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High-performance scalar processors are characterized by multiple pipelined functional units that can be ini-
tiated simultaneously to exploit instruction level parallelism. For scientific codes, the performance of these
processors depends heavily on memory bandwidtlachieve peak processor rate, data must be supplied to
the arithmetic units at the peak aggregate rate of consumption.

Access ordering, a loop optimization that reorederscaching accesses to better utilize memory system
resources, is a compiler technology developed in this thesis that addresses the memory bandwidth problem
for scalar processors executing scientific codes. For a given computation, memory architecture, and memory
device type, an access ordering algorithm determines a well-defined interleaving of vector references that
maximizes dective bandwidth. Consequentbnalytic models of performance can also be derived.

Access ordering is fundamentallyfdifent from, though complementary to, both caching and access sched-
uling techniques that attempt to overlap computation with memory lat8imylation results demonstrate

that for a given computation, access ordering can significantly incréastvefmemory bandwidth over

that achieved by the natural reference sequence.
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1 Introduction

Scientific computing, the application of computers to the solution of science and engineer-
ing problems, has traditionally been one of compusimgdst demanding fields. Until

recently special high-speed vector computers provided the only means for solving most
scientific problems at acceptable computation rates. Honaseances in VLSI technol-

ogy have allowed manufacturers to produce scalar microprocessors Wdieisupeak
performance to make them viable alternatives to traditional vector processors, singly or as

components of parallel machines.

High-performance scalar processors are characterized by multiple pipelined functional
units that can be initiated simultaneously to exploit instruction level parallél"iﬂmsci-

entific codes, the performance of these processors depends heavily on memory bandwidth.
To achieve peak processor rate, data must be supplied to the arithmetic units at the peak

aggregate rate of consumption.

Extensive tests of systems constructed from one such prqdessis i860, show that as

a result of insufcient bandwidth, the average performance of hand optimized scientific
kernels is only 1/5 peak processor rate; for compiler generated code average performance
is an order of magnitude below peak performance [Lee90, Moye91]. The majority of
improvement in hand-coded routines over compiler generated code results from tailoring

accesses to memory system performance characteristics.

In general purpose scalar computing, the addition of cache memory is ofténiarguf
solution to the memory latency and bandwidth problems given the spatial and temporal
locality of reference exhibited by most codes. For scientific computations, vectors are nor-

mally too lage to cache. Iteration space tiling [CaKe8%I{88] can partition problems

1. Common superscalar and VLIW architectures incorporate concurrent pipelined functional units.



into cache-size blocks, however tiling often creates cache conflict§f@aRand the
technique is dffcult to automate. Furthermore, only a subset of the vectors accessed will
generally be reused and hence benefit from caching. Fioatiiing may actually reduce
the efective bandwidth achieved by a computation by fetching extraneous data for non-
unit strides. Thus, as noted by Latral [LaRW91], ‘while data caches have been demon-
strated to be &ctive for general-purpose applications..., thdeaiveness for numerical

code has not been established’.

Access ordering is a compiler technology developed in this thesis that addresses the mem-
ory bandwidth problem for scalar processors executing scientific codes. Access ordering is
a loop optimization that reordemsen-caching accesses to better utilize memory system
resources. For a given computation, memory architecture, and memory device type, an
access ordering algorithm determines a well-defined interleaving of vector references that
maximizes dective bandwidth. Consequenthnalytic models of performance can also

be derived.

Access ordering is fundamentallyfdifent from, though complementary to, both caching
and access scheduling techniques that attempt to overlap computation with memory
latency Simulation results demonstrate that for a given computation, access ordering can
significantly increase &fctive memory bandwidth over that achieved by the natural refer-

ence sequence.

In a study of the Intelduchstone Delta distributed memory parallel comp@tavens

[Stev92] notes that for many scientific codes

per node performance is still the number one problem in obtaining
good overall applications performance. The majority of [codes sur-
veyed] are not communications bound. Thus improving basic com-

piler technology is absolutely necessary



Access ordering represents a new compiler technology complementary to existing tech-
nologies aimed at improving performance for scientific codes. Together, these compilation
techniques can be applied towards meeting the demands of high-performance scalar com-

puting.

The following sections introduce access ordering and define the scope of this work. Sec-
tion 1.1 defines the general system model. An intuitive notion of access ordering is pro-
vided viaa simple examplein section 1.2. Sections 1.3 and 1.4 define the computation
domain and the scope of memory architectures, respectively, for which access ordering
algorithms are derived. Finally, a discussion of performance modeling based on access

ordering is presented in section 1.5.

1.1 General System Model

Access ordering algorithms developed in this thesis presume a general system model in
which asingle scalar processor drives a dedicated memory system, as depicted in

Figure 1. The memory system is dedicated in that only one processor is serviced, implying
that memory state is dependent on a single reference sequence. This general system model
is representative of uniprocessor systems and single-processor nodes of distributed mem-

ory parallel machines.

The processor is presumed to implement a non-caching load instruction, ala Intel’s 860
[Inte89], allowing the sequence of requests observed by the memory system to be con-
trolled via software. For access ordering, all memory references are assumed to be non-
caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issuesin chapter 7.
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[——

Memory System

Data Sink
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Figurel General System Model

1.2 Access Ordering Observation

Access ordering formalizes the notion of reordering accesses to exploit memory system

resources. @ illustrate this concept, a simple example is presented below

Consider a single module memory system constructedgegetmode DRAMs. Page-

mode DRAMs operate as if implemented with a single on-chip cache line, referred to as a
page. An access that does not fall within the address range of the current DRAM page
forces a new page to be accessed, requiring significantly more time to service than an
access that ‘hits’ the cached page. Thus, tleetefe bandwidth is sensitive to the

sequence of requests. Nearly all DRAMs currently manufactured implement a form of

page-mode operation [Quin91].



Note that a DRAM page should not be confused with a virtual memory page; this is an
unfortunate overloading of terms. A DRAM page is a physical feature of the memory

device. Throughout this text the term ‘page’ always refers to a DRAM page.

Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

the innefproduct algorithm
i S « s+ab,

Access to the vecto@ andb alternate, incurring a page miss with each access in the

likely situation thata, andb; reside in a dferent DRAM page; memory references likely
to page miss are highlighted in Fig@eBy unrolling the loop and grouping accesses to
the same vectpas demonstrated in Figu2€b), page miss cost is amortized over a num-

ber of accesses, increasing processemory bandwidth significantly

| oop: | oop:

load afi] load afi]

| oad b[i] | oad afi+1]

<arithnetic insts> load b[i]

<branch when done> | oad b[i+1]

junp | oop <arithmetic insts>
<branch when done>
junp | oop

(a) (b)

Figure 2 Inner-Product Code

Figure3 depicts average time per access versus depth of loop unrolling for thpriother

uct computation, as measured on the Intel IPSC/860 node architecture. For the curve
labeled ‘Natural’ the loop body of FiguP€a) is essentially replicated the appropriate
number of times, as is standard practice. For the curve labeled ‘Ordered’, accesses have
been arranged as per Fig@(®); in doing so a performance gain of nearly 150% is real-

ized at a depth of 4.
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As noted above, access ordering employs loop unrolling to increase the number of
accesses within a given loop that can be reordered. However, loop unrolling creates regis-
ter pressure and has traditionally been limited by register resources. Techniques that uti-
lize cache memory to mimic vector registers, thereby relieving processor register pressure

and effectively increasing register set size, are discussed in chapter 7.

1.3 Computation Domain

The problem domain to which access ordering is applicableisthe class of stream-oriented
computations. A stream-oriented computation interleaves references to some number of
streams, where a stream is defined as a linear sequence of accesses to a given vector of
fixed sized elements, beginning at a known address, and proceeding at a constant stride.
Stream access results in a predictable reference pattern than can be exploited. Processor
instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.



For example, a scalar processor performing the well kreoysnoperation:

is assumed to generate three distinguishable access streams, one load stream to each of the

vectorsy andXx, and one store stream back to the vegtor

Many important scientific computational kernels may be classified as stream-oriented

computations, including

* BLASI1-3 routines,

» LINPACK routines,

» most of the codes in the Livermore Loops,

* numerous iterative methods for the solution of PDEs,

» diagonally-sparse matrix-vector and matrix-matrix multiply operations,

» the Simplex algorithm for solving Linear Programming problems,

» DSP algorithms such as constant geometry FFT and the linear filters FIR and IIR, and

* numerous recurrence and reduction operations.

Furthermore, many string manipulation and search algorithms may also be classified as
stream-oriented computations. Thus, while the scope of reference patterns modeled is lim-

ited, the problem space is Baiently interesting to warrant investigation.

Note that the class of computations considered for accesses ordering, i.e. stream-oriented
computations, is precisely the class for which cache memory is afidiesufsolution to

the memory bandwidth problem. The converse is also true; cache memory provides suf
cient bandwidth for computations that do not exhibit the extended patterns of access

exploited by access ordering. Thus, the two techniques are complementary



1.4 Memory System Domain

For stream-oriented computations, access ordering reorders references within an unrolled
loop to exploit features of the underlying memory system. Thus, a different access order-

ing algorithm must be derived for each target memory architecture and device type.

1.4.1 Memory Architectures

Three memory architectures are analyzed in the chapters that follow:

* single module,
» sequentialy interleaved, and

* multicopy.

Chapter 4 derives access ordering algorithms for a single module system. Optimal effec-
tive memory bandwidth is achieved for a given computation under conditionsto be
defined. Single module results are used as the basis for analyzing the parallel memory sys-

tems defined bel ow.

Chapter 5 derives access ordering algorithms for a sequentially interleaved system.
Sequentially interleaved storage isthe ‘ standard’ parallel memory storage scheme. Given
a system of m memory modules, word a maps to module a mod m. Algorithms are devel-

oped assuming both known and unknown stream alignments.

Finally, chapter 6 derives access ordering algorithms for a proposed multicopy memory
system, consisting of midentical copies of memory that can be accessed in paralldl. Inthis
system, read accesses are tagged for a particular module and write accesses are broadcast
to all modules to maintain consistency. Cost and performance of multicopy versus sequen-

tially interleaved systems are discussed.



1.4.2 Memory Device Types

For each of the memory architectures described above, an access ordering algorithmis

derived for each of two devices types: uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to
service agiven access is not dependent on previous requests, SRAMs are the common
example of this device type. The performance of uniform-access componentsis parame-

terized by

the read cycletime, and

u/r’

T,/ thewrite cycle time.

Page-mode components operate asif implemented with asingle on-chip cacheline, asdis-
cussed in section 1.2; static-column and fast page-mode DRAMS are the common exam-

ples of this device type. The performance of page-mode components is parameterized by

* p, the page size,

* Tors the page-hit read cycle time,

* Tomw the page-hit write cycle time, and

. p, m» the additional page access overhead incurred by a page miss; thus, the page-miss
read and write cycletimesare T, + T, and T, + T, ,, respectively.

For al memory systems analyzed, w is the word size. For systems constructed from page-

mode components, page size is amultiple of word size; i.e. w | p.
Note that for all system parameters, sizes are in bytes and times are in nanoseconds.

1.5 Performance Modeling

For a given computation, memory architecture, and memory device type, access ordering

resultsin code that generates a well-defined sequence of stream references. Consequently,
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for each access ordering algorithm, an analytic model of effective memory bandwidth can

be derived.

Models of memory system performance have traditionally been based on the assumption
that individual modules are insensitive to the sequence of access requests. For modern
page-mode DRAM components, this assumption is not correct. Furthermore, memory per-
formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, thisis not the case.

Developing an access ordering algorithm for a given memory architecture and device type
provides a unique opportunity to derive a precise analytic model of memory system per-
formance for alarge and important class of computations. Models of effective memory
bandwidth are derived for the cross-product of architectures and components discussed in
section 1.4. Note that to model maximum bandwidth, it is assumed that the processor is

sufficiently fast such that performance is limited by the memory system.
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2 Survey of Related Work

Access ordering spans a number of interrelated topics from compiler optimizations to per-
formance modeling. To assess the contribution of thiswork, it isnecessary to identify each

of these relevant areas and cite previous research.

Section 2.1 discusses stream detection as required for access ordering. Access scheduling
techniques are presented in section 2.2. Previous analytic results that capture memory sys-
tem behavior are discussed in section 2.3. Section 2.4 considers alternative parallel mem-

ory storage schemes for increasing the effective bandwidth of vector accesses.

2.1 Stream Detection

Access ordering algorithms derived in this thesis presuppose the existence of compiler
techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]
describe atechnique for explicitly detecting streaming opportunities, including those in
recurrence relations. Furthermore, since stream-oriented computations reference vector
operands, well known vectorization techniques are applicable, such as those described by

Wolfe [Wolf89].

2.2 Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.
Previous work has focused on reducing load/store interlock delay by overlapping compu-
tation with memory latency. Such techniques are referred to here collectively as access

scheduling. Essentially, access scheduling techniques attempt to separate the execution of
aload/store instruction from the execution of the instruction which consumes/produces its

operand, reducing the time the processor spends delayed on memory requests.
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Bernstein and Rodeh [BeR091] present an algorithm for scheduling intra-loop instructions
on superscalar architectures that accommodates |load delay. Lam [Lam88] presents a tech-
nique referred to as software pipelining that structures code such that agiven loop iteration
loads the data for a later iteration, stores results from a previous iteration, and performs
computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-
sive study in which they classify and evaluate software pipelining techniques imple-
mented in conjunction with loop unrolling. Klaiber and Levy [KILe91] and Callahan et al
[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

niques are developed for inserting fetch instructions into the normal instruction stream.

Access ordering and access scheduling are fundamentally different. Access scheduling
techniques alow load/store architectures to better tolerate memory latency. Access order-
ing reorders memory references to increase effective bandwidth. Note that access ordering
and access scheduling are complementary. Access ordering can first be applied to a com-
putational kernel to obtain an ordering of load/store instructions that maximizes effective
bandwidth. Access scheduling can then be applied to reduce interlock delay while main-

taining the specified load/store instruction order.

Access ordering as a compilation technique is an original concept; few references to simi-
lar ideas are found in the literature. Ramamoorthy and Wah [RaWa81] present an optimal
algorithm for initiating queued requests on a sequentially interleaved memory to maxi-
mize module concurrency; however, thisis an inherently dynamic technique that assumes
independent random requests and knowledge of the modules to which requests are to be
mapped. Gupta and Soffa [ GuSo88] demonstrate compilation techniques for distributing
scalars across parallel memory modules to alow for concurrent access by VLIW architec-

tures; however, these techniques are not applicable to vector data.
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2.3 Modeling Memory System Behavior

Deriving an ordering algorithm and corresponding performance predictor requires analytic
results that capture the interaction of a reference sequence with memory architecture and

components features. Section 2.3.1 discusses reference sequence modeling. Sections 2.3.2
and 2.3.3 survey analytic results pertaining to memory system behavior for scalar and vec-

tor processors, respectively.

2.3.1 Access Pattern Models

To model the behavior of amemory system, it is necessary to characterize the reference
pattern by which it is driven. While a number of stochastic models of program locality
have been derived [AvCK87, ShTu72, SpDe72], they are mainly applicable to the perfor-
mance analysis of cache memories and virtual memory systems. For the purpose of deriv-
ing analytic results, most memory architectures are modeled under the assumption of a

uniform random pattern of access, as discussed bel ow.

This study formalizes the notion of areference sequence consisting of interleaved vector

accesses generated by a scalar processor.

2.3.2 Memory Architecture Analysisfor Scalar Processors

A number of analytic models have been derived that capture the behavior of a memory
system driven by a scalar processor. For single module systems, the characteristics of the
memory component type completely determine performance for a given reference

sequence. For parallel memory systems, concurrency must be modeled as well.

A single module of uniform-access memory components is insensitive to the sequence of
requests, so that performance analysisistrivial. Given a single module constructed from
page-mode devices, as described in section 1.4.2, thisis not the case. Surprisingly, few

analytic results have previously been derived to capture the behavior of any memory
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architecture constructed from page-mode components. Peeleaawie Goor [PeAB87]

analyze the performance of page-mode DRAMSs in a single module architecture by view-

ing page-mode as a cache with a single long cache line; a performance predictor is derived
in the standard manner as a function of the miss ratio. Goodman and Chiang [GoCh84]
consider an architecture in which parallel modules are accessed via a “mid-order” inter-
leaving scheme such that sequential addresses proceed across a page, changing modules a
page boundaries. Using trace driven simulation, Goodman and Chiang evaluate the perfor-
mance of such a system for a number of common UNIX utilities; hoywevemnalytic

results are derived.oldate, no other studies involving page-mode memory components

have been located.

Concurrency in sequentially interleaved memory architectures has been the subject of
numerous studies; analytic results are general based on stochastic access sequences.
Hellerman [Hell66] assumes a uniform random distribution of accesses anderobuf

of conflicting requests in deriving the well known formula thanfanemory modules, an
average of approximatelyno'56 are operating concurrently at any given time. Burnett and
Coffman [BuCo70] derive an analytic model in which data and instruction requests are
separated and serviced alternately; instruction accesses are assumed sequential with a
fixed probability of branching, data requests access the next sequential module with prob-
ability a and any other module with probabiliBy= (1 -a)/N. Later work [CoBS71]
extends this model to include lfering of access conflicts. Ravi [Ravi72] develops an
analytic model for the performance of a multiprocessor system accessing a sequentially
interleaved memoryassuming a uniform random distribution of accesses. Chang, Kuck,
and Lawrie [ChKL77] summarize the work of previous authors and introduce the notion
of data dependence between accesses of a multiprocessor system; analytic models are
derived for each dependence class, again assuming a uniform random distribution of

requests.
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Because previous performance studies of memory architectures for scalar processors have
been based on stochastic access sequences, their results have limited relevance to the
stream-oriented computations considered in this thesis. Furthermore, analysis of memory

architectures constructed from page-mode components has all but been ignored.

2.3.3 Memory Architecture Analysisfor Vector Processors

The scope of reference patterns considered for access ordering is limited to stream-ori-
ented computations, i.e. algorithms that operated on vectors or vector-like data, as dis-
cussed in section 1.3. Thus analytic results pertaining to the performance of vector

computer memory systems are potentially relevant.

Modern vector computer systems incorporate multiple independent ports and alarge num-
ber of sequentially interleaved memory modules. While cal culating memory bandwidth is
trivial for accessto asingle vector, it becomes intractable for access to multiple vectors.
The difficulty liesin characterizing the conflicts which occur as the access streams con-

tend for memory modules.

Oed and Lange [OeL a85] derive analytic results, based on number of modules and strides
of access, for determining when two access streams can proceed conflict-free. In the case
of conflict-free access, calculation of bandwidth istrivial and represents an upper bound
on performance; for most other cases bandwidth calculation is intractable. Cheung and
Smith [ChSm86] perform a simulation study that characterizes reference stream interac-
tion for up to three independent memory ports. Though no analytic results are presented,
they too classify steady state conflict situations and provide simulation performance data.
Bailey [Bail87] takes a different approach in which performance of a vector computer
memory system is modeled analytically under the assumption of uniform random

accesses, while these results are not representative of the performance obtained in access-
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ing vectors, relationships between the number of processors, number of modules, and

module access time carry over to realistic vector accesses, as demonstrated via simulation.

Since the ports of a vector computer memory system operate concurrently and indepen-
dently, they behave in afundamentally different manner than a scalar processor that gener-
ates a single reference sequence. In particular, one memory port can block on a module
conflict while another continues to access a vector, a situation that does not occur with a
scalar processor. Therefore, most analytic results derived for vector processors are not
applicable. Asfew analytic results exist that capture vector computer memory system

behavior, littleislost in this realization.

2.4 Storage Schemesfor Parallel Memories

Access ordering attempts to maximize effective memory bandwidth for a stream-oriented
computation by structuring references to exploit memory system characteristics. For par-
allel memory systems, the storage scheme limits the degree of concurrency achievable by
agiven computation. Thisresearch considers only two such storage schemes: sequentially
interleaved and multicopy. However, a number of other schemes have been proposed and

are discussed below.

Budnik and Kuck [BuKu71] observed that for a sequentially interleaved storage scheme,
only vectors with strides relatively prime to the number of modules m can be accessed
without conflict, i.e. at maximum system bandwidth. This result led Lawrie and Vora
[LaVo82] to propose a memory system based on a prime number of modules. Such a sys-
tem was developed for the Burroughs Scientific Processor [KuSt82]; however, prime
memory systems have proved impractical due to the computational complexity of the stor-

age scheme.

Budnik and Kuck [BuKu71] propose the use of skewed storage in which each successive

set of m storage locationsis assigned to m memory modules with a skew relative to the
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previous set. Harper and Jump [HaJu87] present a comprehensive study of a skewed stor-
age scheme that is shown to reduce conflict over awide range of strides. Harper and Jump
further demonstrate that with skewed storage, vector accesses can reference a sequence of
modules with a periodicity that exceeds m, allowing queues placed at each module to

buffer conflicting requests and increase bandwidth.

As an aternative to implementing a single storage scheme, Harper [HalLi89, Harp89] pro-
poses a dynamic storage scheme in which each vector is stored so as to provide optimal
bandwidth for a given stride of access; later work demonstrates that dynamic storage

schemes can be devised that allow optimal accessto avector for a set of strides[Harp91].

Rau [Rau9l] analyzes a scheme that assigns storage locations to modules in a pseudo-ran-
dom fashion, rendering memory performance nearly stride insensitive; such a memory
system has been incorporated into Cydrome’s Cydra 5 Departmental Supercomputer
[RaSY 89]. Aswith skewed and dynamic schemes, pseudo-random storage schemes bene-

fit from memory module queues.

The above studies focus on increasing parallelism for accesses to a single vector beyond
that achieved by sequentialy interleaved storage. However, for a given storage scheme, it
isnot clear in all cases how references are best made to multiple vectors. Furthermore, for
parallel memory systems constructed from page-mode components, it is not sufficient to
simply maintain a high degree of concurrency; for maximum performance, reference pat-
terns should also minimize page thrashing. However, it isimportant to acknowledge the
existence of other, more effective storage schemes that may also benefit from access

ordering techniques.
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3 Modd Access Pattern

For deriving access ordering algorithms and performance models, it is useful to define a
notation for expressing sequences of requests generated by stream-oriented computations.
Section 3.1 definesthe Model Access Pattern notation used to describe streams and denote
specific reference sequences. Sections 3.2 and 3.3 present a set of general definitions and
assumptions applicable to all computations and discuss optimizing accesses with respect
to wide words. A restriction placed on stream interaction and the resulting dependencies

are discussed in sections 3.4 and 3.5, respectively.

3.1 Basic MAP Notation

Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-
tation: a set of access streamsto individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.
An access streamis defined by thetuple t; = (v;, s;, d;, m;) : 0, where

Vv; =vector to be accessed = stream starting address

s, =stride of access

d, =dataitemsize

m, = access mode, read(r) or write(w)

and o, specifies the number of data items referenced from the stream per functional itera-

tion of the computation.

A functional iteration is defined as a single repetition of an iterative computation. A loop
iteration is defined as a single repetition of the code implementing a computation. Note
that asingle loop iteration implements a fixed number of functional iterations, with that

number defined to be the depth of unrolling.
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An access sequence describes the interleaving of stream accesses within aloop and is

defined recursively as follows:

Let &, denote an access to the ‘next’ element of the stream t;, then

1. [& [isan access sequence.

2. [A,, ..., A Lisanaccess sequence where A, ..., A, are access sequences, A, ..., A,

are performed left to right with all accessesin A initiated prior to the initiation of
accessesin A, ;.

3. [A:clisan access sequence where A is an access sequence and ¢ is a positive integer;
A isrepeated c consecutive times.

For visua clarity, [Ta, CIc[E [@;: cl and extraneous brackets are omitted when the mean-
ing is unambiguous. If the access mode is known, then an access to the ‘next’ element of
stream t; isdenoted as r; or w; for m; = r or m; = w, respectively. In discussing a par-

ticular access sequence, a refersto the k™ access from stream t;.

To illustrate, the MAP notation is applied to the axpy operation

The set of logical access streams dictated by the computationis S = {t,, tyr' tyw} , Where
t, = (Xs,d,r):1, tyr = (v, Sy dy, r):1,and tyw = (v, Sy dy, w) :1. The ‘natural’
access sequence implementing the axpy computationis: [, Fy. wyW[, specifying one read
from streams t, and tyr’ followed by one write from stream tyw, per iteration of the loop.
Note that the access sequence [2,, Fy. wyWE implements one functional iteration per loop

iteration.
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3.2 Definitions and Assumptions

The following definitions complement the MAP notation:

« S={t; | t; defines an access stream for a given computation}, i.e. Sisthe set of all

access streams for a given computation,
*+ N=1S,i.e thetotal number of access streamsin Sis N, and
* V=number of unique v, for all t; 0 S, i.e. the number of vectors accessed by streams S

isV,where V< N.

For aset of streams § it isassumed that for all t; J S

* d |w, i.e.wordsizeisamultiple of the data size,
* access stream t; begins at amemory address divisible by d;, i.e. datais aligned, and

* stride of access s; is positive.

The first two assumptions represent typical processor constraints and simplify subsequent
analysis. The later assumption is customarily satisfied in the class of computations consid-
ered; furthermore, the streaminteraction restriction, to be defined, allows this assumption

without loss of generality.

3.3 Wide Word Optimization

For completeness, it is desirable to accommodate wide word access in ordering algorithms
and performance models; e.g. 32-bit values referenced from 64-bit words. To optimally
utilize wide words, and simplify modeling, a mapping is defined from a set of logical
streams referencing individual data items, as above, to a corresponding set of physical

streams referencing memory locations.

Physical streams are defined so as to guarantee that each stream references agiven word at

most once, resulting in optimal wide-word access. It isassumed that agiven logical stream
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ti(") = (vi("), si("), di("), mi(")) :ci(L) can be mapped to a physical stream
ti = (v, s, d;, m) 1 g such that
* t. begins at an address divisible by the word sizew, i.e. isword aigned, and

* t; retrieves exactly the same number of dataitems for each word accessed.

The second property can be true only if logical stream stride si(L) and dataitem size di(L)
arerestricted such that w < s,(L) di(L) or si(L) di(L) | w. Then the number of dataitems

retrieved per word accessed by physical stream t; is an integer defined by

O 1 when W< sI(L) di(L)
O

Yi = O

| Dﬁ when w > si(") di(")
oS, d

Let k; be the minimum number of functional iterations of the computation required to ref-
erencea| dataitems contained in aset of accessed words from physical stream t;. Then k;
isthe least common multiple of the number of dataitems referenced per functional itera-
tion and the number of dataitems per word divided by the number of dataitems per func-

tional iteration, i.e.

o leme™y)
i o
|

For example, given stream ti(") with stride si(") = 2, dataitemsize di(") =1, and
oi(") = 3 dataitems required per functional iteration, and given aword sizew = 4, then

K, = 2 asdepicted in Figure 4.
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word (g - 1) word (g) , word (q+ 1)

iteration (j) iteration (j + 1)

Figure4 Functional Iteration Diagram

For aset of logical streams S(7 | let cg = lem(k,) for al ti(L) 0. Then Cgisthe
minimum number of functional iterations required to reference all dataitems contained in

the set of words accessed by the corresponding physical streams.

Given logical streams st , acorresponding set of physical streams S can now be defined
by mapping each - 0 M to adistinct t, 0 S such that

L L L L
A, s, dM, mby e

t =0
u (vi("),l, W, mi(")):si when y,>1

where g; is the product of the number of functional iterations c5 and the number of data

items referenced per functional iteration divided by the number of dataitems per word; i.e.

oo
| yi

Notethat v, | cco ") since

L
deme™.v) g (L

e B = L) v
T o = nteme® y)
!

cscri(L) = hKiOi(L) = h

whereh = cy/k, 0Z".
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Whereas Gi(L) specifies the number of dataitems referenced from logical stream ti(") per
functional iteration of the computation, €, specifies the number of words accessed from
the corresponding physical stream t; per loop iteration, with each loop iteration represent-
ing cg functional iterations. Note that this definition of €, for physical stream t; is not
inconsistent with the generic stream definition presented in section 3.1, since aloop itera-

tion can be considered a single ‘functional iteration’ of the total reference sequence.

A physical stream t; is said to embody alogical stream ti(")

referenced by ti(") :

if t. accesses all dataitems

Theorem 3.1: Given logical streams s and corresponding physical streams S as
defined above, t; 0 S embodies t~) 0 stV

Proof: If y, = 1itiseasly seenthat each set of €, = csoi(L) physical accesses from
stream t; per loop iteration references exactly the set of csoi(L) dataitems aslogical

stream ti(") for the corresponding cg functional iterations.

If y,>1 then by definition each physical access from stream t; references exactly y; log-
ical dataitems. Thus each set of €, physical accesses from t; per loop iteration references
exactly the set of &y, = cscri(") dataitems aslogical stream ti(") for the corresponding

Cg functional iterations. [

Corollary 3.2: Givenlogical streams s and corresponding physical streamsS, t; [ Sis

optimal with respect to wide word access.
Proof: Physical stream t; [ S references a given word at most once, by definition. O

Thusfor a set of logical streams st , aset of physical streams S can be defined such that

« t0OS embodi&ti(") 0s*Y and

 t, 0 Sisoptimal with respect to wide word access
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for any loop deptib = kcg, k[ VAl implementingkcg functional iterations per loop iter-
ation. Note that in the most common case of one data item per word per btozamne

any positive integer

The remainder of this text assun&always to be a set of physical streams that embody a
set of logical streams" via the mapping defined above. In derividhe loop deptip

is fixed; hence, is fixed for allt; J S.

Given a loop computation that references a set of data items embo@echlapters 4
through 6 examine thefett of the specific order of loop accesses on page miss count and
concurrencyand hence bandwidth, for a set of memory architectures and device types.
Based on these results, algorithms are derived that map the set of accesses defined by
streamsSto a specific sequence of memory refereresote that for a stream [J S,

accesses fromy may be placed in any order that preserves dependencies; e.g.

S = D..,ai:qil, ...,ai:qiz, ...,ai:qin, .0

The access sequenSembodies Sif for all t.OS

n .
> G =g
K=1

That is, the sequencéaembodiess if S contains exactly the number of accesses per
stream required to implemenfunctional iterations of the computation, ordered to pre-

serve dependence, whdres the loop depth.
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3.4 Stream Interaction Restriction

Recall that for amemory module constructed from page-mode components, the time to
complete a given access depends on whether or not the page referenced is the same as that
of the immediately preceding access. If two consecutive accesses are from different
streams, the impact of thefirst on the one that followsis difficult to capture analytically as
they may or may not reference the same page. To ssimplify analysis, the following restric-

tion is placed on the streams of a given computation:

Stream Interaction Restriction: For any two streams t;, t; ' S, v; # v; implies that the
streams have non-intersecting address spaces; in particular, streams reference no pages
in common. When v; = V; stream parameters are identical except in mode, where by
definition m; # m.
The stream interaction restriction results in stream accesses that interact with memory
architecture featuresin awell defined manner. To illustrate, when two streams have differ-
ent start addresses, i.e. v; # v;, the stream interaction restriction states that the streams ref-
erence no pages in common. Thusit is known that an access from stream t; preceded by
an access from stream t will cause a page miss. When two streams have the same start
address, i.e. v; = v;, thestream interaction restriction states that the stream parametersare
identical except in access mode, accommodating read-modify-write operations. Thus,
within agiven loop iteration, the k™" accesses from each of t, and t reference the same

word and hence the same page.

Strict adherence to the stream interaction restriction limits the applicability of access
ordering algorithms to a subset of the class of vectorizable computations. However, the
remaining problem domain is still large and encompasses al computations previously
listed in section 1.3. Furthermore, under the stream interaction restriction, optimality
results are obtained for single module access. Relaxation of thisrestriction to encompass a

superset of the vectorizable loopsis discussed in chapter 7.
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Though the stream interaction restriction is specifically aimed at ssmplifying analysis for
systems constructed from page-mode components, for consistency it is applied for all

memory architectures considered.

3.5 MAP Dependence Relations

Access ordering alters the sequence of instructions that access memory. In performing this
reordering, dependence relations must be maintained. As discussed below, the stream
interaction restriction limits the types of dependencies that can exist between accesses
from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output and input dependence results when two write or two read accesses, respec-
tively, reference the same data item. Antidependence occurs when aread from a dataitem
must precede awriteto that datum. Finally, data dependence occurs when awriteto adata
item must precede a read from the same. A dependence relation between two accesses
from the same instance of aloop iteration is said to be loop-independent, while a depen-
dence between accesses from different instancesis said to be loop-carried. A detailed

treatment of dependence analysis can be found in [Wolf89].

3.5.1 Output and Input Dependence

Output and input dependence can not exist as aresult of the stream interaction restriction;
two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of thistype need not be considered.

3.5.2 Antidependence

The stream interaction restriction states that two streams referencing the same vector do so
with stream parameters that differ only in access mode. Thus, antidependenceislimited to

loop-independent antidependence between corresponding components of aread stream t;
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and write stream t implementing aread-modify-write. So, if v; = Vi, then WJ-k isantide-

pendent on r¥; notationally r¥ & WJ!‘.

Simply specifying t; and t suchthat v; = v, is assumed to imply antidependence; the
only alternative, aloop-independent data dependence, is redundant and the read stream

unnecessary. Compilation is assumed to remove extraneous access streams.

A computation with aloop-carried antidependence that does not form a self-dependence
cycle can often be transformed to an equivalent computation with aloop-independent anti-
dependence. For example, restructuring the loop of Figure 5(a) to the loop of Figure 5(b)
replaces the loop-carried antidependence with a loop-independent antidependence that
conforms to the stream interaction restriction. Loop-carried self antidependence can be

eliminated viarenaming of the assignment variable.

for i =1ton y[1] = <statenent>;
{ for i =2ton
y[i] = <statenent>; {
vii] = fn(y[i+1]); vii-1]= fn(y[i]);
} y[i] = <statenent>;

}
vin] = fn(y[n+l]);

(a) (b)

Figure5 Loop-Carried to L oop-Independent Antidependence Transformation

Though the loop of Figure 5(b) does not implement a read-modify-write of the vector y in
the strict sense that each computed value is afunction of the old value, the reference

sequenceis equivalent.
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3.5.3 Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory
location iswritten and later read during the execution of aloop. Loop-independent data
dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as aresult of the stream interaction restriction.

Note that |oop-carried data dependence can often be removed, resulting in a computation
that conforms to the stream interaction restriction. For example, restructuring the loop of
Figure 6(a) to the loop of Figure 6(b) eliminates the read stream and hence the data depen-
dence. Similarly, self data dependence cycles representing recurrence operations can also

be removed, as described in [BeDa91].

for i =1ton v[1] = fn(y[0]);

{ for i =1 to (n-1)
y[i] = <statenent>; v[i+1] = fn(y[i] = <statenent>);
vii] = fn(y[i-1]); y[n] = <statement>;

(a) (b)

Figure 6 Loop-Carried Data Dependence Elimination

Though data dependence does not exist in the usual context, it is present in the data flow
sensg; that is, as right-hand-side values required in performing a computation. A write
operation represents the assignment of a computation result and as such usually requires
that some set of read operations precede it. In this sense, a write operation W]!( is data
dependent on aread operation r if r defines avalue used in the computation of the result

assigned by WJ!‘; notationally, ri! & WJ!‘.
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3.5.4 Dependence Rules

Summarizing the above, dependence between accesses belonging to different streamsis

limited to two types under the stream interaction restriction: loop-independent antidepen-
dence between aread and write stream that access the same vector, and data dependencein
the data flow sense. This observation leads to the following two rules necessary for main-

taining data dependence in access ordering agorithms.

For read stream t; and write stream tj, an access sequence maintains all dependenciesif
1. r{‘ precedes wf when r & Wi, i.e. aread precedes its corresponding write in a read-
modify-write operation, and

2. r{l precedes wi when r 5 wi, i.e. aread operation that defines avalue used in the
computation of aresult precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, itis
assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.

3.5.5 Other Dependencies

The above discussion completely characterizes the dependence that can exist between
accesses belonging to different streams under the stream interaction restriction. However,
two other types of dependence may exist: loop-carried input dependence within asingle

read stream, and control dependence.

L oop-carried input dependence can result from the transformation of a more complex
sequence of read accesses to asingle read stream. Consider the finite difference approxi-

mation to thefirst derivative

_ (Vier=Vio)

Oi dv, 5h
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Analysis techniques [BeDa9l, CaCK90] can transform the ‘natural’ pattern of accessto
vector v to asimple stream requiring one access per iteration; two values of v are pre-
loaded prior to entering the loop, and each successive value accessed is carried in aregis-
ter for two iterations. The loop-carried input dependence created in the transformation has

no affect on the ordering of memory access instructions.

Control dependence results from branch statements within aloop. When control depen-
dence is present, access ordering can still be applied by considering each path through the
loop body independently. Ordering and code generation is performed for each path, with
the code segment to be executed on each iteration determined dynamically. For the

remainder of this discussion, loops are assumed free of control dependence.
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4 Single M odule Architecture

This chapter derives access ordering algorithms and performance predictors for asingle
module memory system as depicted in Figure 7. Systems constructed from both uniform-
access and page-mode components are considered. Optimal effective memory bandwidth

is achieved in both cases.

Section 4.1 develops techniques for minimizing page overhead, where applicable. Sec-
tions 4.2 and 4.3 derive ordering algorithms and performance models for a single module
of uniform-access and page-mode components, respectively. The effectiveness of access
ordering and accuracy of performance models are demonstrated viasimulationin 4.4. Sec-

tion 4.5 summarizes results.

Address Source
]

Single Memory Module

Data Sink

Figure7 Single Module Architecture
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4.1 Minimizing Page Over head

Consider a single module of page-mode components. For access ordering to generate a
reference sequence that achieves optimal effective memory bandwidth for a given compu-
tation, page overhead resulting from accesses that page miss must be minimized. Page
overhead is measured in terms of total page miss count. Given a stream not involved in a
read-modify-write, minimizing page overhead istrivial. For streams implementing this

operation, page overhead is minimized viaintermixing and wrap-around adjacency.

Given stream t; [J S such that t; does not participate in a read-modify-write, i.e. v; # v; for
al tus, minimum page miss count for t; is achieved by performing a sequence of
accesses a; without an intervening access from a second stream g;. This follows from the
observation that a!‘ *1 only resultsin a page missif it does not reference the same page as
a!‘; an intervening access 3 is guaranteed to generate a page miss by the stream interac-

tion restriction.

The average page miss count for accesses grouped by stream is derived as follows. For

stream t; with stride s, and data size d,, the average number of accesses per page refer-

enced is
01 when p<sd,
O
5.1d. =
o] i |) E,L when p>sidi
Dsldi

Then arranging accessesfrom t; as [l.., a;:¢, ... [, the average per iteration page miss

count for the set of c memory referencesis

when v=1
n(s.,d,cV) =

when V=2
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That is, when the number of vectors referenced isone, i.e. V = 1, the average page miss
count for ¢ consecutive accessesto t; issimply the number of accesses divided by the
number of accesses per page. For V = 2, ai1 is guaranteed to page miss, so that the average
page miss count is one plus the remaining number of accesses, ¢ — 1, divided by the num-

ber of accesses per page.

Lemma 4.1: Inthe sequence [l.., a;:c, ... [, the average page miss count per access,

n(s, d; c, V)/c, iseither constant or inversely proportional to c.

Theorem 4.2: Given streams Sand t; [J S such that t; does not participate in a read-mod-
ify-write, i.e. v, # v, for al tus, minimum page miss count for stream t; at the specified

depth of unrolling is achieved by theacc&ssequenceé = .., g€, ...[.

Proof: Recall from section 3.3 that in mapping logical streams st 1o physical streams S
the depth of loop unrolling b, and hence the number of accesses €; from stream t; per loop
iteration, isfixed. Thusit follows immediately from Lemma4.1 that the sequence

S= [l.., 3¢, ... L must result in minimum page miss count for stream t; at the loop

depth b. O

Corollary 4.3: Given physical streams Sand S that result from mapping logical streams
S("), n(s, di, &, V)/¢,<n(s;, d, €', V)/¢' if g, > €', (b>Db"). Thatis, the average page
miss count per access for sequence S= [.., 3¢, ... [ must beless than or equal to that

ofsequenceé' = 0., g€, ...lifg>e, (b>b).

Thus, minimum page miss count is achieved in grouping accesses by stream. Furthermore,
the average page miss count per access is either constant or inversely proportional to the

depth of loop unrolling.



4.1.1 Intermixing

Given read stream t; and write stream t that implement aread-modify-write, i.e. t;, 0 S
andv;, = Vi, it is often possible to reduce the page miss count of the write stream below

that achieved by the access sequence L., 1; €, o WiIE, L

Consider the general intermix sequence

.., e, wzeldh, ... .0

that generates the string of references

SO o R Y SV 1V S

Lemma 4.4: The general intermix sequence Ll.., [f;:c, wj:th, ...Lisan optimal inter-

leaving of accesses, as demonstrated in Appendix A.1.

Since r{ and w; refer to the same location, r¢* 1 will only page miss when referencing a

page different from that referenced by 7. Thus, the page miss count for the read stream is

(k-1)c+1

unchanged. However, the sequence of accesses w. through WK, 1<k < h, suf-

|
(k-1)c+1

fers apage missonly when r; and r:“: reference a different page.

For write stream t;, the average page miss count in performing each set of ¢ write accesses

in the intermix sequence U.., [1;:c, wj:th, ...Lisderived in Appendix A.2 as

12(c-1)sd
(e~ 154 when (c-1)sd +d<p

p(sj,dj,c) = 0 P
E“ (c-1)
s, d)

when (c—l)sjdj+dj>p

Thus, the average page miss count in performing all ch write operations for agiven itera-

tionis hp (sj, d,c).

j1
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Based on the preceding analysis, for acomputation that references two or more vectorsthe
intermix sequence L., [1;:c, Wj:th, ... Lresultsin alower page miss count for write
accesses than the sequence .., r;: ch, ...,WjZCh, L Lif hp(s], dj, C) <n (sj, dj, ch,V).
Similarly, for a computation that references exactly one vector the intermix sequence

(It ¢, w;: ¢l h( resultsin alower page miss count for write operations than the sequence
(8. ch, WjZCh[ if hp (sj, dj, c) <p (sj, dj, ch) . Then for write stream &, the effect of

intermixing on average per iteration page miss count is computed as

Dp(sj,dj,ch) —hp(sj,dj,c) when V=1
imix(sj,dj,c, h,V) =

Drl (SJ! d]a Ch7 V) - hp (Sj! dJa

C) when V=2
It can be shown algebraically thatif c = 1 or ((c—2) h+1)sjdj <p then

imi x(sj, dj, c, h, V) >0, i.e. intermixing reduces write access page miss count.

Lemma 4.5: In the sequence L.., [1;:c, wj:th, L LGif imix(sj, dj, c, h, V) >0 the aver-
age page miss count in performing each set of ¢ write accesses, p (s], dj, ), isdirectly
proportional to c. Thus, choosing ¢ as small as possible minimizes page miss count for the

write operations.

4.1.1.1 Intermix Factor

For the general intermix sequence, the values of the intermix parameters ¢ and h that min-
imize page miss count for the write stream are afunction of both the stream parameters
and data dependence information. Intuitively, the intermix parameter c is chosen to be the
minimum value that preserves data dependence while optimally utilizing wide word
access. If write stream t is not data dependent on read stream t;, implying the computa-
tion isnot astrict read-modify-write, then ¢ = 1. Otherwise, ¢ isthe minimum number of

accesses required to reference all dataitemsfor anumber of functional iterations such that
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al dataitemsin the words accessed are consumed; this minimal value of cisreferred to as

the intermix factor.

For write stream t the intermix factor is computed as

0 1 when t; is not data dependent on t;
0
91 D Icm(cr.("), Y.)
O "1 " otherwise
0

Note that the value oj( L) from the corresponding logical stream tj(") isrequired in deriv-
ing Gj , since oj( L) specifies the number of dataitems that must be accessed from t; per
functional iteration of the computation. From the derivation of g insection 3.3, itiseasily
seen that the number of accesses from stream t; per loop iteration is amultiple of the inter-

mix factor ej; i.e. ej | g

Theorem 4.6: Given streams Swith read stream t; and write stream t that specify aread-
modify-write, i.e. t;, S andv, = Vi, if imi x(sj, dj, c, h, V) >0 for intermix parameters
c = Bj and h = sj/ej then page miss count for write stream t isminimized by the inter-
mix sequenceé = 0., mi:ej, wj:ejm (sj/ej), ... L. Page miss count for read stream t; is

unaffected by intermixing and equivalent to that of the sequence [l.., r;: € L.

v eee
Proof: Followsimmediately from Lemma4.5. O

Corollary 4.7: Given streams Swith read stream t; and write stream t that specify aread-
modify-write, i.e. t;, t0S andv, = vj, the average page miss count per access from write
stream t; in the sequence S= a.., mi:ej, wj:ejm (sj/ej), ... Lisindependent of the
depth of loop unrolling b chosen in mapping logical streams st to physical streams S
However, the average page miss count per access from read stream t; is either constant or

inversely proportional to b, as per Corollary 4.3.
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Thus, page miss count for write streams can be minimized by intermixing. For the general
intermix sequence, the average page miss count per access for write operationsisindepen-
dent of the depth of loop unrolling; for read operations the average page miss count per

accessis either constant or inversely proportional to the loop depth b.

4.1.2 Wrap-around Adjacency

Assume aread stream t; and write stream t that specify aread-modify-write, i.e. t;, ;O S
andv;, = v;.In the preceding section, intermixing is employed to reduce page miss count
for the write stream. Alternatively, wrap-around adjacency can often reduce the page miss

count of the read stream.

Streams t; and tj are wrap-around adjacent if accesses to each occur at the beginning and

end of an access sequence, respectively; i.e.

Note that in the special case where t; and t are the only streams in a computation, the

intermix sequence LI8,: 6]., w;: 6]. [ (sj/ej) [ also results in wrap-around adjacency.

Since rfi and szi reference the same location, then for a given loop iteration ril will only
page miss when referencing a page different from that referenced by riai on the previous
iteration. Thusthe read stream proceeds asif no other vector is accessed, so that page miss

count iscomputed by n (s;, d,, ¢, V) whereV = 1.

Then for read stream t;, the average per iteration page miss count for ¢ wrap-around adja-

cent accessesis

c

A TEN:Y
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The affect of wrap-around adjacency on per iteration page miss count for read stream t; is

computed as

wadj (s;, d;, ¢, V) =n(s,d,c V) —-w(s,d,c)

Theorem 4.8: Given streams Swith read stream t; and write stream t that specify aread-
modify-write, i.e. t;, t; 1 Sand v; = v;, minimum page miss count for read stream t; is
achieved via the wrap-around adjacent sequence S = (g, ..o W g [. Page miss count

for write stream tj is unaffected.

Proof: In the sequence S = [f;:€;, ..., w;: &L, read stream t; proceeds asif no other vec-

tor is referenced, guaranteeing minimum page thrashing [

Corollary 4.9: Given streams Swith read stream t; and write stream t that specify aread-
modify-write, i.e. t;, t0S andv, = vj, the average page miss count per accessfrom t; in
the sequence S = [B;:g;, oWy g [ isindependent of the depth of loop unrolling b chosen
in mapping logical streams st to physical streams S. However, the average page miss
count per access from write stream t is either constant or inversely proportional to b, as

per Corollary 4.3.

4.1.3 Summary of Techniques

Asdemonstrated above, for asingle module of page-mode components, grouping accesses
by stream minimizes page overhead for streams not involved in aread-modify-write; for
streams implementing this operation, intermixing and wrap-around adjacency are
employed. The result is an access sequence with at most two distinct stream reference pat-

terns, e.g.

0. nege - 026, Wi 8,00 (g,/6)), ... 0
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The ordering algorithm derived in section 4.3 determines the specific reference sequence
that minimizes page miss count for a given computation. Recall that wide-word accessis

optimized viathe logical to physical stream mapping defined in section 3.3.

Note that though intermixing can minimize page miss count for write operations, the
resulting sequence may not be amenabl e for execution on pipelined processors; alternating
read and write accesses can force scalar-mode (non-pipelined) arithmetic operations.
However, intermixing isjustified if the additional access time resulting from a sub-optimal
reference sequence exceeds the additional cost of performing scalar-mode computation.

Thisissueisdiscussed in detail in chapter 7.

4.2 Single Module of Uniform-access Components

Deriving an access ordering algorithm for a single module of uniform-access components
istrivial and presented here only for completeness. Since uniform-access components are
insensitive to the sequence of memory requests, any order that preserves dependencies

resultsin optimal effective memory bandwidth.

For streams S let t, through t,, beread streamsand ty , ; through t be write streams.

Then the access sequence employed is

S= e, .. N En W+ 17 € 410 e Wi €O

Recall that the stream interaction restriction limits dependencies to |oop-independent anti-
dependence and data dependence in the data-flow sense, as discussed in section 3.5. Thus,

placing all reads prior to the first write maintains all dependencies.
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4.2.1 Performance Predictor

A performance predictor for a single module of uniform-access components is computed

below for the average time per dataitem accessed T.,,,, and the effective processor-mem-

avg’

ory bandwidth BW.

If t; isaread stream, thetimeto complete all referencesto t; for agiven sequenceiteration
is computed as the number of accesses €, multiplied by the uniform-accessread cycletime
Ty iegT

u/r» u/r-

Then T, the time to complete all read accesses for agiven iteration, is computed as the

sum of the times to complete accesses for each individual read stream, so that

T,, isdefined asthe time to complete all write access for a given iteration and is computed

analogously to T, so that

Then the average time per dataitem accessed Tavg isthetimeto complete all accessesina

given iteration divided by the number of dataitems referenced, resulting in

_ Tr+Tw
(&:Y)
2

Tavg
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The effective memory bandwidth BW is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

10° v d,
2,0

BW ) TI’+TW

All times are in nanoseconds and sizes in bytes, as discussed in section 1.4.2, with band-

width measured in megabytes per second.

4.3 Single M odule of Page-mode Components

For a single module of page-mode components, an access ordering algorithm is derived
that achieves optimal effective memory bandwidth by minimizing page overhead for a
given computation while maintaining dependencies. Note that the access sequence gener-
ated is ‘statistically optimal’ in that it resultsin on average best case performance, given
that stream alignment within a page is not restricted and therefore not known; such isthe

case for all agorithms developed for systems of page-mode components.

For streams not involved in aread-modify-write, grouping accesses by stream resultsin
minimum page miss count (Theorem 4.2). Given two streams that implement this opera-
tion, further reduction in page overhead may be achieved for write and read accesses by

intermixing (Theorem 4.6) and wrap-around adjacency (Theorem 4.8), respectively.

Then for streams Swith no pair of streams implementing a read-modify-write, ordering is
trivial. Let t; through ty, beread streamsand t, , ; through ty, be write streams. An

access sequence that minimizes page overhead while preserving dependenciesis

S= [ 8 o TN 8 Wy 4178y 41 s Wi EGD
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If Scontains one or more pair of streams implementing a read-modify-write, then an opti-

mal access sequence Sis defined by the following algorithm:

Determine the total ordering of access sets [&;:¢;[, t; [ S, that maximizes the reduc-
tion in page overhead achievable via intermixing and wrap-around adjacency and that
maintains the partial ordering of access sets defined by the dependence relations.
Reduction in page miss count for a particular ordering is calculated by the functions
imix (s, d,c, h,V) and wadj (s, d, ¢, V) derived in sections4.1.1 and 4.1.2, respec-
tively.
Determining the total ordering of access sets that maximizes the potential reduction in
page overhead is exponential in the number of streamsin S. However, in practice, the
stream count N tends to be small and dependencies significantly reduce the number of
total orderings. Furthermore, page overhead is only affected by the relative position of
streams implementing read-modify-writes. Read and write access sets not involved in a

read-modify-write may be treated as a single read and write access set, respectively. The

result is an efficient algorithm.

4.3.1 Example Problem

Thefollowing example illustrates the application of the ordering algorithm defined above.

Consider the axpy operation

that generates the set of streams S = {t, ty. 1y } wheret, = (xs,,d,,r):€,
t, = (s, d,r)e, andty = (ys,d,w) e, . Antidependence exists between cor-
responding elements of read stream ty and write stream ty and data dependence exists

between corresponding elements of ty and ty and t, and ty .

The accesssetsare [, - ¢, [, [F, '€ [, and O, ‘€ [for which two total orderings main-

w

w

tain dependencies: ([f,:¢€, [, l]yr:syr[, ENyW:syWD and(Djyr:syr[, e L Ervyw:sy D).
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Considering each total ordering in turn, ([,:€ [, Ty gy [, Oy, € [) presents the oppor-

tunity for intermixing Ty € [ and [, g [ and results in the access sequence

[B,:€, Oy, WyWDsyWD

The gross reduction in page overhead achieved by the ordering above is calculated as

imix (sy , dy 1, €y 2) ; intermix parameters are computed as discussed in 4.1.1.1.

The total ordering ( [t g L, €L, E}vy &y [) provides wrap-around adjacency and

results in the access sequence

., :e ,r U

y, By o T B W

Yo' Syw

The gross reduction in page overhead is calculated as wadi (sy , dy '€y 2).

The access ordering algorithm determines the total ordering of access sets that maximizes
the reduction in page overhead. For the accesses sets of the axpy computation considered
above, if imix (SYW' dyw, 1, € 2) >wad] (syr, dyr’ € 2) then the access sequence
(M€, My, w Day [ resultsin optimal effective memory bandwidth, otherwise the

sequence Eiyr. €y Tt € Wy ! syW[ isoptimal.

4.3.2 Performance Predictor
For a set of streams Sand an access sequence S defined by the algorithm above, a perfor-
mance predictor is derived for the average time per data item accessed T, , and the effec-

tive processor-memory bandwidth BW.



Access sequence Sis composed of some number of component sequences é , Where the
subscript is defined to be that of the stream referenced; for an intermix sequence the sub-

script is defined to be that of the read stream. Each é must be in the form of

« aread accessset [1;:¢€, [,
+ awriteaccessset [W;:¢; [, or

* anintermix sequence DI]i:Gj, wj:ejD (ej/ej) L.

If é = [ [then T (é) , the time to compl ete the sequence é is the sum of the num-
ber of accesses to t; multiplied by the page-hit read cycle time Tosr and the average page

miss count multiplied by the page misstime To/ms i.e.

~ [uX(s;, iy €) T/ m when t; iswrap-around adjacent
T(S) =T, + 0O
ip/r _

Similarly, if é = ;¢ [ then T(é.) is the sum of the number of accessesto t; multi-
plied by the page-hit write cycletime T, and the average page miss count multiplied by

the page misstime T, ., so that

p/m:

T(é) = siTp/W+ n(si’ di’ & V)Tp/m

Finaly, if S = (16,: 6, w;: 8,0 (£,/6,) [ then T(S) isthe sum of the number of
accesses to stream t; (tj) multiplied by the sum of the page-hit read and page-hit write
cycle times and the sum of the average page miss counts for read and write operations

multiplied by the page misstime T so that

p/m*

T(S) = & (Ty + Tpw) + (N(S, 0 €, V) + (£/6)) (S, 6, 0)) Ty
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From the preceding analysis, the time to compl ete an iteration of the access sequence Sis

the sum of the times required to complete each component sequence; i.e.

Tiot = ~z~T (é‘l)

sOS

Then the average time per dataitem accessed Tavg isthetimeto complete all accessesina

given iteration divided by the number of data items referenced, resulting in

T — Ttot
avg
(8.Y)
2

The effective memory bandwidth BW, measured in megabytes per second, is the number
of bytes of relevant data transferred per iteration divided by the time to complete all

accesses, i.e.

10° v.d.
R

BW T

tot

4.4 Simulation Results

For a single module of page-mode components, access ordering can significantly increase
effective memory bandwidth over that achieved by the ‘ natural’ sequence of referencesfor
a given computation. In this context, the natural reference sequence is the sequence that

results from a straight-forward tranglation of the loop source code.

Toillustrate the improvement in performance achieved via access ordering, and to validate

performance models, ssmulation and analytic results are presented for a set of benchmark
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scientific kernels. Recall that for both modeling and simulation, the processor is assumed
sufficiently fast so that there is always an outstanding request. Thus, results represent max-

imum achievable bandwidth.

The parameters of the single-module memory are defined in Table 1; sizesare in bytes and
times are in nanoseconds. These parameters are representative of the node memory system

for the Intel IPSC/860, as detailed in [Moye91].

Table 1l Module Parameters (Single - Page)

Parameter Value
w 8
p 4096
T 50
Torw 75
Tom 200

Table 2 presents simulation results comparing effective bandwidth achieved by the natural
versus ordered access sequence for arange of scientific kernels. For access ordering, the

depth of loop unrollingis4 in all cases.

The daxpy computation is the double-precision version of the axpy computation discussed
earlier. Similarly dvaxpy is the double-precision version of the vaxpy (vector axpy) com-

putation

Ci Yi <« aX 1y,

The remaining computationsin Table 2 are selections from the Livermore Loops
[Mcma9Q], with all vectors defined as double-precision. This set of benchmark kernelsis

used in all subsequent performance evaluations.



a7

Access ordering improves performance over the natural access sequence for the given
computations from 102% to 149%. Note that for LL-24 only a single vector is referenced

so that no reordering is performed.

Table2 Natural vs Ordered Performance (Single - Page)

Computation NaBI\t;\r/al Orgsrved % Increase
daxpy 41.7 87.1 108.9
dvaxpy 38.8 85.1 119.3
LL-1 31.0 73.7 137.7
LL-3 32.0 79.8 1494
LL-4 32.0 79.3 147.8
LL-5 31.0 73.7 137.7
LL-7 31.2 75.1 140.7
LL-11 30.5 70.9 1325
LL-12 30.5 71.0 132.8
LL-20 31.3 75.6 1415
LL-21 41.0 82.9 102.2
LL-22 30.8 72.6 135.7
LL-24 158.5 158.5 0.0

Table 3 compares performance of ordered accesses for the benchmark computations as
calculated analytically and measured via simulation; again, loops are unrolled to a depth
of 4. Notethat in al cases analytic and simulation results differ by lessthan 1%, validating

the accuracy of the performance model.
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Table 3 Analytic vs Simulation Results (Single - Page)

Analysis Simulation
Computation
Tavg BW Tavg BW
daxpy 91.9 87.1 91.9 87.1
dvaxpy 94.0 85.1 94.0 85.1
LL-1 108.6 73.7 108.6 73.7
LL-3 100.3 79.8 100.3 79.8
LL-4 100.9 79.3 100.8 79.3
LL-5 108.6 73.7 108.6 73.7
LL-7 106.5 75.1 106.5 75.1
LL-11 112.8 70.9 112.7 70.9
LL-12 112.8 70.9 112.8 71.0
LL-20 105.9 75.6 105.9 75.6
LL-21 96.6 82.9 96.6 82.9
LL-22 110.3 72.5 110.3 72.6
LL-24 50.4 158.8 50.5 158.5
4.5 Summary

This chapter develops optimal access ordering algorithms for a single module of uniform-
access and page-mode components. Performance models are derived for the maximum

effective memory bandwidth achievable by a given computation.

As uniform-access components are insensitive to the sequence of memory requests, any
ordering that preserves dependence is optimal. Ordering istrivial and a performance

model is derived in a straight-forward fashion.
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For page-mode components, an optimal access sequence must minimize page miss count
for a given computation while maintaining dependencies. The access ordering algorithm
derived resultsin a sequence consisting of (potentially intermixed) access sets arranged so
as to maximize reduction in page overhead achievable via intermixing and wrap-around
adjacency. The algorithm has a time complexity exponential in the number of streams,

though the stream count N tends to be small and effective optimizations exist.

Simulation results are presented for a system constructed from page-mode components.
Access ordering is shown to significantly increase effective memory bandwidth over that
achieved by the ‘natural’ sequence of reference for a set of benchmark scientific kernels.

The performance model is demonstrated to be accurate.
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5 Sequentially Interleaved Architecture

This chapter derives access ordering algorithms and performance predictors for a sequen-
tially interleaved memory system as depicted in Figure 8. Sequential interleaving isthe
‘standard’ parallel memory storage scheme whereby for an m module system, word a

maps to module a mod m.

Address Source
-+
-+

Data Sink

Figure8 Sequentially Interleaved Architecture

The interleaved memory system is defined to function as follows. Access requests are
directed to the appropriate module, as determined by the storage scheme. If input buffer

Space is available then the request is queued, otherwise the memory system blocks until a
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buffer slot isfreed. Access requests are serviced at amodule in the order queued, with data

from read requests placed in the modul€'s output buffer.

Note that in aparallel memory system, accesses may not complete in the order of request.
Read accesses are assumed tagged so that data may be returned in the requested order. The
details of such atagging scheme are not important to the analysis presented here, and as
such are not defined. It is sufficient to assume that results can be returned at the rate satis-
fied. Recall that in modeling maximum effective bandwidth, the request rate is assumed
sufficient such that performance is limited by the memory. These are common assump-

tionsin the study of parallel memory systems.

Section 5.1 discusses the problem space for efficient utilization of sequentially interleaved
memory. Analytic results characterizing the interaction of a single stream with an inter-
leaved architecture are presented in section 5.2. Section 5.3 extends the basic MAP nota-
tion to simplify expressing access sequences for parallel memory systems. Finaly,
sections 5.4 and 5.5 derive ordering algorithms and performance predictors for a sequen-
tially interleaved system under the assumption of unknown and known stream alignments,

respectively.

5.1 Problem Dimensions

In general, to efficiently utilize an interleaved memory system, stream accesses must be

ordered so asto

* maximize concurrency and

* minimize page overhead, when applicable.

Ordering accesses to maximize concurrency requires knowledge of stream alignment so

that nonconflicting modul e references may be scheduled to proceed in parald. In the
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absence of alignment information, accesses can be ordered to increase the likelihood of

concurrency.

Techniques for minimizing page overhead come directly from analytic results derived in

chapter 4 for a single memory module. Page miss count at module M, is minimized for a
given iteration if elements of a stream stored at that modul e are referenced consecutively
without an intervening accessto M, . For two streams that implement aread-modify-write,

page miss count may further be reduced via intermixing and wrap-around adjacency.

Optimal effective memory bandwidth results from an access sequence that minimizes
completion time for all accessesin aloop. Such a sequence may require a trade-off
between maximum concurrency and minimum page overhead. To illustrate, consider

ordering accesses for the computation

Ui

D

— fnl(q, %, 2)
i« N2 (g, x., v, Z)
g, < fn3(q;, %, ¥, )
q; — fn4(q;)
X; « fn5(x;)
y; <« fn6 (y;)
~ tn7(z)

—h

N

Assume that the 4 read streams and 7 write streams are of sufficient stride such that each
successive access results in a page miss, the exception being awrite immediately follow-

ing aread of the same vector element at a given module. Furthermore, assume that the
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number of modulesis 2 and that strides are even, so that accesses from each stream are

serviced by a single module. The depth of loop unrolling equals 1.

Figure 9 demonstrates the time to initiate accesses in successive iterations of the above
computation for three different access orderings, given that memory references hitting in

the current page require 1 time unit (T, ) and apage missincurs a 3 time unit pen-

p/r Tp/w
aty (Tp, m) - Stream accesses in Figure 9 are labeled by vector, with read and write

streams subscripted with r and w respectively.

Figure 9(a) depicts an ordering that minimizes page miss count viaintermixing; for all 4
read-modify-write operations, read accesses immediately precede corresponding writes.
Figure 9(b) depicts an ordering that maximizes concurrency by initiating all read accesses
prior to the first write; in doing so, write accesses at module M, are completely over-
lapped with those at M. Finally, Figure 9(c) depicts an optimal solution that balances
minimizing page overhead and maximizing concurrency to achieve the minimum comple-

tion time.

For parallel memory systems constructed from page-mode components optimal band-
width can result from a sequence that is neither regular nor intuitive, as demonstrated by

the example above.

5.2 Single Stream Module I nteraction

To devel ope access ordering algorithms, analytic results are first required that characterize
the interaction of a single stream with an interleaved memory architecture. In particular, it
is necessary to model the mapping of accesses to modules and the effective stride of
access at agiven module. In doing so, an additional restriction is placed on data item,

word and page sizes. d, w, and p are assumed to be powers of 2.
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Figure9 Minimizing Completion Time

5.2.1 Access Mapping

For an m module interleaved memory, the mapping of stream accesses to modules is char-

acterized by the number of modules accessed and the distribution of accesses across those

modules. If stream alignment is known, then it can aso be determined to which modules

Stream accesses map.

Given streams Sand t; [ S, an access cycle is defined as aminimal set of consecutive

accesses from stream t; such that the first access in each adjacent cycle references aword

containing similarly aligned data items at the same module. Access cycle length isthe
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least common multiple of the number of bytes traversed per access, s;d;, and the number

of bytes across al modules mw; i.e. Icm(s.d

.d;, mw). Then the number of stream accesses

per access cycleis

lem(s;d;, mw) mw
s.d; ~ ged(sd

W) @

If the number of bytestraversed per accessisamultiple of theword size,i.e. w | s,d,, then
each access references aword containing similarly aligned data items. The number of
modules referenced is equal to the number of stream accesses per cycle, as computed in

equation (1), and reduces to

m

S;d;
QCd(W, m)

Each module is referenced exactly once per cycle, resulting in a sequence of module

accesses periodic in the number of modules referenced.

Now consider the case where the number of bytes traversed per accessis not a multiple of
the word size. By definition s,d;, > w so that, in computing the number of accesses per

cycle from equation (1), the gcd(s;d;, mw) must be a power of 2 |ess than w. Thus the

number of accesses per cycle isamultiple of m, and references are uniformly distributed

across al mmodules on a per cycle basis.

Note that each module is not necessarily referenced exactly once for each m consecutive
stream accesses. Figure 10 depicts a single access cycle for a4 module system, a word
size of 4 bytes and adatasize of 1 byte referenced at a stride of 6; aligned as shown, each

set of 4 accesses maps to 3 modules.
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Address

16

32

Figure 10 Access Mapping Diagram

Lemma5.1: Given streams Sand t; [0 S, accesses from stream t; are distributed uniformly

across a number of modules defined by:

D% when w | sd;
- i
W = Bgcd(w,m)
m otherwise

Furthermore, when the number of bytes traversed per accessis amultiple of theword size,

i.e. w| sd;, then the sequence of modules accessed by t; has a period of ;.

Let Z; represent the set of modules to which stream t; maps. If the number of modules
accessed by t; islessthan m, then Z, isonly defined if stream alignment is known. For

stream t; aligned to base module Mg , the set of modules referenced is

{Mg....M,,_,} when @ =m
|

O

O
Z. = ]

O : s

D{Mjljz(Bi-"kW) mod m, Os<ksp -1} when Mo<m
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In computing Z;, if the number of modules referenced islessthan mthen Z; isthefirst p,

modules accessed starting from base module My .

Theorem 5.2: GivenstreamsSand t;, t, 1S, Z;n Z; = U, 0or Z;n Z; = Z;, or
ZinZ =1

Proof: Follows directly from the fact that for any t; 0 S, the number of modules refer-

enced |, must be apower of 2. ]

Thus, two streams either reference no modules in common, i.e. are nonconflicting or one

stream accesses a subset of the modules accessed by the other.

5.2.2 Module Stride

To apply functions modeling page overhead derived in chapter 4 for a single module sys-
tem to individual modules of an interleaved system requires deriving the module striddor
agiven stream. Module stride is defined as the stride of reference for a given stream as

observed at a particular module.

Givenstreams Sand t; (I S, if the number of bytes traversed per accessis amultiple of the
word size, i.e. w | s,d;, then at amodule M, referenced by t; the observed stride of access
is constant; recall that t; references modulesin a sequence periodic in the number of mod-
ules accessed. Module stride is computed as the product of the number of modules

accessed and the actual stride, divided by the total number of modules; i.e.

S;d;

ged(S, ' m)
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Now consider the case where the number of bytes traversed per access, s,d,, is not amul-
tiple of the word size. From the analysis of access mapping, the number of accesses per

module per access cycleis

W

gcd(s,d

) @)

The number of bytes traversed per module per cycleisthe cycle length divided by the

number of modules; i.e.

lem(sdj, mw) — (sd)w
m ~ ged(s.d,, mw)

_ ©)
|1
So the average number of bytes traversed per accessistheratio of (3) to (2), or s,d,,

resulting in an average module stride of s,.

Figure 11 depicts asingle access cycle, plusaportion of the adjacent cycle, for a4 module
system with aword size of 4 bytes and a data size of 1 byte referenced at a stride of 5;
strides between individual accesses at a given module take on values of 3 and 11, resulting

in an average module stride of 5.

Lemma 5.3: Given streams Sand t; [ S, the average stride of access observed at all mod-

ules referenced, i.e. the module stride, is computed as

o S
0 s when w | sd;
- i
& = EQCd(W , M)

U S otherwise
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Figure11 Module Stride Diagram

For an interleaved system, analytic results for access mapping and modul e stride com-
pletely characterize the interaction of asingle access stream with the memory architecture.
Note that streams for which the number of bytes traversed per access, sd, isamultiple of
the word size reference a sequence of modules periodic in the number of modules
accessed with a constant module stride. Access ordering and performance modeling are
significantly complicated by streams that do not posses this property. Fortunately, such
streams rarely occur in practice. Thus, for the remainder of this chapter, al streams are

assumed defined such that w | sd.
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5.3 Extended M AP Notation

To facilitate the specification of a MAP access sequence that effectively utilizes a parallel
memory system, the recursive sequence definition of section 3.1 is augmented with the
additional clause
4. Ay ..., Ayl ag, ..., a ] Disan access sequence where A, ..., A, are access
sequencesand o, ..., 0 arepositiveintegers. Ay, ..., A, are performed left toright in
amodified round-robin fashion, with o, accesses from A; until all accessesin
Ay ..., A, have beeninitiated. If fewer than o, accessesremainin A;, then only these

accesses are issued. When all accesses specified in A; have been initiated, A, is
dropped from the pattern.

To illustrate, the access sequence notation

E[ri:5,wj:3 | 2,2] O

defines the linear sequence of references

(2, M W, W, T, ri,wj,riD
A strict round-robin selection of accesses from each of the sequences A, ..., A, is
achievedwhen a, = ... = a_ = 1. For visua clarity, strict round-robin selection is

denoted smply as [TA,, ..., A ] L.

The above notation affords convenient specification for controlling accessto parallel mod-
ules. For example, given an interleaved system and known stream alignment, each
sequence A, can represent accesses serviced at module M, such that a strict round-robin
selection of accessesfrom A, ..., A, _; resultsin concurrency among accesses from dif-

ferent streams.
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5.4 AccessOrdering Algorithmsfor Unknown Alignments

For a sequentially interleaved memory, access ordering algorithms and performance pre-
dictors are derived based on the assumption that stream alignments, with respect to mod-
ules or each other, are unknown. In the absence of alignment information an optimal
solution can not be derived for the general case, as knowledge of stream alignment is
required to schedule nonconflicting references to proceed in parallel. However, accesses

can be ordered to increase the likelihood of concurrency.

Sections 5.4.1 and 5.4.2 develop ordering algorithms and performance predictors for sys-
tems of uniform-access and page-mode components, respectively. The effectiveness of
access ordering and accuracy of performance models are demonstrated via simulation in

5.4.3. Section 5.4.4 summarizes results.

5.4.1 Interleaved Storage and Unifor m-access Components

For an m module interleaved system of uniform-access components, an access ordering
algorithm need only maximize module concurrency. Asageneral optimal ordering can not

be derived, a heuristic solution is presented below.

Recall that astream t; references i, modulesin asequence with period ;. If 1, = m, i.e.
all modules are referenced, then maximum concurrency is achieved in performing all

accessesto t; consecutively for agiven iteration. If 1, < m and the number of consecutive
referencesto t; exceeds |, then m— i, modules are potentially idle for the time required

to initiate accessesto t;.

For a set of N independent streams, consider a sequence that interleaves a number of
accesses from each stream equal to the number of modules referenced (or the number of

accesses remaining, whichever is smaller); e.g.

Hagrey, o agieg | By o Byl O
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The above sequence maximizes concurrency for astream t; by issuing sets of (at most)
consecutive accesses to that stream, the maximum number that can proceed in parallel.
Furthermore, sets of accesses from each stream are interleaved to increase the likelihood
of concurrency among accesses from different streams. In the absence of alignment infor-

mation, no seqguence can guarantee greater concurrency.

For ageneral set of streams S, accesses are performed in two phases. aread phase and a
write phase. By the stream interaction restriction, streams associated with each phase are
independent. If streams t, through ty, areread streamsand ty, , ; through t, are write

streams, then the access sequence employed is

S=10rqyg, .. €, | Ky o “Nr]’ [WNr+1:8N,+1' s W E IV HyJ C

In the sequence above, accesses from each phase are ordered to maximize concurrency for
individual streams and increase the likelihood of concurrency among accesses from differ-
ent streams. Dependencies are maintained as all read accesses areinitiated prior to the first

write.

5.4.1.1 Performance Predictor

Given streams S and access sequence S as defined above, a performance predictor is
derived for the average time per dataitem accessed Tavg and processor-memory band-
width BW. Because alignments are unknown, it must be assumed that accesses from dif-
ferent streams can not be serviced concurrently. Thus, the models represent alower bound

on performance.
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The maximum number of accesses from stream t; serviced at any module for agiven iter-
ation, ;, isthe ceiling of the number of accesses per iteration divided by the number of

modules accessed:; i.e.

For aread stream t;, if the number of streams N is greater than one then the time to com-
plete all accesses for agiven iteration is the maximum number of references at any given
module g; multiplied by the uniform-access read cycletime T, . For the special case of
N = 1, the average time to complete all readsis the product of the number of accesses €.

and the average time per access, i.e.

Let T, be the time required to complete all read accesses for agiven iteration. Then T, is

computed as the sum of the times to complete accesses for each individual read stream, i.e.

Tu/r _ _
£ —— whenN=1andfort OS m =r
] IJ' | |
[ i
O
T = 0
r
O ZwiTU/r when N> 2
O TS



T,, is defined as the time to complete all write accesses for a given iteration and is com-

puted analogously to T, so that

g — ¥ when N=1andfort 0S m = w
O Hi
- U
= 0
w
S W Tyw when N =2
s
m =w

Then the average time per dataitem accessed Tavg isthetimeto complete all accessesina

given iteration divided by the number of data items referenced, resulting in

The effective memory bandwidth BW, in megabytes per second, isthe number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

103t Zssi v d,

T,



65

5.4.2 Interleaved Storage and Page-mode Components

For an interleaved memory constructed from page-mode components, optimal perfor-

mance results from an access sequence that balances maximizing concurrency with mini-
mizing page overhead to achieve minimum completion time. In the absence of alignment
information, ageneral optimal ordering algorithm can not be derived. A heuristic solution

is presented below.

In the sections that follow, an access strategy isfirst developed for a set of independent
streams. Intermixing and wrap-around adjacency are then employed to reduce page over-
head for computations implementing read-modify-write operations. Finally, ageneral
ordering algorithm is presented and a performance predictor derived for the ordered

accesses.

5.4.2.1 A General Access Strategy

Consider a set of N independent streams S. By Theorem 4.2, page miss count at module

M, is minimized when elements of stream t; [J S stored at that module are referenced con-
secutively without an intervening accessto M, . Then for streams S, page overhead is min-
imized by performing all accesses to each stream consecutively for agiven iteration, asin

the sequence
(a1, ..., ay g U

Alternatively, as in the ordering algorithm derived in 5.4.1, potential concurrency can be
maximized by interleaving a number of accesses from each stream equal to the number of

modules referenced; e.g.

Hagrey, o agiey | By o Bl O
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The above sequences address conflicting requirements. The first minimizes page miss
count at the cost of potentially decreased concurrency. The second increases potential con-

currency at the cost of increased page miss count.

In choosing a general method of access, the following observations are made. First, the
most common stride of accessis 1. At astride of 1, or any stride that resultsin all modules
being referenced, performing accesses to each stream consecutively results in maximum
concurrency and minimum page miss count. Conversely, interleaving accesses from dif-
ferent streams results in maximum page miss count without an increase in concurrency.
Second, in the absence of alignment information, interleaving references can not guaran-

tee concurrency among accesses from nonconflicting streams.

Based on these observationsit is concluded that performing all accesses to each stream
consecutively constitutes a better access strategy than an interleaved sequence of refer-
ences. Essentially, a guaranteed minimization of page overhead for al streamsis chosen
over a potential increase in concurrency for nonconflicting streams. Thus, the access
ordering algorithm derived below specifies an access sequence consisting of (potentially

intermixed) accesssets [&:¢[, t; U S,

5.4.2.2 Intermixing and Wrap-around Adjacency

For streams Swith one or more pair of streamsthat implement aread-modify-write, access
sets can be ordered to reduce page overhead via intermixing and wrap-around adjacency.
In the absence of alignment information, it must be assumed that all streamsin Sare con-
flicting. Thus, ordering access sets to exploit intermixing and wrap-around adjacency is

anaogous to that for a single module system as discussed below.

Consider aread stream t; and write stream t implementing a read-modify-write, i.e.
ti, 4 U Sandv, = V. Wrap-around adjacency results when accesses from t; and t; occur

at the beginning and end of a sequence, respectively. Within a given iteration, writesto t
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reference the same vector elements read from t, so that for each subsequent iteration,

reads from t, proceed asif no other vector is referenced.

The effect of wrap-around adjacency for an interleaved system is analogous to that for a
single module system, and reduction in read stream page miss count is modeled by the
function wadij(s, d, ¢, V) derived in 4.1.2. In employing this function for an interleaved
system, wadj(s, d, ¢, V) must model the reduction in page overhead achieved at the mod-
ule servicing the greatest number of accesses. Stride sis module stride and the number of
accesses ¢ is the maximum number at any module; for read stream t;, s = & and ¢ = ..

The number of vectorsV isthe number referenced by all streamsin S.

Note that for an interleaved system, more than one pair of streams may exhibit wrap-
around adjacency. This can occur when two or more sets of streams implementing a read-
modify-write are nonconflicting. However, in the absence of alignment information, itis
assumed that every pair of streams conflict so that wrap-around adjacency benefits at most

one.

Intermixing reduces page overhead for write operations by interleaving accesses from a
pair of streamsimplementing aread-modify-write. Recall that for a single module, the

general intermix sequence asderived in section 4.1.1is
.., O:c,wizelh, ...L (4

For an interleaved system, the above sequence is modified to maximize concurrency as
well as minimize page overhead. However, the pattern of access observed at individual

modulesis still that of the general intermix sequence.

For read stream t; and write stream t;, if the number of modules accessed equals one then
the optimal intermix sequence and intermix parameters are those derived in Theorem 4.6

for asingle module system.
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If the number of modules accessed by read stream t; and write stream t is greater than
one, then an optimal intermix sequence must maximize concurrency and minimize page
overhead. Recall that for the general intermix sequence, the intermix parameter ¢ must be
amultiple of the intermix factor to optimize wide word access and maintain data depen-
dence. Then if the number of modules accessed by t (t,) isamultiple of the intermix

factor ej, i.e. ej | uj,the optimal intermix sequenceis

a.., [ri:ai,wj:aj | s uj] y o

Page miss count for write operations is 0, as corresponding read and write accesses occur
aternately at each module referenced. Concurrency is maximized as the number of con-

secutive accessesto t; and t isequal to the number of modules accessed (or the number of
accesses remaining, whichever is smaller). Data dependence is maintained as the number
of consecutive accesses to each stream is amultiple of the intermix factor. Note that indi-
vidual modules observe the general intermix sequence (4); intermix parameter cis 1, as

read and write operations areinitiated alternately at each modulereferenced, and his ij at

the modul e servicing the maximum number of accesses.

If the number of modules accessed by read stream t; and write stream t is greater than

one but not a multiple of the intermix factor Gj , then the intermix sequence employed is
D..,Dji:si,wj:sjm...[ (5)

Concurrency is maximized for each stream as each of the b, modules referenced is

accessed with period b However, page overhead is not guaranteed to be minimal.

By definition, if intermixing reduces the page miss count for write operations then mini-
mum page overhead is achieved when the intermix parameter c is equal to the intermix

factor ej. As discussed above, if ej divides the number of modules referenced b, then
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accessesto t; and t; can be issued so that page miss count for write stream t is0 and con-
currency is maximized. Otherwise, interleaving sets of Gj accesses from each of t; and t

minimizes page overhead but may result in some of the K, modules referenced remaining
idle with each set of ej reads and writes. Thus, optimal intermix performance resultsin a

trade-off between minimum page overhead and maximum concurrency.

In the intermix sequence (5), concurrency is chosen over page overhead in a potentially

suboptimal solution; however, for small strides, the additional page overhead for perform-
ing al g (g,) read and write accesses consecutively is minimal. Again, note that individ-
ual modules observe the general intermix sequence (4); intermix parameter cis ij for the

module servicing the maximum number of accesses, and his 1.

The effect of intermixing for an interleaved system isanalogous to that for asingle module
system, and reduction in write stream page miss count is modeled by the function

imix(s, d, c, h, V) derived in section 4.1.1. In employing this function for an interleaved
system, imix(s, d, ¢, h, V) must model the reduction in page miss count achieved at the
modul e servicing the greatest number of accesses. Stride sis module stride so that for
write stream tj, s = 13 i The intermix parameters ¢ and h are dependent on the intermix
sequence, and are derived in the preceding analysis. The number of vectorsV is the num-

ber referenced by all streamsin S.

Note that for an interleaved system, two or more pair of streams may benefit from inter-
mixing when each write stream is data dependent on each read stream. This can occur
when sets of streamsimplementing read-modify-writes are nonconflicting. For example, if
streams tyr and tyw and streams tXr and tXW are two pairs of corresponding read and write
streams, with t, and t, each datadependentont, andt, ,thenbotht, andt, canben-
efit from intermixing if they are nonconflicting. However, it is assumed that every pair of
streams conflict. Thus, for this example, at most one of tyw and txw may be considered to

benefit from intermixing.



70

5.4.2.3 Access Ordering Algorithm

For a set of streams Swith no pair of streams implementing aread-modify-write, ordering
istrivial. Let t; through ty, beread streamsand ty; , 4 through t be write streams. An

access sequence that minimize page overhead while preserving dependence is
S= e, .., N Eno W+ 17 €N 410 e Wi €O

For streams Swith one or more pair of streams implementing a read-modify-write, an
access sequence is defined by an ordering algorithm analogous to that derived in 4.3 for a
single module system:
Determine thetotal ordering of accesssets [@;: €[, t; I S, that maximizesthe reduction
in page overhead achievable viaintermixing and wrap-around adjacency and that main-
tains the partial ordering of access sets defined by the dependence relations. Reduction

in page overhead for a particular ordering is calculated by the functions
wadj(s, d, ¢, V) andimix(s, d, c, h, V) asdiscussed in 5.4.2.2.

Though the algorithm is exponential in the number of streamsin S, the stream count N
tends to be small, dependencies reduce the number of total orderings, and access sets not

involved in a read-modify-write may be coalesced by mode.

As the ordering algorithm presented above is completely analogous to that for asingle
module of page-mode components, the example problem of section 4.3.1 servesto illus-

trate its application; only intermix parameters differ, as discussed in section 5.4.2.2.

5.4.2.4 Performance Predictor

For a set of streams Sand an access sequence S defined by the algorithm above, a perfor-
mance predictor is derived for the average time per data item accessed Tavg and the pro-
cessor-memory bandwidth BW. As alignments are unknown, it is assumed that accesses
from different streams do not exhibit concurrency. Thus, the models represent alower

bound on performance.



71

Functions modeling page overhead derived in chapter 4 for a single module system are
applicable to accesses at individual modules of an interleaved system. Recall that in gen-
eral, average page miss count is modeled by the function n(s, d, ¢, V). For aread stream
that is wrap-around adjacent, average page miss count is modeled by the function

w(s, d, ). Finally, for an intermixed write stream, average page miss count is modeled by
the function p(s, d, ). Note that in employing these functions for an interleaved system,

stride sis module stride.

Access sequence Sis composed of some number of component sequences é , Where the
subscript is defined to be that of the stream referenced; for an intermix sequence the sub-

script is defined to be that of the read stream. Each é must be in the form of

« aread accessset [1;:¢€, [,
+ awriteaccessset [W;:¢; [, or

 anintermix sequence [II;:c, wj:th[or E[ri:ei,wj:sj | 1, uj] L.

If é = [f;:¢,[ and the number of streams N is greater than onethen T (é) , thetimeto

compl ete the sequence é , iIsthe sum of the maximum number of references at any module
Y, multiplied by the page-hit read cycletime Tor and the average page miss count at that
module multiplied by the page misstime Toym- FoOr the special caseof N = 1, theaverage
time to complete all reads s the product of the number of accesses €, and the averagetime

per access so that

¢ DTp/r + r](‘Ei’ di' 1, V)Tp/mD
0% 4 m H

~ O
TS = Bl‘piTp/r + (&, d, W)Ty,  when N22and t; wrap-around adj.

when N =1

DquTp,r +n(&;, d;, W, V)Tp,m when N = 2 and t; not wrap-around adj.
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Asdiscussed in section 5.4.2.2, at most one read access set may be considered wrap-
around adjacent and must be the first access set in the sequence S. Note that in the page
overhead modeling function n(s, d, ¢, V) the number of vectorsV is the number refer-

enced by all streamsin S, asit isassumed that all access sets conflict.

Similarly, if é, = [, ¢, [ and the number of streams N is greater than onethen T (é) is
the sum of the maximum number of references at any module Y, multiplied by the page-

hit write cycletime Toiw and the average page miss count at that module multiplied by the
page misstime To/m- FOr the special caseof N = 1, the average time to complete all

writesis the product of the number of accesses €, and the average time per access so that

T o+ NE & LT im0
T(S) = 0O g M O
DwiTp/wJ’n(Ewdi’ W VT ym when N> 2

when N = 1

Finaly, if é is one of the two possible intermix sequences [t :c, Wj:th[or
ri:e, Wi €, | 1, uj] [ then the pattern of reference observed at individual modulesisthe
general intermix sequence [It.:c, w;: cOhL. Intermix parameters ¢ and h are derived in

5.4.2.2 for the modul e servicing the maximum number of accesses.

Then T (é) is the sum of the maximum number of accesses &, (sj) at any module multi-
plied by the sum of the page-hit read and page-hit write cycle times and the sum of the
average page miss count for read and write operations at that module multiplied by the

page misstime Th/m SO that

T(é) = LIJi (Tp/r +Tp/w) + (r](Ep di! qu’ \/) + hp(ay dJ’ C)) Tp/m
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From the preceding analysis, the time to compl ete an iteration of the access sequence Sis

the sum of the times required to complete each component sequence é ;e

Tiot = ~z~T (é‘l)

sOS

Then the average time per dataitem accessed Tavg isthetime to complete all accessesina

given iteration divided by the number of data items referenced, resulting in

Ttot

2

T

avg ~

The effective memory bandwidth BW is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

10° Z £V d,
1S
BW=_ 905

Ttot

All times are in nanoseconds and bandwidth is measured in megabytes per second.

5.4.3 Simulation Results

For an interleaved memory system, access ordering can significantly increase effective
memory bandwidth over that achieved by the natural sequence of references through bet-
ter management of concurrency and minimization of page overhead. Thisistrue even for
the case when stream alignment is unknown. To illustrate the improvement in perfor-
mance achieved via access ordering, and to validate performance models, simulation and

analytic results are presented for arange of scientific kernels.
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5.4.3.1 Uniform-access Components

Results are first presented for a non-buffered 4 module interleaved system of uniform-
access components. Module parameters are defined in Table 4, with sizesin bytes and

times in nanoseconds. These parameters are typical of commercialy available SRAMSs.

Table4 Module Parameters (I nterleaved - Uniform)

Parameter Value
w 8
Tur 50
Tu/w 50

Table 5 presents simulation results comparing effective memory bandwidth achieved by
the natural versus ordered access sequence for the benchmark scientific kernels defined in
section 4.4. For access ordering, the depth of loop unrolling is 4. Vectors for all computa-

tions are double-precision and aligned to module M.

Access ordering improves performance over the natural access sequence for the given
computations from 100% to 256%; the exception being LL-24 that references only asin-

gle vector.

Table 6 compares performance of ordered accesses as calculated analytically and mea-
sured viasimulation. Recall that analytic results represent alower bound. For the compu-
tations and conditions modeled, analytic results accurately predict performance; however,

thisis not necessarily the case.



75

Table5 Natural vs Ordered Performance (Interleaved - Uniform)

Computation NaBt\t;\r/al Orgsrved % Increase
daxpy 239.8 640.0 166.9
dvaxpy 213.2 640.0 200.2
LL-1 239.8 640.0 166.9
LL-3 3194 640.0 1004
LL-4 3194 640.0 100.4
LL-5 239.8 640.0 166.9
LL-7 213.2 640.0 200.2
LL-11 3194 640.0 100.4
LL-12 3194 640.0 100.4
LL-20 180.0 640.0 255.6
LL-21 239.8 640.0 166.9
LL-22 199.9 640.0 220.2
LL-24 640.0 640.0 0.0

5.4.3.2 Page-mode Components

Simulation results are presented for a non-buffered 2 module interleaved system of page-
mode components. Module parameters are defined in Table 7 and are representative of the

|PSC/860 node memory system.

Table 8 presents simulation results comparing effective memory bandwidth achieved by
the natural versus ordered access sequence for the set of benchmark kernels. Depth of loop

unrolling is 4, datais double-precision, and al vectors are aligned to module M.
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Table6 Analytic vs Simulation Results (Interleaved - Both)

Uniform-access Page-mode
Compuitation Analysis Simulation Analysis Simulation
BW BW BW BW
daxpy 640.0 640.0 127.9 127.9
dvaxpy 640.0 640.0 121.8 121.8
LL-1 640.0 640.0 100.9 100.9
LL-3 640.0 640.0 106.5 106.5
LL-4 640.0 640.0 106.3 106.1
LL-5 640.0 640.0 100.9 101.0
LL-7 640.0 640.0 102.3 102.3
LL-11 640.0 640.0 98.3 98.3
LL-12 640.0 640.0 98.3 98.3
LL-20 640.0 640.0 102.7 102.7
LL-21 640.0 640.0 124.7 1234
LL-22 640.0 640.0 99.9 99.9
LL-24 640.0 640.0 3175 316.9

For this system, access ordering improves performance over the natural access sequence
for the given computations from 60% to 189%. Once again LL-24 isthe exception as only

asingle vector is referenced.

Table 6 compares effective memory bandwidth for ordered accesses as cal culated anal yti-
cally and measured via simulation. Once again, analytic results represent alower bound
on performance. However, for the computations and conditions modeled, analytic and

simulation results differ by less than 1%. Note that as aresult of start-up transientsin the
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Table 7 Module Parameters (Interleaved - Page)

Parameter Value
w 8
p 4096
T 50
Torw 75
Toim 200

simulation, measured performance falls below the theoretical lower bound for several

computations.

544 Summary

Section 5.4 devel ops access ordering algorithms for ainterleaved system of uniform-
access and page-mode components under the assumption that stream alignment is
unknown. Performance predictors are derived for the effective memory bandwidth

achieved by ordered accesses.

For a system of uniform-access components, access ordering attempts to maximize mod-
ule concurrency. The algorithm divides references into two phases: aread phase and a
write phase. Accesses from each phase are ordered to maximize concurrency for individ-
ual streams and increase the likelihood of concurrency among accesses from different
streams. Ordering istrivial, with atime complexity linear in the number of accesses. Per-
formance predictors assume that accesses from different streams can not be serviced con-

currently, and thus represent alower bound.

For a system of page-mode components, the access ordering algorithm resultsin a
sequence consisting of (potentially intermixed) access sets arranged to maximize reduc-

tion in page overhead achievable viaintermixing and wrap-around adjacency. No attempt
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Table 8 Natural vs Ordered Performance (Interleaved - Page)

Computation NaBI\t;\r/al Orgsrved % Increase
daxpy 48.0 127.9 166.5
dvaxpy 42.7 121.8 185.2
LL-1 48.0 100.9 110.2
LL-3 63.9 106.5 66.7
LL-4 63.9 106.1 66.0
LL-5 48.0 101.0 1104
LL-7 42.7 102.3 139.6
LL-11 60.9 98.3 61.4
LL-12 60.9 98.3 61.4
LL-20 35.6 102.7 188.5
LL-21 77.3 1234 59.6
LL-22 39.0 99.9 156.2
LL-24 315.1 316.9 0.6

is made to increase potential concurrency. The access ordering algorithm has a time com-
plexity exponential in the number of streams. Again performance predictors assume no

concurrency between access from different streams and thus represent alower bound.

Simulation results are presented for interleaved systems of both uniform-access and page-
mode components. Access ordering is shown to significantly increase effective memory
bandwidth over that achieved by the natural sequence of reference for the set of bench-

mark kernels. Performance modedl s are validated.
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Recall that modulesin an interleaved system may be buffered, as depicted in Figure 8.
Buffering potentially improves performance by allowing accesses from nonconflicting
streamsto be initiated under conditions that would otherwise result in the processor block-
ing on a busy module; i.e. buffering may increase concurrency among accesses from dif-
ferent streams. The effect of buffering on reference sequences generated by the ordering

algorithms presented above is not studied here.

5.5 Access Ordering Algorithmsfor Known Alignments

For a sequentially interleaved memory system, access ordering algorithms and perfor-
mance predictors are derived based on the assumption that stream alignments are known
at compile time. In this context, stream alignment refers to the module that services the
first access from a given stream. Note that if relative alignment is known, one stream can
be assumed aligned to a specific module with the remaining streams aligned appropriately;
relative alignment is sufficient to completely define module contention between accesses
from different streams. For a system of page-mode components, ho assumption is made

concerning stream alignment with respect to pages.

Section 5.5.1 presents results for the optimal access of independent streams used in the
general ordering algorithms. Sections 5.5.2 and 5.5.3 derive access ordering algorithms
and performance predictors for systems of uniform-access and page-mode components,
respectively. The effectiveness of access ordering and accuracy of performance modelsare

demonstrated via simulation in section 5.5.4. Section 5.5.5 summarizes results.

5.5.1 Optimal Access of |ndependent Streams
Given a set Sof independent streams, knowledge of stream alignment allows for the spec-
ification of an access sequence that resultsin optimal effective memory bandwidth. A

methodology for generating such a sequence is presented bel ow.
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To derive an optimal access sequence, the depth of loop unrolling b, chosen in mapping
logical streams st o physical streams S isrestricted to values such that on each succes-
siveloop iteration thefirst access from each stream references the same module as the first
access from the previous iteration. Restricting b in this manner guarantees a repetitive

sequence of modul e references per stream per |oop iteration.

Lemma 5.4: For stream t; [ S, if the number of accesses per iteration €, isamultiple of
the number of modulesreferenced |, i.e. 1, | €;, then on each successive loop iteration t;
references exactly the same set of modules in exactly the same sequence, with each mod-

ule servicing exactly ), accesses.

Proof: By Lemmab5.1, stream t; references 1, modulesin a sequence with period ;.
Therefore, if |, | €; then each set of €, accesses must reference exactly the same set of

modules in exactly the same sequence with g, = &,/ |1, accesses per module. O

Loop Unrolling Restriction: For aset Sof independent streams, to derive an optimal
access sequence the depth of loop unrolling b, chosen in forming S isrestricted to values

suchthat foral ;0 S, i, | €.

For most scientific codes, the number of accesses per iteration from a given stream equals
the depth of loop unrolling. Given aset of streams S if €, = bforal t; 0 Sthenbis
restricted to a multiple of the maximum number of modules accessed by any stream; i.e.

b = k(max(u)) skmforal t;0Sand kO Z".

In the context of scalar microprocessor systems, the number of modulesin an interleaved
memory is expected to be modest. Thus while the loop unrolling restriction potentially

resultsin alarge value of b, for most codes thisis not the case.

For N independent streams Sand aloop depth b satisfying the loop unrolling restriction,

an optimal access sequence is derived as follows. Consider the mapping of stream
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accesses to modules that results from a single loop iteration when all accesses from each
stream are initiated consecutively, as in the sequence

[@,:€, ... ayigU

At each module M, ..., M the relative sequence of accesses serviced can be repre-

m-1'
sented by A, ..., A, _, respectively. Sequences A, ..., A,,_; arerelativein the sense
that the order in which stream accesses are serviced is specified, not the particular stream
accessesin agiven loop iteration. For example, Ay = [&,:W,, a3: W4, a,: Y, [ specifies
that module M, satisfies Y, accesses from stream t,, followed by ), accesses from
stream t; followed by ), accesses from stream t; the specific accesses serviced from
each of the three steams, e.g. a¥, isalignment dependent. Note that A, ..., A, _ , are con-

stant for all iterations as aresult of the loop unrolling restriction.

Figure 12 presents the M odule Sequence Algorithm (MSA) for defining the sequences
Ap, ..., Ay, _ 4 that result from a consecutive access sequence. The algorithm defines
Ay, ..., A, _ 1 by mapping streams in decreasing order of number of modules accessed,

i.e. t; ismapped prior to t; if y, > Hy-

Lemma 5.5: Given streams Sand sequences A, ..., A, _; derived viathe Module

T'm-1
Sequence agorithm, each round robin selection of accessesfrom A, ..., A,_;,i.e theset
of accesses formed by taking the ‘next’ access from each sequence A, ..., A,,,_;, hasthe

property that for each stream t; referenced: there are exactly i, accesses from t;, and
accesses from t; do not conflict, i.e. do not reference a module referenced by any other

accessin the set.

Proof: Located in Appendix B.1. [
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Il for each streamt; in the set of streams S selected
/'l in decreasing order of number of nodul es referenced.

for all t;JS selected in decreasing order of H;
/1 for each nodul e Mj accessed by t;
for all Mj 0z
/'l concatenate accesses fromt; to the sequence Aj

A - Iy, By

Figure 12 Module Sequence Algorithm

Theorem 5.6: Given aset Sof independent streams and sequences A, ..., A, _; derived
viathe Module Sequence algorithm, S = A, ..., Ay — 4] [isan optimal access

sequence.

Proof: Accessesfrom A, ..., A,,_; areinitiated round robin. By Lemma5.5, for each

round robin sequence of accesses it is observed that

» for each stream t; referenced exactly |, accessesareinitiated, maximizing concurrency
for stream t;,

» accesses from a stream t; do not conflict, maximizing concurrency between accesses

from different streams, and
* thetotal number of accessesisequal to the number of modules that service the remain-

ing accesses, maximizing module utilization.

Furthermore, for agiven loop iteration, accesses from a stream t; are serviced consecu-

tively at each module referenced, minimizing page overhead when applicable. O
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To illustrate, an optimal access sequence is derived for a set of three read streams
S={t, ty, t} . For each stream data size equals word size, stride of accessis 2 and the
number of accesses per iteration is equal to the depth of loop unrolling; i.e.

& =& ¢, = b. Assume a4 module interleaved system with stream t, aligned to
module M3, and streams t, and t, aligned to module M,. Then each stream accesses 2

modules, so that by the loop unrolling restriction b is amultiple of 2.

For b = 2, assumethe MSA definesthe following sequences: A, = [, r, [, A, = [, [

y? r; X

A, = [, r,Land A; = [I,[. Theresulting optimal access sequence

S = Ag AL Ay Ayl 0= ([0, 0,00, 00,00

defines the linear sequence of references

B, (A M), T, (Ag My), T (g M), T(Ag, M), T (Ag, M), T {Ag M) O

The above sequence is annotated to illustrate both the round robin selection of accesses
and the specific mapping of accesses to modules as determined by alignment; e.g.

r (A, My) specifies r, chosen from sequence A, generates a reference to module M.
Note that in the general case of mapping LA, ..., A,,_,] [ to alinear sequence of refer-
ences, aparticular access a; selected from arelative sequence A, does not necessarily
specify areference to module M, ; a; may in fact specify access to any modulein Z;, the
set of all modules referenced by stream t;. Thisis demonstrated in the example above for

accesses to stream tx'

5.5.1.1 Request Buffering

For an interleaved system, modules may be buffered as depicted in Figure 8. Ordering

accesses as above results in a sequence that references each module at most once per



round robin selection of accessesfrom [[A,, ..., A,_,] L. If individual accessesrequire
an equal amount of time to complete, then the sequence [TA,, ..., A,,,_;] [ achieves opti-
mal effective memory bandwidth without the need for request buffering. Thisisthe case

for a system of uniform-access components and streams of the same mode.

If individual access times vary, then the sequence LA, ..., A,,_,] [ provides optimal
bandwidth only if buffering is sufficient to eliminate access gaps that result in increased
completion time for all accessesin aloop. An access gap is defined as a period of time
during which amoduleisidle due to the memory system blocking on abusy module. Such
isthe case for an interleaved system of page-mode components. For this analysis, buffer-
ing is assumed sufficient so that the sequence [T A,, ..., A,_4] [ resultsin optimal perfor-

mance.

5.5.2 Interleaved Storage and Unifor m-access Components

For an interleaved system of uniform-access components, an access ordering algorithm
need only maximize module concurrency. Unfortunately, in the presence of dependencies,
determining an access sequence that maximizes concurrency is NP-complete with atime
complexity exponential in the number of accesses; this result is obtained by restriction to
precedence constrained scheduling [GaJo79]. As an optimal solution isintractable, a heu-

ristic solution is presented below.

In defining an access sequence for streams S, accesses are performed in two phases: aread
phase and a write phase. By the stream interaction restriction, streams associated with
each phase are independent. Thus, an optimal access sequence can be derived for each

phase based on the results of section 5.5.1.

For streams S, S is defined as the subset of all read streams and S, the subset of all write

streams; loop depth b is assumed to satisfy the loop unrolling restriction defined in 5.5.1.
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Sequences Py, ..., P,,,_; and Q, ..., Q,,_; aredefined by the MSA for S and S,

respectively. Then the access sequence employed is

S

E[F)O’ T Pm—l]’ [Qol seey Qm—l] il

In the above sequence, accesses associated with each phase are ordered to maximize con-
currency, resulting in optimal effective memory bandwidth for that phase. However, the
aggregate solution islikely suboptimal as potential concurrency among read and write
accessesis not exploited. Dependencies are maintained as all read accesses are performed

prior to any writes.

5.5.2.1 Performance Predictor

For aset of streams Sand an access sequence S as defined above, a performance predictor
is derived for the average time per dataitem accessed Tavg and effective processor-mem-

ory bandwidth BW.

Let T, define the time required to complete all read accesses for a given loop iteration.
From the sequence é Py .-, P,_ 1 represent the relative sequences of read operations
serviced at modules My, ..., M, _; respectively. As accesses proceed concurrently at all
modules, the time to complete all readsis equal to the time to complete accesses at the
module servicing the greatest number of reads. Let |P;| define the number of read opera-
tionsin the sequence P;. Then T, isthe maximum number of accesses at any module mul-

tiplied by the uniform-accessread cycletime T, ; i.e.

T, = max(\ Py

I:)m—l‘)-ru/r
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T,, is defined as the time to complete all write operations for a given iteration and is com-

puted analogously to T, so that

Ty = max(\ Qo

Qm—l‘)Tu/w

An upper bound on the time to complete all accessesin a given iteration, and hence a
lower bound on performance, is the sum of the time to complete all read and write

accesses, i.e.

Tt = T+ Ty,

Notethat T, isan upper bound asit assumes no concurrency among read and write oper-
ations at the boundaries between the read and write phases of the sequence S. An exact

model of performance can not be expressed as a closed form equation.

From the above, the average time per data item accessed Tavg is computed as the time to
complete all accessesin agiven iteration divided by the number of data items referenced,
resulting in

Ttot

2

T

avg

The effective memory bandwidth BW is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

10° Z eV d,
4TS
BW= — '~

Ttot

All times are assumed to be in nanoseconds and bandwidth is measured in megabytes per

second.
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5.5.3 Interleaved Storage and Page-mode Components

For an interleaved system constructed from page-mode components, optimal performance
results from an access sequence that balances maximizing concurrency with minimizing
page overhead to achieve minimum completion time. Determining such a sequenceis NP-
complete with atime complexity exponential in the number of accesses; thisresult is
obtained by restriction to precedence constrained scheduling [GaJo79]. As an optimal
solution isintractable, a heuristic solution analogous to that derived in 5.5.2 is presented

bel ow.

In the sections that follow, a base access sequence isfirst developed for computations that
do not specify a read-modify-write. Intermixing and wrap-around adjacency are then
employed to reduce page overhead for computations implementing this operation. The

general access ordering algorithm is presented and a performance predictor is derived.

5.5.3.1 A Base Access Sequence
In defining an access sequence for streams S, accesses are performed in two phases: aread
phase and a write phase. As streams associated with each phase are independent, an opti-

mal access sequence can be derived for a phase based on the results of section 5.5.1.

For streams S S is defined as the subset of all read streams and S, the subset of all write
streams; loop depth b is assumed to satisfy the loop unrolling restriction defined in 5.5.1.
Sequences Py, ..., P,,_; and Q, ..., Q,,_; aredefined by the MSA for S and S,

respectively. Then the base access sequence employed is

Sg = OPg ..., P11, [Qp oo Q] O

In the above sequence, accesses associated with each phase are ordered to maximize con-

currency and minimize page overhead. Again, the aggregate solution is likely suboptimal
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as potential concurrency among read and write accesses is not exploited. Dependencies

are maintained as all read accesses are performed prior to any writes.

5.5.3.2 Intermixing and Wrap-around Adjacency

For streams Simplementing a read-modify-write, intermixing and wrap-around adjacency
may reduce page overhead in each phase of the base sequence éB potentially reducing
completion time for all accesses. Note that in this context, intermixing refersto read
accesses immediately preceding corresponding write accesses at a given module; read and
write operations are not interleaved so that accesses associated with each phase remain

separate.

In deriving the base sequence éB sequences Py, ..., P,,_; and Q, ..., Q,,_, aredefined
viathe MSA by mapping streamsin decreasing order of number of modul es referenced.
Intermixing and wrap-around adjacency are employed by choosing alegal mapping order

such that one or more pair of streams benefits from these rel ationships.

5.5.3.3 Access Ordering Algorithm
For a set of stream Swith no pair of streamsimplementing aread-modify-write, the access
sequence employed is the base sequence éB; ieS= éB Access within each phase of S

can be mapped in any order that satisfies the requirements of the MSA.

If Scontains one or more pairs of streams implementing a read-modify-write, then an

access sequence Sintheform of the base sequence éB is derived as follows:

Given streams Swith read streams S, and write streams S, determine the legal order
for mapping elementsof S, and S, toform P, ..., P,_, and Q, ..., Q,,,_ 4, respec-
tively, in the base sequence éB that results in the minimum completion time for all
accesses in agiven loop iteration.
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Note that for a given ordering of stream mappings, simply computing reduction in page
overhead at a particular module is not sufficient as reduction in completion time for all
accesses is not guaranteed. Thus for each ordering, the average time to complete an itera-

tion of the sequence must be computed as derived below in section 5.5.3.5.

Determining the order for stream mappings that results in minimum average completion
timeisexponentia in the number of streamsin S However, as stated previously for access
ordering algorithms with similar time complexity, the stream count N tends to be small.
Furthermore, the number of legal mappings may be severely restricted by the require-
ments of the MSA. Finally, page overhead is only affected by the relative mapping order
of streams involved in read-modify-writes, again reducing the number of mapping orders

that need be considered. The result is an efficient algorithm.

5.5.3.4 Example Problem
The following example illustrates the application of the ordering algorithm defined above.

Consider the vaxpy computation

Ci Yi <« aX 1y,

that generates the four streams S = {t_, Lo ty, by },wheret = (a,s,dy 1) E,,

t, = (X S,d, r):sX = (y,sy dy, : andt = (y, Sy dy,w):syw

For each vector assume data size equals word size and stride of access is defined by
s, = lands, = s, = 2. Assumea2moduleinterleaved system with all streamsaligned

to module M. Theloop depth bischosentobe 2, sothat e, = €, = g =¢& = 2.

Recall that the MSA maps streams in decreasing order of number of modules accessed.
Thus the ordering algorithm considers two legal forms of the base sequence éB:
© U, rurery,ry 00, [Ovy, ,w, DO Cand

o OOgry. 1y, MerO0,0, [Ov,,w, OO0
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In the first sequence write accesses benefit from intermixing, as the corresponding read
accesses immediately precede at module M. In the second sequence intermixing is not
exploited. Note that wrap-around adjacency can not occur as accesses to stream t, must be

initiated first at both modules, since p, = 2 and p, = Wy =M, = 1.

Thusthe access ordering algorithm for the vaxpy computation resultsin thefirst of thetwo

sequences listed above, generating the corresponding linear sequence of references

ézﬁja,r w, ,w, O

B Do Ty Ty Wy, o Wy,

a1

5.5.3.5 Performance Predictor

For aset of streams Sand an access sequence S defined as above, a performance predictor
is derived for the average time per dataitem accessed Tavg and the processor-memory

bandwidth BW.

Functions modeling page overhead derived in chapter 4 for a single module system are
applicable to accesses at individual modules of an interleaved system. Recall that in gen-
eral, average page miss count is modeled by the function n(s, d, c, V). For stream accesses
that are wrap-around adjacent or intermixed, average page miss count is modeled by the
functions w(s, d, ¢) and p(s, d, c) respectively. In employing these functions for an inter-
leaved system, stride sis module stride and the number of accesses ¢ isthe number at each

module; i.e. forastreamt;, s = &, and ¢ = ;.

In the sequence é Py .-, Py_ 1 represent the sequences of read accesses serviced at
modules M, ..., M,,,_ ;. Each P, serviced at module M, is composed of some number of
component sequences P , , where the first subscript i is defined to be that of the stream
referenced. Thus, P ; ,, represents the read access set [f;: Y, L. Similarly, Q, isthe
sequence of write accesses serviced at M, and Q ; ) represents the write access set

(v g, L
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Thetime required to complete all accessesin the sequence P (i, K) isthe sum of the number
of accesses Y; multiplied by the page-hit read cycle time Torr and the average page miss

count multiplied by the page misstime To/m: | i.e.

(&, d, W) Ty when P,y iswrap-around adjacent
T(Piw) = 4Ty + | |
On, (&, di, Y, V)T Otherwise

Note that in modeling page miss count, conditions that determine appropriate use of mod-
eling functions must be applied in the context of the module accessed. P (i, K) iIswrap-
around adjacent if there existsa Q ; |, such that read stream t; and write stream t; imple-
ment aread-modify-write, P ; | isthefirst accesssetin Py and Q ; | isthelast access
setin Q; then w,(§;, d;, ;) correctly models page overhead. Otherwise, n,(&;, d;, W;, V)
is the applicable model where the number of vectorsV is the number accessed at module
M, . For clarity, functions modeling page overhead are subscripted with the module num-

ber to denote context.

Similarly, the time required to complete all accessesin the sequence Q (i, k) isthe sum of

the number of accesses Y, multiplied by the page-hit write cycle time Toiw and the aver-

age page miss count multiplied by the page misstime To/m: SO that
Op (&, di, W) Ty, when Q; |, isintermixed
T(Qqw) =WTywtD © I P _ 9
O (& di W T, otherwise

Inthis context, Q ; |, isintermixed if thereexistsa P |, such that read stream t, and
write stream t; implement aread-modify-write, P\, isthelast accesssetin Py and

Qi K isthefirst accesssetin Q.
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From the preceding analysis, the time to complete all read operationsin the sequence P, is

the sum of the time to complete all accesses in each component sequence; i.e.

T(P) = TP,
(P pfmp (P

Then the time to complete all read accesses in an iteration of the sequence Sisthe maxi-

mum time to compl ete read operations at any module, so that

T, = max(T(Pg), ..., T(P,_1))

Similarly, the time to complete all write operationsin the sequence Q, isthe sum of the

time to complete all accesses in each component sequence; i.e.

T(QY = T(Qi, i)
“ Q(m;DQk 9

And the time to complete all write operationsin an iteration of the sequence Sis

Ty = Mmax(T(Qg),.... T(Qn_1))

Note the tacit assumption in computing T, and T, isthat buffering is sufficient so that
each phase of the sequence proceeds without access gaps that result in increased comple-

tion time for that phase; thisis discussed in section 5.5.1.1.
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An upper bound on the time to complete all accesses in a given iteration, and hence a
lower bound on performance, is the sum of the time to complete all read and write

accesses so that

Tiot = Tr + Ty

Tiot ISa@n upper bound as it assumes no concurrency among read and write operations at
the boundaries between the read and write phases. An exact model of performance can not
be expressed as a closed form equation. Note that T, is the value used by the access
ordering algorithm in determining the order for stream mappings that results in minimum

completion time.

From the above, the average time per data item accessed Tavg is computed as the time to
complete all accessesin agiven iteration divided by the number of data items referenced,

resulting in

T’[Ot

2

T

avg

The effective memory bandwidth BW, in megabytes per second, isthe number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

10° Z £v.d,
15Ts
BW= ——"—=

Ttot



5.5.4 Simulation Results

For scientific kernels previously simulated, vector strides are such that all mmodulesin a
sequentially interleaved system are referenced by each stream for any m = 2". Thus
ordering algorithms do not benefit from alignment information as all streams are conflict-
ing. Simulation and analytic resultsfor algorithms derived under the assumption of known
alignment are identical to those presented in section 5.4.3 for algorithms that assume

alignment is unknown.

Consider again the vaxpy computation

i Y « aX Yy,

that generatesthe four streams S = {t,, t,,t,, 1, } ,wheret, = (& s, d,r) €,

ty = (XS, dy, 1), tyr = (y, Sy, dy, r) :eyr,and tyw = (y, Sy dy, W)ZSyW.

For each vector assume datasize equalsword size, thus e, = € = e, =g = b, and
stride of accessisdefinedby s, = 1and s, = s, = 2. Assumeanon-buffered 4 module
system of page-mode components with module parameters as previoudly defined in
Table 7. Streams t, and t, arealigned to module M, and streams't, and t, arealigned to

module M.

Table 9 presents simulation and analytic results comparing performance of the vaxpy
computation ordered under the assumptions of known and unknown alignment for arange
of loop depths b. Assuming known alignment, access ordering improves performance over
the natural reference sequence from 96% to 216%; under the assumption of unknown
alignment performance isimproved from 49% to 139%. Note that for unknown alignment
the performance predictor is below the effective bandwidth achieved, as all streams are

incorrectly assumed to be conflicting.



For this example knowledge of stream alignment allows accesses from nonconflicting
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streams to be scheduled to proceed concurrently, resulting in increased performance over

the case where alignment is unknown.

Table9 Simulation and Analytic Results (Interleaved - Page)

Simulation Analysis
i 0
Algorithm b Natural Ordered Ordered % Increase
BW BW BW

4 93.0 138.3 127.9 48.7

Unknown 8 93.0 192.9 1825 107.4
Alignment

12 93.0 222.0 212.9 138.7

4 93.0 182.4 1825 96.1

Known 8 93.0 254.9 255.0 174.1
Alignment

12 93.0 293.5 293.9 215.6

5.5.5 Summary

Section 5.5 devel ops access ordering algorithms for an interleaved system of uniform-

access and page-mode components under the assumption that alignment is known. Perfor-

mance predictors are derived for the effective memory bandwidth achieved by ordered

accesses.

For a system of uniform-access components, the ordering algorithm divides accesses into

two phases: aread phase and a write phase. Accesses associated with each phase are

ordered to maximize concurrency, resulting in optimal effective memory bandwidth for

that phase. The aggregate solution is likely suboptimal, as potential concurrency among

read and write accesses is ot exploited. Ordering istrivial with atime complexity of

O(N (Ig(N))) where N is the number of streams, representing the implied sort in the
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MSA. Performance predictors assume no concurrency at the boundaries between read and

write phases and thus represent alower bound.

For a system of page-mode components, ordering is performed anal ogous to the uniform-
access case. However intermixing and wrap-around adjacency are employed to reduce
page overhead in each phase, potentially reducing completion time for all accesses. The

ordering algorithm has a time complexity exponential in the number of streams.

Recall that modulesin an interleaved system may be buffered, as depicted in Figure 8. The
tacit assumption for systems of page-mode components is that buffering is sufficient so

that each phase of the sequence proceeds without access gaps that result in increased com-
pletion timefor that phase; thisisdiscussed in section 5.5.1.1. If buffering is not sufficient,
performance is degraded and performance predictors are no longer guaranteed to represent

alower bound.
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6 Multicopy Architecture

This chapter derives access ordering algorithms and performance predictors for a multi-
copy memory system as depicted in Figure 13. A multicopy memory is proposed here as a
parallel memory system consisting of m modules of replicated data such that if * (M, a)

represents the contents of addressa at module M, then *(My, @) = ... = *(M,_4, a).

Address Source
-
-

Data Sink

Figure 13 Multicopy Architecture

The multicopy architecture is defined to function as follows. Read accesses specify the
module to which the request is to be directed. If input buffer space is available then the
request is queued at the appropriate module, otherwise the memory system blocks until a
buffer slot is freed. Write accesses are broadcast to all modules to maintain consistency
among copies. If the input buffer isfull at one or more modules, the memory system

blocks until the appropriate buffer slots are freed; all writes are queued simultaneously.
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Access requests are serviced at amodule in the order queued, with data from read requests

placed in the modul€'s output buffer.

Recall that for parallel memory systemsit is assumed read accesses are tagged and that
data may be returned in the requested order at the rate satisfied. In modeling maximum
effective bandwidth, the request rate is assumed sufficient such that performanceislimited
by the memory. These assumptions are identical to those for the sequentially interleaved

architecture analyzed in chapter 5.

A multicopy memory system increases the potential for read access concurrency, as maxi-
mum concurrency is achievable for all strides of reference. Furthermore, for systems of
page-mode components, read stream page overhead can be more effectively amortized by
directing stream accesses to a smaller number of modules. However write operations must
be broadcast to maintain coherence, serializing an otherwise parallel operation. Thusitis
intuitive that the relative performance of a multicopy system is dependent on a high read

to write ratio; simulation results verify thisto be the case.

Section 6.1 discusses the problem space for efficient utilization of a multicopy memory.
Notation is developed in section 6.2 for expressing the mapping of read accesses to mod-
ules. Sections 6.3 and 6.4 derive access ordering algorithms and performance predictors
for amulticopy system of uniform-access and page-mode components, respectively. The
effectiveness of a multicopy architecture and accuracy of performance models are demon-

strated via simulation in section 6.5. Section 6.6 summarizes results.

6.1 Problem Dimensions

In general, to efficiently utilize a multicopy system, stream accesses must be ordered to

* maximize concurrency and

* minimize page overhead, when applicable.
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Ordering reads to maximize concurrency is a matter of distributing accesses uniformly
across modules. Write accesses are broadcast to all modules so that concurrency is not an

issue.

Techniques for minimizing page overhead come directly from analytic results derived in
chapter 4 for a single memory module. Page miss count for a given stream isminimized if
elements of that stream are referenced consecutively from a single module on each loop
iteration. For two streams that implement a read-modify-write, page miss count may fur-

ther be reduced via intermixing and wrap-around adjacency.

Optimal effective memory bandwidth results from an access sequence that minimizes
completion time for all accessesin aloop. Aswith a sequentially interleaved memory,
such a sequence usually requires a trade-off between minimizing page overhead and max-

imizing concurrency.

To illustrate, consider mapping onto a 2 modul e system accesses from the three read
streams t,, t, and t,. Assume all streams are stride 1 with 4 accesses per stream per itera-
tion. Figure 14 demonstrates the time to complete atypical loop iteration for three differ-
ent mappings of accesses to modules given that an access to the current page requires 1
time unit (Tp,r) and a page missincurs a 3 time unit penalty (Tp, - - Figure 14(a)
depicts a mapping that results in the minimum page miss count, with all accesses from a
given stream serviced by a single module. Figure 14(b) depicts a mapping that maximizes
concurrency for agiven stream by distributing accesses evenly across al modules. Finally,
Figure 14(c) depicts an optimal solution that balances minimizing page overhead and

maximizing concurrency.
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Figure 14 Minimizing Completion Time

6.2 Module Access Notation

To facilitate the specification of an access sequence that maps read accesses to specific
modules, the MAP notation developed in section 3.1 is augmented as follows. For individ-
ual read accesses, r ; ) denotes access to the next element of stream t; from module
M, . This notation augments the previous definition of r; with the specification of the mod-

ule to which the access is directed.
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6.3 Multicopy Storage and Unifor m-access Components

Deriving an optimal access ordering algorithm for a multicopy system of uniform-access
componentsistrivial. Concurrency is maximized and dependence maintained by distribut-
ing read accesses uniformly across all modules and initiating all reads prior to the first

write.

For streams S let t, through t,, beread streamsand ty , ; through t be write streams.

Let R be the total number of read accesses, so that

m=r

Then msequences A, ..., A,,,_; are defined such that the R accesses are evenly distrib-
uted among the sequences. That is, m— (R mod m) of the sequences contain | R/m|
reads, with the remaining (R mod m) sequences containing | R/m] + 1 read accesses.

Furthermore, accesses in sequence A, are tagged for service at module M, .
Then an optimal access sequenceis

S=OA, ...,Am_l],ri”:sNrﬂ, ey Wyt €U

The above sequence maximizes concurrency among read accesses while maintaining
dependencies. Note that module buffering is not required to achieve optimal bandwidth, as
read access times are uniform and read requests are initiated across modulesin a strict

round-robin sequence.
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6.3.1 Performance Predictor
For streams Sand an access sequence S defined as above, a performance predictor is
derived for the average time per data item accessed Tavg and processor-memory band-

width BW.

Let T, bethetime required to complete all read accesses. Then T, isthe time to complete

accesses at the module servicing the greatest number of requests, that is

O LRJTW when Rmodm =0
0O Lm
O
= 0 R
T, D(LnJ+1)Tu,Ir when Rmod m=>1
- IR
(mwTu/r

Similarly, let T, be the time to complete all write accesses. By definition every write

regquest generates amemory access that is serviced at all modules, so that

Then the average time per data item accessed T, isthetimeto complete all accessesina

given iteration divided by the number of dataitems referenced, i.e.

T +T,
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And the effective memory bandwidth BW is the number of bytes of relevant data trans-

ferred per iteration divided by the time to compl ete all accesses, so that

103t Zsai v d,

BW ) TI’+TW

All times are in nanoseconds and sizes in bytes, with bandwidth measured in megabytes

per second.

6.4 Multicopy Storage and Page-mode Components

For amulticopy system of page-mode components, optimal performance results from a
sequence that balances maximizing concurrency with minimizing page overhead to
achieve minimum compl etion time. Determining such a sequence is NP-complete with a
time complexity exponential in the number of accesses; this result is obtained by restric-
tion to multiprocessor scheduling [Galo79]. As an optimal solution isintractable, a heuris-

tic solution is presented bel ow.

In the sections that follow, a base access sequence and module reference model are devel-
oped. Intermixing and wrap-around adjacency are then discussed for computations imple-
menting a read-modify-write. A heuristic is developed that determines the order and

mapping for read operations. Finally, a general ordering algorithm is presented and a per-

formance predictor derived.

6.4.1 A Base Access Sequence

For streams S let t, through t, beread streamsand ty , ; through t, be write streams.

Then the base access sequence employed is

Ss = Ay - Ay_ql YW 417 €N g e Wi EGD
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In the above, the sequences Ay, ..., A,,,_ ; specify read operations for streams t; through
ty, where accessesin A, are directed to module M. Theread sequences A, ..., Ay, _;
are defined by a mapping heuristic that attempts to minimize completion time. Write
accesses are grouped by stream to minimize page overhead; recall that writes are broad-
cast so that concurrency is not an issue. Write accesses follow reads, maintaining depen-
dence relations. Intermixing and wrap-around adjacency are employed at the boundary of

read and write accesses in a greedy fashion.

6.4.1.1 Request Buffering

For a multicopy system, modules may be buffered as depicted in Figure 13. Ordering
accesses as above results in a sequence that references each module at most once per
round robin selection of accesses [JA,, ..., A,,_;] L. Sinceindividua accesstimesvary,
the sequence LA, ..., A, _ ;] [ provides maximum bandwidth only if buffering is suffi-
cient to eliminate access gaps that result in increased completion time for all accessesin a
loop. Recall that an access gap is defined as aperiod of time during which amoduleisidle
due to the memory system blocking on abusy module. For thisanalysis, buffering is
assumed sufficient so that [TA,, ..., A,,,_ 1] [ resultsin maximum performance for that

sequence.

6.4.2 A Module Reference M odel

For A, ..., A,,_ defined in the base access sequence éB assume that references from
each read stream t; [J S are distributed uniformly among some number of sequences, and
hence modules, |1;. Furthermore, assume all accesses from t; in asequence A, are
arranged consecutively. Such a sequence arises from the mapping heuristic derived in sec-

tion 6.4.4.
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Mapping accesses as above minimizes page miss count for references serviced at a given
module. However, the absol ute page miss count is dependent on the overall pattern of ref-

erence.

Toillustrate, 4 accesses from astream t, and 2 from astream t,, are mapped to a2 module
system as depicted in Figure 15. For the references of Figure 15(a), elements of stream t,,
are accessed aternately from each module so that the observed stride at agiven moduleis

2s,. Such amapping results from the sequence L] (& (a0 20 (4 1)12 T (p 1y 200 L.

Alternatively, references depicted in Figure 15(b) access consecutive elements of t_ at

each module so that the observed strideis s,. Such amapping results from the sequence

(I 502000 1)1 2,7 (5 1y 20 L

For accesses from the same stream, page miss count at a given module is afunction of the
distance between individual references. As demonstrated above, this distance is dependent
on the overall pattern of reference and as such can not be expressed as a closed form equa-

tion.

For the remainder of this discussion, the observed stride of reference for accesses from a
read stream t; serviced at a given module is modeled as the product of the stream stride

and the number of modules referenced; i.e.

& = WS,
The module stride éi isthe stride that results if elements of t; are accessed alternately
from each of the (1, modules referenced. Thus performance models represent estimated

performance rather than bounds.

Note that modules accessed |1; and module stride éi are analogous to parameters derived
in chapter 5 for a sequentialy interleaved architecture and are represented by the same

symbols augmented with a hat (*).
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Figure 15 Dependence of Module Stride on Reference Pattern

6.4.3 Greedy Intermixing and Wrap-around Adjacency

For streams Simplementing aread-modify-write, intermixing and wrap-around adjacency
may reduce page miss count in each phase of the base sequence éB potentially reducing
completion time for all accesses. Note that in this context, intermixing refers to read
accesses immediately preceding corresponding write accesses at a given module; read and

write operations are not interleaved.

Because the base sequence separates accesses by mode and because write accesses are
broadcast, at most two pairs of streams may benefit from intermixing and wrap-around
adjacency. Furthermore, intermixing generally reduces the time for writes to complete

only if corresponding read accesses reference all modules.

Intermixing and wrap-around adjacency are employed in a greedy fashion by choosing

prior to access mapping the two pair of streams most likely to benefit from these relation-
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ships. From streams S t and t are apair of read and write streams, respec-

r-wadj w-wad]

tively, designated to be mapped for wrap-around adjacency. Similarly, t._; .. and t

W- i mix
are designated to be mapped for intermixing. All else being equal, streams with the small-
est stride have the lowest average page miss count per access and hence the most to gain;

tr-wadj (T, Wadj) and t__; . (t,.imix) @echosen accordingly. For Sconsisting of fewer

than two read-modify-write operations, t and t are chosen in that order, with

r-wadj r-imix

one or both remaining undefined.

[ specifies accesses

if

w-wadj ! I

Then in the base sequence éB the first write sequence Wy , 11&y .,

to stream t and the last write sequence [Wy: &, [ specifies accessesto t

W-imix
defined. Similarly, in defining A, ..., A the read mapping heuristic insures that

1 m-1'

accessesto t occur at the beginning of a sequence and accessesto t occur at

r-wadj r-imix

the end, as appropriate.

6.4.4 Read Mapping Heuristic

For read sequences A,,, ..., A, _; of the base sequence éB an optimal mapping of read
accesses to modules usually requires a trade-off between minimum page overhead and
maximum concurrency as discussed in section 6.1. Minimizing completion time resultsin
abalanced load of accesses such that if T (A,) isthetime to complete accessesin the

sequence A,, then

T(A) -T(A)| STy + Ty,  forOs<klsm-1

p/r
That is, for any pair of modules the time required to complete all read accesses differs by

no more than the maximum read access time.

The Read Mapping Heuristic (RMH) derived below approximates an optimal solution as
follows. For aread stream t;, accesses are mapped uniformly to a number of modules |J;

proportional to the ratio of the minimum time to complete accesses from t; at asingle
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module and the minimum time to compl ete all read accesses at a single module. Essen-
tially, each stream is assigned resources proportional to the amount of work to be com-
pleted; over-allocation limits the amortization of page misseswhile under-allocation limits
concurrency. Load balancing is performed in a greedy fashion by mapping accesses from
t; to the |1, modules with the minimum load. Page miss count is minimized at each mod-

ule asreferencesto t; areinitiated consecutively.

To compute |1; and perform load balancing in mapping, amode! isrequired for the time to
complete accesses to t; at asingle module. From the performance models derived in chap-
ter 4, the time to complete ¢ consecutive accesses to t; at agiven module is the sum of ¢

multiplied by the page-hit read cycletime Torr and the average page miss count multiplied

by the page misstime T so that

p/m:

(s, i, ©) T/, when t; =1, ¢ (Wrap-around adj.)
r(sc = ch,r+ 0
on(s d, ¢, Ty, otherwise

Thefunction I" (s, c) is parameterized for stride s so that completion time can be com-
puted both for all accessesto asingle module where s = s;, as when computing fraction
of total work load to determine |1;, and for accesses to one of [1; modules where s = Ei ,
as when computing module load for balancing. Note that in the page miss count modeling
function n(s, d, ¢, V), the number of vectorsV isthe number referenced by all streamsin
S For amulticopy system, not all modules necessarily service accesses referencing V vec-
tors; however, for load balancing the number to be referenced is not known until mapping
is complete. Thus the computed values of module load for balancing may be an over-esti-

mate under certain conditions.
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For al read streamsin S the minimum time to complete one iteration of accesses at asin-

glemoduleis

0= 3

Then accesses from read stream t; are mapped to a number of modules (1, computed as

(s &)
A

[, = min(e, max(l{ m+0-5J))

Note that the number of modules servicing t; isrounded to the nearest integer with alower
bound of 1, as determined by the max function, and an upper bound of the total number of

accesses to t;, as determined by the min function.

For each module of the multicopy system, the load A, at module M, is the time to com-
plete read accesses in the sequence A, . As state previously, load balancing is performedin
agreedy fashion by mapping accesses from t; to the |1, modules with the minimum load.
Thusthe €, accessesto t; are distributed uniformly by placing Lai/ﬁd + 1 referencesr;
inthe (g; mod {i;) sequenceswith the minimum moduleloads, and | &,/ |1, | referencesr,
in each of the remaining 1; — (g, mod [1;) sequences. For asequence A, to which t; is

mapped, the load at module M, is recomputed as
A= NFTE O

where ¢ = | g/fi;| or ¢ = | g/{i;| + 1, asappropriate.
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Figure 16 presents the complete read mapping heuristic (RMH). To summarize, for each
read stream t; 1 S

« the number of modules to reference {i; is computed, and

» access are distributed uniformly to the (1, sequences referencing modules with the min-
imum loads.

6.4.4.1 RMH Performance

Table 10 compares results of the RMH with an optimal mapping of read accesses as deter-

mined via exhaustive search. The general form of the problem mapped is

Oi y (i) = fn(x,(i), ..., x(i))

Due to the time complexity of optimal assignment, problem sizes are small. The number
of modules mis 2 or 4, the number of read streamsis between 2 and 4 and the depth of
loop unrolling b is between 1 and 3, inclusive; variables are chosen from a uniform ran-

dom distribution.

Table 10 contains ratios of RMH to optimal performance, where performanceis defined as
the average time to complete all read operations for a given iteration. Only read accesses
are considered to avoid skewing resultsin favor of the RMH, as write accesses in the gen-

eral problem take the same time regardless of the read mapping.

Table 10 RMH / Optimal Performance Ratios

RMH performance

Percentage of tests for which Optimal performance =
Category
= 1.0 <11 <12 <13
S 90 100 100 100
SIKE 77 81 89 93
SRND 71 81 91 97
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// if the total nunber of read accesses Ris |less than the
/1 number of nodul es, assign one access to each sequence (nodul e)

if R<m

assign each A, 0<i<R-1, one read access;
el se

{
(A, < 0)and (A - O) for 0<ism-1;

/! for each read stream ti inS

!/ note: tr-wadj first and t ;. last, as appropriate.

for all tiDS such that m =r

{
conpute ;
det er mi ne nodul es Mp(l), . Mp(ﬁi) W th lji smal | est A,
such t hat Ap(l) <. S/\p(ﬁi);
/1 assign accesses fromt, to sequences and reconpute
/1 nodul e | oads.
for (k=1to [
{
if k<g mod
C Lsi/ﬁij +1;
el se
c— &/l ;
Aoy = Bowyr Biomy) -t
}

Figure 16 Read Mapping Heuristic (RMH)
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Results from 300 tests are presented, with 100 from each of 3 different categories. Cate-
gory Sl presents results for streams of stride one access. Category SIS presents results
from streams with a mixture of stride one and stride ‘large’, where large is defined as 1
dataitem per page. Finally, category SRND presents results for a mixture of strides chosen
from a uniform random distribution between 1 and 1.5 (p/w) , where p is page size and w
isword size. Overall, the RMH achieved optimal performancein 79% of thetrialsand was

within 20% of optimal for 93% of thetrials.

6.4.5 Access Ordering Algorithm

Recall that for streams S, with read streams t; through ty, and write streams t, , ;

through ty, the base access sequence employed is

% = E[AO1 ...,Am_l] 1WNT+1:€Nr+1’ ...,WN:END

For deriving a specific access sequence Sin theform of the base sequence éB the com-
plete access ordering algorithm consists of the following steps:
1. From the pairs of streamsin Simplementing a read-modify-write, if extant, choose a

and t

define write accesses in the sequence S accordi ngly.

pair to map for wrap-around adjacency, t and apair to map for inter-

r-wadj w-wadj ’

mixXing, t_imix @ Ly jmix;
2. Apply the RMH to determine read sequences A, ..., A,,,_ ; in the access sequence é;

t and t are mapped first and last, respectively.

r-wadj r-imix
The ordering algorithm is efficient, with atime complexity of O(Nr2 (logN,)) for N, read
streamsin S this complexity represents the N, sorts required for load balancing in the

RMH.
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6.4.6 Example Problem

For a 2 module multicopy system, an access sequence is generated for the canonical axpy

operation to illustrate the ordering algorithm derived above. Recall that axpy is defined as
i Y, « ax; +vy,

and generates thethree streams S = {t,, ty. 1, } wheret, = (xs,,d,,r):€,

t, = (v.s,d,r) ey andt, = (y,s,d,w) g, .

For each vector assume that data size equals word size and stride of accessis 1. The depth

of loop unrolling bis 2, sothat €, = g, =g = 2.

Theinitial step identifies streamsfor intermixing and wrap-around adjacency, as discussed

in 6.4.3. For the axpy computation, t, = t,_yqq adty = 1, yagi toimix @0 Gy jmix

are undefined.

The RMH is employed to derive the read sequences A, and A, of the access sequence S.
First, the number of modules to service each stream is computed. For the given stream
parameters, the average times to complete accesses to ty and t, at asingle module are

M, (L2) = 2T + (L, W, DTy = 2T,

p/m

(L2 =27, +n(L w2, 2)Tyn=2Ty, + Ty

p/m

Approximations for ry (1, 2) and I (1, 2) derived above are used to simplify expressions

in the remaining computations.

Then the time to complete all read accesses A is

A=T,(L2)+T(L2) = 4Ty, +Tym
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Finally, the number of modules servicing each of ty andt,is

ry(1, 2)
Hy =min(2, max(1, | — 2+ 0.5‘)) =1
: A
A~ . rx(l’ 2)
i, = min(2, max(1, A 2+ O.SJ)) =1

The RMH load balancing criteriainsures that accesses from streams ty and t, are placed

r-wadj

in sequences A, and A, respectively. As t, =t accesses from t, are mapped first,

though in this example the order isirrelevant.

Thus application of the access ordering algorithm to the axpy computation defined above

results in the access sequence

S=Ury my:2 T (xmy-2l, O, 200

representing the linear sequence of references

[y o) T oMy Ty Mg T vy Wy, Wy O

Figure 17 depicts atypical iteration of the above sequence, assuming an access to the cur-

rent page requires 1 timeunit (T, ) and a page missincurs an additional 2 time

p/re Tp/w

unit penalty (Tp, m) -

6.4.7 Performance Predictor

For streams Sand an access sequence S defined as above, a performance predictor is
derived for the average time per data item accessed Tavg and the processor-memory band-
width BW. Recall that as aresult of the module reference model developed in section

6.4.2, performance models represent estimated performance rather than bounds.
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Figure 17 Multicopy Example

Functions modeling page overhead derived in chapter 4 for a single module system are
applicable to accesses at individual modules of a multicopy system. Recall that in general,
average page miss count is modeled by the function n(s, d, c, V). For stream accesses that
are wrap-around adjacent or intermixed, average page miss count is modeled by the func-
tions w(s, d, ¢) and p(s, d, c) respectively. In employing these functions for a multicopy

system, stride sis module stride.

Let P, define the sequence of reads serviced by module M, for an iteration of the access
seguence S. Each P, is composed of a number of component sequences P (i, K) where the
first subscript i is defined to be that of the stream referenced. Thus P ; |, representsthe

read access set [ ; y y:CL, where ¢ = |&/1; | orc = |g/1 | +1 asappropriate.

Similarly, Q isthe sequence of write accesses serviced at M, and Q ; | representsthe
write accessset [W;: € [; recall that writes are broadcast so that each module servicesall ¢

accesses from write stream t;.
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Thetime required to complete all accessesin the sequence P (i, K) isthe sum of the number
of accesses ¢ multiplied by the page-hit read cycle time Tosr and the average page miss

count multiplied by the page misstime To/m: | i.e.

Dﬂk(ﬁ,, i & V)T m otherwise

Note that in modeling page miss count, conditions that determine appropriate use of mod-
eling functions must be applied in the context of the module accessed. P (i, K) iIswrap-
around adjacent if there existsa Q ; |, such that read stream t; and write stream t; imple-
ment aread-modify-write, P ; | isthefirst accesssetin Py and Q ; | isthelast access
setin Q,; then ook(El, i» €) models page miss count. Otherwise, nk(El, i C, V) isthe
applicable model where the number of vectorsV isthe number accessed at module M, .
For clarity, functions modeling page overhead are subscripted with the module number to
denote context. Note that for awrap-around adjacent access set, the page miss count
ook(El, i, C) is an upper-bound representative of the page miss count at the module servic-
ing r ', the u " access from read stream t, for agiven iteration; this effect is a conse-

guence of distributed reads and broadcast writes.

Similarly, the time required to complete all accessesin the sequence Q (i, K) is the sum of
the number of accesses €, multiplied by the page-hit write cycle time Toiw and the aver-

age page miss count multiplied by the page misstime T so that

p/ m?

P(S d &) Torm when Q ; |y isintermixed

T(Qei) = &§Tywt O :
(s, dis €. )Ty m otherwise
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Inthiscontext Q ; \ isintermixed if thereexistsa P |, such that read stream t, and
write stream t; implement aread-modify-write, P, |, isthelast accesssetin P and
Qi K Isthefirst accesssetin Q,. Note that for an intermixed access set, the page miss
count p,(s;, d;, €) isan upper-bound representative of the overhead at the module servic-
ing the last reference from the corresponding read access set rzg ; again thisis a conse-

guence of distributed reads and broadcast writes.

From the preceding analysis, the time to complete all read operationsin the sequence P, is

the sum of the time to complete all accesses in each component sequence; i.e.

T(P) = TP,
(P p}mpk (Pt

Then the time to complete all read accesses in an iteration of the sequence Sisthe maxi-

mum time to complete read operations at any module, so that

T, = max(T(Py), ..., T(Py-1))

Note the tacit assumption in computing T, isthat buffering is sufficient so that read
accesses proceed without access gaps that result in increased completion, as discussed in

section 6.4.1.1.

Similarly, the time to complete all write operationsin the sequence Q, isthe sum of the

time to complete all accessesin each component sequence; i.e.

T(Q) = T(Qqk)
07 o g 0

And the time to complete all write operationsin an iteration of the sequence Sis

T, = max(T(Qp), ..., T(Qn-1))
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Then an estimate of the time to complete all accesses in agiven iteration isthe sum of the

time to complete all read and write accesses so that

Tt = T+ Ty,

From the above, the average time per data item accessed Tavg iscomputed asthetimeto
complete all accessesin agiven iteration divided by the number of data items referenced,
resultingin

Ttot

2

T

avg ~

The effective memory bandwidth BW, in megabytes per second, isthe number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

108 Z £.v.d,
t' TS
BW= ———

TtO’[

6.5 Simulation Results

For amulticopy memory system thereisno ‘natural’ mapping of accesses to modules.
Thus the quality of an access ordering algorithm is best captured by comparison with an
optimal reference sequence. Such acomparison is presented in section 6.4.4.1 for asystem
of page-mode components; for a system of uniform-access devices, access ordering results
in an optimal reference sequence. For access sequences generated by each ordering algo-

rithm, simulation results are presented to validate the accuracy of performance models.

To assess the viability of amulticopy system two factors must be considered: performance
and cost. Performance is evaluated relative to a sequentially interleaved memory, as inter-
leaving is the most common parallel memory storage scheme. Cost is evaluated in terms

of both hardware complexity and data space.
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6.5.1 Performance Predictors

Results arefirst presented to validate performance predictors for the set of benchmark
computational kernels defined in section 4.4. A non-buffered 2 module multicopy system
of both uniform-access and page-mode components is considered; module parameters for

both component types are defined in Table 11.

Table 11 Module Parameters (Multicopy - Both)

Uniform-access Page-mode
Parameter Value Parameter Value
w 8| w 8
p 4096
Tur 40 Tp It 40
Tuw 40 Tp W 40
Toim 120

Table 12 compares performance of ordered accesses as calculated analytically and mea-
sured viasimulation; for all benchmarks, the depth of loop unrolling is 4 and vector oper-
ands are double precision. For the computations and conditions modeled, analytic and
simulation results differ by less than 1%. Two exceptions are highlighted. Recall from sec-
tion 6.4.1.1 that in modeling performance of read operations for a system of page-mode
components, buffering is assumed sufficient so that accesses proceed at the maximum rate.
For both cases noted, a non-buffered system results in access gaps that reduce perfor-

mance; for abuffer size of 1, simulated performance achieves the predicted bandwidth.
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Table 12 Analytic vs Simulation Results (M ulticopy - Both)

Uniform-access Page-mode
Compuitation Analysis Simulation Analysis Simulation
BW BW BW BW
daxpy 240.0 240.0 171.0 170.9
dvaxpy 256.0 256.0 177.2 159.2
LL-1 240.0 240.0 171.0 170.6
LL-3 320.0 320.0 397.7 394.6
LL-4 320.0 320.0 388.6 386.4
LL-5 240.0 240.0 171.0 170.6
LL-7 256.0 256.0 152.0 152.0
LL-11 213.3 213.3 133.0 1331
LL-12 213.3 213.3 133.0 1331
LL-20 261.8 261.8 171.0 171.1
LL-21 240.0 240.0 161.3 156.7
LL-22 228.6 228.6 1425 142.3
LL-24 320.0 320.0 3954 393.1

6.5.2 Evaluation of Multicopy Performance

A multicopy system offers a number of advantages over a sequentialy interleaved mem-
ory. For read streams, maximum concurrency is achievable regardless of stride and page
overhead can be more effectively amortized by directing accessesfrom agiven streamto a
smaller number of modules. However, because read accesses must be tagged to reference
a specific module, to fully utilize concurrency the number of read accessesin aloop must

egual or exceed the number of memory modules. Furthermore, write operations are broad-
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cast to all modules to maintain coherence and thus represent the serialization of an other-

wise parallel operation.

For amulticopy system to deliver greater bandwidth than an equivalent interleaved mem-
ory, increases in parallelism and/or reduction in page overhead for read accesses must
dominate the loss of parallelism for writes; in this context an equivalent system is onewith
the same number of modules, equal buffer depth, and constructed from identical memory
components. Note that in all but extreme circumstances, a multicopy system of uniform-
access components is not competitive as page overhead is not a concern. Thus only sys-

tems of page mode components are considered here.

Table 13 presents simulation results comparing bandwidth delivered by a4 module multi-
copy system with buffer depth 1 to an equivalent interleaved system for the benchmark
kernels. Module parameters are those of Table 11 with a page miss versus hit cycle time
ratio of 4:1, typical of current DRAMSs. For the interleaved system, access ordering is per-
formed assuming known alignment. In all cases, the depth of loop unrolling is 4 and vec-

tor operands are double precision.

For the computations measured, vector strides are such that all m modules in a sequen-
tially interleaved system are referenced by each stream for any m = 2". Thus the multi-
copy system can reduce page overhead for read accesses but achieves no greater
parallelism. Performance results are mixed: 4 computations achieve greater bandwidth, 5
computations experience a reduction in bandwidth, and 4 computations achieve approxi-
mately the same bandwidth. Note that LL-3 and LL-4 represent dot products and do not

generate write streams, thus the substantial increase in performance.

For next generation DRAMSs the page miss-hit cycle time ratio will increase dramatically
[NEC92]. This situation benefits a multicopy architecture as reduction in page overhead

becomes even more critical to obtaining good performance, as illustrated below.



Table 13 Multicopy vsInterleaved (4:1)

4:1
Computation Interleaved | Multicopy %Il ncrease
BW BW
daxpy 266.7 199.2 (25.3)
dvaxpy 246.2 199.3 (19.0)
LL-1 200.0 199.2 (0.4)
LL-3 200.0 786.2 203.1
LL-4 200.0 751.6 275.8
LL-5 200.0 199.2 (0.4)
LL-7 200.0 227.8 13.9
LL-11 200.0 1452 (27.4)
LL-12 200.0 145.2 (27.4)
LL-20 200.0 256.5 28.3
LL-21 266.7 188.4 (29.4)
LL-22 200.0 190.1 (4.5
LL-24 781.7 772.8 (1.1)
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Assume a4 module multicopy system with buffer depth 1 and an equivalent interleaved

system. Module parameters are defined in Table 14 with a page miss-hit cycletimerratio of

10:1. Table 15 presents simulation results comparing bandwidth achieved for the set of

benchmark computations, given aloop depth of 4 and double-precision vector operands.

Relative performance of the multicopy architecture isimproved: 8 computations achieve

greater bandwidth than the sequentially interleaved system, 4 computations experience
modest degradation of less than 15%, and only 1 computation experiences a substantial

reduction in bandwidth of 21%. Note that for LL-3 and LL4, which generate no write
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Table 14 Module Parameters (Multicopy - Page)

Parameter Value
w 8
p 4096
Tp It 10
Tp ‘w 10
Toim 90

streams, the multicopy architecture achieves nearly an order of magnitude more band-

width than the equivalent interleaved system.

A multicopy architecture can substantially improve performance over an equivalent inter-
leaved memory for computations with a high read to write ratio, as demonstrated above.

Many computations exhibit this characteristic naturally; for others, intelligent use of cache
memory and strip-mining or tiling techniques can increase the read-write ratio by holding

modified vector elementsin cache.

6.5.3 Evaluation of Multicopy Cost

A multicopy architecture can provide increased bandwidth over an equivalent interleaved
memory. However, additional cost isincurred in terms of both hardware complexity and

data space. Each of these issuesis considered below.

The additional hardware complexity for a multicopy system isminimal. A sequentially
interleaved memory distributes accesses to modules based on low-order address bits, as
discussed in chapter 5. For read accesses, a multicopy architecture distributes references
to modules based on high-order address bits; these bits can be set at compiletime asa
result of mapping as performed by the RMH. Write accesses require additional hardware

for broadcast to all modules.
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Table 15 Multicopy vsInterleaved (10:1)

10:1
Computation Interleaved | Multicopy %Il ncrease
BW BW
daxpy 457.1 398.8 (12.8)
dvaxpy 412.9 454.3 10.0
LL-1 320.0 397.7 24.3
LL-3 320.0 3039.7 849.9
LL-4 320.0 2681.5 738.8
LL-5 320.0 398.8 24.6
LL-7 320.0 489.6 53.0
LL-11 320.0 278.3 (13.0
LL-12 320.0 277.4 (13.3)
LL-20 320.0 550.9 72.2
LL-21 457.1 360.3 (21.2)
LL-22 320.0 408.1 27.5
LL-24 3001.3 2894.7 (6.4)

A strict multicopy system providesonly (1/m) ™" the address space of an equivalent
interleaved architecture as datais replicated at all m modules. Note however that the hard-
ware requirements for the two systems are very similar. It is easy to imagine a memory
controller capable of implementing both schemes. In fact, given proper hardware support,
multicopy and interleaved memory can be implemented concurrently by designating a

portion of the interleaved address space for multicopy access.
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Thus the cost of a multicopy architecture is considerably less than the functional descrip-
tion might imply. Building multicopy support into an interleaved architecture can provide

alow cost means for increasing effective memory bandwidth for amenable computations.

6.6 Summary

This chapter develops access ordering algorithms for a proposed multicopy architecture.
Performance predictors are developed for the effective memory bandwidth achieved by

ordered accesses.

For amulticopy system of uniform-access components, the ordering algorithm divides
accesses into two phases: aread phase and awrite phase. Read accesses are distributed
uniformly across modules, optimizing concurrency; write accesses are broadcast and
hence proceed sequentially. Ordering istrivial and a performance predictor isderived in a
straight-forward fashion. Simulation demonstrates the performance model to be accurate.
In general, amulticopy system of uniform-access components does not represent a viable

alternative to an equivalent sequentially interleaved architecture.

For amulticopy system of page-mode components ordering is analogous to the uniform-
access case. However, mapping read accesses to modulesis performed via a heuristic.
Intermixing and wrap-around adjacency are employed in a greedy fashion at the bound-
aries of the read and write phases. The ordering algorithm has atime complexity of
O(Nr2 (logN,)) for N, read streamsthat is representative of load balancing in the RMH.

Simulation demonstrates performance models for ordered accesses to be accurate.

Performance results indicate that a multicopy system of page-mode components can pro-

vide increased bandwidth over an equivalent interleaved memory for computations with a
high read to write access ratio. Furthermore, multicopy access can be implemented with a
minimal increase in hardware complexity as part of a heterogenous interleaved/multicopy

memory architecture.
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7 Implementation I ssues

Access ordering algorithms derived in the preceding chapters are memory centric and do
not reflect processor constraints; in particular, register file size, pipelined functiona units,
and bus characteristics are not considered. Furthermore, all memory references are
assumed to be non-caching, even though many codes benefit from caching a subset of the
vectors operands. Finally, reference sequences are assumed to adhere to the stream inter-
action restriction, thus limiting the applicable problem domain. Each of these implementa-

tion issues is addressed below.

7.1 Relieving Register Pressure

Access ordering employs loop unrolling to increase the number of accesses within agiven
loop that can be reordered, thus increasing the potential for minimizing page overhead,
maximizing concurrency, and fully utilizing wide words, as applicable. However, loop

unrolling creates register pressure and has traditionally been limited by register resources.

Lee [Lee91] presents a technique that employs cache memory to mimic a set of vector reg-
isters, effectively increasing register file size for vector computations. Storage is defined
for aset of vectors, each of which represents a pseudo register; vector length corresponds
to register size. For example, two 64-element ‘vector registers are defined in the C pro-

gramming language as

doubl e Vect or Regi ster[ 2] [ 64];

Prior to performing computations, each pseudo register element is referenced via a stan-
dard caching load instruction so that the vector register address spaceislikely to residein
cache memory. Note that to insure pseudo vector register elements do not conflict in
cache, vector storage must not exceed cache capacity for a direct-mapped cache or

(1/n) ™" cache capacity for an n-way set-associative cache [LaRW91].
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Within aloop, vector operands are loaded into the pseudo vector registers, arithmetic
operations are performed on vector register data, and vector register results are stored back
to the appropriate vector elementsin memory. Vector registers are loaded by first loading
each vector element into a processor register via a non-caching access, and then storing

the value to the appropriate vector register location in cache.

By applying the above technique, processor register pressure is relieved and the effective

vector register space is limited only by the cache size.

7.2 Pipelined Processor s and Bus Bandwidth

Recall that for a system constructed from page-mode components, interleaving references
from apair of streamsimplementing a read-modify-write can often reduce page overhead
for write operations. For example, given asingle memory module, read stream t;, and

write stream t, section 4.1.1 derives the general intermix sequence as

O.., e, wizelh, .0

Though intermixing minimizes page miss count for the write stream, the resulting
seguence reduces data-bus bandwidth and may not be amenable for execution on a pipe-
lined processor.

To illustrate, consider the vector scaling operation

Oi y; < ky,

that generates read stream ty and write stream t, ; assume one data item per word. The

w

optimal access sequence resulting in awrite stream page miss count of zero is

Dmy,’ Wywmsy,D
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Implementing this sequence requires reading an element of the vector y, performing a
multiplication, then immediately storing the result. Thus multiplication must be performed
in ascalar (non-pipelined) rather than pipelined mode. Furthermore, the data-bus must
remain idle for one bus cycle between read and write operations to avoid interference
between outgoing write data and incoming read data. Thus alternating access modes

increases the number of idle cycles and hence reduces effective bus bandwidth.

If the stride of y is small then the non-interleaved sequence Diyr: gy, Wy ! syw[ resultsin a
negligible increase in page miss count while maximizing bus bandwidth and allowing
multiplication operations to be pipelined. If the stride of y islarge, e.g. 1 data-item per
DRAM page, then the additional page overhead resulting from the non-interleaved refer-
ence sequence may exceed the gains from pipelined arithmetic operations and increased

bus bandwidth.

Let T, and Ty, represent the times to complete one iteration of accesses for a read-mod-
ify-write operation with an interleaved and non-interleaved reference sequence, respec-
tively. Valuesfor T, and Ty, are computed as the maximum of the bus transfer and
memory access times, where bus transfer time is processor dependent and memory access
time comes directly from performance models devel oped for each memory architecture.
Let Tgand T, represent the times to complete one iteration of arithmetic operations for a
read-modify-write operation in scalar and pipelined modes, respectively. Valuesfor Tg

and T, are processor dependent.

Then implementing scalar operations and an interleaved reference sequence achieves the

maximum computation rate if

max(T,, T9) <max(Ty,, Tp)



129

Otherwise, maximum computation rate is obtained from pipelined arithmetic operations
and a non-interleaved sequence of references. Note that this formula assumes computation

is overlapped with memory latency.

Of the access ordering algorithms derived in preceding chapters, only two potentially
interleave references for a read-modify-write operation: the algorithm for a single module
system and the algorithm for a sequentially interleaved system under the assumption of
unknown alignments. All other ordering algorithms separate read and write accesses into

distinct phases, so that the interleaving of referencesis not an issue.

7.3 Combining Caching and Non-Caching Memory Access

Access ordering algorithms presume the use of non-caching load instructions to control
via software the sequence of requests observed by the memory system and to avoid extra-
neous data references. However many codes generate multiple references to a subset of
vector operands and hence can benefit from caching, particularly when implemented using
strip-mining and tiling techniques [CaKe89, Wolf89]. Thus access ordering and caching
should be used together to complement one another, exploiting the full memory hierarchy

to maximize memory bandwidth.

Perhaps the simplest method for combining caching and non-caching access in a coherent
fashion is to preload the cache with multiply-referenced data and utilize non-caching
accesses for single-visit items. Access ordering can then be applied to all accessesin the
inner loop, to maintain dependencies, with only the effect of non-caching accesses consid-

ered for maximizing memory system performance.

To illustrate, consider implementing the matrix-vector multiply operation

y = (A+B)X

where A and B are n x m matricesand y and X are vectors.
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Figure 18(a) depicts code for a straight-forward implementation of the matrix-vector mul-

tiply operation. Figure 18(b) strip-mines the computation to reuse elements of y; partition

sizeis dependent on cache size and structure [LaRW91]. Elements of y are preloaded into

cache memory at the appropriate loop level, and elements of A and B are referenced via

non-caching loads; the reference to X is a constant within the inner loop and is preloaded

into a processor register. Access ordering can now be applied to the inner loop to maxi-

mize bandwidth for referencesto A and B.

()

(b)

/1 Straight-forward inplenentation: y = (A + B)x

for j =1tom

for i =1ton

yli] =yli] + (Al j] + Bli,j]) * x[j];

/1 Strip-mined inplenentation: y = (A + B)x

for IT=1tonhbylIS

{

preload y[IT] through y[min(n, IT+ 1S - 1)] into cache;

for j =1tom

{

preload x[j] into a processor register;

/1 Each el enent of A and B referenced exactly once via a
/1 non-cachi ng | oad.

for i =ITtonmn(n, IT+ 1S - 1)
ylil =yli]l + (Ali,j] + Bli,j]) * x[j];

Figure 18 Combining Caching and Non-Caching Access
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If the pseudo vector register technique described in section 7.1 is used to relieve processor
register pressure for loop unrolling, care must be taken to insure that vector registers and
cached operands do not collide in cache memory; the same is true for multiple cached
operands. Lam et al [LaRW91] analyze atechnigue that eliminates cache conflicts by
copying data to be cached into a contiguous address space. Note that in applying this copy
optimization, non-caching loads, and hence access ordering, can be used to reduce cache

conflict and extraneous data movement.

By combining intelligent cache management with access ordering techniques, the full

memory hierarchy is exploited to maximize effective bandwidth.

7.4 Relaxation of the Stream Interaction Restriction

Access ordering algorithms derived in preceding chapters presume access streams adhere

to the stream interaction restriction, defined in section 3.4 as:;

Stream Interaction Restriction: For any two access streams t;, t; U S, v; # v; implies
that the streams have non-intersecting address spaces; in particular, streams reference
no pages in common. When v; = v; stream parameters are identical except in mode,

where by definition m; # my.

Though analysisis ssimplified, dependence between accesses belonging to different
streams s limited to two types: |oop-independent antidependence and data dependencein

the data flow sense.

Minor relaxation of the stream interaction restriction significantly increases the scope of
computations to which the access ordering algorithms can be applied. Relaxation tech-
niques are considered below for two special cases: self-antidependence cycles and read

streams with overlapping address spaces.
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7.4.1 Self-Antidependence Cycles

Some common computations exhibit a loop-carried antidependence of the form

Oi Y, fn(yisy) kOZ"

Streams generated by this computation violate the stream interaction restriction by refer-

encing overlapping, rather than identical or non-intersecting, address spaces.

For the simple self-antidependence cycle demonstrated above, common access ordering
techniques, such asloop unrolling and grouping accesses by stream, can easily be applied.
However, modeling page miss count and managing concurrency are more complex for
streams involved in aloop-carried antidependence than for streams implementing a strict

read-modify-write.

Access ordering algorithms derived in preceding chapters can accommodate streams gen-
erated by a self-antidependent computation in a suboptimal fashion by ordering accesses
from each stream independently and insuring that all reads are initiated prior to the first
write. A simple optimization places references from the read and write streams adjacent to
potentially reduce write access page miss count, when applicable; this technique is analo-

gous to intermixing for streams implementing a strict read-modify-write.

7.4.2 Overlapping Read Address Spaces

The stream interaction restriction states that read streams must have non-intersecting
address spaces, suggesting that ordering algorithms are not applicable to common compu-

tations such as

Ci Yi < Xgi ¥ X341

However, access ordering algorithms derived in preceding chapters can easily accommo-

date intersecting read streams in a suboptimal fashion by ordering accesses from each
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stream independently. Read streams with intersecting address spaces may exhibit input
dependence, however this can be ignored for non-volatile memory locations. A simple
optimization places references from intersecting read streams adjacent, potentially reduc-

ing page miss count when applicable.

7.4.3 Access Ordering and Vectorizable Computations

A vectorizable loop is one with no multi-statement dependence cycles and only self-
dependence cycles that are ignorable or represent known reduction or recurrence opera-
tions for which vector instructions exist; in testing if aloop is vectorizable, input depen-

denceisignored for non-volatile memory locations [Wolf89].

Relaxing the stream interaction restriction as discussed above allows access ordering algo-
rithms to be applied to the class of vectorizable loops, an arguable large and interesting

problem domain.
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8 Conclusions

Access ordering, aloop optimization that reorders accesses to better utilize memory sys-
tem resources, is a compiler technology developed in this thesis to address the memory
bandwidth problem for scalar processors executing scientific codes. For a given computa
tion, memory architecture, and memory device type, an access ordering algorithm deter-
mines awell-defined interleaving of vector references that maximizes effective
bandwidth. Consequently, analytic models of performance can also be derived. Access
ordering algorithms developed are applicable to a superset of the class of vectorizable

loops, an arguably large and interesting problem domain.

Access ordering is fundamentally different from, though complementary to, access sched-
uling techniques that attempt to overlap computation with memory latency but do not con-
sider the performance of the resulting access sequence. Simulation results demonstrate
that for a given computation, access ordering can significantly increase effective memory
bandwidth over that achieved by the natural sequence of references. Simulation results

validate analytic models of performance as well.

Access ordering algorithms presume the use of non-caching load instructions to control
the sequence of requests observed by the memory system and to avoid extraneous data ref-
erences. For computations that benefit from caching a subset of the vector operands,
access ordering is shown complementary to strip-mining and tiling techniques. By intelli-
gent caching of multiply referenced data items, and careful ordering of non-caching refer-

ences to single visit operands, the full memory hierarchy is exploited.

The following summarizes results for each of the ordering algorithms derived. Perfor-
mance modeling features and applications are discussed. Finally, potential impact and

future extensions of this work are considered.
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8.1 Summary of Access Ordering Algorithms

Because access ordering exploits features of the underlying memory system, an ordering
algorithm must be derived for each target memory architecture and device type. Three
memory architectures are analyzed in the preceding chapters: single module, sequentially
interleaved, and multicopy. For each architecture two memory component types are con-

sidered: uniform-access and page-mode.

Chapter 4 derives access ordering algorithms for a single module memory architecture.
For uniform-access components ordering istrivial since all orderings perform equally

well. For page-mode components an ordering algorithm is derived that minimizes page
overhead to achieve optimal performance for a given computation. Accurate models of
performance are developed in both cases. Theorems derived for the optimal access of a

single memory module form the basis for analyzing parallel memory systems.

Simulation results for arange of scientific kernels demonstrate that access ordering can
achieve a significant increase in effective memory bandwidth at a single module of page-
mode components with amodest degree of loop unrolling. Ordered accesses achieve up to
189% more bandwidth than the natural reference sequence for the benchmark computa-

tions simulated. Analytic models predict simulation results to within 1%.

Chapter 5 derives access ordering algorithms for a sequentially interleaved memory archi-
tecture. Ordering algorithms are derived assuming both unknown and known stream align-
ments. If stream alignment is unknown then an optimal ordering algorithm can not be
derived. If stream alignment is known then determining an optimal access sequenceis NP-
complete with atime complexity exponential in the number of accesses; as an optimal

solution isintractable, a heuristic solution is required.

Simulation results for arange of scientific kernels demonstrate that access ordering can

achieve a significant increase in effective memory bandwidth for a sequentially inter-
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leaved system at a modest depth of loop unrolling. For a4 module system of uniform-
access components, ordered accesses achieve up to 256% more bandwidth than the natural
reference sequence for computations simulated; for a 2 module system of page-mode
components up to 189% more bandwidth is achieved. Analytic bounds on performance are

validated and shown to accurately predict performance for the computations considered.

Finally, chapter 6 derives access ordering algorithms for a proposed multicopy architec-
ture that replicates data across modules. Read accesses may be directed to any module;
write accesses are broadcast to maintain coherence. Maximum concurrency for read
streamsis achievablefor al strides of reference and page overhead can be more efficiently

amortized, when applicable.

A multicopy system of uniform-access components does not represent aviable alternative
to an equivalent sequentially interleaved architecture. However, simulation results indi-
cate that amulticopy system of page-mode components can provide increased bandwidth
over an equivalent interleaved memory for computations with a high read to write access
ratio; an order of magnitude better performance is achieved in some benchmarks. Further-
more, multicopy access can be implemented with a minimal increase in hardware com-

plexity as part of a heterogeneous interleaved-multicopy memory architecture.

8.2 Performance M odeling

Performance models derived for the systems above are unique in several aspectsin that

* the reference sequence is not stochastic, but rather deterministically ordered for each
member of awell defined class of computations,

* module performance is not assumed insensitive to the sequence of requests but is mod-

eled to accurately reflect current memory component technol ogy, and

» dataitem sizeisnot restricted to word size, rather, wide word access is incorporated
naturally into the models.
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Performance modeling based on access ordering has direct application in a number of

evaluation tools, in particular for

» systemevaluation - to provide a benchmark both for cost-performance analysis of dif-
ferent memory systems and for matching memory performance to processor require-
ments, and

 algorithm evaluation - to provide a benchmark for algorithm selection based on effec-
tive bandwidth utilization for a given memory system.

Analytic results presented throughout this work provide a basic and extensible set of tools
for capturing memory system behavior and for understanding the interaction of reference

sequences with memory architecture and component characteristics.

8.3 Potential Impact and Future Work

Access ordering may impact future processor architectures and memory components. Few
processors currently implement the non-caching load instruction required for access order-
ing. However, just as the demonstrable advantages of prefetching [CaK P91, KILe91] led
to processors with prefetch instructions, access ordering may provide theimpetusfor more
manufacturers to implement a non-caching load. Similarly, access ordering demonstrates
the true potential for page-mode memory components and provides incentive to further

reduce page-hit times.

Access ordering isan original concept and the work presented forms only the initial basis;
much still remains to be done. Below are topics of first-order importance for future

research.

Relaxation of the stream interaction restriction to encompass the class of vectorizable
loops is discussed in section 7.4. However, the more complex stream interactions that
result should be incorporated formally into both ordering algorithms and performance

models.
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Page-mode components are modeled as if implemented with a single on-chip cache line,
reflecting current DRAM technology. Future high-speed DRAMs will incorporate multi-
ple pages, among other exploitable features. Rambus [ Slat92] represents such atechnol -
ogy. As memory components evolve, access ordering algorithms and performance models

must be devel oped that reflect these changes.

A number of implementation issues remain to be solved. Combining caching and non-
caching loads requires detection of multiply and singly referenced vectors and the applica-
tion of strip-mining and tiling techniques. Utilizing the cache to implement pseudo vector
registers, thereby relieving processor register pressure, requires inserting additional
accesses into the instruction stream and introduces cache management issues. Modeling
the effect of an interleaved reference sequence on effective computation rate requires fur-
ther formalization than provided in section 7.2. Other implementation issues are sure to

arise.

Naturally, incorporating access ordering into an optimizing compiler represents the most

important part of thiswork that remains to be done.
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Appendix A
I nter mix Sequences

A.1 Proof of Optimal Intermix Pattern

Given: read stream t; and write stream t; specifying aread-modify-write, i.e. v; = v;.

Prove: the intermix sequence [l.., [f;:c, w;:cllh, ... Listhe optimal interleave pattern.

Proof: Consider the general interleave case

0., 10y, wj:kl, v 100 Wjikn, 0

where, by definition, rr must proceed ij and

n n
2.9= 2k
=1 =1

Let

A A
> 9 =S ad S k= S(k )

|1=1 =1

Itiseasily seenthat for A <n, (g, A) > S(k, A) . If there exists a g, # k; then there must

exist at least one u such that S(q, u) > S(k, u) , in which case

» the page miss count in performing the read sequence U.., r;:q,, 4, ... [ can be greater

than in the case where S(qg, u) = S(k, u) since st(k‘ Y may access a sequentialy ear-
lier page than r X%,
« similarly, the page miss count in performing the write sequencell.., w;: Kk, 1, ... L can

be greater than in the case where S(q, u) = S(k, u) assz(k’ v+l may access a

sequentially earlier page than r X%+ 1,
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Thus, the minimum page miss count is achieved when S(qg, u) = S(k,u) foru<n;i.e

when g, = k for 1<l<n.

0., :c, Wj:th, ... Listhe optimal interleave pattern. O

A.2 Derivation of p(s, d, ¢

Given the intermix sequence L.., [1;:c, wj:th, ...Lwheret, and t specify aread-mod-
ify-write operation, i.e. v; = Vi, the function p(sj, dj, C) isthe average page miss count in

performing each set of ¢ write accesses.

Recall that if v; = v; then stream parametersfor t; and t; areidentical except in mode; in
particular, s; = s; and d; = d;. Thussand d are used below to denote stride and datasize,

respectively, for streams t; and t.

In deriving p(s, d, ), the following observation is made: in performing ¢ accesses from a

given stream the address space spanned, in bytes, is (c— 1) sd +d.

Assume (c—1) sd +d < p, then the address space spanned touches at most two pages. If
p, isthe probability that c accesses touch one page, and p, is the probability that two

pages are touched, then

p(s.d,c) = py(0) +p,(2) = 2p,

That is, for the access sequence L., [1;:c, Wj:th, ... [, the write operations Wj(k_l)”1

(k-1)c+1

through W€, 1< k< h, suffer exactly two page misseswhen r, and r!‘c reference

adifferent page; otherwise write operations wik-Derl

J through W}‘C page-hit.

The number of d-aligned starting positions in a given page for a set of ¢ read accessesis

(0]
I
lolke)
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The number of starting positions resulting in ¢ read accesses touching exactly one page is

s, = p- ((c—dl)sd+d) +1

Then the probability that a set of ¢ read accesses touches exactly one page is

_(c-1)sd
Y

S
< =1

P, =

and the probability that two pages are touched is

_ (c-1)sd

P, =1-p; D

Thus, when (c—1) sd + d < p, the average page miss count in performing each set of ¢
write accesses is

2(c-1)sd
p(s d,c) = 2p, = T

When (c - 1) sd + d > p the address space spanned touches at least two pages, implying
that each set of ¢ write accesses must begin with a page miss. Then the average page miss

count is one plus the remaining accesses, ¢ — 1, divided by the number of accesses per

page; i.e.
c-1
Yo
Combining the results derived above
[(2(c-1
(c-1)sd when (c-1)sd+d<p
p(sdc) =g P
D1+C;1 when (c-1)sd+d>p

U™ s, d)
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Appendix B
Module Sequence Algorithm

B.1 Propertiesof the M SA

Given: Nstreams ty, ..., ty, Ky = ... = [, mapped to sequences A, ..., A, _, viathe

M odule Sequence algorithm.

Prove: each round-robin selection of accessesfrom Ay, ..., A, _; hasthe property that for

each stream t; referenced:

1. there are exactly |, accessesto t;, and

2. accesses from t; do not conflict.

Proof of property 1.

LetU = {t;{ZnZ=2Z,4,0{t;,....t;_,} } . Assumethat U # [J. Then there exists
at, 0 U suchthat for all tou, L > . Accessesto t;, immediately precede accessesto t;
in asequence A, such that M, O Z;. If each round-robin selection of accesses from

Ag - Ao g that references t initiatesexactly p, = |Z;| accessesto t , then each sub-
sequent round-robin selection of accessesthat references t; must initiate exactly p; = |Zj|

accesses to ti'

Ifforall t; O {t;, ..., t; _,} itistruethat Z; n Z; = [J, then t; isthefirst stream accessed
inasequence A, suchthat M, 0 Z;; thisisthe default when i = 1. Inthiscaseitiseasily
seen that each round-robin selection of accesses that references t; must initiate exactly

M, = |Z| accessesto t;.

[0 By induction, each round-robin selection of accessesfrom A,,, ..., A, _; that refer-

ences t; must initiate exactly p, accessesto t;.
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Proof of property 2:

Property 2 isadirect result of property 1. Since each round-robin selection of accesses that
references t; must initiate exactly [, = |Z;| accessesto t;, then a sequence A, such that

M, O Z; can not simultaneously specify referencesto any other stream.

O Inagiven round-robin selection of accessesfrom A, ..., A,,_;, accessesfrom t; do

not conflict. O
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