Let C be a comer with legs §; and §,, and let edge e be the edge closest to the corner-veriex ¢
intersecting §;. If ¢ and §, do not point in opposite directions, either ¢ points in the same direction as §, or ¢
intersects $; at a cross-veriex, In either case, flipping C decreases the length of the Steiner tree. (See Figure 2.3.)
If there are exactly two edges incident to one leg of a corner, the argument above and Lemma 1 imply that they
must alternate. If there are three or more edges properly incident o a leg, Lemma 1 implies that the edges must
alternate. [

Lemma 3: In an optimal Sieiner tree, the body of a T mast hit the boundary. Furthermore, no interior edges are
properly incident to the body of a T.

Proof; Let b be the body of a T, and let 4 be the head. The first vertex that line b intersects is either an
interior vertex or a point on the boundary. If it is an interior vertex, it has either one or two edges perpendicular to
b. If there is only one perpendicular edge, the vertex is either a corner-vertex or a T-veriex. Lemma 2 implies that
the edges incident to the legs of a corner must alternate, so the first point that b intersects cannot be a comer-vertex.

We now consider the case when b intersects one perpendicular edge at a T-vertex. Let e be the edge
perpendicular to & at the T-vertex, lei £ be the portion of & pointing in the same direction as e, and let ¢ be the portion
of b between ¢ and f. One of ¢ and f must end first (i.e. closest to b). Using the same argument as in Lemma 1, it
follows that the only possibility is for f to end before ¢ at a corner bending away from ¢. There are four cases where
the comer bends towards the right and the configuration does not violate Lemma 2; they are depicted in Figure 2.4.
In each case, the trees are not lefimosi: In cases 2 and 3, we can perform a W-slide on 7. In case 1, one can do aN-
slide on ¢ followed by a NW-flip, and in case 4, we do a S-slide on ¢ followed by a SW-ilip. We conclude that f
cannot end first, so b cannot first intersect a T-vertex.

Finally, if & intersects two perpendicular edges at vertex c, let ¢ be the portion of & between A and ¢ (¢ may be
all of by, If ¢ is vertical, the tree is not lefimost as we can perform a W-slide. If 7 is horizontal, let e be the edge
incident to ¢ above b, and let £ be the portion of / above b. One of e and f must end first, though not at a T-vertex or
cross vertex (N-slide on ¢ decreases total length) and not at the boundary (N-slide on ¢ cither increases boundary
length or increases node degree). Therefore, the first line ends at a corner, pointing towards the right. It follows
that this line [ is the rightmost of 4 and ¢, By symmetry, the lower endpoint of / also ends at a comer bending
towards the right, so shifting | towards the right decreases total length. TJ

e —

4
—3

Figure 2.3
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Lemma 4: In an optimal Steiner tree, the body of a T intersects a node.

Proof: Let b be the body of a T, and let 4 be the head. Lemma 3 shows that b hits the boundary and does not
contain any interior Steiner points. Assume to the contrary that » does not end at a boundary corper or at a terminal,
80 b must intersect the interior of a boundary edge E. There must be Steiner tree edges on both sides of b along E,
otherwise the corner at & m E can be flipped to decrease total length,

Line b can be slid in one direction until it is incident to a terminal (on either E or A), a boundary corner (on
¢gither E or h, possibly increasing the use of boundary length), or a corner on k bending away from E. The first two
possibilities contradict optimality, since node degree increases. A symmelric argument can be applied when b is
slid in the other direction. Therefore, & must end in two corners, each bending away from E, so £ can be slid away

from E to decrease total length. []

Lemma 5: In an optimal Steiner tree, the legs of a comer must hit the boundary, that is, the corner is a complete
corner. At most one of the legs can have more than one properly incident line.

Proof: Lemma 3 implies that a leg of a corner cannot be the body of a T. Since trees are leftmost, comers
must bend towards the right, so the horizontal leg of the corner cannot end at a second corner as this corner would

bend towards the left. The horizontal leg, therefore, ends at the boundary.



If the vertical leg ! of a corner ends at a corner-vertex, this must bend towards the right. Let these two comers
be called ¢ and ¢’. By Lemma 2, edges properly incident to 7 must alternate, and the edges closest to ¢ and ¢ must
point towards the left. Line / can be shifted towards the right to decrease total length, (See Figure 2.5.)

To show that only one leg can have more than one incident edge, suppose to the contrary that each leg has at
least two incident edges. Let [, be the vertical leg, and let I, be the horizontal leg. Also let e, and e, intersect [,
and let f; and f, intersect [,. (These edges are indexed according to increasing distance from the comer-vertex.)
Lemma 4 implies that e, and f, end at nodes and do not contain any interior Steiner points. Let ¢ end at ¢, and let
f» end at point d. There are four cases, depending on the orientation of the corner and whether e, is above or below
d. For one of the two possible corner orientations, two subcases are depicted in Figure 2.6. Note that ¢ must be to
the left of d by convexity, and that for the orientation in the figure, ¢ must be below d by convexity. In either case, a
series of slides and flips increases the node degree by one, since ¢ and d are either boundary corners or terminals. O

Lemma 6: In an optimal Steiner tree, the head of a T is either a leg of a complete corner or a complete line.

Proof: If one side of the head ends at a corner-vertex, then Lemma 5 implies that the head is one leg of a
complete corner. Lemma 3 states that it is not possible for the head of a T to be the body of another T, so the only
other possibility is that both sides of the head intersect the boundary. [

Let a topology be a connected portion of a Steiner tree in the relative interior of B. Since it is in the relative
interior, a topology does not contain any terminals or Sieiner points on the boundary. The main theorem limits the
class of Steiner tree topologies for optimal Steiner trees.

Theorem 1: A topology in an optimal Steiner tree satisfying the tie-breaking rules must be one of the following

types:
1. Interior lines with no Steiner points.

2. Two interior lines forming a cross with no other incident edges.
3. Interior lines with alternating edges.
4. Complete corners with no incident edges.

5. Complete comers with alternating edges incident to one leg and no edges incident to the other leg.

Figure 2.5
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6. Complete corners with one edge incident to one leg and alternating edges incident o the other leg.

These topologies may occur several times, but they are disjoint in the relative interior of the convex huil.
Furthermore, in each corner case, the edges closest to the corner-vertex must be directed opposite of the other leg of

the comer.

Proof: Suppose that an optimal Steiner tree has edges in the relative interior of B. If a topology contains a
vertical line ! incident to one boundary, [ either ends at the other boundary, bends at a corner, orendsata T. If ] hits
the other boundary, it may or may not have Steiner points, IF it does not, it is of type 1, if it has exactly one Stweiner
poing, Lemma 3 implies that it is of type 2 or 3, and if it has two or more Steiner points, Lemmas 1 and 3 imply that
the topology consists of / and incident, aliernating edges and is of type 3.

If [ bends at a corner, Lemma 5 implies that this corner must be a complete corner. Lemma 2 shows that
edges incident to a leg must alternate, and Lemma 3 proves that these edges contain no interior Steiner points and
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must hit the boundary. Lemma 5 also proves that at most one leg can have more than one Steiner point, justifying
types 4, 5 and 6.

If { ends at a T-vertex, Lemma 5 implies that the head of the T must be either a complete corner or a compiete
line. An analysis similar to the one above shows that one of the types 3, 5, and 6 must occur. A symmetric

argument can be used if / is horizontal,

3. Minimal Simple Steiner Trees

In a simple Steiner tree, only type 1 topologies from Theorem 1 can appear. Each interior line is an entire grid line,
and there are no interior Steiner points. Note that the organization of interior lines in a simple Steiner tree can be
complicated, as indicated in Figure 3.1.

We give a dynamic programming algorithm to find minimal simple Steiner trees. The basic step is of the
following form. Consider any grid line ab between boundary points a and b, where @ or b is a terminal or a
boundary comer. This defines a subproblem whose boundary B, is composed of the boundary clockwise from a to
b combined with the edge ab itself. For the terminal set on B, we find several constrained simple Steiner trees such
that no interior line is properly incident to ab; such a simple Steiner tree is an ab-tree. In particular we compute:

T, — A minimum gb-tree with a regarded as a terminal (whether or not it actually is a terminal).

T, — Analogous to T,

T — A minimum ab-tree with both 4 and b regarded as terminals.

Tz — A minimum ab-tree constrained to contain the edge ab.

A T3 tree with the edge ab removed can be regarded as a ““Steiner forest’ with two components, separating a and
b.

Figure 3.1 - A simple Steiner tree
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3.1. Overview

The algorithm generates each B, with four line sweeps beginning at each of the tabs of B and progressing across
the interior to the opposite tab. The processing of all four sweeps is interleaved; we always work next on the B,
that has the smallest area (the process is similar to merging four lists), and the four degenerate zero-area cases are

processed first.

It can be shown that at least one of the tabs in a simple Steiner tree has no interior lines properly incident to it.
This is because a simple case analysis shows that at most two abs can have incident lines in any simple Steiner tree.

Lemma 7: Let ¢ and b be two endpoints connected by tab [, counterclockwise, and assume that there is a
minimal simple Steiner tree where no interior line is incident 10 L,. Then a minimal simple Steiner tree is the
shorter of T, U k,, and Tz, where k,, i8 I, with its longest boundary edge deleted.

Proof: Let T be a minimal simple Steiner tree with no Iines incident to ;. If T contains [, then it is the
same length as T, If T does not contain [, there must be a gap between « and b, so a and b must be connecied by
T, and the remainder of the terminals must be connected by k. [

The algorithm actually begins with a preprocessing step discussed below. Lemma 7 guaraniees we can get a
minimal simple Steiner tree if we correctly compute T,, Ty, Ty, and Tz, The remainder of this section describes

how to construct these trees.

Note that the m interior edges of a simple Steiner tree divides the interior of B into m + 1 subregions, called
open regions since they are free of internal lines. Some open regions are simple rectangles while others are more
complex. Each open region is rectilinearly convex and so has four tabs.

Ouwr algorithm uses the fact that for any ab-tree all of ab is on the boundary of one open region. Conceptually,
we solve the ab case by exhaustively trying all possible open regions abutting ab. We recursively solve the
subproblems *“‘behind’’ the region’s other three tabs, not including ab, and combine these to calculate T, etc., for
each open region.

A canonical region for ab is defined without reference to a tree. Formally, it is a rectilinearly convex region
containing ab whose other three tabs contain complete grid lines; the remainder of the boundary is from B,,. An
analysis of a canonical region below will be over all ab-trees with no internal lines properly within the canonical
region. Note that given an ab-tree the open region that includes ab is itself a canonical region. Therefore if we
exhaustively analyze all canonical regions then we will consider the open region of the optimal ab-tree.

We will see below that we can confine our search o a subset of all canonical regions. In particular we define
a minimum canonical region t0 be a nonempty canonical region not contained in another canonical region. In
Figure 3.2 there are several minimal canonical regions; two are bounded by the tabs ¢;, €5 ¢5 and e, e4 €4. Note
that there are many other canonical regions, such as the one bounded by e, 4 ¢, that are not minimal.

We give some definitions that allow us (o collapse many cases into one analysis. Let d,, be the (rectilinear)
distance from x to y. Let b,, be the length of the boundary B, (the portion not including ab) from x to y. Let g,, be
the length of the boundary from x to y with the longest inter-terminal gap removed (where x and y are regarded as
terminals in this definition, even if they are not). Let £, be the length of the boundary from x to y with the gap from
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Figure 3.2 - Minimal canonical regions

y to the terminal nearest y removed; it is zero if there are no terminals between x and y. Note that f,, is not
necessarily f,.. Let Ly, be the length of T, and so on.

We refer to L, and similar quantitics as “‘analyses”™ below. While L,, is just an integer we assume that
associated with it is a record of how it was calculated. In particular, there are several ways T, could have been
constructed (which are explicitly listed below) and we keep a record of which way was used. As is typical in
dynamic programming algorithms, we do not store T, but record how it was built from previous subanatyses with

back-pointers,

3.2, The General Step

We begin by giving the details of how to compute the best possible T, etc. for a particular canonical region. Since
for every open region there are one or more corresponding canonical regions, computing the best possible trees for
each canonical region and minimizing over all such regions must give the correct answer. In a subsection below we
show how to speed up this procedure considerably, We will assume hereafter, without loss of generality, that ab is

horizontal and B, surrounds a region above i,

To delimit a canonical region we need to specify its upper horizontal tab and the vertical tabs on the left and
right. A generic instance is shown in Figure 3.3, Some of the regions behind the tabs of the canonical region may
be empty, thus creating simpler degenerate cases.

Note that we have atready calculated 75, Tog, Te, Ty, T3, and so on, since these correspond to smaller-area
subproblems. For any T if we remove b there is an inter-terminal gap on By, excluding ab, between the
{clockwise) last terminal connected to g and the first terminal connected to b; call this gap the cur for that T, To
calculate Tz we try all possible places where the cut can occur. There are several possibilities. If the cut occurs
properiy between h and ¢ then
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Figure 3.3 - A general canonical region above line ab.

Lap = dap + by + Loy + gpe + Lgg + bpp + Log + by
If the cut is between e and f then

Lip=duy +bag+ Loj+bpe + L —dyp + b + Loy + by
If the cut spans across ¢ then

Lig=dayy +bog+Lop+ b+ Lyg+ fro + Ly +dy

This last case is only applied when ¢ is not a terminal. The other cases are analogous. Lz; for a particular canonical
region is the minimum over all these choices. The various boundary length quantities, such as b,; and f, are

computed in a preprocessing step.
To compute T, for this particular open region we get this simple relation,

| L@
Loy = mun Bag + Lo+ bpe + Lop+ bg + Log + by

These cases are based on the presence or absence of the line between @ and b in a minimal simple Steiner tree. The
calculation of L, depends on whether & is a terminal or not. If so we use L,;, otherwise there may be terminals

between d and b so we get
bag + Lgk + bhe + Lef + bfc + Lcd +fdb
L, =min
Loy
The calculation of L, is symmetrical.

The details for each of the cases are often simplified due to degeneracies; for example ¢ may directly connect
1o b (so d is b and the region behind cd is empty). Of course, in some of these cases it is possible for more than one
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tab to be “‘behind,’” say, gh; in that way Figure 3.3 is not completely general. However the algorithm is general
enough to include all these cases, since degenerate cases make a zero contribution, After trying each canonical
region for this @ and b, we can combine the trees to report T, eic., breaking ties arbitrarily. (If it is desired to abide
by the boundary or leftness rules then ties should be broken accordingly; we do not make use of these rules though
for simple Steiner trees.)  This completes the sketch of the general step of the algorithm.

3.3. Using Minimal Canonical Regions

What is the time complexity of this approach, not counting the preprocessing step? Each sweep does O(n)
iterations of the general step. Each such step exhausts all O (n*) choices of tabs (defining a canonical region),
leading to O ( n*) total time. We now show how to implement this in O (n + &?) time.

This lemma states that we can restrict our attention to minimal canonical regions.

Lemma 8: If canonical region F is contained in canonical region E then the ab-trees constructed for E will be no
shorter than those for F.

Proof: This follows immediatedly since each ab-tree consistent with E is also consistent with F. [,

To characterize a minimal canonical region we first note that its top tab f, cannot be skid down. It follows
that £, intersects an inner boundary corner. Further its left tab f; cannot be slid to the right so either it intersects an
inner boundary corer or it intersects ¢ itself. Similarly its right tab f3 cannot be slid left and intersects an inner
boundary corner or b. Of course if f5 is the next grid line above ab then it is not slid down, even if possible, since
that creates an empty region.

We can make further observations about these tabs. Given f,, let o be its left endpoint and let B be its right
endpoint. If the region is a minimal canonical region, f; must be incident to the leftmost of @ and o, and f3; must be
incident to the rightmost of b and B. The key observation is that we need only try O (&) placements of f, to exhaust
all the minimal canonical regions. In particular we successively place f; so that it intersects each inner boundary
corner above ab, and, finally, we place it on the next grid line above ab. The latter case is the covering line case.
Once f, has been placed then f; and f5 are forced into positions that can be determined in constant time.

This approach seems to take O (kn) time. In most cases, however, only one placement of f5 needs to be tried.
Suppose that neither g nor b is an inner boundary comer. In that case the boundary B,, has vertical edges
intersecting both @ and b. It follows that there is only one minimal canonical region, the covering line case, Since
this case can be handled in constant time and there are only O (k) cases where ab intersects an inner boundary
corner, the algorithm takes O (n +k2) total time. As we will see the preprocessing can be done within the same
time bound leading to an overall O (n + k*) time algorithm.
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3.4. The Three-sided Case

We can make an improvement for certain boundaries B that will occur in the next section, Let the portion of the
boundary properly between two tabs be called a staircase. While every rectilinearly convex region has four tabs,
some of its four staircases may be empty. We say a boundary is three-sided if at least one staircase is empty.

For the three-sided case, we can prove a restriction on the placement of £ by a simple case analysis, when f
is not the covering Hine. Let ¢, be the boundary line along B between a and the inner boundary corner to its left, and
let e, be a similar line to the right of &; either could be of zero length. Then either f, intersects f; above e, or it
intersects f4 above e,

We can effectively exhaust all placements of f5 by trying each placement of f; or f3 that intersects e, or ¢,
respectively. Recall that if, say, f; intersects f, it must happen at an inner boundary corner. Therefore the total
number of placements of f, is the number of inner boundary corners above both e, and e;, plus the covering line
case. It follows that the total time for three-sided boundaries is O () plus the cost of preprocessing.

3.5. Preprocessing

We begin by regarding the terminal points on the boundary as being vertices on a simple cycle; call these terminal
vertices. Further the O (k) inner boundary corners and the points orthogonally opposite these cormers are also
vertices on this cycle, placed in their correct relative positions relative to the terminal vertices; call these new
vertices. Note that a terminal vertex and a new vertex can coincide. The length of an edge in the cycle is just the
boundary length between them.

To compute b,,, for any two vertices x and y, we begin by computing the cumulative length function around
the cycle, starting at any point. In constant time each b, can be computed by simple subtraction.

To compute f,, and f,,, for any two new vertices x and y, we first find for each new vertex the nearest terminal
vertex, in both directions. Also for each terminal vertex we record its nearest new vertex, in both directions. This is
done by scanning the cycle. Since for any new x and y the gaps nearest 1o x or y can be found using the b’s above,
fiy and f,, can now be computed in constant time.

The computation of g,,, for any new x and y, is more complicated, but can be mapped to a solved problem. In
particular, consider an array of r numbers and a set of m intervals {(contiguous subarrays). The problem is to report
the maximum array element in every interval. There is an O (n + m) time algorithm known [5}; it constructs a
*‘Cartesian tree’’ and performs constant-time nearest common ancestor queries on the tree for each interval.

To map our problem to the above problem we can form an array of the inter-terminal lengths. (Actually it is
simplest to unroll the cycle twice to form an array twice as long, to avoid any wraparound.) Then 1o compute g,,
we find the nearest terminals 10 x and y, between x and y, and use these as the endpoinis of an interval. This interval
query returns the largest unbroken gap between x and y. Hence each of the O (k%) quantities 8x ©an now be
computed in constant time given the b’s above, leading to O (r + k2) time for preprocessing.
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4. The Basic Algorithm

In this section, we present an algorithm to find a rectilinear Steiner minimal tree for k-extremal point set S.
Theorem 1 implies that, given §, the topologies of rectilinear Steiner minimal trees can be resiricted o six cases,
possibly occurring many times in B. Simple Steiner trees were considered in the previous section. In this section
we give an algorithm for discovering any other trees. In particular, we find trees containing at least one complete
line with incident lines or at least one complete corner; these are called nontrivial topologies.

We use a dynamic programming approach: given a particular nontrivial topology and the sides it hits, we
restrict its intersection points and then decompose the convex figure into at most four convex subproblems. Each
subproblem involves a smaller area, but possibly more points, than the original problem. Subproblems will be
divided along special grid lines called blue lines, We will show that there are O (k) blue lines, and since each
subproblem is bounded by at most four blue lines, the number of subproblems is Ok™*. To combine subproblem
solutions, a method introduced by Aho, Garey, and Hwang [2] is described in Lemmas 9 and 10. As mentioned in
the previous section, back-pointers can be maintained to rebuild the actual tree. 'We indicate how 10 reconstruct the
tree at the end of Section 5. The cost of the algorithm wili be seen to be O (k* + k* r) time, which is linear in » for
constant k. This algorithm is improved to O (k*n) in the next section.

4.1. Preliminaries

Let [ be a complete vertical interior line. Let S, < § be the terminal set to the left of and including /, and let §, < §
be the terminal set to the right of and including /. Let B, be the boundary defined by [ and the portion of B to the
left of {, and let B , be the analogous boundary to the right.

ELemma 9: Suppose some Steiner minimal tree for § contains a vertical line . Then the union of the following
two Steiner trees is a Steiner minimal tree T for § containing I a Steiner ree Ty for §; of least weight constrained to
contain /, and a similar tree T for §,.

Proof: Choosing a tree of greater weight in place of T, or T, contradicts the minimality of 7. [

Note that T and T, may not be Steiner minimal trees for §; and §,, respectively.

Lemma 10: A Steiner minimal tree for the terminal set consisting of §; and all Hanan grid points along { can be
transformed by transplants to a Steiner tree T'; for §; of least weight constrained to contain /.

Proof: Consider adjacent Hanan grid points x and y in B along [. Any Steiner minimal tree T, either contains
the edge between x and y, or there is some other path from x to y. This path must use an edge ¢ between two grid
points x” and ¥, where the distance from x” 10 y* equals the distance from x to y. If e is transplanted to the boundary
edge between x and y, total length remains the same. Repeating this gives a minimum length rectilinear Steiner tree
for §, containing /. [J
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A similar procedure can be developed to find a constrained Steiner minimal tree where two interior lines [ and
s are constrained to occur, provided { and s are orthogonal. Note that the number of terminals on the boundary is at
most 2r, since a rectilinearly convex boundary can intersect at most 2r grid points.

Our algorithm subdivides B by atternpting to find the location of nontrivial topological backbones. For a
complete line { with incident edges, the backbone is /, and for a complete corner, the backbone consists of the legs
of the corner and the lines on each leg closest 1o the corner-vertex (if these lines exist). The backbones will be used
10 define the four or fewer recursive subproblems, each bounded by blue lines and portions of the original boundary.

Blue grid lines are colored by examining inner boundary corners. Consider an inner boundary corner &, as
depicted in Figure 4.1, For each choice of b, at most ten Hanan grid lines are marked blue; these lines are the dotted
lines in Figure 4.1. Reorient B by rotation so that it appears as in Figure 4.1. Point b, is the first terminal below b,
b is the first terminal to the right of b, d, is the first terminal on A below b, a, is the first terminal on A above b, 4
is the second terminal on A above b, and so on. (In this specification, if there is a terminal at b, b = b, = b, if there
is a terminal @ on A across from b, a =a; =d, and the same for €.} Note that O (k) blue lines are colored for

C
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Figure 4.1 — Blue Lines
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boundary B.

Theorem 2: There is a Steiner minimal tree where all nonirivial topological backbones appear on blue lines.

Proof: Consider an optimal Steiner minimal tree containing a nontrivial topology: Theorem 1 implies that
nontrivial topological instances are of types 2-6, each of which is considered below. We show that any nontrivial
topological instance can be slid so that its backbone lies only on blue lines. The resulting tree may not be optimal
but does have minimurmn length,

The five nontrivial topological instances of Theorem 1 can be regrouped as four complete comers and two
complete lines. This grouping is based on the parity of the number of incident edges, and the cases are depicted in
Figure 4.2. ¥ a complete corner is present, there is an even-even case, an even-odd case, an odd-even case, and an
odd-odd case. Because of Lemma 5, we rename these cases to the more intnitive zero-even, zero-odd, ong-even,
and one-odd cases, respectively. If a complete line [ is present, the.numberof-edges-incident-to-Lmay beeven-or—
odd (the cross is a special instance of the even case). Not all orientations are depicted in Figure 4.2. However, we
assume the depicted orientations are the only ones in our exposition and appeal to symmeiric arguments for the
undepicted orientations.

Let T be an optimal Steiner tree containing a nonirivial topological instance. We show that each nontrivial
topological instance can be placed on blue lines by shifting.

Case 1: A complete line with an odd number of incident edges,

Suppose that a complete line / intersects boundary edges U and D, Let the edge incident to / and closest to U be ¢,
and suppose that e intersects boundary edge L. Assume that { is slid as far to the left as possible without increasing
boundary length so that it intersects I/ at point  and D at point b. Let ¢ be the left endpoint of e. We first claim that
d is an inner boundary corner. If b is not 4, then there are no Steiner tree edges incident to & on the left, or / would
not be as far to the left as possible. If 4 is an outer boundary corner, there must be & terminal at 4. This terminal
must be connected to { by a path using the lowest edge f incident to J. Convexity implies that the left endpoint of f
cannot be to the right of 4, so a portion of fcan be transplanted to D, contradicting the optimality of T.

We also claim that either a is the leftmost terminal on U to the right of 4, b is the leftmost terminal on D to the
right of 4, or b is d. To see this, suppose b is not 4. There can be no lefiward wee edge out of a or b, or else f can be
shid further to the left without increasing length or decreasing boundary length. Either a or b is a terminal; otherwise
there are rightward edges incident to @ and b, and / ¢an be slid right to decrease length. Therefore, suppose a is a
terminal and there is another terminal ¢ on U to the left of ¢ and 1o the right of d. Since ¢ is not connected to0 /
from ¢ it must be connected to { by a path including edge ¢. Convexity implies the left endpoint ¢ of ¢ cannot be to
the right of d, so a new edge connecting a and ¢’ can be added, e can be deleted, and the resulting tree either has less
total length or greater boundary length, contradicting the optimality of 7. If a is not a terminal but & is, a similar
argument using the bottommost incident edge on I can be given. Note that the grid lines containing the three

possible locations for { were colored blue since d is an inner boundary corner.
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Case 2: A complete line with an even number of incident edges.

Recall that in this case, we assume a nonzero number of incident edges. Suppose that there is a complete line /
intersecting boundary edges U and D at ¢ and b, respectively. Reorient the figure so that the left endpoint of U is
not to the right of the left endpoint d of D. As with case 1 above there are a limited number of ways for [ to connect
to U and D. In fact, they are the same three connections as in case 1 and a similar proof can be used here.

Case 3: Zero-Even Corners.

Consider an zero-even corner with legs [, and [,. Since each leg is incident to an even number of edges, Lemma 5
implies one of the legs has no incident edges. We can reorient B as depicted in Figure 4.2, where only I, may have
incident edges. Let!, intersect B at point g and [, at point b. Let the edge incident {o {; closest to the comer-veriex
be called e and suppose it intersects B along boundary edge U (e may not exist). We claim that poinis a and b are
inner boundary corners of B, and if e exists, it can be slid so that e m U is either the inner boundary corner of U/ or
the leftmost terminal on U strictly to the right of a.

To prove this, note the boundary length constraint implies that @ and b must be corners of B. If b was not a
corner, for instance, [, could be slid downwards to increase boundary length or decrease total length. For edge e,
prior 10 reorientation, Lemma 4 implies that ¢ is either incident to an inner boundary cormer or a terminal. If e is
incident to an inner boundary corner, we are done, so suppose that ¢ is incident to a terminal # which is not an inner
boundary corner. In the orientation of Figure 4.2, u must be to the right of . If u is not the leftmost terminal on U
strictly to the right of a, there is some other terminal u,; that is. We claim that Steiner tree edges along U connect u
10 iy, 50 ¢ can be slid to the left until it intersects »;. To prove this claim, suppose that x and #, are not connected
along U. Then u is connected to »; by a path including /,, /,, and a, so a portion of {, can be transplanted 1o ¥/ to
increase boundary length.

We now show that the grid hines containing edges [,, I, and ¢ are blue. Both /| and [, lie on blue grid lines
since they are incident to inner corners. For e, if the left endpoint ¢ of U is to the left of 4, then the grid line incident
to u; was colored blue in the first phase. On the other hand, if ¢ is to the right of @, ¢ must be an inner boundary
corner or ¥; would lie at an outer boundary corner, and since there are Steiner tree edges from u to i, ¢ could be slid
to increase houndary Iength, contradicting the selection of T. Since ¢ is an inner boundary corner, u; was colored
blue.

Case 4: Zero-Odd Comers.

Consider an Zero-odd comer with legs [, and I,; recall that in this case one of the legs has no incident edges.
Reorient B so that it appears as depicted in Figure 4.2, let the leftmost line incident to I, be called e, and let the
rightmost line incident to [, be called f. By Lemma 2, both ¢ and f point upwards.

Let the intersection point of [, and B be «, and let the intersection point of [, and B be point b lying on
boundary edge R. Without loss of generality, suppose that [, is slid upwards as far as possible without increasing
iotal fength or decreasing boundary length, Let e intersect boundary edge U/ at u, and let fintersect boundary edge V

atv.
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By sliding edges, we can show that point a is an inner boundary comer, and point b is either the upper
endpoint of R (which must be an inner boundary corner) or the highest terminal on R below u. Further, u can be
taken to be either the inner boundary comer of U or the leftmost point on U strictly to the right of a.

This claim is proved in a similar fashion as the previous case. The boundary length constraint implies that a
must be a comner in B. For b, since I, is slid upwards as far as possible, there is no Steiner tree edge incident to b
from above. If & is not the upper endpoint of R then b must be a terminal. Otherwise a downward tree edge incident
to b would permit {, to be shifted down to decrease length. Suppose further that & is a terminal on R above b and
below u. Note » must be connected to /5 by a path through edge f. Consequently, f can be transplanied to the
boundary along R, increasing the use of boundary length. (By convexity b” cannot be above v and below u.)

Using the same argument as in'case 3, ¢ can be slid so that u is either at the inner boundary corner of U or the
Ieftmost terminal on I/ strictly to the right of «, and one can show the grid lines containing lines !, [, and e are
blue by the method used in case 4.

Case 5. One-Even Comers.

Suppose we have an one-even comer with legs {; and I,. Notice that if we flip the corner so that the vertical
leg hits b, we get an zero-odd corner which was considered in case 4.

Case 6: One-Odd Comers.

The last case to consider is the one-odd corner. Let {; and I, be the legs of the corner. Lemma 5 implies that one of
the legs has only one incident edge; we reorient B as in Figure 4.2, so that the leg with one incident edge is vertical.
Denote the edge incident to /; by e, and let the lefunost edge incident to I, be f. Let Iy, [5, e, and f intersect
boundary edges D, R, L, and U, respectively, where a=0, "D, b=IynR,c=enLl,andd=fnU. Asin the
previous cases a, b, ¢ and d can be restricted to a small number of positions after the selection of D, R, L, and U.

Without loss of generality, assume that [, 18 slid as far left as possible and that [, is slhid as far upwards as
possible without decreasing boundary length. Point a is either the inner boundary corner of D or the leftmost
terminal on D to the right of L. Point b is either the inner boundary corner of R or the highest terminal on R below
U/. Further, we can take ¢ 10 be either the inner boundary comer of L or the highest terminal on L below b, and we
can take d to be either the inner boundary corner of U or the leftmost terminal on U strictly to the right of a. As
before, the grid lines containing lines [, [,, e, and f can be shown to be blue (note that the grid lines contining ¢
and f are colored blue since, at worst, each is incident to the second terminal “‘opposite’” an inner boundary corner).
O

In cases 1 and 2, it can also be shown that the edge ¢ closest to U/ can be made to lie on a blue line. The proof
is left to the reader.

-21-



4.2. Description of Algorithm

We use dynamic programming to devise an efficient algorithm for k-extremal point sets. For a rectilinear convex
hull with boundary B, a Steiner minimal tree is either simple or contains one or more nontrivial topological
instances. Theorem 2 implies that if there is an optimal Steiner tree containing nontrivial topological instances,
there is a Steiner minimal tree whose nontrivial topological backbones lie on blue lines. We describe the algorithm
recursively; in the dynamic programming algorithm, subsolutions are computed in order of increasing area and a
table look-up is used. There are seven cases, case 0 being the simple Steiner tree, and cases 1-6 being the cases
enumerated in Theorem 2. In the recursive cases 1-6, subproblems are split at blue grid lines and are combined by
the algorithm in the proof of Lemma 10; details appear at the end of Section 5. There are two important properties
of the subproblems: blue lines only appear on tabs in recursive subproblems, and no new inner boundary comers are
created, so the original set of O (k) blue lines is sufficient.

Case 0

A Steiner minimal tree may be a simple Steiner tree for which an algorithm was given in Section 3.

Cases 1 and 2.

In the proof of Theorem 2, it is shown that the nontrivial topological backbone, i. e. the complete line, must lie on a
blue grid line, There are a total of & (k) candidate blue grid lines, each of which splits the probiem involving
boundary B into iwo convex subproblems of smaller area.

Case 3.

The placement of an zero-even corner depends on the choice of a, b, and e M B. (Note that ¢ N B need not lie on
the boundary edge above a.) For ¢ach choice, there are three subproblems to resolve: Problem I is bounded by e
and /,, problem II is bounded by I, and [, and problem III is bounded by {,, part of {5, and e. For problems I and
11, the blue lines are tabs. For problem III, we first flip the corner-vertex /;  {,; in this subproblem, the blue lines
are tabs and no new inner boundary corners are induced. This flip is justified in Lemma 12 below.

Cases 4 and 5.

Similar to Case 3,

Case 6,

Unlike cases 3, 4 and 5, the placement of one-odd corners depends on the choice of four parameters, namely a, b, c,
and d, and there are four subproblems. Problem I is bounded by lines f and i, problem II is bounded by {; and {5,
problem III is bounded by /; and e, and problem IV is bounded by e, 1, /5, and £ In problem IV, the comer is
flipped before the subproblem is solved.
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4.3. Analysis of Algorithm

We now prove that the basic algorithm runs in O (¢ + £*n) time and is correct.

Lemma 11: No subproblem is bounded by more than four blue grid lines.

Proof: Blue lies only appear as portions of tabs in recursive subproblems, [

Corollary 1: There are a total of O (*) subproblems.

In order to prove correctness, we must justify the corner flips in cases 3-6. Let ¢; and ¢, be two boundary
edges intersecting at inner boundary corer b. Assume that no original terminals lie on  or in the relative interior
of e; or e;. Let R be the rectangle bounded by e; and ¢4, and let the other edges of R be ¢”) and ", appearing
clockwise as e, e,, €%y, and ¢”;. Let §5 be the set of terminals consisting of § and all the grid points along e, and
€4, and let §7; be the set of terminals consisting of § and all the grid points along e’y and e”;.

Lemma 12: Suppose there exists a Steiner minimal tree for S5 containing e, and e, and having no interior line
incident to b or properly incident to either ¢, or e;. Then the length of a Steiner minimal tree for §5 is the same as
the length of a Steiner minimal tree for §';.

Proof: Let T be the asserted tree for S5. Let 77 be a Steiner minimal tree for §';. Note that by Lemma 10, we
can assume that T* contains all of e”; and ¢,. Then length (I") 2 length (T, since the lines ¢”) and ¢”, can be
flipped to e and e,, giving a feasible Steiner tree for §4 (it may be that some cycles may be induced as well, so
certain edges would be removed). Second, as there is a Steiner minimal tree T where ¢, and e, appear with no
properly incident lines, ¢; and e, can be flipped, giving a feasible solution for §”; containing ¢”; and e, so
length (T) = length (T"}, and the lengths of T and 7”7 must be equal.

Further note that except at the intersection points of ¢; and ¢y and e, and e’;, no edges in T are incident 1o
the closed rectangle R. This is because such an edge implies length (T”) > length {T), a contradiction. [J

In the corner cases described in Theorem 2, the problem solved when the corner is flipped is a §*3 problem; Lemma
12 states that the resulting Steiner minimal tree can be trivially transformed into a Steiner minimal tree for the §;
problem which is needed to apply Lemma 10.

Theorem 3: A Steiner minimal tree for a k-exiremal point set can be found in O (k* + k*n) time.

Proof: Theorem 1 implies that optimal Steiner trees contain only certain topologies. Corollary 2 implies that
only O (k*) subproblems must be considered, each of which has at most 2» terminals. In each subproblem, there is
a Steiner minimal tree computation. For each of the O (k*) subproblems considered in increasing area, a minimal
simple Steiner tree is found in O (k? + n) time, and the O (k%) decompositions described in cases 1-6 are considered.
For each decomposition, the subproblems have smaller area, so a minimal tree is already stored. Lemmas 9, 10, and
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12 imply that the subproblem solutions can be combined to give a Steiner minimal tree. The cost of this algorithm is
therefore O( k% +k* n). 03

If k is a constant, the algorithm is linear in » and asymptotically optimal, but if % is near n, the algorithm uses
0 (n*) time, which is slower than the algorithms of Bern and Provan.

5. The Improved Algorithm

The algorithm from the preceding section can be improved to Ok +k&* n) =0 (k* n) time. The most time-
consuming cases are the comer cases 3-6. In the zero-even, zero-odd, and one-even corners, as many as three
boundary intersections need to be selecied, and in the one-odd comers, as many as four boundary intersections must
be chosen, It also appears that the algorithm to compute minimal simple Steiner trees is more efficient, after
preprocessing, when restricted to the three-sided case. To get a more efficient algorithm, we define several classes
of subproblems.

5.1. Preliminaries

1et e, and e, be two perpendicular edges intersecting at point ¢ and intersecting B at points ¢ and b, respectively.
1et R be the closed rectangle determined by e and e; that is, three of R’s vertices are @, b, and c.

Lemma 13: R cannot contain an outer corner of B.

Proof: Suppose R contains an outer corner of B. There must be a terminal 4 at this outer corner which is
either connected to ¢ by a path through « or a path through b. If the path is through e, e; can be transplanted to
connect d 10 €4, increasing boundary length or total length, and a symmetric argument can be used if ¢ is connected
to d using a path through b. [

A simple corollary is used several times below: The boundary from a 0 b contains at least two edges, including &
tab, in addition to the edges containing a and .

Now consider a corner C with legs I, and I, and edges ¢ and f incident to [, and /,, respectively. Assume
that ¢ and f are the edges closest to the corner-vertex ¢. Define C to be a solid corner if e or f cannot be slid so that
¢ becomes a T-vertex. Let R be the closed, 6-gon bounded by [, 15, ¢, f, a line segment perpendicular to e on the
same side of e as ¢ and intersecting e at its endpoint opposite /1, and a line segment perpendicalar to f on the same
side of fas ¢ and intersecting f at its endpoint opposite [,.

Lemma 14: Let C be a solid corner as described above. Some portion of the boundary between ¢ and f (i. e., on
the same side of e as ¢ and on the same side of f as ¢) must lie outside R.

Proof: Let the portion of the boundary be X and suppose to the contrary that all of X lies inside R, Recali X
must contain an outer boundary corner with a ferminal x. As x must be connected to the Steiner tree, it is either
connected o ¢ by a path through e or through £, say . Ag the entire subiree connecting ¢ to x lies inside R, e can be
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slid without increasing length so that one of its endpoints is ¢, contradicting the assumption it is a solid corner. [

In the analysis in Section 4, solutions corresponding to non-solid comners would be discovered in the
subproblems for cases 1 and 2. Therefore, only solid corners need be explicitly considered in cases 3-6. In the
remainder of the section, corners are assumed to be solid.

Lemma 13 and Lemma 14 can be used restrict the locations of tabs in the comer cases 3-6, The locations of
tabs are marked with T’s in Figure 4.3, and the proofs are left to the reader. Notice that wherever a T is marked, all
of the tab must appear in the region.

Define a paired tab to be a structure where two tabs intersect at a single point, and define a triple tab to be a
structure where three tabs intersect at two points.

Lemma 15: If a boundary has a paired 1ab, the one-odd corner cannot occur.

T
T
T
T
T T
T
Complete Line Zero-Even
T
T T
T T T
T
Zero-Qdd One.0dd
One-Even

Figure 4.3 — Locations of Tabs
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Proof: Referring to Figure 4.3, exactly one tab must appear in each of the four regions depicted. O

Lemma 16: If a boundary has two paired tabs the one-even and zero-odd corners cannot occur,

Proof: Each instance requires at least three disjoint tabs. [

Lemma 17; If a boundary has a triple tab, no corner can occor.

Proof: Lemma 15 implies that one-odd corners cannot occur. The one-even and zero-odd cases require at
least three disjoint tabs, only two of which occur when a triple tab is present. For an zero-even comner, exactly two
tabs must be on either side of the corner, [

Recall that when a corner is present, at most four subproblems are defined. Each subproblem is bounded by a
paired tab, implying the following result:

Lemma 18: At most one one-odd comer can appear, and if one does appear, no other corners appear. Further, at
most two one-even or zero-odd corners can appear,

Proof: Suppose a tree contains an one-odd corner. Then each of the resulting subproblems has a paired tab,
and Lemma 15 implies the first assertion. Further, since only one original tab is in each of the four subproblems,
each of the subproblems is bounded by a (riple tab, implying that no other corners are present by Lemma 17.

Now suppose a tree contains an one-gven or zero-odd corner, It is possible that a subproblem contains two
disjoint tabs and a single paired tab. (All other regions contain triple tabs.) If this subproblem contains an one-even
or zero-odd corner, its induced subproblems are either bounded by triple tabs or two paired tabs, implying by
Lemmas 16 and 17 that such an instance cannot occur in any of the induced subproblems. [

5.2. Description of the Improved Algorithm
In order to state the improved, O (k“n) time algorithm, we define four new special-case algorithms:
A, Three-sided with no corners.

B. Arbitrary with no comers.

C. Zero-edge corners. That is, the solution contains one or more zero-odd, one-gven, Or zero-even
corners and no one-odd corners.

D. One-odd comers. That s, the solution contains exactly one one-odd corner.

The special-case algorithms B, C, and D partition the set of possible Steiner minimal wees: Either the Steiner
tree contains an one-odd corner or not. If not, it either contains a zero-edge corner or no corner at all, In the next
few paragraphs, we describe and analyze each of the four algorithms. The overall structure uses dynamic
prograinming to avoid recomputing subsolutions, where we assume that solutions are computed in order of
increasing number of interior Hanan gridpoints.
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A: If the figure is three-sided and contains no interior corners, a Steiner minimal tree can appear in one of
two forms. First, it may be a minimal simple Steiner tree. Aside from preprocessing, this tree can be computed in
O (n) time. Otherwise, the Steiner minimal tree contains a complete line. There are O (k) possible blue lines for the
topological backbone position, and each subproblem is also of type A. Aside from preprocessing, the total time per
subproblem is therefore O (n +4), and since there may be as many as O (k*) subproblems, algorithm A takes
O (k*n) time.

Regarding preprocessing for by, fiy. and g, queries, it can be shown that only O (r) extra processing time is
needed after an initial expenditure of O (k* + 1) time to support constant time queries. The most difficult queries
are the g,,’s. Since no inner boundary corners are created, the original set of O (k) “new”’ vertices suffice for the
subproblems, though the boundary has changed. Specifically, each subproblem consists of the original boundary
edges and at most four “‘blue’” grid lines, appearing as parts of tabs. If one projects the original terminal set § onto
the y-axis, the projection of a blue grid line is an interval along the y-axis. Two Cartesian trees can be buiit, one for
the x-coordinates of § and one for the y-coordinates; these trees can be used to support the g,, queries in the
subproblems. The details are left (o the reader.

B: Consider a figure with exactly four staircases; if it has fewer algorithm A can be used. Either the Steiner
tree contains a complete line with incident edges or not. If not, we run the minimal simple Steiner tree algorithm,
expending O (k% + n) time, If it contains a complete line /, choose one of O (k) locations for placement, and
assuming without loss of generality / is vertical, choose one of O (k) locations for the horizontal edge closest to the
upper endpoint of I, This gives three subproblems, each of which contains a distinct tab and therefore at most three
staircases (see Figure 4.3). Consequently, each of the subproblems is amenable to algorithm A. Starting with the
original convex hull, algorithm B is called once and 1akes O (k?) time.

C: A zero-edge corner is one with at least one leg with no incident edges. Though one-even cormers can only
appear at most twice, zero-even corners can appear many times. By a tab analysis, one can show that the zero-edge
corners are arranged so that if corners are visited in a left-to-right sweep, some number of zero-even corness are
bracketed with at most one one-even or zero-odd corner on each end.

In algorithm C, all subproblems save the original are bounded by exactly two blue lines forming a paired tab.
Therefore, consider subproblems bounded by a paired tab in the upper left end; the other cases are symmetric.
There are O (k>) locations for zero-edge corners in this subproblem, as there are as many as three edges to anchor
on blue lines: two legs and the edge nearest the corner-vertex.

For one of these placements, no other corner appears between the paired tab at the upper left end and the two
legs of the corner. If the comer is zero-even, then it can be flipped so that it bends in the same way as the upper Ieft
paired tab; three subproblems are defined, two of which are of type A and one of which is a smaller instance of type
C. If the corner is zero-odd, then it also defines three subproblems except that by Lemma 16, all of the subproblems
are instances of A. In summary, there are O (k%) subproblems, each solved in O (£*) time.

To process the original convex hull, O (k*) placements for a zero-edge corner are tried. Suppose the corner
bends to the right with the vertical leg below the horizontal. Then two subproblems are of type A and the other is as
described above. Algorithm C takes O (k°) time.
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D: If an one-odd corner is present, Lemma 18 implies that it is the only comer appearing in the Steiner tree.
Therefore, starting with the original convex hull, the O (£*) placements of the one-odd corner are checked. Each
subproblem is of type A, so algorithm D takes O (k*) time.

Figure 4.4 summarizes the flow of control and interdependence of the algorithms above. There are seven
algorithms in total, (1) the algorithm to find the convex hull of a k-extremal point set, EXTREMAL, (2) an
algorithm for 3-sided simple Steiner trees, 3-SIDED SIMPLE, (3) an algorithm for general simple Sieiner trees,
SIMPLE, and algorithms (4) A, (3} B, (6) C, and (7) D. (In the figure, C is split into two parts, C and C°. In
algorithm C’, a sequence of zero or more zero-even corners are placed, followed by at most one one-even or zero-
odd corner.) A Steiner minimal tree for extremal point set S is found by calling EXTREMAL(S).

5.3. Reconstruction of the Steiner Tree

We now show how to combine subproblems to construct a Steiner minimal tree. There are several ways to do this;
we outline one. The algorithm described above gives a template to rebuild the Steiner tree. There is some number
of subsolutions which must be combined along certain dividing lines, where the Hanan gridpoints along each
dividing line are terminals. Note that the dividing lines contain at most two orthogonal biue lines to which (the
extended) Lemma 10 can be applied. We now sketch an efficient implementation of the construction used to prove
Lemima 10.

The basic procedure is to take a Steiner minimal tree T and transform it into another Steiner minimal tree T°,
where 7" contains a line [, all of whose Hanan gridpoints are terminals. If T already contains /, we are done.
Otherwise, we rhust search for edges to transplant {o . Assume that T is represented as an adjacency list. It is well
known that the maximum number of Steiner points is n~2, where p is the initial number of terminals {10]. (Note
that edges connect two endpoints, which are either Steiner points or terminais. They need not be on the same
horizontal or vertical line.) The graph therefore has complexity O (n).

We perform a scan of the terminals of /, marking an adjacent pair if there is a Steiner edge between them, We
then perform a depth-first search on the Steiner tree to discover the path between the two extreme terminals of £
When we visit an edge ¢ in the path which is parallel to [ and spans the grid lines between an unmarked adjacent
pair x and y, we transplant ¢ to the edge between x and y. Note that length constraints imply that the length of e and
the distance from x to y must be equal. The adjacent pair x and y is then marked.

Afler edges are transplanted so that ] is included in the tree, [ is coalesced by removing terminals of degree 2.
(Note that length constraints imply that [ is the only edge that needs to be coalesced, i.e., no edges are fragmented in
this procedure.) This algorithm implements Lemma 10 in O (n) time. There are a total of O (k) subproblems that
need to be combined in this way, as Theorem 2 implies that at most O (k) nonirivial topological instances can appear
in an optimal Steiner minimal tree. The algorithm above reconstructs a Steiner minimal tree in O {kn) time.

This proves the main result of the paper:

Theorem 4: A Steiner minimal tree for a k-extremal point set can be found in O (k*x) time.
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Figure 4.4b — Summary of Improved Algorithm (continued)

-30-



6. Final Remarks

In this paper, we presented an algorithm to find a rectilinear Steiner minimal tree for a k-extremal point set of size n

which uses O (k* n) time. For constant £, this is an asymptotically optimal linear-time algorithm, and it is the fastest

known algorithm for any value of &. We note that in many practical applications such as VLSI design, £ is a

constant.

There are several open problems to mention. First, can the complexity be reduced? One promising approach

is 1o exploit the coherence of subproblems; some subproblems are very similar to others. Another question is

whether the complexity of computing simple Steiner trees for the four staircase problem (after preprocessing) can be

reduced. Finally, one may want to prove more powerful combining results than Lemmas 9, 10, and 12. Such resnlis

could prove useful to other Steiner free problems.
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