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An Introduction to Parallel Object-Oriented Programming with Mentat

Andrew S. Grimshaw

Abstract

Mentat is an object-oriented, parallel computation system designed to provide large amounts of easy

to use parallelism for distributed systems. Mentat alleviates most of the burden of explicit parallelization

that message passing systems typically place on the programmer. Further, Mentat programs block only if

specific data dependencies require blocking, thereby greatly increasing the degree of parallelism attain-

able over that from RPC systems.

The Mentat Programming Language, an extension of C++, simplifies writing parallel programs by

extending the encapsulation provided by objects to the encapsulation of parallelism. Users of Mentat

objects are unaware of whether member functions are carried out sequentially or in parallel. In addition,

member function invocation is asynchronous (non-blocking), the caller does not wait for the result. It is

the responsibility of the compiler, in conjunction with the run-time system, to manage all aspects of com-

munication and synchronization. The underlying assumption is that the programmer can make better

granularity and partitioning decisions, while the compiler and run-time system can correctly manage

communication and synchronization. By splitting the responsibility between the compiler and the pro-

grammer we exploit the strengths of each, and avoid their weaknesses.

Mentat has been implemented on three architectures that span the MIMD spectrum, a network of

Sun workstations (loosely coupled), the Intel iPSC/2 (tightly coupled), and the BBN Butterfly (shared

memory). Mentat programs are source compatible between supported architectures. Even on an 8 pro-

cessor network of Sun workstations, speed-ups in excess of four, in comparison to optimized sequential C

code, are consistently seen for Gaussian elimination using partial pivoting.

This paper describes the Mentat approach to parallelism, the Mentat Programming Language, an

overview of the run-time system, and performance data on the above architectures. Examples that illus-

trate the major language features, and how the features support parallelism encapsulation are provided.
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1. Introduction

The last several years have witnessed the development of very high performance MIMD

architectures. Examples include the Intel iPSC/2 [1], the BBN Butterfly [2], and recently the

Intel i860 cube [3]. The peak performance of the most recent entry, a 128 i860 node hypercube,

is in excess of 7.5 giga-flops, rivaling the performance of high-end supercomputers such as the

Cray Y-MP (2.7 giga-flops) and the NEC SX-2 (1.3 giga-flops) [4]. In the near future a 2048

i860-node computer using a mesh interconnection network will be built. When complete it will

have a peak performance of over 122 giga-flops [3]!

Concurrent with the development of the new high performance parallel supercomputers has

been the rapid development in distributed systems technology, both hardware and software. In

terms of hardware the now mature Ethernet LAN technology combined with low cost

workstations has led to the proliferation of networks of workstations. Efforts have been made to

combine these workstations to provide the users with the illusion that they are working with one

large virtual machine that possesses the resources of all of its constituent hosts, e.g., memory,

CPU cycles, and disk space. The goal of providing the illusion of a virtual machine has been

best met with respect to file systems. One of the most successful examples is the NFS [5,6].

NFS provides the illusion of one large file space transparently accessible from any node in the

system. The goal of providing transparent access to CPU resources in distributed systems is

more elusive.



Common to both the high performance parallel architectures and the more loosely coupled

distributed systems is the problem of writing software to exploit the available CPU resources.

Writing software for parallel machines has proven to be far more difficult than writing sequential

software. The difficulty is largely due to the low level of abstraction at which programmers

must operate in order to utilize the resources, or, in the case of RPC systems, the

inappropriateness of the abstraction, as typically implemented, for realizing parallelism.

Currently many of these systems are programmed with traditional languages such as C and

FORTRAN that are extended with library calls to support shared memory or message passing

programming. This means that the programmer is responsible for managing problem

decomposition, scheduling, communication, and synchronization. For many programmers this

makes writing parallel programs too difficult. Proposals to solve this problem range from

automatic program transformation systems that extract parallelism from sequential programs

[7,8], to the use of side-effect free languages [9,10], to the use of languages and systems where

the programmer must explicitly manage all aspects of communication, synchronization, and

parallelism, albeit with high-level language support [11,12,13]. What is needed are language

abstractions that permit the programmer to express algorithms using conventional techniques

and which capture his domain knowledge of appropriate granules of computation, yet provide

the compiler with enough information to automatically detect and manage medium-grain

parallelism.

Mentat is a system currently running at the University of Virginia which was designed to

solve the problem of writing parallel software for parallel and distributed systems. Mentat

attacks the problem by providing high-level abstractions for parallelism that closely match the

way programmers are accustomed to writing programs. Mentat provides an efficient, machine

independent, portable set of run-time support facilities and language abstractions that provide a
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clear separation between the user and the physical system. Mentat supports location

transparency, object-oriented design, parallelism encapsulation, spatial and temporal uncoupling,

automatic detection and management of communication and synchronization, distributed

continuations, and dynamic process creation with scheduling transparency.

The Mentat approach combines a medium-grain, data-driven computation model with the

object-oriented programming paradigm and provides automatic detection and management of

data dependencies. The graph based, data-driven computation model supports high degrees of

parallelism and a simple decentralized control, while the use of the object-oriented paradigm

permits the hiding of much of the parallel environment from the programmer. Because Mentat

uses a data-driven computation model, it is particularly well-suited for message passing

distributed systems

There are two primary components of Mentat: the Mentat Programming Language (MPL)

[14,15] and the Mentat run-time system[16]. The MPL is an object-oriented programming

language based on C++ [17] that masks the complexity of the parallel environment from the

programmer. The granule of computation is the Mentat class instance, which consists of

contained objects (local and member variables), their procedures, and a thread of control. The

programmer is responsible for identifying those object classes that are of sufficient

computational complexity to allow efficient parallel execution. Instances of Mentat classes are

used exactly like C++ classes, freeing the programmer to concentrate on the algorithm, not on

managing the environment. Mentat extends object encapsulation from implementation and data

hiding to include parallelism encapsulation. Parallelism encapsulation takes two forms that we

call intra-object encapsulation and inter-object encapsulation. Intra-object encapsulation of

parallelism means that callers of a Mentat object member function are unaware of whether the
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implementation of a member function is sequential or is parallel, i.e., whether its internal

execution graph is a single sequential node, or whether it is parallel. Inter-object encapsulation

of parallelism means that programmers of code fragments (e.g., a Mentat object member

function) need not concern themselves with the parallel execution opportunities between the

different Mentat object member functions they invoke. Thus, the data and control dependencies

between Mentat class instances involved in invocation, communication, and synchronization are

automatically detected and managed by the compiler and run-time system without further

programmer intervention. By splitting the responsibility between the compiler and the

programmer, we exploit the strengths and avoid the weaknesses of each. The underlying

assumption is that the programmer can make better decisions regarding granularity and

partitioning, while the compiler can better manage synchronization. This simplifies the task of

writing parallel programs, making parallel architectures more accessible to non-computer

scientists.

As an example of the power of the Mentat approach, suppose we have an instance

matrix_op of a matrix_operator class with the member function mpy that multiplies

two matrices together and returns a matrix. Suppose x, A,B,C,D and E are matrix

pointers, and that B,C,D and E point to matrices. Consider the sequence of statements

x = matrix_op.mpy(B,C);
A = matrix_op.myp(x,matrix_op.mpy(D,E));

The two matrix multiplications (B*C) and (D*E) will be executed in parallel, with the result

automatically forwarded to the final multiplication. That result will be forwarded to the caller

and associated with A. The execution graph is shown in Figure 1.
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Figure 1. Parallel Execution of Matrix Multiply Operations.

In general, the intermediate result x could be sent to any number of destinations. In Mentat,

member function invocations automatically proceed concurrently whenever data dependencies

permit. Further, the implementation of the individual multiply operations could be parallel,

increasing the level of parallelism. The key point is that the programmer need not concern

himself with data dependence detection, the compiler does it!

The remainder of the paper is organized as follows. In Section 2 we introduce the Mentat

Programming Language (MPL). Several examples are presented that show how the different

language constructs are used, and more importantly, how much and what type of parallelism

results from their use. Section 3 provides an overview of the Mentat run-time system and run-

time system architecture. We pay particular attention to the layered nature of the run-time

system, and to the portability of user applications that the layered approach supports. Section 4

presents performance data for two applications on both a distributed system consisting of Sun

workstations, and on the Intel iPSC/2. Section 5 compares the Mentat approach to other

approaches to the parallel software problem, particularly those targeted at loosely coupled

distributed systems. Section 6 summarizes our work and presents our current and future efforts

with respect to Mentat.
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2. The Mentat Programming Language (MPL)

The object-oriented approach to programming has become very popular. The object-

oriented approach promises to both simplify software development and to facilitate software

reuse.
1

The object-oriented paradigm combines object-based techniques that hide (encapsulate)

the implementation code and data structures in classes with the use of inheritance, specialization,

and polymorphism [19-21]. The encapsulation of implementation code and data structures into

classes makes software modular, and makes it possible to change the implementation without

affecting users of the class.

The object-oriented paradigm is ideal for distributed systems because users of an object

interact with the object via the object’s interface. Because of the data hiding, or encapsulation,

properties of objects, users cannot directly access private object data. Object member function

invocations can be easily converted into remote procedure calls when necessary. A user of an

object invokes the object member functions in the same way independently of whether the object

invocation is local or remote, thus obtaining location transparency. The above properties have

made distributed object-oriented systems based on RPC very popular. Examples include Argus

[22], Clouds [23], Eden [24], ARTS [25], and many others [12]. The primary difference between

Mentat and other distributed object-oriented systems is that Mentat is designed for parallelism

and thus treats member function invocation differently.

The Mentat programming language is an extension of C++. We chose C++ from among the

object-oriented languages for several reasons. First, C++ is a very efficient language; the

implementation of the language features does not impose a performance penalty vis a vis C

performance. This is important because the objective in parallel processing is performance.
�����������������������������������������������������������������������

1

For a discussion of the merits of the object-oriented paradigm see [18-19]. See [20] for a discussion of the difference between object-
oriented and object-based languages.
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Second, the language does not already have language constructs for concurrency and parallelism

as, for example, ADA does. This is important to avoid having two different parallelism

constructs in our language. Third, C++ supports typeless pointers, making it easier to write

library routines that directly manipulate low level memory structures.

The remainder of this section is divided into seven parts. We begin with a short primer on

C++, restricting the discussion to those features of C++ that are needed to understand the MPL

extensions. Next, we discuss the goals of the four language extensions. We then present Mentat

class definitions, Mentat object instantiation, Mentat object member function invocation, the

return to future construct, and the select/accept statement. Throughout this section we develop

several examples that illustrate MPL concepts, and show how the parallelism is realized.

2.1. A Brief Introduction to C++

C++ is an object-oriented extension of C developed by Bjarne Stroustrup [17]. C++

supports classes with private data, public data, member functions that operate on instances of

classes, multiple inheritance, polymorphism, and function and operator overloading. Classes in

C++ are defined in a manner similar to structs in C. The class int_stack

class int_stack {
int max_elems, top;
int *data;

public:
int_stack(int size = 50);
void push(int);
int pop();

}

has three private member variables defined, max_elems, top, and data. They may not be

directly manipulated by users of instances of int_stack. The constructor for int_stack,

int_stack(intsize), is called whenever a new instance is created. Constructors usually
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initialize private data structures and allocate space. Instances are created when a variable comes

into scope, e.g., { int_stack x(40); }, or when instances are allocated on the heap,

e.g., int_stack *x = new int_stack(30);. The member functions push(int)

and int pop() operate on the stack and are the sole mechanism to manipulate private data.

To illustrate member function invocation, suppose that x is an instance of int_stack.

Member functions are invoked using either the dot notation, x.push(5);, or if x is a

pointer, the arrow notation, x->push(5);. For a more complete description of C++ see [17].

2.2. Goals of the Language Extensions

The MPL was designed to meet four goals. First and foremost, the MPL would be object-

oriented [18-21]. We would extend the usual notions of data and method encapsulation to

include parallelism encapsulation.

Second, the language constructs would have a natural mapping to the macro data flow

model [26,27]
2
. The responsibility for performing the mapping would not be the programmer’s.

Instead, the compiler and run-time system would perform the mapping. The programmer would

not have to make scheduling decisions, manage communication or synchronization, or manually

construct and manage program graph execution.

Third, the concepts used as the basis of the extensions would be applicable to a broad class

of languages so that the Mentat approach could be easily used in other contexts. Fourth, the

syntax and semantics of the extensions would follow the pattern set by the base language,

maintaining its basic structure and philosophy whenever possible.
�����������������������������������������������������������������������

2

The macro data flow model is the computation model underlying Mentat. It is a medium grain, data driven computation model in which
programs are directed graphs. The vertices of the program graphs are computation elements (called actors) that perform some function. The
edges model data dependencies between the actors. Data flows along the edges. When an actor has data on each input arc it may execute,
consume the data, and produce new data on its outgoing edges. During the course of its computation an actor may elaborate its vertex into a
subgraph of arbitrary complexity. The subgraph must have a sink that can be connected to the actors’ outgoing edges in the original program
graph.
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These goals have been met in the MPL by extending the C++ language in three ways. The

extensions are the specification of Mentat classes, the rtf() value return mechanism, and the

select/accept statement. The basic idea is to allow the programmer to specify those C++ classes

that are of sufficient computational complexity to warrant parallel execution, and let the system

do the rest. This is accomplished using the keyword MENTAT in the class definition. Instances

of Mentat classes are called Mentat objects. The programmer uses instances of Mentat classes

much as he would any other C++ class instance. The compiler generates code to construct and

execute macro data flow graphs (data dependency graphs) in which the vertices are Mentat

object member function invocations, and the arcs are the data dependencies found in the

program. Thus we generate inter-object parallelism in a manner largely transparent to the

programmer. Communication and synchronization are managed by the compiler.

2.3. Mentat Class Definition

There are three issues to be resolved with respect to Mentat classes, 1) how to determine

which classes should be Mentat classes, 2) how to syntactically specify that a class is a Mentat

class, and 3) how to determine and specify what type of Mentat class should be used.

When should a class be a Mentat class? There are three types of classes that should be

Mentat classes, those whose member functions are computationally expensive, those whose

member functions exhibit high latency (e.g., IO), and those that hold state information that needs

to be shared by many other objects (e.g., databases, physical devices). Classes whose member

functions have a high computation cost or high latency should be Mentat classes because we

want to be able to overlap the computation with other computations and latencies, i.e., execute

them in parallel with other functions. Shared state objects should be Mentat classes for two

reasons. First, because there is no shared memory in our model, shared state can only be
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realized using a Mentat object with which other objects can communicate. Second, because

Mentat objects service a single member function at a time, they provide a monitor-like [28]

synchronization, providing synchronized access to their state.

Syntactically, the specification of a Mentat class is simple. We add the keyword MENTAT

to the class definition. The class may be further specified to be PERSISTENT or REGULAR.

Instances of PERSISTENT MENTAT classes persist from invocation to invocation, i.e., they

maintain state information. REGULAR MENTAT class instances do not maintain state

information; their member functions are pure functions. Thus the system is free to instantiate

new instances of REGULAR classes at will. REGULAR classes may have local variables much

as procedures do. By default a Mentat class is a REGULAR class.

Choosing the appropriate type of Mentat class is easy. If the class is stateless, it should be a

REGULAR class. If the class requires maintaining state information, or if use of state information

enables a more efficient implementation, the class should be a PERSISTENT class. A

PERSISTENT class may be further specified to be a SEQUENTIAL PERSISTENT class.

Instances of SEQUENTIAL PERSISTENT classes differ from instances of PERSISTENT

classes in that invocations of SEQUENTIAL PERSISTENT instances are guaranteed to be

executed in the order encountered in the program even when there are no data dependencies to

indicate a particular execution order to the compiler.
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Example 1

Below, a PERSISTENT Mentat class shared_queue is defined, with member

functions enq(int) and int deq(). Note that, except for the keywords PERSISTENT

MENTAT, this is a legitimate C++ class definition.

PERSISTENT MENTAT class shared_queue {
// Private data structures to implement the queue.
int head, tail;
int *data;

public:
void enq(int value);
int deq();

}

2.4. Mentat Object Instantiation

An instance of a Mentat class is a Mentat object. All Mentat objects have a separate

address space, a thread of control, and a system-wide unique name. Instantiation of Mentat

objects is slightly different from standard C++ object instantiation semantics. First let us

examine instantiation in C++. Consider the C++ fragment:

{ // A new scope
shared_queue the_queue;

} // end of scope

In C++, when the scope in which the_queue is declared is entered, a new instance of

shared_queue is instantiated. In the MPL, if shared_queue is a Mentat class, then

the_queue is a name of a Mentat object of type shared_queue, it is not the instance

itself.

Names (e.g., the_queue) can be in one of two states, bound or unbound. An unbound

name refers to any instance of the appropriate Mentat class. A bound name refers to a specific

instance with a unique name. When a Mentat class comes into scope or is allocated on the heap,
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it is initially an unbound name: it does not refer to any particular instance of the class.

There are three ways a Mentat variable (e.g., the_queue) may become bound: it may be

explicitly created using create(), it may be bound by the system to an existing instance

using bind(), or the name may be assigned to a bound name by an assignment operation.

Both the create() member function and the bind() member function are common to all

Mentat classes. They are inherited from a base class that is logically a superclass for Mentat

classes. Examples of each mechanism are shown in Figure 2. Assume the definition

shared_queue the_queue;.

(a) the_queue.create();
(b) the_queue.create(COLOCATE another_object);
(c) the_queue.create(DISJOINT object1, object2);
(d) the_queue.create(HIGH_COMPUTATION_RATIO);
(e) the_queue.bind(THIS_HOST);
(f) the_queue = some_function();

Figure 2. Binding Mentat Objects.

The create() call tells the system to instantiate a new instance of the appropriate class.

There are four flavors of create(). When create() is used as in Figure 2 (a) the system

will choose on which processor to instantiate the object [29]. The programmer may optionally

provide location hints. The hints are COLOCATE, DISJOINT, and

HIGH_COMPUTATION_RATIO. These hints allow the programmer to specify where he wants

the new object to be instantiated. In Figure 2 (b), the programmer has specified that the new

Mentat object should be placed on the same processor as the object another_object. In

Figure 2 (c), the programmer has specified that the new object should not be placed on the same

processor as any of a list of Mentat objects. In Figure 2 (d), the programmer has specified that

the new object will have a very high ratio of computation to communication, and thus may be

placed on a processor with which it is expensive to communicate.
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The bind(scope) call can be used when the programmer wishes to bind a name to an

already existing instance of the class rather than creating a new instance. This is useful, for

example, when trying to locate and bind to a persistent server. The scope parameter is used to

specify the scope of the system’s search for an instance. The search may be system-wide, or be

confined to this host, or to this sub-network/cluster. If the system cannot find an existing instance

then the variable is left unbound.

The destroy() member function destroys the Mentat object and unbinds the Mentat

name. It does not invalidate names that point to the object.

2.5. Mentat Object Member Function Invocation

In this section we introduce the semantics of Mentat object member function invocation

and illustrate how Mentat supports the automatic management of inter-object parallelism. Inter-

object parallelism is the concurrent execution of member functions whenever data dependencies

permit. We say that we provide inter-object parallelism encapsulation because the parallelism is

transparent to the user. We begin with an example illustrating a simple RPC, and then proceed

to illustrate inter-object parallelism using a pipeline example.

The invocation syntax for Mentat objects is the same as in C++. The semantics are slightly

different because Mentat objects have disjoint address spaces. Mentat class member functions

always use call-by-value semantics. This is true even when pointers or references are passed.

When pointers are used, the object (or structure) pointed to is sent to the callee. If the object

pointed to is of variable size then the class of the object must provide a member function int

size_of() that returns the size of the object in bytes.
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Example 2

Consider the code fragment shown in Figure 4. The member function open() takes two

parameters and returns an integer. The first parameter is of type string*. Because strings

are of variable length we have provided the function int size_of(). Size_of is called at

run-time to determine the size of the first parameter, and size_of() bytes will be sent to the

Mentat object f. The second argument is an integer. Fixed size arguments such as integers and

structs do not require a size_of() function. The compiler ensures that the correct amount of

data is transferred.

class string {
public:
int size_of();

}
int string::size_of() {return(strlen(this)+1)};

PERSISTENT MENTAT class m_file {
public:
int open(string* name, int mode);
data_block* read(int offset, int num_bytes);
void write(int offset, int num_bytes, data_block* data);

}

{ // *** A code fragment using m_file
m_file f;
f.create();
int x = f.open((string*)"my_file",1);
if (x < 0) { /* error code */ }

}
Figure 4. Class m_file declaration and use.

The example in Figure 4 illustrates a simple RPC to a Mentat object member function. As

such it is not particularly novel, or parallel. The difference between Mentat and a traditional

RPC is what happens when an RPC call is encountered. In traditional RPC the arguments are

marshalled, sent to the callee, and the caller blocks waiting for the result. The callee accepts the

call, performs the desired service, and returns the results to the caller. The caller then unblocks
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and proceeds.

In Mentat, when a Mentat object member function is encountered, the arguments are

marshalled and sent to the callee but the caller does not block waiting for the result (x in Figure

4). Instead the run-time system monitors (with code provided by the compiler) where x is used.

If x is later used as an argument to a second or third Mentat object invocation then

arrangements are made to send x directly to the second and third member function invocations.

If x is used locally in a strict operation, e.g., y=x+1;, or if (x<0), then the run-time

system will automatically block the caller and wait for the value of x to be computed and

returned. Note, though, that if x is never used locally (except as an argument to a Mentat object

member function invocation) then the caller never blocks and waits for x. Indeed x might

never be sent to the caller, x might only be sent to the Mentat object member functions for

which x is a parameter. It is important to note that these decisions, as well as all communication

and synchronization, are handled completely by the compiler and run-time system. The

programmer is left free to concentrate on the application, not on the details.

Example 3

This example illustrates the power of the Mentat approach by constructing a simple

pipeline process. For this example we define the Mentat class

REGULAR MENTAT class data_processor
public:
data_block* filter_one(data_block*);
data_block* filter_two(data_block*);

}

The member functions filter_one() and filter_two() are filters that process blocks

of data. The exact function is not important. Consider the code fragment in Figure 5.
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m_file in_file,out_file;
data_processor dp;
in_file.create();out_file.create();
int i,x;
x = in_file.open((string*)"input_file",1);
x = out_file.open((string*)"output_file",3);
data_block *res;
for (i=0;i<MAX_BLOCKS,i++) {
res = in_file.read((i*BLK_SIZE),BLK_SIZE);
res = dp.filter_one(res);
res = dp.filter_two(res);
out_file.write((i*BLK_SIZE),BLK_SIZE,res);

}
Figure 5. A Pipelined Data Processor.

This code fragment sequentially reads MAX_BLOCKS data blocks from the file "input_file",

processes them through filters one and two, and writes them to "output_file".

In a traditional RPC system this fragment would execute sequentially. Suppose that each

member function execution takes 10 time units, and that each communication takes 5 time units.

Then the time required to execute an iteration of the loop in a sequential RPC system is four

times the member function execution time plus seven times the communication time. It is seven

times the communication time because all parameters and results must be communicated from/to

the caller. Thus the total time required is 75 time units.

The average time per iteration for the Mentat version is considerably less, just over 10 time

units. We arrived at the figure of 10 time units by first observing that the time for a single

iteration is four times the communication time, 20 time units, plus four times the execution time,

40 time units, for a total of 60 time units. Next, consider that the reads, the two filter operations,

and the writes can be executed in a pipelined fashion with each operation executing on a

separate processor (see Figure 6). Under these circumstances each of the four member function

invocations, and all of the communication, can be performed concurrently. The communication

for the ith iteration can be overlapped with the computation of the (i+1)th iteration. (We assume
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that communication is asynchronous and that sufficient communication resources exist.)

Using a standard pipe equation

T
All

= time for all iterations
T

Stage
= time for longest stage = 10 time units

T
1

= time for first iteration = 60 time units
T

Avg.
= average time per iteration

T
All

= T
1

+ T
Stage

* (MAX_BLOCKS-1)
T

All
= 60 + 10*(MAX_BLOCKS-1)

T
Avg.

= 60 + 10*(MAX_BLOCKS-1)/MAX_BLOCKS

When MAX_BLOCKS is one, the time to complete is 60 time units, with an average of 60 time

units. This is faster than a pure RPC (75 time units) because we don’t send intermediate results

to the caller. However, as MAX_BLOCKS increases the average time per iteration drops, and

approaches 10 time units.

There are four items to note from this example. First, the variable dp is a REGULAR

MENTAT class. Thus the system is free to instantiate new instances at will. At any given time

in this example there will be two instances executing. Second, the main loop may have executed

to completion (all MAX_BLOCKS iterations) before the first write has completed! Third,

suppose our "caller" (the main loop) was itself a server servicing requests for clients. Once the

main loop is complete the caller may begin servicing other requests while the first request is still

being completed. Fourth, the order of execution of the different stages of the different iterations

can vary from a straight sequential ordering, e.g., the last iteration may "complete" before earlier

iterations. This can happen, for example, if the different iterations require different amounts of

filter processing. This additional asynchrony is possible because the run-time system guarantees

that all parameters for all invocations are correctly matched, and that member functions receive

the correct arguments. The additional asynchrony permits additional concurrency in those cases

where execution in strict order would prevent later iterations from executing even when all of
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their synchronization and data criteria have been met.

requests

filter_one out_file.write

data blocks filtered blocks filtered blocks

in_file.read filter_two

processor 1 processor 2 processor 3 processor 4

Figure 6. Four Stage Filter Pipeline.

Now consider the effect of quadrupling the time to execute the filters from 10 to 40 time

units. The time to execute the traditional RPC version goes from 75 to 135 time units. But the

time per iteration for the Mentat version remains unchanged at 10 time units if there are

sufficient computation resources! To see why, consider that the data_processor class is a

REGULAR Mentat class. This means that the system may instantiate new instances at will to

meet demand. Thus, in the above scenario, there would be eight instances of the

data_processor class active at a time, four performing filter one, and four performing filter

two.

Before we continue, a few observations are in order. First, the detection and management of

data dependencies is fully automatic. This frees the programmer to concentrate on the semantics

of the program. Second, the scheduling of regular object invocations is fully automatic. Manual

scheduling can be achieved by making the data_processor class a persistent class and

instantiating instances on the desired processors. Third, in addition to the automatic detection of

inter-object parallelism opportunities, each of the invoked member functions may be internally

parallel, providing even more parallelism. The hiding of such parallelism is called intra-object

parallelism encapsulation.
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2.6. Return to Future - rtf()

The return to future (rtf()) function is the Mentat analog to the C return. Mentat

member functions use the rtf() as the mechanism for returning values. The value returned is

forwarded to all member functions that are data dependent on the result, and to the caller if

necessary. In Example 3 when filter_one() performs its rtf() the result is sent on to

filter_two(). A copy of the result is not sent back to the caller. In general copies may be

sent to several recipients.

While there are many similarities between return and rtf(), rtf() differs from a

return in three significant ways. First, a return returns data to the caller. Rtf() may or

may not return data to the caller depending on the data dependencies of the program. If the

caller does not use the result locally, then the caller does not receive a copy. Second, a C

return signifies the end of the computation in a function, while an rtf() does not. An

rtf() indicates only that the result is available. Since each Mentat object has its own thread of

control, additional computation may be performed after the rtf(), e.g., to update state

information or to communicate with other objects. By making the result available as soon as

possible we permit data dependent computations to proceed concurrently with the local

computation that follows the rtf(). Third, in C, before a function can return a value, the

value must be available. This is not the case with an rtf(). Recall that when a Mentat object

member function is invoked, the caller does not block, rather we ensure that the results are

forwarded wherever they are needed. Thus, a member function may rtf() a "value" that is

the result of another Mentat object member function that has not yet been completed, or perhaps

even begun execution. Indeed, the result may be computed by a parallel subgraph obtained by

detecting inter-object parallelism.
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The next two examples illustrate the use of rtf() and how intra-object parallelism is

realized.

Example 4

Consider a transaction manager (TM) that receives requests for reads and writes, and

checks to see if the operation is permitted. If it is permitted, the TM performs the operation via

the data manager (DM) and returns the result. Below we illustrate how the read operation might

be implemented.

check_if_ok(transaction_id, READ, record_number);
// Assume that check_if_ok handles errors
rtf(DM.read(record));

In a traditional RPC system, the record read would first be returned to the TM, and then to the

user. In the above MPL code the result is returned directly to the user, bypassing the TM.

Furthermore, the TM may immediately begin servicing the next request instead of waiting for

the result and passing it back up. This can be viewed as a form of distributed tail recursion, or

simple continuation passing.

Example 5

This example illustrates intra-object parallelism encapsulation. Consider a matrix class that

performs matrix operations.
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REGULAR MENTAT class matrix_operator {

public:

loc_matrix* mpy(loc_matrix* mat1, loc_matrix* mat2);

loc_matrix* combine_results(int pieces, loc_matrix* mat1, ...);

};

loc_matrix* matrix_operator::mpy(loc_matrix* mat1, loc_matrix* mat2){

int dim, i,no_rows=0;

matrix_operator worker;

loc_matrix *res[MAX_PIECES], *pm, *answer;

// Determine the # pieces using a heuristic

for (i=0;i<pieces;i++) {

rows=dim/pieces;

if (dim%pieces>i) rows++;

pm = new loc_matrix(mat1->get_r_ptr(no_rows), dim, rows);

res[i] = worker.mpy(pm[i], mat2);

delete pm;

no_rows += rows;

};

switch (pieces) {

case 2:rtf(worker.combine_results(2,res[0],res[1]);

break;

case 4:rtf(worker.combine_results(4,res[0],res[1],res[2],res[3]);

break;

...

}; }

Suppose that the matrix multiply operation is invoked as in the code fragment below.

loc_matrix* a,b,c;
// Assume a,b are set up with values
matrix_operator A;
c = A.mpy(a,b);
c->print();

The A.mpy(a,b) results in a multiply operation being invoked. Suppose that the hueristics

selected four pieces. Then the A.mpy operation would be expanded into the parallel subgraph

shown in Figure 7 (a). The parallelism is encapsulated inside of the member function

invocation. The user is unaware of the expansion.
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Example 6

This example illustrates both inter and intra-object parallelism. Consider the fragment:

loc_matrix* a,b,c,d,e;
// Assume a,b,c,d are set up with values
matrix_operator A;
e = A.mpy(A.mpy(a,b),A.mpy(c,d));

Intra-object encapsulation is realized through the parallel execution of each of the multiplies as

before. Inter-object parallelism is detected by observing that the two inner-most multiplications

may be executed in parallel. These are combined in the execution graph of Figure 7 (b). Once

again note that the user of the matrix_operator class is not responsible for managing any

aspect of the parallel execution, nor need he/she even be aware that it is parallel!

b

(b)

a

ba

c d

e

mpy

mpy

(a)

Intra and Inter Object Parallelism

c

Intra-Object Parallelism, Matrix Multiply Expansion

Figure 7. Parallel Execution Graphs for Matrix Multiply.
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2.7. Select/Accept

The select/accept construct in the MPL is similar in many ways to the ADA [30]

select/accept. MPL select/accept statements are used to selectively choose which member

functions are candidates for execution, i.e., those member functions for which the object will

accept an invocation. Unlike the ADA select/accept the MPL select/accept is symmetric: the

caller can specify the modules with which it will interact, and can specify conditions that must

be true of the caller’s arguments.

As in ADA, each accept statement may have a guard clause that must evaluate to true in

order for the guarded member function to be a candidate for execution. In ADA, guards are

limited to expressions based on the local state of the object. Thus an object may not examine the

parameters of a member function invocation as part of guard evaluation. This often leads to

awkward constructs to examine the arguments after the call has been accepted, and somehow

postpone servicing the request until a later time.

MPL guards may contain an arbitrary side-effect free expression based on local state and

the actual parameters. The guard may also contain the name of the caller. As an example,

consider a bank account object and a member function withdrawal(int account,int

amount). We might wish to restrict withdrawals to less than the current balance of the

account, .e.g.,

select {
(amount<balance(account)):
accept withdrawal(int account,int amount);

break;
:accept deposit(int account,int amount);
break;

};
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The guard for the withdrawal has the effect of deferring overdrafts until sufficient funds

have been deposited to the account via deposit. The ability to selectively receive

invocations was inspired by PLITS [31].

Guards are evaluated in the order of their priority, from high priority to low priority.

Priorities are in the range (-MAXINT) to MAXINT. The default priority is zero. Guards within a

given priority level are evaluated in a non-deterministic order until a guard evaluates to true. If

none of the guards evaluates to true then the object blocks until a guard evaluates to true. The

priorities can be used to force an order of evaluation on the guards. Using the example above, if

we wanted to prioritize deposits over withdrawals we could change the code as shown below.

select {
[0] (amount<balance(account)):
accept withdrawal(int account,int amount);

break;
[10] :accept deposit(int account,int amount);
break;

};

Select/accept statements can also be used to test, without blocking, whether there are

pending member function invocations. This is accomplished by using test instead of accept.

Tests are non-blocking. Thus if there are no pending requests that satisfy a select/test statement

then the object does not block.

2.8. Restrictions

There are several restrictions on Mentat class definition and member variables. These

restrictions derive from the fact that instances of Mentat classes are independent objects. There

is no shared memory. The independence of address space between Mentat objects necessitates

the imposition of four restrictions on Mentat classes and their use.
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First, the use of static member variables for Mentat classes is not allowed. Since static

members are global to all instances of a class, they would require some form of shared memory

between the instances of the object. The compiler detects all uses of static variables and emits an

error message.

Second, Mentat classes cannot have any member variables in their public definition. If data

members were allowed in the public section, users of that object would need to be able to access

that data as if it were local. Use of such variables is detected by the compiler. If the

programmer wants the effect of public member variables, appropriate member functions can be

defined.

Third, programmers cannot assume that pointers to instances of Mentat classes point to the

member data for the instance. This is a common trick used by C programmers, but it will not

work in Mentat.

Fourth, Mentat classes cannot have any friend classes or functions. A friend of a class may

access the private member variables of the class. This restriction is related to the independent

address space nature of Mentat classes. If we permitted friend classes or functions of Mentat

classes, then those friends would need to be able to directly access the private variables of

instances of the Mentat class. Similarly, instances of a Mentat class cannot access each other’s

private data.

3. The Run-Time System

The Mentat run-time system provides run-time support to Mentat applications[16]. The

run-time system can be divided into two distinct sets of services. First are the library routines

and data structures that support data dependence detection, guard evaluation, select/accept

management, and communications services. The second set consists of Mentat objects that
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provide scheduling, Mentat object instantiation, and token matching services
3
.

The Mentat run-time system is not an operating system. Instead the run-time system is

layered on top of an existing host operating system, using the host operating system’s process,

memory, C library, and interprocess communication (IPC) services. To date, Mentat has been

hosted on 4.3 BSD Unix [32], NX/2 [1] (the operating system on the Intel iPSC/2), and will soon

be complete on Mach [33] and Mach-1000 [2] (BBN’s dialect of Mach).

The logical structure of a Mentat system is that of a collection of hosts communicating

through an interconnection network (see Figure 8). Each host is able to communicate with any

other host via the interconnection network, although not necessarily at uniform cost
4
.

Host 0 Host 1 Host 2 Host N

Interconnection Network

Figure 8. Mentat Run-Time System Logical Structure.

The logical interconnection network is provided by the lowest layer of the run-time system,

MMPS. MMPS (Modular Message Passing System [34]) provides an extensible point-to-point

message service that reliably delivers messages of arbitrary size from one process to another
5
.

MMPS provides a uniform message passing interface that we have ported to physical

interconnection networks that span the performance spectrum, from high latency/low

bandwidth/high contention (Ethernet using IP datagrams), to low latency/low bandwidth/low

contention (the iPSC/2), to a very low latency/very high bandwidth/low contention network (the

�����������������������������������������������������������������������

3

Token matching is the gathering together the arguments of an invocation of a REGULAR object member function onto one host.
4

The scheduler [29] uses communication cost information in making scheduling decisions.
5

Arbitrary in that insufficient memory at the receiver is the only limitation. A process is as defined by the host operating system.
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BBN Butterfly using shared memory). MMPS also supports communication between peers on

different operating systems, e.g., Mach, Mach-1000, and Unix, although the CPU architectures

must be the same. This inter-operating system capability permits us to construct Mentat systems

composed of different types of hosts (Suns, BBN) running different operating systems.

Each host has a complete copy of the run-time system server objects. These include the

instantiation manager and the token matching unit (TMU). The instantiation manager is

responsible for high level Mentat object scheduling (deciding on which host to locate an object),

and for instantiating new instances. The high level scheduling algorithm is distributed, adaptive,

and stable, and is discussed in [29].

One final note on the run-time system. Because we use a layered approach and mask

differences in the underlying operating system and inter-process communication, applications

are completely source code portable between supported architectures. We routinely develop and

debug software on Sun workstations and copy the sources unchanged to the Intel iPSC/2,

recompile them, and execute them. In this day of incompatible parallel computers this is quite

useful. The fact that the sources are identical allows us to compare architectures using the exact

same code, and to measure the effect of known architectural differences on algorithm

performance, e.g., to measure algorithm sensitivity to communication latency.

4. Performance

4.1. Primitive Operations

The performance of Mentat, and of the Mentat approach, hinges on the speed with which

primitive operations can be performed. In particular, message operations and the time to detect

data dependence and construct program graphs must all incur little cost, or overhead will swamp
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the gains from parallelism. There are two primary sources of overhead, communication, and the

Mentat overhead associated with program graph construction, argument marshaling, and

select/accept execution. In Tables T-1 and T-2 below the time spent in each of these activities is

shown for a Sun 3/60 and a node on the Intel iPSC/2 respectively. The message transport cost

includes the host operating system scheduling and task switch overhead. For information on the

communication costs see [34].

� ���������������������������������������������������������������������
Function Time� ���������������������������������������������������������������������

Transport Message (one way) 5.7mS� ���������������������������������������������������������������������
Null RPC 14.0mS� ���������������������������������������������������������������������
Mentat overhead 2.6mS� ���������������������������������������������������������������������
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Table T-1. Component Timing Results (Sun 3/60).
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Function Time� �������������������������������������������������������������

Transport Message (Send) 0.8mS� �������������������������������������������������������������
Null RPC 2.8mS� �������������������������������������������������������������
Mentat overhead 1.2mS� �������������������������������������������������������������
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Table T-2. Component Timing Results (iPSC/2).

We compute the Mentat overhead by subtracting from the Null RPC time two times the message

transport cost (request & reply). The largest cost operation is communication.

4.2. Applications

Nice computation and programming models aside, the bottom line for parallel and

distributed systems is performance. As of this writing we have implemented the Mentat run-time

system and run benchmarks on a network of Sun workstations and on a sixteen node Intel iPSC/2

Hypercube. Speed-ups for two benchmarks on each of the supported architectures are given

below. In each case the speed-up shown is relative to an equivalent C program, not relative to
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the Mentat implementation running on one processor. We have been very careful to use the same

level of hand optimization of inner loops, and the same level of compiler optimization for both

the C and MPL versions. The two benchmarks are matrix multiply and Gaussian elimination.

Each benchmark was executed for several matrix dimensions., e.g., 100×100, 200×200. Matrix

multiply and Gaussian elimination are used because they are de facto parallel processing

benchmarks.

4.3. Execution Environment

The data were collected in two different environments: a network of Sun workstations and

a Hypercube. The network of Suns consists of 8 Sun 3/60’s serviced by a Sun 3/280 file server

running NFS connected by thin Ethernet. All of the workstations have eight megabytes of

memory.

The Intel iPSC/2 is configured with sixteen nodes. Each node has one megabyte of

physical memory and an 80387 math co-processor. The nodes were NOT equipped with either

the VX vector processor or the SX scalar processor. The NX/2 operating system provided with

the iPSC/2 does not support virtual memory. The lack of virtual memory, coupled with the

amount of memory consumed by the operating system, limited the problem sizes we could run

on the iPSC/2.

Matrix Multiply

The speed-ups for matrix multiply are shown in Figures 7 and 8 below. The algorithm (and

application source) is the same for both systems. Suppose the matrices A and B are to be

multiplied. Suppose A is the larger of the two. A is divided into n pieces Ai...An, where n is the

number of processes to use. A copy of B and one of the Ai’s are used as parameters to Mentat

object invocations. The results of the invocations are merged together and sent to computations
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that are dependent on the result of the A*B operation.
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Figure 9. Sun network matrix multiply
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Figure 10. Hypercube matrix multiply
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Gaussian Elimination

In our algorithm, the controlling object partitions the matrix into n strips and places each

strip into an instance of an sblock, a Mentat class. Then, for each row, the reduce operator is

called for each sblock using the partial pivot calculated at the end of the last iteration. The

reduce operation of the sblocks reduces the sblock by the vector, selects a new candidate partial

pivot, and forwards the candidate row to the controlling object for use in the next iteration. This

algorithm requires frequent communication and synchronization. The effect of frequent

synchronization can be clearly seen when the speed-up results for Gaussian elimination in

Figures 9 and 10 are compared to the results for matrix multiply.
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Figure 11. Sun Gaussian
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Figure 12. Hypercube Gaussian
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5. Related Work

Mentat is built on top of a message passing system. Therefore, message passing systems are

at least as powerful as Mentat. In order to compare a pure message passing system there are two

questions that must be answered. First, can Mentat emulate message passing systems? In other

words, are there mechanisms in Mentat that can be used as send and receive? Second, is Mentat

easier to program than message passing systems that provide only send and receive?

The answer to the first question is a definite yes. Send and receive can be easily simulated

by providing appropriate member functions for Mentat classes and by using an appropriate

select/accept statement.

The answer to the second question is more subjective. If you don’t think that programming

using send/receive requires any special effort, then the mechanisms used by Mentat to hide the

underlying message passing scheme are of limited utility. We feel that Mentat provides an

easier-to-use interface by managing much of the complexity inherent in message passing

systems. Programming in Mentat vs. programming using just send/receive can be compared to

the difference between programming in a high-level language vs. programming in assembly

language. While it is true one can do anything in assembly one can do in a high-level language,

it is usually easier to code and debug high-level languages.

5.1. Object-Oriented Distributed Systems

Mentat differs from the majority of Object-Oriented distributed systems, such as [22-

25,35-38], in the way remote member function invocations are managed. Much of the difference

can be accounted for by the difference in objectives between Mentat and the others. Mentat

strives for parallelism as opposed to distribution [24,38], fault-tolerance [22,23,36], or real-time

operation [25]. Most object-oriented distributed systems provide a traditional, call, block,
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continue, RPC [39] semantics. Mentat supports both more parallelism and potentially less

message traffic than the traditional approach by exploiting intra-object and inter-object

parallelism opportunities and by sending intermediate results only where needed. For a good

survey of programming languages for distributed systems see [12].

5.2. Promises

Promises [40] offers an extension to traditional RPC that allows multiple invocations of a

remote procedure to be pipelined, not delaying execution of the caller until the result is actually

needed. As shown in Example 3 Mentat supports pipelining as a subset of its capabilities. In

some respects Promises is similar to the Mentat approach. One principle difference is that the

Promises approach does not allow generalized graph structures to be built. The results of

invocations must first return to the caller before they can be used in subsequent invocations.

More importantly, programmers must explicitly manage the results of the pipelined executions

differently from other variables. The programmer must check if the result has arrived and an

actual value is available, and block if it has not. Mentat does not require the programmer to

manage synchronization by checking if the result is available. Instead, the programmer uses the

variable and the compiler generates code to perform the checking.

5.3. Implicit vs. Explicit Parallelism

Parallelism can be either automatically extracted from the sources by the compiler (implicit

parallelism), or specified and managed by the programmer (explicit parallelism). The relative

merit of the implicit and explicit schemes depends on whether the programmer or the compiler

can better detect parallelism, and make decisions regarding granularity, synchronization, and

communication.
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In implicit schemes a conventional or functional language can be used by the programmer.

Implicit schemes [41,42] offer the advantage that they often permit the automatic parallelization

of "dusty decks". This is the approach used in Cedar [8,43], and in vectorizing compilers such as

those for the Cray. Implicit schemes are usually better at detecting fine-grain parallelism, and not

as successful at detecting large-grain parallelism.

Explicit parallelization schemes allow the programmer to control parallelism by providing

parallel programming constructs to specify which portions of the program will be executed in

parallel. Synchronization and communication are often the responsibility of the programmer in

explicit schemes. The extra control and flexibility of explicit schemes often comes at the cost of

extra complexity.

Mentat falls between the two extremes of fully automatic compilers and the assembly

language-like fully explicit schemes. In Mentat, the granules of computation are explicitly

defined. Programmers explicitly specify those object classes that possess an independent thread

of control. However, the dependencies and parallel structure of the computation are implicit.

Invocation, communication, and synchronization are handled automatically by the compiler and

the run-time system. The compiler generates code to automatically construct macro data-flow

graphs at run-time. Furthermore, Mentat does not preclude the use of special purpose or

vectorizing compilers to compile the individual objects to run on special purpose hardware or

vector machines. We feel that hybrid approaches, such as the approach used by Mentat, offer a

good compromise between the programming simplicity of implicit schemes and the control and

power of explicit schemes.
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5.4. Generative Communication - Linda

Generative communication and Linda [44] have been proposed as a means of writing

parallel and distributed software. Mentat differs from Linda two respects. First, the underlying

model of computation is different. Linda uses the generative communication model in which

processes communicate with one another by reading and writing to the shared tuple space (TS).

The tuple space can be thought of as a shared associative memory. Mentat uses a data-driven,

message passing, model of computation in which processes communicate by sending one

another messages. Second, Linda explicitly exposes the programmer to problem decomposition,

granularity, communication, and synchronization. Mentat hides communication and

synchronization in member function calls, providing instead a familiar programming abstraction.

Both systems provide location transparency, spatial and temporal uncoupling, and a form of

continuation passing.

6. Summary

Writing software for parallel and distributed systems that makes effective use of the

available CPU resources has proven to be more difficult that writing software for sequential

machines. This is true even though most of the work has been done by programmers that have a

good understanding of the machines on which they’re working. Given the current software crisis

for sequential machines, it is unlikely that parallel and distributed architectures will be widely

used until software tools are available that hide the complexity of the parallel environment from

the programmer.

In this paper we have presented the Mentat approach to solving the parallel software

problem. The key idea is to have the programmer use his domain knowledge to decompose the

problem, and to use compiler technology to correctly manage scheduling, communication, and
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synchronization. By exploiting the strengths of both the programmer (domain knowledge) and

the compiler (correctness) we can leverage the programmer’s efforts, freeing him/her from

detail, and increasing his/her productivity.

Our approach includes extending the object-oriented paradigm’s encapsulation techniques

to include parallelism encapsulation. The programmer uses his domain knowledge to specify

those classes that are computationally complex. We then apply compiler technology to

encapsulate the parallelism internal to an object, and to transparently exploit parallelism

opportunities between objects.

It is possible, indeed probable, that a good programmer could write a more efficient and

concurrent program using raw send and receive. We believe, though, that send and receive (and

semaphores with shared memory) are the assembly language of parallelism. Just as early high

level language compilers could be beaten by a good programmer writing in assembly language,

MPL performance can be beaten by a hand coded application using send and receive. Extending

the analogy, just as high level languages now have good optimizing compilers that do as well as

most programmers, and better than many, we expect MPL compiler technology to improve.

Indeed, several optimizations are already planned. The question that must be answered for both

high level languages vs. assembly languages and for MPL vs. raw send and receive is whether

the simplicity and ease of use are worth the performance penalty. We believe that they are.
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