
Mentat 2.6 Release Notes

The Mentat Research Group

Technical Report No. CS-94-07
February 17, 1994

Mentat 2.6 Release Notes

The Mentat Research Group

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903
mentat@virginia.edu

Copyright © 1993 by the Rector and Visitors of the University of Virginia.

All rights reserved.

Permission is granted to copy and distribute this manual so long as this copyright
page accompanies any copies. The Mentat system software herein described is
intended for research and is available free-of-charge for that purpose. Permission is
not granted for distributing the Mentat system software outside of your site. The
Mentat system is available via anonymous FTP, please refer interested parties to
mentat@virginia.edu for more information.

In no event shall the University of Virginia be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of the use of the
Mentat system software and its documentation.

The University of Virginia specifically disclaims any warranties, including but not
limited to the implied warranties of merchantability and fitness for a particular
purpose. The software provided hereunder is on an “as is” basis, and the University
of Virginia has no obligation to provide maintenance, support, updates,
enhancements, or modifications.

Portions of the grammer used in the MPL front-end processor is Copyright © 1989,
1990 by James A. Roskind.

This work is funded in part by NSF grants ASC-9201822 and CDA-8922545-01.

The following people have contributed to the Mentat project: Andrew S. Grimshaw,
Edmond C. Loyot, Jr., Jon B. Weissman, Padmini Narayan, Emily West, John
Karpovich, Laurie MacCallum, Tim Strayer, Brian Paine, David Mack, Virginio
Vivas, and Gorell Cheek.

February 17, 1994

2

Mentat 2.6 Release Notes

Explanation of changes made
from Release 2.5

1.0 Changes for Release 2.6

• Performance Monitor

MentatMeter, a performance monitoring tool, has been added to measure execution
efficiency in Mentat applications.

• Guarded Statements

Guarded statments are now supported using constants and local variables.

• Enhanced compiler support

Mentat now supports GNU 2.4.5 C++.

• Library Enhancements -MAY REQUIRE APPLICATION CHANGES

• Support for Intel Paragon

• Bugs fixed

• FAQ’s

2.0 MentatMeter

In the process of software development, software engineering dictates “Make it right
and then make it fast”. This applies to parallel programming as well. Since parallel
programming is difficult, programmers spend a considerable amount of time ensuring
that their program executes efficiently. In the last few years, one of the significant
thrusts of research in software development has been to devise tools that make the
development of efficient programs easier. These tools are calledperformance
monitoring and analysis tools. The goal of performance monitoring and evaluation is to
automate and simplify the task of analyzing the behavior of a program. While
performance monitoring is the observation of the efficiency of a program, performance

MentatMeter

Mentat 2.6 Release Notes 3

evaluation attempts to measure the effects produced by a program designed in a
particular manner. In addition to understanding the behavior of an application program,
it is important to be aware of the benefits and limitations of the computing environment
(machine and the run-time system) so as to optimize the program. The most effective
way of providing this type of information to the user is through performance analysis
and visualization tools that automatically collect performance information of a program
during execution and display various characteristics of the program for the user to
analyze. MentatMeter is a performance monitoring tool for Mentat, with which users
can monitor the behavior of Mentat applications.

To aid performance monitoring, we have provided MentatMeter with the capability to
measure the following metrics:

• wall-clock time and CPU time of member functions

• idle time of member functions

• number of invocations of member functions

• number of invocations of Mentat objects

• amount of data communicated between Mentat objects

• amount of message traffic generated by Mentat objects
With metrics such as wall-clock time, CPU time and function and object invocation
counts, users can identify computational hot-spots in their programs. Such information
tells users what percentage of the total execution time a particular member function has
consumed. The user can then decide whether or not to optimize that member function.
Metrics about the amount of message traffic and the communication pattern of an
application indicate potential communication bottlenecks in a program. Users can then
decide whether or not to optimize data structures for messages so as to reduce traffic.

In situations where no optimizations are possible, the information collected by
MentatMeter helps users roughly estimate the costs of different parts of their program
and then check to see if they match with actual costs. With the availability of such
information, users will not spend too much time trying to optimize a poor algorithm
when in fact no optimizations are possible. Instead, users can consider changing the
structure of their program or sometimes even implement an entirely new algorithm.

The Mentat run-time system has been modified to collect performance data about an
application during its execution. When the application finishes execution a file
containing the performance data for the entire program is generated in the current
working directory. This file can be quite large - on the order of a few megabytes for a
medium sized problem. An example of a data file is shown in Figure 1.

Rather than expect the user to browse through the file manually, we have used a data
visualization tool called Pablo, developed at the University of Illinois to view the
performance data. The user must build a performance data flow graph using Pablo, for
any or all of the performance metrics he or she wishes to view. This graph can then be
executed. During execution, the graph takes the data file as input and plays back the
values of the performance metric(s) during the course of execution of the entire
application. Prior to data visualization, users can restrict the amount of data to be
viewed by using a utility calledMM_filter. If they desire to view the performance

MentatMeter

Mentat 2.6 Release Notes 4

data of only a particular class or member function they can do so by specifying this in a
“directives” file. MM_filter takes the directives file and the original data file and
filters out the unnecessary data records, producing a new data file containing only the

Figure 1 Performance Data File

// Sample data f ile - gauss.ascii
#1:
// “description” “Procedure Entry Count Record”
“Procedure Entry Count”

char “Classname”[];
double “Timestamp”;
int “Count”;
int “Processor Number”;
int “Process ID”;
int “Function ID”;

};;
#2:
// “description” “Procedure Trace Record”
“Procedure Trace” {

char “Classname”[];
double “Timestamp”;
double “Elapsed Time”;
double “CPU Time”;
int “Processor Number”;
int “Process ID”;
int “Function ID”;

};;
// more record descriptors

.

.

.
// data records begin
“Procedure Entry Count” {

 [20] {
 “sblock”

}, 738345793671.420044, 1, 0, 1, 1 };;
“Procedure Trace” {

 [20] {
 “sblock”

}, 738345793671.420044, 4.570000, 0.000000, 0, 1, 1 };;
“Procedure Entry Count” {

 [20] {
 “sblock”

}, 738345793747.713989, 1, 0, 2, 1 };;
// more data records

.

.

.
“Procedure Trace” {

 [20] {
 “sblock”

}, 738345812413.583008, 0.676000, 0.000000, 0, 1, 3 };;
// end of f ile

MentatMeter

Mentat 2.6 Release Notes 5

required information. The original data file is left untouched for further use. A sample
directives file is shown in Figure 2. Each line in the directives file consists of the type of
data record to be viewed for a particular Mentat class and member function. The
member function number is the order in which the public member functions of a Mentat
class appear in the header file. The data file is in the Self-Describing Data Format
(SDDF) as required by Pablo...

MentatMeter is currently available for applications running on a network of Sun
workstations. In the future, it will be made available for other platforms as well.

To use MentatMeter, perform the following steps:

Step 1 Build the main program of the application with the-meter option. Note, when
monitoring is not required, rebuild without the -meter option.

Step 2 Give the group “mentat” permission to write in your current working directory. Note,
this is to allow MentatMeter to create the data file in the user’s directory.

Step 3 Ensure that the Mentat run-time system is running on a network of Sun workstations,
and execute the application.

$ <executable_name> <command_line arguments>

When this step completes, a performance data file with the name
<executable_name>.ascii is generated.

Step 4 [optional] Create a directives file containing requests for the type of performance
information to be viewed.

Step 5 [optional] Execute MM_filter providing it with the name of the data file, the directives
file and the output file.

$ MM_filter <executable_name>.ascii <directives_file>
<output_file>

Step 6 Build a performance data flow graph using Pablo.

Step 7 Execute the graph and view the performance metrics.

Note: When MentatMeter is executing, special persistent Mentat objects called
_writer_instr are created to store the performance data to disc. These objects can be
seen when alist_objects is executed or through MentatView. Currently, MentatMeter
creates max _writer_instr objects, wheren is the number of available

Figure 2 Directives File
“Procedure Entry Count” { “sblock”, 1 }
“Procedure Trace” { “sblock”, 3 }
“Object Entry Count” { “sblock” }
“Procedure Idle Time” { “sblock”, 1 }
“Message Length” { “sblock”, 3 }
“Proc Msg Gen Cnt” { “sblock”, 3 }

2 n 4⁄{ , }

MentatMeter

Mentat 2.6 Release Notes 6

processors(nodes) in the current configuration. The user is advised to leave at least 3/4
of the available processors unused so that they can be dedicated to the_writer_instr
objects. This will keep the perturbation caused by MentatMeter to the application down.
When all processors have to be used by the application, the_writer_instr objects will be
collocated with the application objects, and will cause more perturbation.

Steps 6 and 7 above have been elaborated in the next subsection.

2.1 Using Pablo for data visualization

Here we step through the process of using Pablo for visualization of performance data
of Mentat applications. For further details about using Pablo, the reader is referred to the
Pablo working documents [1], [2] and [3]. The reader is strongly encouraged to read
[2] before using Pablo, as it contains detailed tutorials on how to use Pablo. These
documents can be found in the Pablo distribution. In this example, we use Pablo to
obtain the average execution time of all the member functions of a Mentat object in an
application.

Step 1 Have X windows running on a Sun workstation.

Step 2 If Pablo has not been installed in your environment, do so by referring to the INSTALL
files in the Pablo distribution, or contact mentat@virginia.edu.

Step 3 Set the appropriate environment variables to run Pablo.

Step 4 Next, enter the command:

$ runPablo &

A Pablo session is fired up and a window labeled Pablo will appear. First we must build
a performance data flow graph and then execute it.

Step 5 Using the Pablo Module Creation window, add a FileInput module, two
SynthesizeArray modules, aBinaryMath module and aMatrix display module.

Step 6 Connect these modules as shown in Figure 3. Before execution, we must configure the
graph, so as to tell each module what data it must process and output to the next module.

Step 7 Each of the modules can be configured as follows:

• the FileInput module to accept the performance data file

• the first SynthesizeArray module to extract fields from the “Procedure Trace”
records and add the value contained in the wall-clock time field

• the second SynthesizeArray module to extract fields from the “Procedure Entry
Count” records and keep track of the latest value of the “Count” field

• the BinaryMath module to divide the result from the first SynthesizeArray module
with that of the second to obtain the average wall-clock time taken by each member
function in the program

MentatMeter

Mentat 2.6 Release Notes 7

Figure 1 Pablo Session for Execution Time of member functions of Mentat
objects

Guarded Statements

Mentat 2.6 Release Notes 8

• and finally, the Matrix display module to display the array output by the BinaryMath
module

Note: Several intermediate steps in the configuration process have been skipped in this
document for brevity, and the user is once again referred to [2].

Step 8 Save the configuration.

Step 9 Run the graph. The Matrix display as shown in Figure 3 will be updated as the graph
executes. The colors within the cells of the matrix will change as the values they contain
change. These values can be viewed by clicking the mouse on the cells of the matrix.

2.2 References

Aydt, Ruth A., “The Pablo Self-Defining Data Format,” Pablo Working Documents,
Dept. of Computer Science, UIUC, March 1992.

Aydt, Ruth A., “An Informal Guide to Using Pablo,” Pablo Working Documents, Dept.
of Computer Science, UIUC, October 1992.

Reed, Daniel A., et al, “An Overview of the Pablo Performance Analysis Environment,”
Pablo Working Documents, Dept. of Computer Science, UIUC, November 1992.

3.0 Guarded Statements

Some form of guarded statements are provided in many modern programming
languages. Examples include the select/accept statements of ADA and guarded
statements in CSP. Guarded statements permit the programmer to specify a set of entry
points to a monitor-like construct. The guards are boolean expressions based on local
variables and constants. A guard is assigned to each possible entry point. If the guard
evaluates to true, its corresponding entry point is a candidate for execution. The rules
vary for determining which of the candidates is chosen to execute. It is common to
specify in the language that it is chosen at random. This can result in some entry points
never being chosen.

The programmer may specify those member functions that are candidates for execution
based upon a broad range of criteria. Further, the programmer may exercise scheduling
control by using different priorities. The syntax for select/accept is shown below:

select_statement :: mselect {guard_list};
guard_list :: guard_statement; guard_list |

guard_statement;
guard_statement :: [guard]:[priority] guard_action;|

:[priority] guard_action;
guard_action :: maccept fct declarator; break; |
guard :: Boolean expression based on variables, constants, and tokens.

Library Class Modifications - May require application changes

Mentat 2.6 Release Notes 9

Note: In the current implementation, guards must be local variables or constants.
Further, priorities are not implemented.

The smelect statement has a similar semantics to the select statement of ADA. The
availability of each guard-statement is controlled using a guard. The guards are
evaluated in priority order. Within a given priority level each of the guards is evaluated
in some non-deterministic order. Each guard is evaluated in turn until one of the guards
is true; the corresponding member function for that guard is then executed. When the
function has been executed, control passes to the next statement beyond the select.

A guard in Mentat is a boolean expression based on local variables or constants.
Assignment statements are disallowed in guards (to prevent side effects).

4.0 Library Class Modifications - May require
application changes

4.1 Operator new

The library classestransportable_list , DD_array , and sparse_vector have been
modified to separate the operations of memory allocation and class object initialization.
Thus, the operatornew now requires arguments to indicate the amount of memory to
allocate. For the classes derived fromDD_array , the operator new must be called with
the arguments specifying the number of rows and the number of columns. For the
sparse_vector classes, the number of elements must be passed to the operatornew.
Figure 1 displays some examples of the use of the new operators. In addition, any user-

defined classes derived fromDD_array must specify their own version of the operator
new.

Figure 3 A Sample mselect/maccept Statement

mselect {
: maccept int func1(int arg1);

break;
(local_one > 5): maccept int func2();

break;
}

Figure 1 Examples of operator new

list = new(max_items, item_size) transportable_list(max_items, item_size);

real_array = new(rows, cols) DD_floatarray(rows,cols,data_ptr);

real_sparse_vector = new (num_elements) sp_sparsevector(dimension, num_elements);

Bug Fixes

Mentat 2.6 Release Notes 10

4.2 User-defined variable-sized objects

All user-defined classes whose objects are of variable size must be derived from the
base classmentat_transportable_block. This is to ensure that the objects are memory
contiguous as required by the Mentat run-time system. Furthermore, each of these
classes must overload the operator new. For example, assume that a class user_list has
been derived off of mentat_transportable_block. In order to properly allocate enough
memory for this object, the operatornew must be overloaded in the derived class. The
operator new must accept the total size of the object (in bytes) and the reserved
parameter ofsize_t. In order to avoid compiler warnings, it is useful to derive a delete
operator off of mentat_transportable_block as well. This operator need only take a
void pointer as a parameter.

void *user_list::operator new(size_t s, int num_items) {

 return(mentat_transportable_block:: operator new (s,
 num_items*sizeof(item_type)));
}

void user_list::delete(void *ptr) {
 mentat_transportable_block::delete(ptr);
}

5.0 Bug Fixes

5.1 Communication System

Several improvements to the communication system have been made. First, in the event
of an error, the message “socket mmps error” will be displayed once, and the application
will likely hang.

In the event that an exception has occurred, the following error messages will appear:
“floating point exception” or “segment violation.” As an aid in debugging, the name of
the host on which the error appeared along with the name of class that caused the error
will be displayed to the window in which Mentat was started.

5.2 Configuration Database Revisions

The configuration database has been improved with more error checking and more
instructive error messages. In the event that a cluster is empty, the configuration
manager detects and reports this error.

Further, the host naming facilities have been improved. Previously, the message passing
system was unable to distinguish between two similarly named hosts, for example, the
hosts maple and mapleleaf were considered to be the same host. Further, host names
were case sensitive. These inconveniences have been removed. Hosts names can be of
any case (even mixed-case).

FAQ’s

Mentat 2.6 Release Notes 11

5.3 Miscellaneous Compiler bugs

Several minor compiler bugs have been fixed. Many of the warnings have been
eliminated, though many spurious “syntax error: undeclared identifier” messages
remain. The compiler has also been extended to support the Mentat meter option
discussed above.

6.0 FAQ’s

There are several questions that we are asked again and again. This is usually caused by
less than clear documentation. Sometimes though, the semantics are subtle. Most of the
questions revolve around pointers. Below is the start of an ongoing FAQ file.

6.1 Passing pointers, their lifetimes and semantics

A user asks:

Please refer to page 16 of the Programming Reference Manual. Specifically, the section
10.0 Warnings. What does:

 “reference and pointer arguments passed to Mentat class member functions are not
preserved after the call. Consequently, the programmer must take care to first copy the
arguments, if they are needed after the invocation”

mean? Is this description referring to the calling side? I am using the following piece of
code:

string *tmp;

tmp = new string(“10101010”);

x.method(tmp);

delete tmp

Answer: None. For the caller there are no implications. There are implications for the
callee. Suppose x is an instance of the persistent mentat class example_class, and that
the class has the private member variable string *str; Further, suppose the body of
method is:

void example_class::method(string *argument) {

 str = argument;

 rtf(0);

}

This code fragment would not work as expected because after the call to method the
memory area pointed to by argument is returned to the heap manager by the Mentat run-
time system. If the string is needed later, then it must be copied, e.g.,

void example_class::method(string *argument) {

FAQ’s

Mentat 2.6 Release Notes 12

 str = new string (argument);

 rtf(0);

}

6.2 Variable size arguments

We are often asked why code using variable size arguments does not work. The most
common reason is that the variable used is an auto variable, not a heap variable. Auto
variables have a constant amount of stack space allocated for them. Thus, they are not
“variable size”. To use a variable size variable, e.g., a variable derived off of
mentat_transportable_block or DD_array, the variable must be a pointer, i.e., the data
must reside on the heap. For example, DD_floatarray is a variable size class in the
library. The code fragment:

DD_floatarray fred(5,5);

x.method(fred); // x is a mentat object

will not work because fred is an auto variable. In fact, the stack will be corrupted by
using the constructor in that way. Instead, the following should be used:

DD_floatarray *fred = new (5,5) DD_floatarray(5,5);

x.method(fred); // x is a mentat object

The new(5,5) is the overloaded memory allocator being called.

6.3 ld.so call to undefined procedure <something> - on Suns

This is a known problem with the Sun OS dynamic linker. To avoid this problem we
statically link our executables. Using the “file <filename>” command check whether
your program is dynamically or statically linked. Mplc specifies -Bstatic for CC_saber
and ATT, and -static for g++. If you add -Bstatic to the END of the compilation/link
options (see the cc man page) the program will be statically linked, and the problem
should go away.

6.4 Why don’t my inline functions work?

Member functions for Mentat classes should not be implemented as in-lines. The
compiler will sometimes generate correct code, but not always. The desired effect, fast
function call, is NEVER realized, as the call is turned into a remote invocation by the
compiler.

6.5 Can I have constructors for Mentat objects?

No. You can overload create though, which has a very similar effect. The one difficulty
is that with the current release you cannot specify location hints and overload create for
a Mentat class.

Known Bugs and problems

Mentat 2.6 Release Notes 13

6.6 What are transportable lists? How can I use them?

Transportable lists are a handy base class that can be used to derive variable sized lists
of user defined types. For example, suppose that I want to have a list of result structures,
rstruct that I want to return from a Mentat object member function call.

struct rstruct
{
 int score0;
 int score1;
 int score2;
 unsigned sfnum;
 long lmark;
};
#define LIST_SORTED 1
class result_list:public transportable_list
{
 public:
 inline void *operator new(size_t sz);
 inline void *operator new(size_t sz,int max_count);
 result_list(int max_count) : (max_count,sizeof(rstruct)){}
 rstruct& operator[](unsigned i)
 {return *(rstruct*)(&transportable_list::operator[](i));}
 rstruct* append(rstruct* mo)
 {return (rstruct*)transportable_list::append((char*)mo);}
 void sort();
 int sorted() {return (get_flags() & LIST_SORTED);}
 int set_sorted() {set_flags(get_flags()| LIST_SORTED);}
};

inline void *result_list::operator new(size_t sz) {
 return transportable_list::operator new(sz);
}
inline void *result_list::operator new(size_t sz,int max_count) {
 return transportable_list::operator new(sz,max_count,sizeof(rstruct));
}

// use
result_list x = new (10) result_list(10;
x->append(value);

7.0 Known Bugs and problems

There are several known bugs that we have not had time to get to. There are work
arounds for most all of these. If you know of any others, please let us know.

7.1 Will not work with ATT compiler version 3.X and later

This does not refer to the language version. The problem is that later versions of the
compiler do not allow taking the address of a member function of a class and casting it
to be a function pointer. The code generated by mplc uses that feature. The next (mentat

Known Bugs and problems

Mentat 2.6 Release Notes 14

2.7) release will use a different technique to acquire the address of member functions.
This does not effect g++ users though.

7.2 Unsigned short int, short int, etc.

The use of unsigned short int, short int, unsigned char, etc., as arguments to Mentat class
member function calls is not supported. This is a compiler bug, and will be fixed in the
next release. To get around this problem, use an int.

7.3 Non-intuitive behavior of calls on private members of Mentat objects

If a Mentat class member function invokes a member function on itself without using
SELF, and that function performs an rtf(), and the caller performs an rtf(), a future stack
underflow will occur. This is because the compiler does not generate code to create a
dummy future for the call.This will be fixed in the next release. To avoid this problem
partition your member functions into two classes, those that are called from the outside
and which use an rtf(), and those that are only called locally, and do not use an rtf(). We
admit that this is ugly, but it works.

7.4 Virtual Functions not supported on calls to Mentat objects

If an instance of a class that has virtual functions is passed as a parameter or return
result to/from a Mentat object member function the virtual functions will not work
unless the caller and the callee have the same executable. (It is safest to assume that they
never work.) This follows from the address space disjoint nature of the computation
model. We have designed a solution to this problem that will be incorporated into the
next release.

7.5 No template or exception support

The MPL compiler predates the wide-spread availability of C++ compilers that support
templates and exceptions. Thus, the language does not support these features. It requires
a major re-write of the grammar to incorporate them. Therefore, do not expect template
or exception support in the near future.

7.6 Default parameters for Mentat class member functions

Default parameters for Mentat class member functions do not work in this release. The
compiler will generate a warning if no match can be found without the defaults, and the
run-time system will generate an error,

“ERROR # args does not match: <pid> <operation id>:<argument count>”

when the number of arguments used is not what is expected.

