
Access Ordering and Effective Memory
Bandwidth

Steven A. Moyer

Technical Report CS-93-18
April 5, 1993

Access Ordering and Effective Memory Bandwidth

Steven A. Moyer

Computer Science Department
School of Engineering and Applied Science

University of Virginia
Charlottesville, Virginia 22903

(sam2y@virginia.edu)

High-performance scalar processors are characterized by multiple pipelined functional units that can be ini-
tiated simultaneously to exploit instruction level parallelism. For scientific codes, the performance of these
processors depends heavily on memory bandwidth. To achieve peak processor rate, data must be supplied to
the arithmetic units at the peak aggregate rate of consumption.

Access ordering, a loop optimization that reordersnon-caching accesses to better utilize memory system
resources, is a compiler technology developed in this thesis that addresses the memory bandwidth problem
for scalar processors executing scientific codes. For a given computation, memory architecture, and memory
device type, an access ordering algorithm determines a well-defined interleaving of vector references that
maximizes effective bandwidth. Consequently, analytic models of performance can also be derived.

Access ordering is fundamentally different from, though complementary to, both caching and access sched-
uling techniques that attempt to overlap computation with memory latency. Simulation results demonstrate
that for a given computation, access ordering can significantly increase effective memory bandwidth over
that achieved by the natural reference sequence.

i

Table of Contents

1 Introduction..1
1.1 General System Model...3

1.2 Access Ordering Observation ..4

1.3 Computation Domain...6

1.4 Memory System Domain ...8
1.4.1 Memory Architectures...8
1.4.2 Memory Device Types ..9

1.5 Performance Modeling ..9

2 Survey of Related Work...11
2.1 Stream Detection..11

2.2 Access Scheduling Techniques ..11

2.3 Modeling Memory System Behavior...13
2.3.1 Access Pattern Models ..13
2.3.2 Memory Architecture Analysis for Scalar Processors...13
2.3.3 Memory Architecture Analysis for Vector Processors..15

2.4 Storage Schemes for Parallel Memories..16

3 Model Access Pattern ..18
3.1 Basic MAP Notation..18

3.2 Definitions and Assumptions ...20

3.3 Wide Word Optimization ...20

3.4 Stream Interaction Restriction ...25

3.5 MAP Dependence Relations..26
3.5.1 Output and Input Dependence ...26
3.5.2 Antidependence ...26
3.5.3 Data Dependence...28
3.5.4 Dependence Rules ...29
3.5.5 Other Dependencies...29

4 Single Module Architecture...31
4.1 Minimizing Page Overhead ...32

4.1.1 Intermixing ..34
4.1.1.1 Intermix Factor..35

4.1.2 Wrap-around Adjacency..37
4.1.3 Summary of Techniques..38

4.2 Single Module of Uniform-access Components..39
4.2.1 Performance Predictor ...40

4.3 Single Module of Page-mode Components ...41
4.3.1 Example Problem ..42
4.3.2 Performance Predictor ...43

4.4 Simulation Results ...45

4.5 Summary..48

5 Sequentially Interleaved Architecture ...50
5.1 Problem Dimensions..51

5.2 Single Stream Module Interaction ...53

ii

5.2.1 Access Mapping ..54
5.2.2 Module Stride ..57

5.3 Extended MAP Notation..60

5.4 Access Ordering Algorithms for Unknown Alignments ...61
5.4.1 Interleaved Storage and Uniform-access Components..61

5.4.1.1 Performance Predictor...62
5.4.2 Interleaved Storage and Page-mode Components...65

5.4.2.1 A General Access Strategy ...65
5.4.2.2 Intermixing and Wrap-around Adjacency...66
5.4.2.3 Access Ordering Algorithm ..70
5.4.2.4 Performance Predictor...70

5.4.3 Simulation Results...73
5.4.3.1 Uniform-access Components ..74
5.4.3.2 Page-mode Components ...75

5.4.4 Summary ...77

5.5 Access Ordering Algorithms for Known Alignments ...79
5.5.1 Optimal Access of Independent Streams...79

5.5.1.1 Request Buffering ...83
5.5.2 Interleaved Storage and Uniform-access Components..84

5.5.2.1 Performance Predictor...85
5.5.3 Interleaved Storage and Page-mode Components...87

5.5.3.1 A Base Access Sequence ..87
5.5.3.2 Intermixing and Wrap-around Adjacency...88
5.5.3.3 Access Ordering Algorithm ..88
5.5.3.4 Example Problem..89
5.5.3.5 Performance Predictor...90

5.5.4 Simulation Results...94
5.5.5 Summary ...95

6 Multicopy Architecture..97
6.1 Problem Dimensions..98

6.2 Module Access Notation..100

6.3 Multicopy Storage and Uniform-access Components ...101
6.3.1 Performance Predictor ...102

6.4 Multicopy Storage and Page-mode Components...103
6.4.1 A Base Access Sequence...103

6.4.1.1 Request Buffering ...104
6.4.2 A Module Reference Model ..104
6.4.3 Greedy Intermixing and Wrap-around Adjacency ..106
6.4.4 Read Mapping Heuristic..107

6.4.4.1 RMH Performance ..110
6.4.5 Access Ordering Algorithm...112
6.4.6 Example Problem ..113
6.4.7 Performance Predictor ...114

6.5 Simulation Results ...118
6.5.1 Performance Predictors ...119
6.5.2 Evaluation of Multicopy Performance ..120
6.5.3 Evaluation of Multicopy Cost ...123

6.6 Summary..125

7 Implementation Issues ...126
7.1 Relieving Register Pressure ...126

7.2 Pipelined Processors and Bus Bandwidth..127

iii

7.3 Combining Caching and Non-Caching Memory Access...129

7.4 Relaxation of the Stream Interaction Restriction...131
7.4.1 Self-Antidependence Cycles ...132
7.4.2 Overlapping Read Address Spaces..132
7.4.3 Access Ordering and Vectorizable Computations...133

8 Conclusions..134
8.1 Summary of Access Ordering Algorithms...135

8.2 Performance Modeling ..136

8.3 Potential Impact and Future Work ...137

Appendix A..139

Appendix B ..142

Bibliography ..144

iv

List of Figures

Figure 1 General System Model...4
Figure 2 Inner-Product Code..5
Figure 3 Inner-Product Performance..6
Figure 4 Functional Iteration Diagram...22
Figure 5 Loop-Carried to Loop-Independent Antidependence Transformation27
Figure 6 Loop-Carried Data Dependence Elimination ..28
Figure 7 Single Module Architecture...31
Figure 8 Sequentially Interleaved Architecture ...50
Figure 9 Minimizing Completion Time ...54
Figure 10 Access Mapping Diagram..56
Figure 11 Module Stride Diagram ...59
Figure 12 Module Sequence Algorithm...82
Figure 13 Multicopy Architecture..97
Figure 14 Minimizing Completion Time ...100
Figure 15 Dependence of Module Stride on Reference Pattern...............................106
Figure 16 Read Mapping Heuristic (RMH) ...111
Figure 17 Multicopy Example..115
Figure 18 Combining Caching and Non-Caching Access130

v

List of Tables

Table 1 Module Parameters (Single - Page) ...46
Table 2 Natural vs Ordered Performance (Single - Page)47
Table 3 Analytic vs Simulation Results (Single - Page)...48
Table 4 Module Parameters (Interleaved - Uniform) ...74
Table 5 Natural vs Ordered Performance (Interleaved - Uniform).........................75
Table 6 Analytic vs Simulation Results (Interleaved - Both)76
Table 7 Module Parameters (Interleaved - Page) ...77
Table 8 Natural vs Ordered Performance (Interleaved - Page)...............................78
Table 9 Simulation and Analytic Results (Interleaved - Page)...............................95
Table 10 RMH / Optimal Performance Ratios ...110
Table 11 Module Parameters (Multicopy - Both)...119
Table 12 Analytic vs Simulation Results (Multicopy - Both)120
Table 13 Multicopy vs Interleaved (4:1) ..122
Table 14 Module Parameters (Multicopy - Page)...123
Table 15 Multicopy vs Interleaved (10:1) ..124

vi

List of Theorems

Theorem 3.1 .. 23
Corollary 3.2 ..23
Lemma 4.1 ...33
Theorem 4.2 .. 33
Corollary 4.3 ..33
Lemma 4.4 ...34
Lemma 4.5 ...35
Theorem 4.6 .. 36
Corollary 4.7 ..36
Theorem 4.8 .. 38
Corollary 4.9 ..38
Lemma 5.1 ...56
Theorem 5.2 .. 57
Lemma 5.3 ...58
Lemma 5.4 ...80
Lemma 5.5 ...81
Theorem 5.6 .. 82

vii

List of Symbols

Memory system parameters:

word size

page size

page-hit read cycle time

page-hit write cycle time

page-miss overhead

uniform-access read cycle time

uniform-access write cycle time

Stream parameters:

stream start address (vector accessed)

stride of access

data size

mode of access

number of data items referenced per functional iteration (logical streams)

number of words accessed per loop iteration (physical streams)

MAP notation:

access to the next element of stream

 access from in a given access sequence

set of all streams in a given computation

access sequence that embodies streams

number of streams in

number of different vectors referenced by streams in

depth of loop unrolling

General properties of physical stream :

number of data items per word

intermix factor

w

p

Tp/ r

Tp/ w

Tp/ m

Tu/ r

Tu/ w

v

s

d

m

σ

ε

ai ti

ai
k kth ti

S

S̃ S

N S

V S

b

ti

γi

θi

viii

Properties of physical stream for a sequentially interleaved architecture:

number of modules referenced

set of modules referenced

module stride

maximum number of accesses serviced at any module for a given loop iteration

Properties of physical stream for a multicopy architecture:

number of modules referenced

module stride

Modeling functions:

average number of accesses per page referenced

average per iteration page miss count

average per iteration page miss count for intermixed write stream

average per iteration page miss count for wrap-around adjacent read stream

effect of intermixing on page miss count of write stream

effect of wrap-around adjacency on page miss count of read stream

Performance measures:

average time per data item accessed

processor-memory bandwidth

ti

µi

Zi

ξi

ψi

ti

µ̂i

ξ̂i

φ s d,()

η s d c V, , ,()

hρ s d c, ,()

ω s d c, ,()

imix s d c h V, , , ,()

wadj s d c V, , ,()

Tavg

BW

1

1 Introduction

Scientific computing, the application of computers to the solution of science and engineer-

ing problems, has traditionally been one of computing’s most demanding fields. Until

recently, special high-speed vector computers provided the only means for solving most

scientific problems at acceptable computation rates. However, advances in VLSI technol-

ogy have allowed manufacturers to produce scalar microprocessors with sufficient peak

performance to make them viable alternatives to traditional vector processors, singly or as

components of parallel machines.

High-performance scalar processors are characterized by multiple pipelined functional

units that can be initiated simultaneously to exploit instruction level parallelism.1 For sci-

entific codes, the performance of these processors depends heavily on memory bandwidth.

To achieve peak processor rate, data must be supplied to the arithmetic units at the peak

aggregate rate of consumption.

Extensive tests of systems constructed from one such processor, Intel’s i860, show that as

a result of insufficient bandwidth, the average performance of hand optimized scientific

kernels is only 1/5 peak processor rate; for compiler generated code average performance

is an order of magnitude below peak performance [Lee90, Moye91]. The majority of

improvement in hand-coded routines over compiler generated code results from tailoring

accesses to memory system performance characteristics.

In general purpose scalar computing, the addition of cache memory is often a sufficient

solution to the memory latency and bandwidth problems given the spatial and temporal

locality of reference exhibited by most codes. For scientific computations, vectors are nor-

mally too large to cache. Iteration space tiling [CaKe89, Wolf89] can partition problems

1. Common superscalar and VLIW architectures incorporate concurrent pipelined functional units.

2

into cache-size blocks, however tiling often creates cache conflicts [LaRW91] and the

technique is difficult to automate. Furthermore, only a subset of the vectors accessed will

generally be reused and hence benefit from caching. Finally, caching may actually reduce

the effective bandwidth achieved by a computation by fetching extraneous data for non-

unit strides. Thus, as noted by Lamet al [LaRW91], ‘while data caches have been demon-

strated to be effective for general-purpose applications..., their effectiveness for numerical

code has not been established’.

Access ordering is a compiler technology developed in this thesis that addresses the mem-

ory bandwidth problem for scalar processors executing scientific codes. Access ordering is

a loop optimization that reordersnon-caching accesses to better utilize memory system

resources. For a given computation, memory architecture, and memory device type, an

access ordering algorithm determines a well-defined interleaving of vector references that

maximizes effective bandwidth. Consequently, analytic models of performance can also

be derived.

Access ordering is fundamentally different from, though complementary to, both caching

and access scheduling techniques that attempt to overlap computation with memory

latency. Simulation results demonstrate that for a given computation, access ordering can

significantly increase effective memory bandwidth over that achieved by the natural refer-

ence sequence.

In a study of the Intel Touchstone Delta distributed memory parallel computer, Stevens

[Stev92] notes that for many scientific codes

per node performance is still the number one problem in obtaining

good overall applications performance. The majority of [codes sur-

veyed] are not communications bound. Thus improving basic com-

piler technology is absolutely necessary.

3

Access ordering represents a new compiler technology complementary to existing tech-

nologies aimed at improving performance for scientific codes. Together, these compilation

techniques can be applied towards meeting the demands of high-performance scalar com-

puting.

The following sections introduce access ordering and define the scope of this work. Sec-

tion 1.1 defines the general system model. An intuitive notion of access ordering is pro-

vided via a simple example in section 1.2. Sections 1.3 and 1.4 define the computation

domain and the scope of memory architectures, respectively, for which access ordering

algorithms are derived. Finally, a discussion of performance modeling based on access

ordering is presented in section 1.5.

1.1 General System Model

Access ordering algorithms developed in this thesis presume a general system model in

which a single scalar processor drives a dedicated memory system, as depicted in

Figure 1. The memory system is dedicated in that only one processor is serviced, implying

that memory state is dependent on a single reference sequence. This general system model

is representative of uniprocessor systems and single-processor nodes of distributed mem-

ory parallel machines.

The processor is presumed to implement a non-caching load instruction, ala Intel’s i860

[Inte89], allowing the sequence of requests observed by the memory system to be con-

trolled via software. For access ordering, all memory references are assumed to be non-

caching. Combining caching and non-caching accesses is discussed with other implemen-

tation issues in chapter 7.

4

1.2 Access Ordering Observation

Access ordering formalizes the notion of reordering accesses to exploit memory system

resources. To illustrate this concept, a simple example is presented below.

Consider a single module memory system constructed frompage-mode DRAMs. Page-

mode DRAMs operate as if implemented with a single on-chip cache line, referred to as a

page. An access that does not fall within the address range of the current DRAM page

forces a new page to be accessed, requiring significantly more time to service than an

access that ‘hits’ the cached page. Thus, the effective bandwidth is sensitive to the

sequence of requests. Nearly all DRAMs currently manufactured implement a form of

page-mode operation [Quin91].

A
dd

re
ss

 S
ou

rc
e

D
at

a
S

in
k

Memory System

Figure 1 General System Model

5

Note that a DRAM page should not be confused with a virtual memory page; this is an

unfortunate overloading of terms. A DRAM page is a physical feature of the memory

device. Throughout this text the term ‘page’ always refers to a DRAM page.

Figure2(a) illustrates the ‘natural’ reference sequence for a straight-forward translation of

the inner-product algorithm

Access to the vectors and alternate, incurring a page miss with each access in the

likely situation that and reside in a different DRAM page; memory references likely

to page miss are highlighted in Figure2. By unrolling the loop and grouping accesses to

the same vector, as demonstrated in Figure2(b), page miss cost is amortized over a num-

ber of accesses, increasing processor-memory bandwidth significantly.

Figure3 depicts average time per access versus depth of loop unrolling for the inner-prod-

uct computation, as measured on the Intel IPSC/860 node architecture. For the curve

labeled ‘Natural’ the loop body of Figure2(a) is essentially replicated the appropriate

number of times, as is standard practice. For the curve labeled ‘Ordered’, accesses have

been arranged as per Figure2(b); in doing so a performance gain of nearly 150% is real-

ized at a depth of 4.

i∀ s s aibi+←

a b

ai bi

loop: loop:

load a[i] load a[i]

load b[i] load a[i+1]

<arithmetic insts> load b[i]

<branch when done> load b[i+1]

jump loop <arithmetic insts>

<branch when done>

jump loop

(a) (b)

Figure 2 Inner-Product Code

6

As noted above, access ordering employs loop unrolling to increase the number of

accesses within a given loop that can be reordered. However, loop unrolling creates regis-

ter pressure and has traditionally been limited by register resources. Techniques that uti-

lize cache memory to mimic vector registers, thereby relieving processor register pressure

and effectively increasing register set size, are discussed in chapter 7.

1.3 Computation Domain

The problem domain to which access ordering is applicable is the class of stream-oriented

computations. A stream-oriented computation interleaves references to some number of

streams, where a stream is defined as a linear sequence of accesses to a given vector of

fixed sized elements, beginning at a known address, and proceeding at a constant stride.

Stream access results in a predictable reference pattern than can be exploited. Processor

instructions and scalar constants are assumed to be cached or held in registers, as appropri-

ate.

Figure 3 Inner-Product Performance

20

40

60

80

100

120

140

160

180

200

220

240

260

1 2 3 4

T
i
m
e

(
n
s
)

Depth of unrolling

Ordered
Natural

7

For example, a scalar processor performing the well knownaxpy operation:

is assumed to generate three distinguishable access streams, one load stream to each of the

vectors and , and one store stream back to the vector.

Many important scientific computational kernels may be classified as stream-oriented

computations, including

• BLAS1-3 routines,

• LINPACK routines,

• most of the codes in the Livermore Loops,

• numerous iterative methods for the solution of PDEs,

• diagonally-sparse matrix-vector and matrix-matrix multiply operations,

• the Simplex algorithm for solving Linear Programming problems,

• DSP algorithms such as constant geometry FFT and the linear filters FIR and IIR, and

• numerous recurrence and reduction operations.

Furthermore, many string manipulation and search algorithms may also be classified as

stream-oriented computations. Thus, while the scope of reference patterns modeled is lim-

ited, the problem space is sufficiently interesting to warrant investigation.

Note that the class of computations considered for accesses ordering, i.e. stream-oriented

computations, is precisely the class for which cache memory is an insufficient solution to

the memory bandwidth problem. The converse is also true; cache memory provides suffi-

cient bandwidth for computations that do not exhibit the extended patterns of access

exploited by access ordering. Thus, the two techniques are complementary.

i∀ yi axi yi+←

y x y

8

1.4 Memory System Domain

For stream-oriented computations, access ordering reorders references within an unrolled

loop to exploit features of the underlying memory system. Thus, a different access order-

ing algorithm must be derived for each target memory architecture and device type.

1.4.1 Memory Architectures

Three memory architectures are analyzed in the chapters that follow:

• single module,

• sequentially interleaved, and

• multicopy.

Chapter 4 derives access ordering algorithms for a single module system. Optimal effec-

tive memory bandwidth is achieved for a given computation under conditions to be

defined. Single module results are used as the basis for analyzing the parallel memory sys-

tems defined below.

Chapter 5 derives access ordering algorithms for a sequentially interleaved system.

Sequentially interleaved storage is the ‘standard’ parallel memory storage scheme. Given

a system of m memory modules, word a maps to module . Algorithms are devel-

oped assuming both known and unknown stream alignments.

Finally, chapter 6 derives access ordering algorithms for a proposed multicopy memory

system, consisting of m identical copies of memory that can be accessed in parallel. In this

system, read accesses are tagged for a particular module and write accesses are broadcast

to all modules to maintain consistency. Cost and performance of multicopy versus sequen-

tially interleaved systems are discussed.

a�mod� m

9

1.4.2 Memory Device Types

For each of the memory architectures described above, an access ordering algorithm is

derived for each of two devices types: uniform-access and page-mode.

Uniform-access components are insensitive to the reference sequence, so that the time to

service a given access is not dependent on previous requests; SRAMs are the common

example of this device type. The performance of uniform-access components is parame-

terized by

• , the read cycle time, and

• , the write cycle time.

Page-mode components operate as if implemented with a single on-chip cache line, as dis-

cussed in section 1.2; static-column and fast page-mode DRAMs are the common exam-

ples of this device type. The performance of page-mode components is parameterized by

• p, the page size,

• , the page-hit read cycle time,

• , the page-hit write cycle time, and

• , the additional page access overhead incurred by a page miss; thus, the page-miss

read and write cycle times are and , respectively.

For all memory systems analyzed, w is the word size. For systems constructed from page-

mode components, page size is a multiple of word size; i.e. w | p.

Note that for all system parameters, sizes are in bytes and times are in nanoseconds.

1.5 Performance Modeling

For a given computation, memory architecture, and memory device type, access ordering

results in code that generates a well-defined sequence of stream references. Consequently,

Tu/ r

Tu/ w

Tp/ r

Tp/ w

Tp/ m

Tp/ r Tp/ m+ Tp/ w Tp/ m+

10

for each access ordering algorithm, an analytic model of effective memory bandwidth can

be derived.

Models of memory system performance have traditionally been based on the assumption

that individual modules are insensitive to the sequence of access requests. For modern

page-mode DRAM components, this assumption is not correct. Furthermore, memory per-

formance models generally assume a stochastic sequence of references. For stream-ori-

ented computations, this is not the case.

Developing an access ordering algorithm for a given memory architecture and device type

provides a unique opportunity to derive a precise analytic model of memory system per-

formance for a large and important class of computations. Models of effective memory

bandwidth are derived for the cross-product of architectures and components discussed in

section 1.4. Note that to model maximum bandwidth, it is assumed that the processor is

sufficiently fast such that performance is limited by the memory system.

11

2 Survey of Related Work

Access ordering spans a number of interrelated topics from compiler optimizations to per-

formance modeling. To assess the contribution of this work, it is necessary to identify each

of these relevant areas and cite previous research.

Section 2.1 discusses stream detection as required for access ordering. Access scheduling

techniques are presented in section 2.2. Previous analytic results that capture memory sys-

tem behavior are discussed in section 2.3. Section 2.4 considers alternative parallel mem-

ory storage schemes for increasing the effective bandwidth of vector accesses.

2.1 Stream Detection

Access ordering algorithms derived in this thesis presuppose the existence of compiler

techniques to detect stream-oriented computations. Benitez and Davidson [BeDa91]

describe a technique for explicitly detecting streaming opportunities, including those in

recurrence relations. Furthermore, since stream-oriented computations reference vector

operands, well known vectorization techniques are applicable, such as those described by

Wolfe [Wolf89].

2.2 Access Scheduling Techniques

Access ordering is a compilation technique for maximizing effective memory bandwidth.

Previous work has focused on reducing load/store interlock delay by overlapping compu-

tation with memory latency. Such techniques are referred to here collectively as access

scheduling. Essentially, access scheduling techniques attempt to separate the execution of

a load/store instruction from the execution of the instruction which consumes/produces its

operand, reducing the time the processor spends delayed on memory requests.

12

Bernstein and Rodeh [BeRo91] present an algorithm for scheduling intra-loop instructions

on superscalar architectures that accommodates load delay. Lam [Lam88] presents a tech-

nique referred to as software pipelining that structures code such that a given loop iteration

loads the data for a later iteration, stores results from a previous iteration, and performs

computation for the current iteration. Weiss and Smith [WeSm90] present a comprehen-

sive study in which they classify and evaluate software pipelining techniques imple-

mented in conjunction with loop unrolling. Klaiber and Levy [KlLe91] and Callahan et al

[CaKP91] propose the use of fetch instructions to preload data into cache; compiler tech-

niques are developed for inserting fetch instructions into the normal instruction stream.

Access ordering and access scheduling are fundamentally different. Access scheduling

techniques allow load/store architectures to better tolerate memory latency. Access order-

ing reorders memory references to increase effective bandwidth. Note that access ordering

and access scheduling are complementary. Access ordering can first be applied to a com-

putational kernel to obtain an ordering of load/store instructions that maximizes effective

bandwidth. Access scheduling can then be applied to reduce interlock delay while main-

taining the specified load/store instruction order.

Access ordering as a compilation technique is an original concept; few references to simi-

lar ideas are found in the literature. Ramamoorthy and Wah [RaWa81] present an optimal

algorithm for initiating queued requests on a sequentially interleaved memory to maxi-

mize module concurrency; however, this is an inherently dynamic technique that assumes

independent random requests and knowledge of the modules to which requests are to be

mapped. Gupta and Soffa [GuSo88] demonstrate compilation techniques for distributing

scalars across parallel memory modules to allow for concurrent access by VLIW architec-

tures; however, these techniques are not applicable to vector data.

13

2.3 Modeling Memory System Behavior

Deriving an ordering algorithm and corresponding performance predictor requires analytic

results that capture the interaction of a reference sequence with memory architecture and

components features. Section 2.3.1 discusses reference sequence modeling. Sections 2.3.2

and 2.3.3 survey analytic results pertaining to memory system behavior for scalar and vec-

tor processors, respectively.

2.3.1 Access Pattern Models

To model the behavior of a memory system, it is necessary to characterize the reference

pattern by which it is driven. While a number of stochastic models of program locality

have been derived [AvCK87, ShTu72, SpDe72], they are mainly applicable to the perfor-

mance analysis of cache memories and virtual memory systems. For the purpose of deriv-

ing analytic results, most memory architectures are modeled under the assumption of a

uniform random pattern of access, as discussed below.

This study formalizes the notion of a reference sequence consisting of interleaved vector

accesses generated by a scalar processor.

2.3.2 Memory Architecture Analysis for Scalar Processors

A number of analytic models have been derived that capture the behavior of a memory

system driven by a scalar processor. For single module systems, the characteristics of the

memory component type completely determine performance for a given reference

sequence. For parallel memory systems, concurrency must be modeled as well.

A single module of uniform-access memory components is insensitive to the sequence of

requests, so that performance analysis is trivial. Given a single module constructed from

page-mode devices, as described in section 1.4.2, this is not the case. Surprisingly, few

analytic results have previously been derived to capture the behavior of any memory

14

architecture constructed from page-mode components. Peelen and Van de Goor [PeVa87]

analyze the performance of page-mode DRAMs in a single module architecture by view-

ing page-mode as a cache with a single long cache line; a performance predictor is derived

in the standard manner as a function of the miss ratio. Goodman and Chiang [GoCh84]

consider an architecture in which parallel modules are accessed via a “mid-order” inter-

leaving scheme such that sequential addresses proceed across a page, changing modules at

page boundaries. Using trace driven simulation, Goodman and Chiang evaluate the perfor-

mance of such a system for a number of common UNIX utilities; however, no analytic

results are derived. To date, no other studies involving page-mode memory components

have been located.

Concurrency in sequentially interleaved memory architectures has been the subject of

numerous studies; analytic results are general based on stochastic access sequences.

Hellerman [Hell66] assumes a uniform random distribution of accesses and no buffering

of conflicting requests in deriving the well known formula that form memory modules, an

average of approximately are operating concurrently at any given time. Burnett and

Coffman [BuCo70] derive an analytic model in which data and instruction requests are

separated and serviced alternately; instruction accesses are assumed sequential with a

fixed probability of branching, data requests access the next sequential module with prob-

ability and any other module with probability . Later work [CoBS71]

extends this model to include buffering of access conflicts. Ravi [Ravi72] develops an

analytic model for the performance of a multiprocessor system accessing a sequentially

interleaved memory, assuming a uniform random distribution of accesses. Chang, Kuck,

and Lawrie [ChKL77] summarize the work of previous authors and introduce the notion

of data dependence between accesses of a multiprocessor system; analytic models are

derived for each dependence class, again assuming a uniform random distribution of

requests.

m0.56

α β 1 α−() N⁄=

15

Because previous performance studies of memory architectures for scalar processors have

been based on stochastic access sequences, their results have limited relevance to the

stream-oriented computations considered in this thesis. Furthermore, analysis of memory

architectures constructed from page-mode components has all but been ignored.

2.3.3 Memory Architecture Analysis for Vector Processors

The scope of reference patterns considered for access ordering is limited to stream-ori-

ented computations, i.e. algorithms that operated on vectors or vector-like data, as dis-

cussed in section 1.3. Thus analytic results pertaining to the performance of vector

computer memory systems are potentially relevant.

Modern vector computer systems incorporate multiple independent ports and a large num-

ber of sequentially interleaved memory modules. While calculating memory bandwidth is

trivial for access to a single vector, it becomes intractable for access to multiple vectors.

The difficulty lies in characterizing the conflicts which occur as the access streams con-

tend for memory modules.

Oed and Lange [OeLa85] derive analytic results, based on number of modules and strides

of access, for determining when two access streams can proceed conflict-free. In the case

of conflict-free access, calculation of bandwidth is trivial and represents an upper bound

on performance; for most other cases bandwidth calculation is intractable. Cheung and

Smith [ChSm86] perform a simulation study that characterizes reference stream interac-

tion for up to three independent memory ports. Though no analytic results are presented,

they too classify steady state conflict situations and provide simulation performance data.

Bailey [Bail87] takes a different approach in which performance of a vector computer

memory system is modeled analytically under the assumption of uniform random

accesses; while these results are not representative of the performance obtained in access-

16

ing vectors, relationships between the number of processors, number of modules, and

module access time carry over to realistic vector accesses, as demonstrated via simulation.

Since the ports of a vector computer memory system operate concurrently and indepen-

dently, they behave in a fundamentally different manner than a scalar processor that gener-

ates a single reference sequence. In particular, one memory port can block on a module

conflict while another continues to access a vector, a situation that does not occur with a

scalar processor. Therefore, most analytic results derived for vector processors are not

applicable. As few analytic results exist that capture vector computer memory system

behavior, little is lost in this realization.

2.4 Storage Schemes for Parallel Memories

Access ordering attempts to maximize effective memory bandwidth for a stream-oriented

computation by structuring references to exploit memory system characteristics. For par-

allel memory systems, the storage scheme limits the degree of concurrency achievable by

a given computation. This research considers only two such storage schemes: sequentially

interleaved and multicopy. However, a number of other schemes have been proposed and

are discussed below.

Budnik and Kuck [BuKu71] observed that for a sequentially interleaved storage scheme,

only vectors with strides relatively prime to the number of modules m can be accessed

without conflict, i.e. at maximum system bandwidth. This result led Lawrie and Vora

[LaVo82] to propose a memory system based on a prime number of modules. Such a sys-

tem was developed for the Burroughs Scientific Processor [KuSt82]; however, prime

memory systems have proved impractical due to the computational complexity of the stor-

age scheme.

Budnik and Kuck [BuKu71] propose the use of skewed storage in which each successive

set of m storage locations is assigned to m memory modules with a skew relative to the

17

previous set. Harper and Jump [HaJu87] present a comprehensive study of a skewed stor-

age scheme that is shown to reduce conflict over a wide range of strides. Harper and Jump

further demonstrate that with skewed storage, vector accesses can reference a sequence of

modules with a periodicity that exceeds m, allowing queues placed at each module to

buffer conflicting requests and increase bandwidth.

As an alternative to implementing a single storage scheme, Harper [HaLi89, Harp89] pro-

poses a dynamic storage scheme in which each vector is stored so as to provide optimal

bandwidth for a given stride of access; later work demonstrates that dynamic storage

schemes can be devised that allow optimal access to a vector for a set of strides [Harp91].

Rau [Rau91] analyzes a scheme that assigns storage locations to modules in a pseudo-ran-

dom fashion, rendering memory performance nearly stride insensitive; such a memory

system has been incorporated into Cydrome’s Cydra 5 Departmental Supercomputer

[RaSY89]. As with skewed and dynamic schemes, pseudo-random storage schemes bene-

fit from memory module queues.

The above studies focus on increasing parallelism for accesses to a single vector beyond

that achieved by sequentially interleaved storage. However, for a given storage scheme, it

is not clear in all cases how references are best made to multiple vectors. Furthermore, for

parallel memory systems constructed from page-mode components, it is not sufficient to

simply maintain a high degree of concurrency; for maximum performance, reference pat-

terns should also minimize page thrashing. However, it is important to acknowledge the

existence of other, more effective storage schemes that may also benefit from access

ordering techniques.

18

3 Model Access Pattern

For deriving access ordering algorithms and performance models, it is useful to define a

notation for expressing sequences of requests generated by stream-oriented computations.

Section 3.1 defines the Model Access Pattern notation used to describe streams and denote

specific reference sequences. Sections 3.2 and 3.3 present a set of general definitions and

assumptions applicable to all computations and discuss optimizing accesses with respect

to wide words. A restriction placed on stream interaction and the resulting dependencies

are discussed in sections 3.4 and 3.5, respectively.

3.1 Basic MAP Notation

Two characteristics define the Model Access Pattern (MAP) for a stream-oriented compu-

tation: a set of access streams to individual vectors, and an interleaving of stream refer-

ences into a merged access sequence.

An access stream is defined by the tuple where

and specifies the number of data items referenced from the stream per functional itera-

tion of the computation.

A functional iteration is defined as a single repetition of an iterative computation. A loop

iteration is defined as a single repetition of the code implementing a computation. Note

that a single loop iteration implements a fixed number of functional iterations, with that

number defined to be the depth of unrolling.

ti vi si di mi, , ,() : σi=

= vector to be accessed = stream starting address

= stride of access

= data item size

= access mode, read(r) or write(w)

vi

si

di

mi

σi

19

An access sequence describes the interleaving of stream accesses within a loop and is

defined recursively as follows:

Let denote an access to the ‘next’ element of the stream , then

1. is an access sequence.

2. is an access sequence where are access sequences;

are performed left to right with all accesses in initiated prior to the initiation of

accesses in .

3. is an access sequence where A is an access sequence and c is a positive integer;

A is repeated c consecutive times.

For visual clarity, and extraneous brackets are omitted when the mean-

ing is unambiguous. If the access mode is known, then an access to the ‘next’ element of

stream is denoted as or for or , respectively. In discussing a par-

ticular access sequence, refers to the access from stream .

To illustrate, the MAP notation is applied to the axpy operation

The set of logical access streams dictated by the computation is , where

, , and . The ‘natural’

access sequence implementing the axpy computation is: , specifying one read

from streams and , followed by one write from stream , per iteration of the loop.

Note that the access sequence implements one functional iteration per loop

iteration.

ai ti

ai〈 〉

A1 … An, ,〈 〉 A1 … An, , A1 … An, ,

Aj

Aj 1+

A: c〈 〉

ai〈 〉: c〈 〉 ai: c〈 〉≡

ti ri wi mi r= mi w=

ai
k kth ti

i∀ yi axi yi+←

S tx tyr
tyw

, ,{ }=

tx x sx dx r, , ,() :1= tyr
y sy dy r, , ,() :1= tyw

y sy dy w, , ,() :1=

rx ryr
wyw

, ,〈 〉

tx tyr
tyw

rx ryr
wyw

, ,〈 〉

20

3.2 Definitions and Assumptions

The following definitions complement the MAP notation:

• S = { | defines an access stream for a given computation}, i.e. S is the set of all

access streams for a given computation,

• N = , i.e. the total number of access streams in S is N, and

• V = number of unique for all , i.e. the number of vectors accessed by streams S

is V, where .

For a set of streams S, it is assumed that for all

• | w, i.e. word size is a multiple of the data size,

• access stream begins at a memory address divisible by , i.e. data is aligned, and

• stride of access is positive.

The first two assumptions represent typical processor constraints and simplify subsequent

analysis. The later assumption is customarily satisfied in the class of computations consid-

ered; furthermore, the stream interaction restriction, to be defined, allows this assumption

without loss of generality.

3.3 Wide Word Optimization

For completeness, it is desirable to accommodate wide word access in ordering algorithms

and performance models; e.g. 32-bit values referenced from 64-bit words. To optimally

utilize wide words, and simplify modeling, a mapping is defined from a set of logical

streams referencing individual data items, as above, to a corresponding set of physical

streams referencing memory locations.

Physical streams are defined so as to guarantee that each stream references a given word at

most once, resulting in optimal wide-word access. It is assumed that a given logical stream

ti ti

S

vi ti S∈

V N≤

ti S∈

di

ti di

si

21

 can be mapped to a physical stream

 such that

• begins at an address divisible by the word size w, i.e. is word aligned, and

• retrieves exactly the same number of data items for each word accessed.

The second property can be true only if logical stream stride and data item size

are restricted such that or . Then the number of data items

retrieved per word accessed by physical stream is an integer defined by

Let be the minimum number of functional iterations of the computation required to ref-

erence all data items contained in a set of accessed words from physical stream . Then

is the least common multiple of the number of data items referenced per functional itera-

tion and the number of data items per word divided by the number of data items per func-

tional iteration, i.e.

For example, given stream with stride , data item size , and

 data items required per functional iteration, and given a word size , then

 as depicted in Figure 4.

ti
L() vi

L() si
L() di

L() mi
L(), , ,() : σi

L()=

ti vi si di mi, , ,() : εi=

ti

ti

si
L() di

L()

w si
L() di

L()≤ si
L() di

L() �|� w

ti

γi

1 when w si
L() di

L()≤

w

si
L() di

L() when w si
L() di

L()>






=

κi

ti κi

κi

lcm σi
L() γi,()

σi
L()=

ti
L() si

L() 2= di
L() 1=

σi
L() 3= w 4=

κi 2=

22

For a set of logical streams , let for all . Then is the

minimum number of functional iterations required to reference all data items contained in

the set of words accessed by the corresponding physical streams.

Given logical streams , a corresponding set of physical streams S can now be defined

by mapping each to a distinct such that

where is the product of the number of functional iterations and the number of data

items referenced per functional iteration divided by the number of data items per word; i.e.

Note that since

where .

word (q - 1) word (q) word (q + 1)

iteration (j) iteration (j + 1)

Figure 4 Functional Iteration Diagram

S L() cS lcm κi()= ti
L() S L()∈ cS

S L()

ti
L() S L()∈ ti S∈

ti

vi
L() si

L() di
L() mi

L(), , ,() : εi when γi 1=

vi
L() 1 w mi

L(), , ,() : εi when γi 1>



=

εi cS

εi

cSσi
L()

γi
=

γi�|� cSσi
L()

cSσi
L() hκiσi

L() h
lcm σi

L() γi,()

σi
L() 

  σi
L() h lcm σi

L() γi,()()= = =

h cS κi⁄ Z+∈=

23

Whereas specifies the number of data items referenced from logical stream per

functional iteration of the computation, specifies the number of words accessed from

the corresponding physical stream per loop iteration, with each loop iteration represent-

ing functional iterations. Note that this definition of for physical stream is not

inconsistent with the generic stream definition presented in section 3.1, since a loop itera-

tion can be considered a single ‘functional iteration’ of the total reference sequence.

A physical stream is said to embody a logical stream if accesses all data items

referenced by .

Theorem 3.1: Given logical streams and corresponding physical streams S, as

defined above, embodies .

Proof: If it is easily seen that each set of physical accesses from

stream per loop iteration references exactly the set of data items as logical

stream for the corresponding functional iterations.

If then by definition each physical access from stream references exactly log-

ical data items. Thus each set of physical accesses from per loop iteration references

exactly the set of data items as logical stream for the corresponding

 functional iterations.

Corollary 3.2: Given logical streams and corresponding physical streams S, is

optimal with respect to wide word access.

Proof: Physical stream references a given word at most once, by definition.

Thus for a set of logical streams , a set of physical streams S can be defined such that

• embodies and

• is optimal with respect to wide word access

σi
L() ti

L()

εi

ti

cS εi ti

ti ti
L() ti

ti
L()

S L()

ti S∈ ti
L() S L()∈

γi 1= εi cSσi
L()=

ti cSσi
L()

ti
L() cS

γi 1> ti γi

εi ti

εiγi cSσi
L()= ti

L()

cS

S L() ti S∈

ti S∈

S L()

ti S∈ ti
L() S L()∈

ti S∈

24

for any loop depth , , implementing functional iterations per loop iter-

ation. Note that in the most common case of one data item per word per stream,b can be

any positive integer.

The remainder of this text assumesS always to be a set of physical streams that embody a

set of logical streams via the mapping defined above. In derivingS, the loop depthb

is fixed; hence is fixed for all .

Given a loop computation that references a set of data items embodied byS, chapters 4

through 6 examine the effect of the specific order of loop accesses on page miss count and

concurrency, and hence bandwidth, for a set of memory architectures and device types.

Based on these results, algorithms are derived that map the set of accesses defined by

streamsS to a specific sequence of memory references. Note that for a stream ,

accesses from may be placed in any order that preserves dependencies; e.g.

The access sequenceembodies S if for all

That is, the sequence embodiesS if contains exactly the number of accesses per

stream required to implementb functional iterations of the computation, ordered to pre-

serve dependence, whereb is the loop depth.

b kcS= k Z+∈ kcS

S L()

εi ti S∈

S̃ ti S∈

ti

S̃ … ai: q1
i … ai: q2

i … ai: qn
i …, , , , , ,〈 〉=

S̃ ti S∈

qk
i

k 1=

n

∑ εi=

S̃ S̃

25

3.4 Stream Interaction Restriction

Recall that for a memory module constructed from page-mode components, the time to

complete a given access depends on whether or not the page referenced is the same as that

of the immediately preceding access. If two consecutive accesses are from different

streams, the impact of the first on the one that follows is difficult to capture analytically as

they may or may not reference the same page. To simplify analysis, the following restric-

tion is placed on the streams of a given computation:

Stream Interaction Restriction: For any two streams , implies that the

streams have non-intersecting address spaces; in particular, streams reference no pages

in common. When stream parameters are identical except in mode, where by

definition .

The stream interaction restriction results in stream accesses that interact with memory

architecture features in a well defined manner. To illustrate, when two streams have differ-

ent start addresses, i.e. , the stream interaction restriction states that the streams ref-

erence no pages in common. Thus it is known that an access from stream preceded by

an access from stream will cause a page miss. When two streams have the same start

address, i.e. , the stream interaction restriction states that the stream parameters are

identical except in access mode, accommodating read-modify-write operations. Thus,

within a given loop iteration, the accesses from each of and reference the same

word and hence the same page.

Strict adherence to the stream interaction restriction limits the applicability of access

ordering algorithms to a subset of the class of vectorizable computations. However, the

remaining problem domain is still large and encompasses all computations previously

listed in section 1.3. Furthermore, under the stream interaction restriction, optimality

results are obtained for single module access. Relaxation of this restriction to encompass a

superset of the vectorizable loops is discussed in chapter 7.

ti tj, S∈ vi vj≠

vi vj=

mi mj≠

vi vj≠

ti

tj

vi vj=

kth ti tj

26

Though the stream interaction restriction is specifically aimed at simplifying analysis for

systems constructed from page-mode components, for consistency it is applied for all

memory architectures considered.

3.5 MAP Dependence Relations

Access ordering alters the sequence of instructions that access memory. In performing this

reordering, dependence relations must be maintained. As discussed below, the stream

interaction restriction limits the types of dependencies that can exist between accesses

from different streams. Rules are derived for maintaining dependencies during access

ordering.

Briefly, output and input dependence results when two write or two read accesses, respec-

tively, reference the same data item. Antidependence occurs when a read from a data item

must precede a write to that datum. Finally, data dependence occurs when a write to a data

item must precede a read from the same. A dependence relation between two accesses

from the same instance of a loop iteration is said to be loop-independent, while a depen-

dence between accesses from different instances is said to be loop-carried. A detailed

treatment of dependence analysis can be found in [Wolf89].

3.5.1 Output and Input Dependence

Output and input dependence can not exist as a result of the stream interaction restriction;

two streams of the same mode have a non-intersecting address space. Therefore, depen-

dence relations of this type need not be considered.

3.5.2 Antidependence

The stream interaction restriction states that two streams referencing the same vector do so

with stream parameters that differ only in access mode. Thus, antidependence is limited to

loop-independent antidependence between corresponding components of a read stream ti

27

and write stream implementing a read-modify-write. So, if , then is antide-

pendent on ; notationally .

Simply specifying and such that is assumed to imply antidependence; the

only alternative, a loop-independent data dependence, is redundant and the read stream

unnecessary. Compilation is assumed to remove extraneous access streams.

A computation with a loop-carried antidependence that does not form a self-dependence

cycle can often be transformed to an equivalent computation with a loop-independent anti-

dependence. For example, restructuring the loop of Figure 5(a) to the loop of Figure 5(b)

replaces the loop-carried antidependence with a loop-independent antidependence that

conforms to the stream interaction restriction. Loop-carried self antidependence can be

eliminated via renaming of the assignment variable.

Though the loop of Figure 5(b) does not implement a read-modify-write of the vector in

the strict sense that each computed value is a function of the old value, the reference

sequence is equivalent.

tj vi vj= wj
k

ri
k ri

k� δ� wj
k

ti tj vi vj=

for i = 1 to n y[1] = <statement>;

{ for i = 2 to n

y[i] = <statement>; {

v[i] = fn(y[i+1]); v[i-1]= fn(y[i]);

} y[i] = <statement>;

}

v[n] = fn(y[n+1]);

(a) (b)

Figure 5 Loop-Carried to Loop-Independent Antidependence Transformation

y

28

3.5.3 Data Dependence

Data dependence does not exist between access streams in the usual sense that a memory

location is written and later read during the execution of a loop. Loop-independent data

dependence implies an extraneous read stream, as discussed above. Loop-carried data

dependence can not exist as a result of the stream interaction restriction.

Note that loop-carried data dependence can often be removed, resulting in a computation

that conforms to the stream interaction restriction. For example, restructuring the loop of

Figure 6(a) to the loop of Figure 6(b) eliminates the read stream and hence the data depen-

dence. Similarly, self data dependence cycles representing recurrence operations can also

be removed, as described in [BeDa91].

Though data dependence does not exist in the usual context, it is present in the data flow

sense; that is, as right-hand-side values required in performing a computation. A write

operation represents the assignment of a computation result and as such usually requires

that some set of read operations precede it. In this sense, a write operation is data

dependent on a read operation if defines a value used in the computation of the result

assigned by ; notationally, .

for i = 1 to n v[1] = fn(y[0]);

{ for i = 1 to (n-1)

y[i] = <statement>; v[i+1] = fn(y[i] = <statement>);

v[i] = fn(y[i-1]); y[n] = <statement>;

}

(a) (b)

Figure 6 Loop-Carried Data Dependence Elimination

wj
k

ri
q ri

q

wj
k ri

q� δ� wj
k

29

3.5.4 Dependence Rules

Summarizing the above, dependence between accesses belonging to different streams is

limited to two types under the stream interaction restriction: loop-independent antidepen-

dence between a read and write stream that access the same vector, and data dependence in

the data flow sense. This observation leads to the following two rules necessary for main-

taining data dependence in access ordering algorithms.

For read stream and write stream , an access sequence maintains all dependencies if

1. precedes when , i.e. a read precedes its corresponding write in a read-

modify-write operation, and

2. precedes when , i.e. a read operation that defines a value used in the

computation of a result precedes the write of that result.

Dependence information is derived from context. As discussed in section 2.1, it is

assumed that stream information has been provided for the access ordering algorithm; it is

assumed that dependence information is provided as well.

3.5.5 Other Dependencies

The above discussion completely characterizes the dependence that can exist between

accesses belonging to different streams under the stream interaction restriction. However,

two other types of dependence may exist: loop-carried input dependence within a single

read stream, and control dependence.

Loop-carried input dependence can result from the transformation of a more complex

sequence of read accesses to a single read stream. Consider the finite difference approxi-

mation to the first derivative

ti tj

ri
k wj

k ri
k� δ� wj

k

ri
q wj

k ri
q� δ� wj

k

i∀ dvi

vi 1+ vi 1−−()
2h

=

30

Analysis techniques [BeDa91, CaCK90] can transform the ‘natural’ pattern of access to

vector to a simple stream requiring one access per iteration; two values of are pre-

loaded prior to entering the loop, and each successive value accessed is carried in a regis-

ter for two iterations. The loop-carried input dependence created in the transformation has

no affect on the ordering of memory access instructions.

Control dependence results from branch statements within a loop. When control depen-

dence is present, access ordering can still be applied by considering each path through the

loop body independently. Ordering and code generation is performed for each path, with

the code segment to be executed on each iteration determined dynamically. For the

remainder of this discussion, loops are assumed free of control dependence.

v v

31

4 Single Module Architecture

This chapter derives access ordering algorithms and performance predictors for a single

module memory system as depicted in Figure 7. Systems constructed from both uniform-

access and page-mode components are considered. Optimal effective memory bandwidth

is achieved in both cases.

Section 4.1 develops techniques for minimizing page overhead, where applicable. Sec-

tions 4.2 and 4.3 derive ordering algorithms and performance models for a single module

of uniform-access and page-mode components, respectively. The effectiveness of access

ordering and accuracy of performance models are demonstrated via simulation in 4.4. Sec-

tion 4.5 summarizes results.

A
dd

re
ss

 S
ou

rc
e

D
at

a
Si

nk

Single Memory Module

Figure 7 Single Module Architecture

32

4.1 Minimizing Page Overhead

Consider a single module of page-mode components. For access ordering to generate a

reference sequence that achieves optimal effective memory bandwidth for a given compu-

tation, page overhead resulting from accesses that page miss must be minimized. Page

overhead is measured in terms of total page miss count. Given a stream not involved in a

read-modify-write, minimizing page overhead is trivial. For streams implementing this

operation, page overhead is minimized via intermixing and wrap-around adjacency.

Given stream such that does not participate in a read-modify-write, i.e. for

all , minimum page miss count for is achieved by performing a sequence of

accesses without an intervening access from a second stream . This follows from the

observation that only results in a page miss if it does not reference the same page as

; an intervening access is guaranteed to generate a page miss by the stream interac-

tion restriction.

The average page miss count for accesses grouped by stream is derived as follows. For

stream with stride and data size , the average number of accesses per page refer-

enced is

Then arranging accesses from as , the average per iteration page miss

count for the set of c memory references is

ti S∈ ti vi vj≠

tj S∈ ti

ai aj

ai
k 1+

ai
k aj

ti si di

φ si di,()

1 when p sidi≤

p
sidi

when p sidi>






=

ti … ai: c …, ,〈 〉

η si di c V, , ,()

c
φ si di,() when V 1=

1
c 1−()

φ si di,()+ when V 2≥





=

33

That is, when the number of vectors referenced is one, i.e. , the average page miss

count for c consecutive accesses to is simply the number of accesses divided by the

number of accesses per page. For , is guaranteed to page miss, so that the average

page miss count is one plus the remaining number of accesses, , divided by the num-

ber of accesses per page.

Lemma 4.1: In the sequence , the average page miss count per access,

, is either constant or inversely proportional to c.

Theorem 4.2: Given streams S and such that does not participate in a read-mod-

ify-write, i.e. for all , minimum page miss count for stream at the specified

depth of unrolling is achieved by the access sequence .

Proof: Recall from section 3.3 that in mapping logical streams to physical streams S,

the depth of loop unrolling b, and hence the number of accesses from stream per loop

iteration, is fixed. Thus it follows immediately from Lemma 4.1 that the sequence

 must result in minimum page miss count for stream at the loop

depth b.

Corollary 4.3: Given physical streams S and that result from mapping logical streams

, if . That is, the average page

miss count per access for sequence must be less than or equal to that

of sequence if .

Thus, minimum page miss count is achieved in grouping accesses by stream. Furthermore,

the average page miss count per access is either constant or inversely proportional to the

depth of loop unrolling.

V 1=

ti

V 2≥ ai
1

c 1−

… ai: c …, ,〈 〉

η si di c V, , ,() c⁄

ti S∈ ti

vi vj≠ tj S∈ ti

S̃ … ai: εi …, ,〈 〉=

S L()

εi ti

S̃ … ai: εi …, ,〈 〉= ti

S'

S L() η si di εi V, , ,() εi⁄ η si di ε' i V, , ,() ε' i⁄≤ εi ε' i> b b'>()

S̃ … ai: εi …, ,〈 〉=

S'˜ … ai: ε' i …, ,〈 〉= εi ε' i> b b'>()

34

4.1.1 Intermixing

Given read stream and write stream that implement a read-modify-write, i.e.

and , it is often possible to reduce the page miss count of the write stream below

that achieved by the access sequence .

Consider the general intermix sequence

that generates the string of references

Lemma 4.4: The general intermix sequence is an optimal inter-

leaving of accesses, as demonstrated in Appendix A.1.

Since and refer to the same location, will only page miss when referencing a

page different from that referenced by . Thus, the page miss count for the read stream is

unchanged. However, the sequence of accesses through , , suf-

fers a page miss only when and reference a different page.

For write stream , the average page miss count in performing each set of c write accesses

in the intermix sequence is derived in Appendix A.2 as

Thus, the average page miss count in performing all write operations for a given itera-

tion is .

ti tj ti tj, S∈

vi vj=

… ri: εi … wj: εj …, , , ,〈 〉

… ri: c wj: c,〈 〉: h …, ,〈 〉

… ri
1 ri

2 … ri
c wj

1 wj
2 … wj

c ri
c 1+ …, , , , , , , , , ,

… ri: c wj: c,〈 〉: h …, ,〈 〉

ri
c wj

c ri
c 1+

ri
c

wj
k 1−() c 1+ wj

kc 1 k h≤ ≤

ri
k 1−() c 1+ ri

kc

tj

… ri: c wj: c,〈 〉: h …, ,〈 〉

ρ sj dj c, ,()

2 c 1−() sjdj

p
when c 1−() sjdj dj p≤+

1
c 1−()

φ sj dj,()+ when c 1−() sjdj dj+ p>





=

ch

hρ sj dj c, ,()

35

Based on the preceding analysis, for a computation that references two or more vectors the

intermix sequence results in a lower page miss count for write

accesses than the sequence if .

Similarly, for a computation that references exactly one vector the intermix sequence

 results in a lower page miss count for write operations than the sequence

 if . Then for write stream , the effect of

intermixing on average per iteration page miss count is computed as

It can be shown algebraically that if or then

, i.e. intermixing reduces write access page miss count.

Lemma 4.5: In the sequence , if the aver-

age page miss count in performing each set of c write accesses, , is directly

proportional to c. Thus, choosing c as small as possible minimizes page miss count for the

write operations.

4.1.1.1 Intermix Factor

For the general intermix sequence, the values of the intermix parameters c and h that min-

imize page miss count for the write stream are a function of both the stream parameters

and data dependence information. Intuitively, the intermix parameter c is chosen to be the

minimum value that preserves data dependence while optimally utilizing wide word

access. If write stream is not data dependent on read stream , implying the computa-

tion is not a strict read-modify-write, then . Otherwise, c is the minimum number of

accesses required to reference all data items for a number of functional iterations such that

… ri: c wj: c,〈 〉: h …, ,〈 〉

… ri: ch … wj: ch …, , , ,〈 〉 hρ sj dj c, ,() η sj dj ch V, , ,()<

ri: c wj: c,〈 〉: h〈 〉

ri: ch wj: ch,〈 〉 hρ sj dj c, ,() ρ sj dj ch, ,()< tj

imix sj dj c h V, , , ,()
ρ sj dj ch, ,() hρ sj dj c, ,()− when V 1=

η sj dj ch V, , ,() hρ sj dj c, ,()− when V 2≥



=

c 1= c 2−() h 1+() sjdj p<

imix sj dj c h V, , , ,() 0>

… ri: c wj: c,〈 〉: h …, ,〈 〉 imix sj dj c h V, , , ,() 0>

ρ sj dj c, ,()

tj ti

c 1=

36

all data items in the words accessed are consumed; this minimal value of c is referred to as

the intermix factor.

For write stream the intermix factor is computed as

Note that the value from the corresponding logical stream is required in deriv-

ing , since specifies the number of data items that must be accessed from per

functional iteration of the computation. From the derivation of in section 3.3, it is easily

seen that the number of accesses from stream per loop iteration is a multiple of the inter-

mix factor ; i.e. | .

Theorem 4.6: Given streams S with read stream and write stream that specify a read-

modify-write, i.e. and , if for intermix parameters

 and then page miss count for write stream is minimized by the inter-

mix sequence . Page miss count for read stream is

unaffected by intermixing and equivalent to that of the sequence .

Proof: Follows immediately from Lemma 4.5.

Corollary 4.7: Given streams S with read stream and write stream that specify a read-

modify-write, i.e. and , the average page miss count per access from write

stream in the sequence is independent of the

depth of loop unrolling b chosen in mapping logical streams to physical streams S.

However, the average page miss count per access from read stream is either constant or

inversely proportional to b, as per Corollary 4.3.

tj

θj

1 when� tj�is�not�data�dependent�on� ti

lcm σj
L() γj,()

γj
otherwise







=

σj
L() tj

L()

θj σj
L() tj

εj

tj

θj θj εj

ti tj

ti tj, S∈ vi vj= imix sj dj c h V, , , ,() 0>

c θj= h εj θj⁄= tj

S̃ … ri: θj wj: θj,〈 〉: εj θj⁄() …, ,〈 〉= ti

… ri: εi …, ,〈 〉

ti tj

ti tj, S∈ vi vj=

tj S̃ … ri: θj wj: θj,〈 〉: εj θj⁄() …, ,〈 〉=

S L()

ti

37

Thus, page miss count for write streams can be minimized by intermixing. For the general

intermix sequence, the average page miss count per access for write operations is indepen-

dent of the depth of loop unrolling; for read operations the average page miss count per

access is either constant or inversely proportional to the loop depth b.

4.1.2 Wrap-around Adjacency

Assume a read stream and write stream that specify a read-modify-write, i.e.

and . In the preceding section, intermixing is employed to reduce page miss count

for the write stream. Alternatively, wrap-around adjacency can often reduce the page miss

count of the read stream.

Streams and are wrap-around adjacent if accesses to each occur at the beginning and

end of an access sequence, respectively; i.e.

Note that in the special case where and are the only streams in a computation, the

intermix sequence also results in wrap-around adjacency.

Since and reference the same location, then for a given loop iteration will only

page miss when referencing a page different from that referenced by on the previous

iteration. Thus the read stream proceeds as if no other vector is accessed, so that page miss

count is computed by where .

Then for read stream , the average per iteration page miss count for c wrap-around adja-

cent accesses is

ti tj ti tj, S∈

vi vj=

ti tj

ri: εi … wj: εj, ,〈 〉

ti tj

ri: θj wj: θj,〈 〉: εj θj⁄()〈 〉

ri
εi wj

εj ri
1

ri
εi

η si di c V, , ,() V 1=

ti

ω si di c, ,() c
φ si di,()=

38

The affect of wrap-around adjacency on per iteration page miss count for read stream is

computed as

Theorem 4.8: Given streams S with read stream and write stream that specify a read-

modify-write, i.e. and , minimum page miss count for read stream is

achieved via the wrap-around adjacent sequence . Page miss count

for write stream is unaffected.

Proof: In the sequence , read stream proceeds as if no other vec-

tor is referenced, guaranteeing minimum page thrashing

Corollary 4.9: Given streams S with read stream and write stream that specify a read-

modify-write, i.e. and , the average page miss count per access from in

the sequence is independent of the depth of loop unrolling b chosen

in mapping logical streams to physical streams S. However, the average page miss

count per access from write stream is either constant or inversely proportional to b, as

per Corollary 4.3.

4.1.3 Summary of Techniques

As demonstrated above, for a single module of page-mode components, grouping accesses

by stream minimizes page overhead for streams not involved in a read-modify-write; for

streams implementing this operation, intermixing and wrap-around adjacency are

employed. The result is an access sequence with at most two distinct stream reference pat-

terns, e.g.

ti

wadj si di c V, , ,() η si di c V, , ,() ω si di c, ,()−=

ti tj

ti tj, S∈ vi vj= ti

S̃ ri: εi … wj: εj, ,〈 〉=

tj

S̃ ri: εi … wj: εj, ,〈 〉= ti

ti tj

ti tj, S∈ vi vj= ti

S̃ ri: εi … wj: εj, ,〈 〉=

S L()

tj

… rk: εk … ri: θj wj: θj,〈 〉: εj θj⁄() …, , , ,〈 〉

39

The ordering algorithm derived in section 4.3 determines the specific reference sequence

that minimizes page miss count for a given computation. Recall that wide-word access is

optimized via the logical to physical stream mapping defined in section 3.3.

Note that though intermixing can minimize page miss count for write operations, the

resulting sequence may not be amenable for execution on pipelined processors; alternating

read and write accesses can force scalar-mode (non-pipelined) arithmetic operations.

However, intermixing is justified if the additional access time resulting from a sub-optimal

reference sequence exceeds the additional cost of performing scalar-mode computation.

This issue is discussed in detail in chapter 7.

4.2 Single Module of Uniform-access Components

Deriving an access ordering algorithm for a single module of uniform-access components

is trivial and presented here only for completeness. Since uniform-access components are

insensitive to the sequence of memory requests, any order that preserves dependencies

results in optimal effective memory bandwidth.

For streams S, let through be read streams and through be write streams.

Then the access sequence employed is

Recall that the stream interaction restriction limits dependencies to loop-independent anti-

dependence and data dependence in the data-flow sense, as discussed in section 3.5. Thus,

placing all reads prior to the first write maintains all dependencies.

t1 tNr
tNr 1+ tN

S̃ r1: ε1 … rNr
: εNr

wNr 1+ : εNr 1+ … wN: εN, , , , ,〈 〉=

40

4.2.1 Performance Predictor

A performance predictor for a single module of uniform-access components is computed

below for the average time per data item accessed , and the effective processor-mem-

ory bandwidth .

If is a read stream, the time to complete all references to for a given sequence iteration

is computed as the number of accesses multiplied by the uniform-access read cycle time

; i.e. .

Then , the time to complete all read accesses for a given iteration, is computed as the

sum of the times to complete accesses for each individual read stream, so that

 is defined as the time to complete all write access for a given iteration and is computed

analogously to , so that

Then the average time per data item accessed is the time to complete all accesses in a

given iteration divided by the number of data items referenced, resulting in

Tavg

BW

ti ti

εi

Tu/ r εiTu/ r

Tr

Tr εiTu/ r
ti S∈

mi r=

∑=

Tw

Tr

Tw εiTu/ w
ti S∈

mi w=

∑=

Tavg

Tavg

Tr Tw+

εiγi()
ti S∈
∑

=

41

The effective memory bandwidth is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

All times are in nanoseconds and sizes in bytes, as discussed in section 1.4.2, with band-

width measured in megabytes per second.

4.3 Single Module of Page-mode Components

For a single module of page-mode components, an access ordering algorithm is derived

that achieves optimal effective memory bandwidth by minimizing page overhead for a

given computation while maintaining dependencies. Note that the access sequence gener-

ated is ‘statistically optimal’ in that it results in on average best case performance, given

that stream alignment within a page is not restricted and therefore not known; such is the

case for all algorithms developed for systems of page-mode components.

For streams not involved in a read-modify-write, grouping accesses by stream results in

minimum page miss count (Theorem 4.2). Given two streams that implement this opera-

tion, further reduction in page overhead may be achieved for write and read accesses by

intermixing (Theorem 4.6) and wrap-around adjacency (Theorem 4.8), respectively.

Then for streams S with no pair of streams implementing a read-modify-write, ordering is

trivial. Let through be read streams and through be write streams. An

access sequence that minimizes page overhead while preserving dependencies is

BW

BW

103 εiγidi()
ti S∈
∑
Tr Tw+=

t1 tNr
tNr 1+ tN

S̃ r1: ε1 … rNr
: εNr

wNr 1+ : εNr 1+ … wN: εN, , , , ,〈 〉=

42

If S contains one or more pair of streams implementing a read-modify-write, then an opti-

mal access sequence is defined by the following algorithm:

Determine the total ordering of access sets , , that maximizes the reduc-

tion in page overhead achievable via intermixing and wrap-around adjacency and that

maintains the partial ordering of access sets defined by the dependence relations.

Reduction in page miss count for a particular ordering is calculated by the functions

 and derived in sections 4.1.1 and 4.1.2, respec-

tively.

Determining the total ordering of access sets that maximizes the potential reduction in

page overhead is exponential in the number of streams in S. However, in practice, the

stream count N tends to be small and dependencies significantly reduce the number of

total orderings. Furthermore, page overhead is only affected by the relative position of

streams implementing read-modify-writes. Read and write access sets not involved in a

read-modify-write may be treated as a single read and write access set, respectively. The

result is an efficient algorithm.

4.3.1 Example Problem

The following example illustrates the application of the ordering algorithm defined above.

Consider the axpy operation

that generates the set of streams where ,

, and . Antidependence exists between cor-

responding elements of read stream and write stream , and data dependence exists

between corresponding elements of and , and and .

The access sets are , , and for which two total orderings main-

tain dependencies: (, ,) and (, ,).

S̃

ai: εi〈 〉 ti S∈

imix s d c h V, , , ,() wadj s d c V, , ,()

i∀ yi axi yi+←

S tx tyr
tyw

, ,{ }= tx x sx dx r, , ,() : εx=

tyr
y sy dy r, , ,() : εyr

= tyw
y sy dy w, , ,() : εyw

=

tyr
tyw

tyr
tyw

tx tyw

rx: εx〈 〉 ryr
: εyr

〈 〉 wyw
: εyw

〈 〉

rx: εx〈 〉 ryr
: εyr

〈 〉 wyw
: εyw

〈 〉 ryr
: εyr

〈 〉 rx: εx〈 〉 wyw
: εyw

〈 〉

43

Considering each total ordering in turn, (, ,) presents the oppor-

tunity for intermixing and and results in the access sequence

The gross reduction in page overhead achieved by the ordering above is calculated as

; intermix parameters are computed as discussed in 4.1.1.1.

The total ordering (, ,) provides wrap-around adjacency and

results in the access sequence

The gross reduction in page overhead is calculated as .

The access ordering algorithm determines the total ordering of access sets that maximizes

the reduction in page overhead. For the accesses sets of the axpy computation considered

above, if then the access sequence

 results in optimal effective memory bandwidth, otherwise the

sequence is optimal.

4.3.2 Performance Predictor

For a set of streams S and an access sequence defined by the algorithm above, a perfor-

mance predictor is derived for the average time per data item accessed and the effec-

tive processor-memory bandwidth .

rx: εx〈 〉 ryr
: εyr

〈 〉 wyw
: εyw

〈 〉

ryr
: εyr

〈 〉 wyw
: εyw

〈 〉

rx: εx ryr
wyw

,〈 〉: εyw
,〈 〉

imix syw
dyw

1 εyw
2, , , ,()

ryr
: εyr

〈 〉 rx: εx〈 〉 wyw
: εyw

〈 〉

ryr
: εyr

rx: εx wyw
: εyw

, ,〈 〉

wadj syr
dyr

εyr
2, , ,()

imix syw
dyw

1 εyw
2, , , ,() wadj syr

dyr
εyr

2, , ,()>

rx: εx ryr
wyw

,〈 〉: εyw
,〈 〉

ryr
: εyr

rx: εx wyw
: εyw

, ,〈 〉

S̃

Tavg

BW

44

Access sequence is composed of some number of component sequences , where the

subscript is defined to be that of the stream referenced; for an intermix sequence the sub-

script is defined to be that of the read stream. Each must be in the form of

• a read access set ,

• a write access set , or

• an intermix sequence .

If then , the time to complete the sequence , is the sum of the num-

ber of accesses to multiplied by the page-hit read cycle time and the average page

miss count multiplied by the page miss time ; i.e.

Similarly, if then is the sum of the number of accesses to multi-

plied by the page-hit write cycle time and the average page miss count multiplied by

the page miss time , so that

Finally, if then is the sum of the number of

accesses to stream () multiplied by the sum of the page-hit read and page-hit write

cycle times and the sum of the average page miss counts for read and write operations

multiplied by the page miss time , so that

S̃ S̃i

S̃i

ri: εi〈 〉

wi: εi〈 〉

ri: θj wj: θj,〈 〉: εj θj⁄()〈 〉

S̃i ri: εi〈 〉= T S̃i() S̃i

ti Tp/ r

Tp/ m

T S̃i() εiTp/ r

ω si di εi, ,()Tp/ m when ti is�wrap-around�adjacent

η si di εi V, , ,()Tp/ m otherwise



+=

S̃i wi: εi〈 〉= T S̃i() ti

Tp/ w

Tp/ m

T S̃i() εiTp/ w η si di εi V, , ,()Tp/ m+=

S̃i ri: θj wj: θj,〈 〉: εj θj⁄()〈 〉= T S̃i()

ti tj

Tp/ m

T S̃i() εi Tp/ r Tp/ w+() η si di εi V, , ,() εj θj⁄() ρ sj dj θj, ,()+() Tp/ m+=

45

From the preceding analysis, the time to complete an iteration of the access sequence is

the sum of the times required to complete each component sequence; i.e.

Then the average time per data item accessed is the time to complete all accesses in a

given iteration divided by the number of data items referenced, resulting in

The effective memory bandwidth , measured in megabytes per second, is the number

of bytes of relevant data transferred per iteration divided by the time to complete all

accesses; i.e.

4.4 Simulation Results

For a single module of page-mode components, access ordering can significantly increase

effective memory bandwidth over that achieved by the ‘natural’ sequence of references for

a given computation. In this context, the natural reference sequence is the sequence that

results from a straight-forward translation of the loop source code.

To illustrate the improvement in performance achieved via access ordering, and to validate

performance models, simulation and analytic results are presented for a set of benchmark

S̃

Ttot T S̃i()
S̃i S̃∈
∑=

Tavg

Tavg

Ttot

εiγi()
ti S∈
∑

=

BW

BW

103 εiγidi()
ti S∈
∑

Ttot
=

46

scientific kernels. Recall that for both modeling and simulation, the processor is assumed

sufficiently fast so that there is always an outstanding request. Thus, results represent max-

imum achievable bandwidth.

The parameters of the single-module memory are defined in Table 1; sizes are in bytes and

times are in nanoseconds. These parameters are representative of the node memory system

for the Intel IPSC/860, as detailed in [Moye91].

Table 2 presents simulation results comparing effective bandwidth achieved by the natural

versus ordered access sequence for a range of scientific kernels. For access ordering, the

depth of loop unrolling is 4 in all cases.

The daxpy computation is the double-precision version of the axpy computation discussed

earlier. Similarly dvaxpy is the double-precision version of the vaxpy (vector axpy) com-

putation

The remaining computations in Table 2 are selections from the Livermore Loops

[Mcma90], with all vectors defined as double-precision. This set of benchmark kernels is

used in all subsequent performance evaluations.

Table 1 Module Parameters (Single - Page)

Parameter Value

8

4096

50

75

200

w

p

Tp/ r

Tp/ w

Tp/ m

i∀ yi aixi yi+←

47

Access ordering improves performance over the natural access sequence for the given

computations from 102% to 149%. Note that for LL-24 only a single vector is referenced

so that no reordering is performed.

Table 3 compares performance of ordered accesses for the benchmark computations as

calculated analytically and measured via simulation; again, loops are unrolled to a depth

of 4. Note that in all cases analytic and simulation results differ by less than 1%, validating

the accuracy of the performance model.

Table 2 Natural vs Ordered Performance (Single - Page)

Computation
Natural Ordered

% Increase

daxpy 41.7 87.1 108.9

dvaxpy 38.8 85.1 119.3

LL-1 31.0 73.7 137.7

LL-3 32.0 79.8 149.4

LL-4 32.0 79.3 147.8

LL-5 31.0 73.7 137.7

LL-7 31.2 75.1 140.7

LL-11 30.5 70.9 132.5

LL-12 30.5 71.0 132.8

LL-20 31.3 75.6 141.5

LL-21 41.0 82.9 102.2

LL-22 30.8 72.6 135.7

LL-24 158.5 158.5 0.0

BW BW

48

4.5 Summary

This chapter develops optimal access ordering algorithms for a single module of uniform-

access and page-mode components. Performance models are derived for the maximum

effective memory bandwidth achievable by a given computation.

As uniform-access components are insensitive to the sequence of memory requests, any

ordering that preserves dependence is optimal. Ordering is trivial and a performance

model is derived in a straight-forward fashion.

Table 3 Analytic vs Simulation Results (Single - Page)

Computation
Analysis Simulation

daxpy 91.9 87.1 91.9 87.1

dvaxpy 94.0 85.1 94.0 85.1

LL-1 108.6 73.7 108.6 73.7

LL-3 100.3 79.8 100.3 79.8

LL-4 100.9 79.3 100.8 79.3

LL-5 108.6 73.7 108.6 73.7

LL-7 106.5 75.1 106.5 75.1

LL-11 112.8 70.9 112.7 70.9

LL-12 112.8 70.9 112.8 71.0

LL-20 105.9 75.6 105.9 75.6

LL-21 96.6 82.9 96.6 82.9

LL-22 110.3 72.5 110.3 72.6

LL-24 50.4 158.8 50.5 158.5

Tavg BW Tavg BW

49

For page-mode components, an optimal access sequence must minimize page miss count

for a given computation while maintaining dependencies. The access ordering algorithm

derived results in a sequence consisting of (potentially intermixed) access sets arranged so

as to maximize reduction in page overhead achievable via intermixing and wrap-around

adjacency. The algorithm has a time complexity exponential in the number of streams,

though the stream count N tends to be small and effective optimizations exist.

Simulation results are presented for a system constructed from page-mode components.

Access ordering is shown to significantly increase effective memory bandwidth over that

achieved by the ‘natural’ sequence of reference for a set of benchmark scientific kernels.

The performance model is demonstrated to be accurate.

50

5 Sequentially Interleaved Architecture

This chapter derives access ordering algorithms and performance predictors for a sequen-

tially interleaved memory system as depicted in Figure 8. Sequential interleaving is the

‘standard’ parallel memory storage scheme whereby for an m module system, word a

maps to module .

The interleaved memory system is defined to function as follows. Access requests are

directed to the appropriate module, as determined by the storage scheme. If input buffer

space is available then the request is queued, otherwise the memory system blocks until a

a�mod� m

. . .M1M0 Mm-1

A
dd

re
ss

 S
ou

rc
e

D
at

a
Si

nk

Figure 8 Sequentially Interleaved Architecture

51

buffer slot is freed. Access requests are serviced at a module in the order queued, with data

from read requests placed in the module’s output buffer.

Note that in a parallel memory system, accesses may not complete in the order of request.

Read accesses are assumed tagged so that data may be returned in the requested order. The

details of such a tagging scheme are not important to the analysis presented here, and as

such are not defined. It is sufficient to assume that results can be returned at the rate satis-

fied. Recall that in modeling maximum effective bandwidth, the request rate is assumed

sufficient such that performance is limited by the memory. These are common assump-

tions in the study of parallel memory systems.

Section 5.1 discusses the problem space for efficient utilization of sequentially interleaved

memory. Analytic results characterizing the interaction of a single stream with an inter-

leaved architecture are presented in section 5.2. Section 5.3 extends the basic MAP nota-

tion to simplify expressing access sequences for parallel memory systems. Finally,

sections 5.4 and 5.5 derive ordering algorithms and performance predictors for a sequen-

tially interleaved system under the assumption of unknown and known stream alignments,

respectively.

5.1 Problem Dimensions

In general, to efficiently utilize an interleaved memory system, stream accesses must be

ordered so as to

• maximize concurrency and

• minimize page overhead, when applicable.

Ordering accesses to maximize concurrency requires knowledge of stream alignment so

that nonconflicting module references may be scheduled to proceed in parallel. In the

52

absence of alignment information, accesses can be ordered to increase the likelihood of

concurrency.

Techniques for minimizing page overhead come directly from analytic results derived in

chapter 4 for a single memory module. Page miss count at module is minimized for a

given iteration if elements of a stream stored at that module are referenced consecutively

without an intervening access to . For two streams that implement a read-modify-write,

page miss count may further be reduced via intermixing and wrap-around adjacency.

Optimal effective memory bandwidth results from an access sequence that minimizes

completion time for all accesses in a loop. Such a sequence may require a trade-off

between maximum concurrency and minimum page overhead. To illustrate, consider

ordering accesses for the computation

Assume that the 4 read streams and 7 write streams are of sufficient stride such that each

successive access results in a page miss, the exception being a write immediately follow-

ing a read of the same vector element at a given module. Furthermore, assume that the

Mk

Mk

i∀
{

ei fn1 qi xi yi zi, , ,()←

fi fn2 qi xi yi zi, , ,()←

gi fn3 qi xi yi zi, , ,()←

qi fn4 qi()←

xi fn5 xi()←

yi fn6 yi()←

zi fn7 zi()←

}

53

number of modules is 2 and that strides are even, so that accesses from each stream are

serviced by a single module. The depth of loop unrolling equals 1.

Figure 9 demonstrates the time to initiate accesses in successive iterations of the above

computation for three different access orderings, given that memory references hitting in

the current page require 1 time unit and a page miss incurs a 3 time unit pen-

alty . Stream accesses in Figure 9 are labeled by vector, with read and write

streams subscripted with r and w respectively.

Figure 9(a) depicts an ordering that minimizes page miss count via intermixing; for all 4

read-modify-write operations, read accesses immediately precede corresponding writes.

Figure 9(b) depicts an ordering that maximizes concurrency by initiating all read accesses

prior to the first write; in doing so, write accesses at module are completely over-

lapped with those at . Finally, Figure 9(c) depicts an optimal solution that balances

minimizing page overhead and maximizing concurrency to achieve the minimum comple-

tion time.

For parallel memory systems constructed from page-mode components optimal band-

width can result from a sequence that is neither regular nor intuitive, as demonstrated by

the example above.

5.2 Single Stream Module Interaction

To develope access ordering algorithms, analytic results are first required that characterize

the interaction of a single stream with an interleaved memory architecture. In particular, it

is necessary to model the mapping of accesses to modules and the effective stride of

access at a given module. In doing so, an additional restriction is placed on data item,

word and page sizes: d, w, and p are assumed to be powers of 2.

Tp/ r Tp/ w,()

Tp/ m()

M1

M0

54

5.2.1 Access Mapping

For an m module interleaved memory, the mapping of stream accesses to modules is char-

acterized by the number of modules accessed and the distribution of accesses across those

modules. If stream alignment is known, then it can also be determined to which modules

stream accesses map.

Given streams S and , an access cycle is defined as a minimal set of consecutive

accesses from stream such that the first access in each adjacent cycle references a word

containing similarly aligned data items at the same module. Access cycle length is the

qr qw xr xw yr yw zr zw

ew fw gw

qr xr yr zr zw yw xw qw

ew fw gw

qr qw xr xw yr zr zw yw

ew fw gw

qr

qr

qr

Time (units)

M0

M1

M0

M1

M0

M1

(a)

(b)

(c)

0 4 8 12 16 20 24 28 32

Figure 9 Minimizing Completion Time

ti S∈

ti

55

least common multiple of the number of bytes traversed per access, , and the number

of bytes across all modules ; i.e. . Then the number of stream accesses

per access cycle is

(1)

If the number of bytes traversed per access is a multiple of the word size, i.e. , then

each access references a word containing similarly aligned data items. The number of

modules referenced is equal to the number of stream accesses per cycle, as computed in

equation (1), and reduces to

Each module is referenced exactly once per cycle, resulting in a sequence of module

accesses periodic in the number of modules referenced.

Now consider the case where the number of bytes traversed per access is not a multiple of

the word size. By definition so that, in computing the number of accesses per

cycle from equation (1), the must be a power of 2 less than w. Thus the

number of accesses per cycle is a multiple of m, and references are uniformly distributed

across all m modules on a per cycle basis.

Note that each module is not necessarily referenced exactly once for each m consecutive

stream accesses. Figure 10 depicts a single access cycle for a 4 module system, a word

size of 4 bytes and a data size of 1 byte referenced at a stride of 6; aligned as shown, each

set of 4 accesses maps to 3 modules.

sidi

mw lcm sidi mw,()

lcm sidi mw,()
sidi

mw
gcd sidi mw,()=

w�|� sidi

m

gcd
sidi

w
m,()

sidi w>

gcd sidi mw,()

56

Lemma 5.1: Given streams S and , accesses from stream are distributed uniformly

across a number of modules defined by:

Furthermore, when the number of bytes traversed per access is a multiple of the word size,

i.e. , then the sequence of modules accessed by has a period of .

Let represent the set of modules to which stream maps. If the number of modules

accessed by is less than m, then is only defined if stream alignment is known. For

stream aligned to base module , the set of modules referenced is

Address

0

16

32

M2M0 M1 M3

Figure 10 Access Mapping Diagram

ti S∈ ti

µi

m

gcd
sidi

w
m,()

when� w�|� sidi

m otherwise




=

w�|� sidi ti µi

Zi ti

ti Zi

ti MBi

Zi

M0 … Mm 1−,{ , } when µi m=

Mj{ | j Bi k
sidi

w
+() �mod� m= 0 k µi 1−≤ ≤ }, when µi m<






=

57

In computing , if the number of modules referenced is less than m then is the first

modules accessed starting from base module .

Theorem 5.2: Given streams S and , , or , or

.

Proof: Follows directly from the fact that for any , the number of modules refer-

enced must be a power of 2.

Thus, two streams either reference no modules in common, i.e. are nonconflicting, or one

stream accesses a subset of the modules accessed by the other.

5.2.2 Module Stride

To apply functions modeling page overhead derived in chapter 4 for a single module sys-

tem to individual modules of an interleaved system requires deriving the module stride for

a given stream. Module stride is defined as the stride of reference for a given stream as

observed at a particular module.

Given streams S and , if the number of bytes traversed per access is a multiple of the

word size, i.e. , then at a module referenced by the observed stride of access

is constant; recall that references modules in a sequence periodic in the number of mod-

ules accessed. Module stride is computed as the product of the number of modules

accessed and the actual stride, divided by the total number of modules; i.e.

Zi Zi µi

MBi

ti tj, S∈ Zi Zj∩ ∅= Zi Zj∩ Zi=

Zi Zj∩ Zj=

ti S∈

µi

ti S∈

w�|� sidi Mk ti

ti

µisi

m

si

gcd
sidi

w
m,()

=

58

Now consider the case where the number of bytes traversed per access, , is not a mul-

tiple of the word size. From the analysis of access mapping, the number of accesses per

module per access cycle is

(2)

The number of bytes traversed per module per cycle is the cycle length divided by the

number of modules; i.e.

(3)

So the average number of bytes traversed per access is the ratio of (3) to (2), or ,

resulting in an average module stride of .

Figure 11 depicts a single access cycle, plus a portion of the adjacent cycle, for a 4 module

system with a word size of 4 bytes and a data size of 1 byte referenced at a stride of 5;

strides between individual accesses at a given module take on values of 3 and 11, resulting

in an average module stride of 5.

Lemma 5.3: Given streams S and , the average stride of access observed at all mod-

ules referenced, i.e. the module stride, is computed as

sidi

w
gcd sidi mw,()

lcm sidi mw,()
m

sidi() w

gcd sidi mw,()=

sidi

si

ti S∈

ξi

si

gcd
sidi

w
m,()

when� w�|� sidi

si otherwise





=

59

For an interleaved system, analytic results for access mapping and module stride com-

pletely characterize the interaction of a single access stream with the memory architecture.

Note that streams for which the number of bytes traversed per access, , is a multiple of

the word size reference a sequence of modules periodic in the number of modules

accessed with a constant module stride. Access ordering and performance modeling are

significantly complicated by streams that do not posses this property. Fortunately, such

streams rarely occur in practice. Thus, for the remainder of this chapter, all streams are

assumed defined such that .

Address

0

16

32

M2M0 M1 M3

Figure 11 Module Stride Diagram

48

64

(next cycle)

sd

w�|� sd

60

5.3 Extended MAP Notation

To facilitate the specification of a MAP access sequence that effectively utilizes a parallel

memory system, the recursive sequence definition of section 3.1 is augmented with the

additional clause

4. is an access sequence where are access

sequences and are positive integers. are performed left to right in

a modified round-robin fashion, with accesses from until all accesses in

 have been initiated. If fewer than accesses remain in , then only these

accesses are issued. When all accesses specified in have been initiated, is

dropped from the pattern.

To illustrate, the access sequence notation

 defines the linear sequence of references

A strict round-robin selection of accesses from each of the sequences is

achieved when . For visual clarity, strict round-robin selection is

denoted simply as .

The above notation affords convenient specification for controlling access to parallel mod-

ules. For example, given an interleaved system and known stream alignment, each

sequence can represent accesses serviced at module such that a strict round-robin

selection of accesses from results in concurrency among accesses from dif-

ferent streams.

A1 … An�|� α1 … αn, ,, ,[]〈 〉 A1 … An, ,

α1 … αn, , A1 … An, ,

αi Ai

A1 … An, , αi Ai

Ai Ai

ri: 5 wj: 3, �|� 2 2,[]〈 〉

ri ri wj wj ri ri wj ri, , , , , , ,〈 〉

A1 … An, ,

α1 … αn 1= = =

A1 … An, ,[]〈 〉

Ai Mi

A0 … Am 1−, ,

61

5.4 Access Ordering Algorithms for Unknown Alignments

For a sequentially interleaved memory, access ordering algorithms and performance pre-

dictors are derived based on the assumption that stream alignments, with respect to mod-

ules or each other, are unknown. In the absence of alignment information an optimal

solution can not be derived for the general case, as knowledge of stream alignment is

required to schedule nonconflicting references to proceed in parallel. However, accesses

can be ordered to increase the likelihood of concurrency.

Sections 5.4.1 and 5.4.2 develop ordering algorithms and performance predictors for sys-

tems of uniform-access and page-mode components, respectively. The effectiveness of

access ordering and accuracy of performance models are demonstrated via simulation in

5.4.3. Section 5.4.4 summarizes results.

5.4.1 Interleaved Storage and Uniform-access Components

For an m module interleaved system of uniform-access components, an access ordering

algorithm need only maximize module concurrency. As a general optimal ordering can not

be derived, a heuristic solution is presented below.

Recall that a stream references modules in a sequence with period . If , i.e.

all modules are referenced, then maximum concurrency is achieved in performing all

accesses to consecutively for a given iteration. If and the number of consecutive

references to exceeds , then modules are potentially idle for the time required

to initiate accesses to .

For a set of N independent streams, consider a sequence that interleaves a number of

accesses from each stream equal to the number of modules referenced (or the number of

accesses remaining, whichever is smaller); e.g.

ti µi µi µi m=

ti µi m<

ti µi m µi−

ti

a1: ε1 … aN: εN, , �|� µ1 … µN, ,[]〈 〉

62

The above sequence maximizes concurrency for a stream by issuing sets of (at most)

consecutive accesses to that stream, the maximum number that can proceed in parallel.

Furthermore, sets of accesses from each stream are interleaved to increase the likelihood

of concurrency among accesses from different streams. In the absence of alignment infor-

mation, no sequence can guarantee greater concurrency.

For a general set of streams S, accesses are performed in two phases: a read phase and a

write phase. By the stream interaction restriction, streams associated with each phase are

independent. If streams through are read streams and through are write

streams, then the access sequence employed is

In the sequence above, accesses from each phase are ordered to maximize concurrency for

individual streams and increase the likelihood of concurrency among accesses from differ-

ent streams. Dependencies are maintained as all read accesses are initiated prior to the first

write.

5.4.1.1 Performance Predictor

Given streams S and access sequence as defined above, a performance predictor is

derived for the average time per data item accessed and processor-memory band-

width . Because alignments are unknown, it must be assumed that accesses from dif-

ferent streams can not be serviced concurrently. Thus, the models represent a lower bound

on performance.

ti µi

t1 tNr
tNr 1+ tN

S̃ r1: ε1 … rNr
: εNr

, , �|� µ1 … µNr
, ,[] wNr 1+ : εNr 1+ … wN: εN, , �|� µNr 1+ … µN, ,[],〈 〉=

S̃

Tavg

BW

63

The maximum number of accesses from stream serviced at any module for a given iter-

ation, , is the ceiling of the number of accesses per iteration divided by the number of

modules accessed; i.e.

For a read stream , if the number of streams N is greater than one then the time to com-

plete all accesses for a given iteration is the maximum number of references at any given

module multiplied by the uniform-access read cycle time . For the special case of

, the average time to complete all reads is the product of the number of accesses

and the average time per access; i.e.

Let be the time required to complete all read accesses for a given iteration. Then is

computed as the sum of the times to complete accesses for each individual read stream, i.e.

ti

ψi

ψi

εi

µi

=

ti

ψi Tu/ r

N 1= εi

εi

Tu/ r

µi

Tr Tr

Tr

εi

Tu/ r

µi
when� N 1= �and�for� ti S∈ ,� mi r=

ψiTu/ r
ti S∈

mi r=

∑ when� N 2≥






=

64

 is defined as the time to complete all write accesses for a given iteration and is com-

puted analogously to , so that

Then the average time per data item accessed is the time to complete all accesses in a

given iteration divided by the number of data items referenced, resulting in

The effective memory bandwidth , in megabytes per second, is the number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

Tw

Tr

Tw

εi

Tu/ w

µi
when� N 1= �and�for� ti S∈ ,� mi w=

ψiTu/ w
ti S∈

mi w=

∑ when� N 2≥






=

Tavg

Tavg

Tr Tw+

εiγi
ti S∈
∑

=

BW

BW

103 εiγidi
ti S∈
∑

Tr Tw+=

65

5.4.2 Interleaved Storage and Page-mode Components

For an interleaved memory constructed from page-mode components, optimal perfor-

mance results from an access sequence that balances maximizing concurrency with mini-

mizing page overhead to achieve minimum completion time. In the absence of alignment

information, a general optimal ordering algorithm can not be derived. A heuristic solution

is presented below.

In the sections that follow, an access strategy is first developed for a set of independent

streams. Intermixing and wrap-around adjacency are then employed to reduce page over-

head for computations implementing read-modify-write operations. Finally, a general

ordering algorithm is presented and a performance predictor derived for the ordered

accesses.

5.4.2.1 A General Access Strategy

Consider a set of N independent streams S. By Theorem 4.2, page miss count at module

 is minimized when elements of stream stored at that module are referenced con-

secutively without an intervening access to . Then for streams S, page overhead is min-

imized by performing all accesses to each stream consecutively for a given iteration, as in

the sequence

Alternatively, as in the ordering algorithm derived in 5.4.1, potential concurrency can be

maximized by interleaving a number of accesses from each stream equal to the number of

modules referenced; e.g.

Mk ti S∈

Mk

a1: ε1 … aN: εN, ,〈 〉

a1: ε1 … aN: εN, , �|� µ1 … µN, ,[]〈 〉

66

The above sequences address conflicting requirements. The first minimizes page miss

count at the cost of potentially decreased concurrency. The second increases potential con-

currency at the cost of increased page miss count.

In choosing a general method of access, the following observations are made. First, the

most common stride of access is 1. At a stride of 1, or any stride that results in all modules

being referenced, performing accesses to each stream consecutively results in maximum

concurrency and minimum page miss count. Conversely, interleaving accesses from dif-

ferent streams results in maximum page miss count without an increase in concurrency.

Second, in the absence of alignment information, interleaving references can not guaran-

tee concurrency among accesses from nonconflicting streams.

Based on these observations it is concluded that performing all accesses to each stream

consecutively constitutes a better access strategy than an interleaved sequence of refer-

ences. Essentially, a guaranteed minimization of page overhead for all streams is chosen

over a potential increase in concurrency for nonconflicting streams. Thus, the access

ordering algorithm derived below specifies an access sequence consisting of (potentially

intermixed) access sets , .

5.4.2.2 Intermixing and Wrap-around Adjacency

For streams S with one or more pair of streams that implement a read-modify-write, access

sets can be ordered to reduce page overhead via intermixing and wrap-around adjacency.

In the absence of alignment information, it must be assumed that all streams in S are con-

flicting. Thus, ordering access sets to exploit intermixing and wrap-around adjacency is

analogous to that for a single module system as discussed below.

Consider a read stream and write stream implementing a read-modify-write, i.e.

 and . Wrap-around adjacency results when accesses from and occur

at the beginning and end of a sequence, respectively. Within a given iteration, writes to

ai: εi〈 〉 ti S∈

ti tj

ti tj, S∈ vi vj= ti tj

tj

67

reference the same vector elements read from so that for each subsequent iteration,

reads from proceed as if no other vector is referenced.

The effect of wrap-around adjacency for an interleaved system is analogous to that for a

single module system, and reduction in read stream page miss count is modeled by the

function derived in 4.1.2. In employing this function for an interleaved

system, must model the reduction in page overhead achieved at the mod-

ule servicing the greatest number of accesses. Stride s is module stride and the number of

accesses c is the maximum number at any module; for read stream , and .

The number of vectors V is the number referenced by all streams in S.

Note that for an interleaved system, more than one pair of streams may exhibit wrap-

around adjacency. This can occur when two or more sets of streams implementing a read-

modify-write are nonconflicting. However, in the absence of alignment information, it is

assumed that every pair of streams conflict so that wrap-around adjacency benefits at most

one.

Intermixing reduces page overhead for write operations by interleaving accesses from a

pair of streams implementing a read-modify-write. Recall that for a single module, the

general intermix sequence as derived in section 4.1.1 is

(4)

For an interleaved system, the above sequence is modified to maximize concurrency as

well as minimize page overhead. However, the pattern of access observed at individual

modules is still that of the general intermix sequence.

For read stream and write stream , if the number of modules accessed equals one then

the optimal intermix sequence and intermix parameters are those derived in Theorem 4.6

for a single module system.

ti

ti

wadj s d c V, , ,()

wadj s d c V, , ,()

ti s ξi= c ψi=

… ri: c wj: c,〈 〉: h …, ,〈 〉

ti tj

68

If the number of modules accessed by read stream and write stream is greater than

one, then an optimal intermix sequence must maximize concurrency and minimize page

overhead. Recall that for the general intermix sequence, the intermix parameter c must be

a multiple of the intermix factor to optimize wide word access and maintain data depen-

dence. Then if the number of modules accessed by is a multiple of the intermix

factor , i.e. , the optimal intermix sequence is

Page miss count for write operations is 0, as corresponding read and write accesses occur

alternately at each module referenced. Concurrency is maximized as the number of con-

secutive accesses to and is equal to the number of modules accessed (or the number of

accesses remaining, whichever is smaller). Data dependence is maintained as the number

of consecutive accesses to each stream is a multiple of the intermix factor. Note that indi-

vidual modules observe the general intermix sequence (4); intermix parameter c is 1, as

read and write operations are initiated alternately at each module referenced, and h is at

the module servicing the maximum number of accesses.

If the number of modules accessed by read stream and write stream is greater than

one but not a multiple of the intermix factor , then the intermix sequence employed is

(5)

Concurrency is maximized for each stream as each of the modules referenced is

accessed with period . However, page overhead is not guaranteed to be minimal.

By definition, if intermixing reduces the page miss count for write operations then mini-

mum page overhead is achieved when the intermix parameter c is equal to the intermix

factor . As discussed above, if divides the number of modules referenced then

ti tj

tj ti()

θj θj�|� µj

… ri: εi wj: εj, �|� µi µj,[] …, ,〈 〉

ti tj

ψj

ti tj

θj

… ri: εi wj: εj,〈 〉 …, ,〈 〉

µj

µj

θj θj µj

69

accesses to and can be issued so that page miss count for write stream is 0 and con-

currency is maximized. Otherwise, interleaving sets of accesses from each of and

minimizes page overhead but may result in some of the modules referenced remaining

idle with each set of reads and writes. Thus, optimal intermix performance results in a

trade-off between minimum page overhead and maximum concurrency.

In the intermix sequence (5), concurrency is chosen over page overhead in a potentially

suboptimal solution; however, for small strides, the additional page overhead for perform-

ing all read and write accesses consecutively is minimal. Again, note that individ-

ual modules observe the general intermix sequence (4); intermix parameter c is for the

module servicing the maximum number of accesses, and h is 1.

The effect of intermixing for an interleaved system is analogous to that for a single module

system, and reduction in write stream page miss count is modeled by the function

 derived in section 4.1.1. In employing this function for an interleaved

system, must model the reduction in page miss count achieved at the

module servicing the greatest number of accesses. Stride s is module stride so that for

write stream , . The intermix parameters c and h are dependent on the intermix

sequence, and are derived in the preceding analysis. The number of vectors V is the num-

ber referenced by all streams in S.

Note that for an interleaved system, two or more pair of streams may benefit from inter-

mixing when each write stream is data dependent on each read stream. This can occur

when sets of streams implementing read-modify-writes are nonconflicting. For example, if

streams and and streams and are two pairs of corresponding read and write

streams, with and each data dependent on and , then both and can ben-

efit from intermixing if they are nonconflicting. However, it is assumed that every pair of

streams conflict. Thus, for this example, at most one of and may be considered to

benefit from intermixing.

ti tj tj

θj ti tj

µj

θj

εj εi()

ψj

imix s d c h V, , , ,()

imix s d c h V, , , ,()

tj s ξj=

tyr
tyw

txr
txw

tyw
txw

tyr
txr

tyw
txw

tyw
txw

70

5.4.2.3 Access Ordering Algorithm

For a set of streams S with no pair of streams implementing a read-modify-write, ordering

is trivial. Let through be read streams and through be write streams. An

access sequence that minimize page overhead while preserving dependence is

For streams S with one or more pair of streams implementing a read-modify-write, an

access sequence is defined by an ordering algorithm analogous to that derived in 4.3 for a

single module system:

Determine the total ordering of access sets , , that maximizes the reduction

in page overhead achievable via intermixing and wrap-around adjacency and that main-

tains the partial ordering of access sets defined by the dependence relations. Reduction

in page overhead for a particular ordering is calculated by the functions

 and as discussed in 5.4.2.2.

Though the algorithm is exponential in the number of streams in S, the stream count N

tends to be small, dependencies reduce the number of total orderings, and access sets not

involved in a read-modify-write may be coalesced by mode.

As the ordering algorithm presented above is completely analogous to that for a single

module of page-mode components, the example problem of section 4.3.1 serves to illus-

trate its application; only intermix parameters differ, as discussed in section 5.4.2.2.

5.4.2.4 Performance Predictor

For a set of streams S and an access sequence defined by the algorithm above, a perfor-

mance predictor is derived for the average time per data item accessed and the pro-

cessor-memory bandwidth . As alignments are unknown, it is assumed that accesses

from different streams do not exhibit concurrency. Thus, the models represent a lower

bound on performance.

t1 tNr
tNr 1+ tN

S̃ r1: ε1 … rNr
: εNr

wNr 1+ : εNr 1+ … wN: εN, , , , ,〈 〉=

ai: εi〈 〉 ti S∈

wadj s d c V, , ,() imix s d c h V, , , ,()

S̃

Tavg

BW

71

Functions modeling page overhead derived in chapter 4 for a single module system are

applicable to accesses at individual modules of an interleaved system. Recall that in gen-

eral, average page miss count is modeled by the function . For a read stream

that is wrap-around adjacent, average page miss count is modeled by the function

. Finally, for an intermixed write stream, average page miss count is modeled by

the function . Note that in employing these functions for an interleaved system,

stride s is module stride.

Access sequence is composed of some number of component sequences , where the

subscript is defined to be that of the stream referenced; for an intermix sequence the sub-

script is defined to be that of the read stream. Each must be in the form of

• a read access set ,

• a write access set , or

• an intermix sequence or .

If and the number of streams N is greater than one then , the time to

complete the sequence , is the sum of the maximum number of references at any module

 multiplied by the page-hit read cycle time and the average page miss count at that

module multiplied by the page miss time . For the special case of , the average

time to complete all reads is the product of the number of accesses and the average time

per access so that

η s d c V, , ,()

ω s d c, ,()

ρ s d c, ,()

S̃ S̃i

S̃i

ri: εi〈 〉

wi: εi〈 〉

ri: c wj: c,〈 〉: h〈 〉 ri: εi wj: εj, �|� µi µj,[]〈 〉

S̃i ri: εi〈 〉= T S̃i()

S̃i

ψi Tp/ r

Tp/ m N 1=

εi

T S̃i()

εi

Tp/ r η ξi di 1 V, , ,()Tp/ m+
µi 

  when � N 1=

ψiTp/ r ω ξi di ψi, ,()Tp/ m+ when� N 2≥ �and� ti�wrap-around�adj.

ψiTp/ r η ξi di ψi V, , ,()Tp/ m+ when� N 2≥ �and� ti�not�wrap-around�adj.





=

72

As discussed in section 5.4.2.2, at most one read access set may be considered wrap-

around adjacent and must be the first access set in the sequence . Note that in the page

overhead modeling function the number of vectors V is the number refer-

enced by all streams in S, as it is assumed that all access sets conflict.

Similarly, if and the number of streams N is greater than one then is

the sum of the maximum number of references at any module multiplied by the page-

hit write cycle time and the average page miss count at that module multiplied by the

page miss time . For the special case of , the average time to complete all

writes is the product of the number of accesses and the average time per access so that

Finally, if is one of the two possible intermix sequences or

 then the pattern of reference observed at individual modules is the

general intermix sequence . Intermix parameters c and h are derived in

5.4.2.2 for the module servicing the maximum number of accesses.

Then is the sum of the maximum number of accesses at any module multi-

plied by the sum of the page-hit read and page-hit write cycle times and the sum of the

average page miss count for read and write operations at that module multiplied by the

page miss time so that

S̃

η s d c V, , ,()

S̃i wi: εi〈 〉= T S̃i()

ψi

Tp/ w

Tp/ m N 1=

εi

T S̃i()
εi

Tp/ w η ξi di 1 V, , ,()Tp/ m+
µi 

  when� N 1=

ψiTp/ w η ξi di ψi V, , ,()Tp/ m+ when� N 2≥



=

S̃i ri: c wj: c,〈 〉: h〈 〉

ri: εi wj: εj, �|� µi µj,[]〈 〉

ri: c wj: c,〈 〉: h〈 〉

T S̃i() εi εj()

Tp/ m

T S̃i() ψi Tp/ r Tp/ w+() η ξi di ψi V, , ,() hρ ξj dj c, ,()+() Tp/ m+=

73

From the preceding analysis, the time to complete an iteration of the access sequence is

the sum of the times required to complete each component sequence ; i.e.

Then the average time per data item accessed is the time to complete all accesses in a

given iteration divided by the number of data items referenced, resulting in

The effective memory bandwidth is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

All times are in nanoseconds and bandwidth is measured in megabytes per second.

5.4.3 Simulation Results

For an interleaved memory system, access ordering can significantly increase effective

memory bandwidth over that achieved by the natural sequence of references through bet-

ter management of concurrency and minimization of page overhead. This is true even for

the case when stream alignment is unknown. To illustrate the improvement in perfor-

mance achieved via access ordering, and to validate performance models, simulation and

analytic results are presented for a range of scientific kernels.

S̃

S̃i

Ttot T S̃i()
S̃i S̃∈
∑=

Tavg

Tavg

Ttot

εiγi
ti S∈
∑

=

BW

BW

103 εiγidi
ti S∈
∑
Ttot

=

74

5.4.3.1 Uniform-access Components

Results are first presented for a non-buffered 4 module interleaved system of uniform-

access components. Module parameters are defined in Table 4, with sizes in bytes and

times in nanoseconds. These parameters are typical of commercially available SRAMs.

Table 5 presents simulation results comparing effective memory bandwidth achieved by

the natural versus ordered access sequence for the benchmark scientific kernels defined in

section 4.4. For access ordering, the depth of loop unrolling is 4. Vectors for all computa-

tions are double-precision and aligned to module .

Access ordering improves performance over the natural access sequence for the given

computations from 100% to 256%; the exception being LL-24 that references only a sin-

gle vector.

Table 6 compares performance of ordered accesses as calculated analytically and mea-

sured via simulation. Recall that analytic results represent a lower bound. For the compu-

tations and conditions modeled, analytic results accurately predict performance; however,

this is not necessarily the case.

Table 4 Module Parameters (Interleaved - Uniform)

Parameter Value

8

50

50

w

Tu/ r

Tu/ w

M0

75

5.4.3.2 Page-mode Components

Simulation results are presented for a non-buffered 2 module interleaved system of page-

mode components. Module parameters are defined in Table 7 and are representative of the

IPSC/860 node memory system.

Table 8 presents simulation results comparing effective memory bandwidth achieved by

the natural versus ordered access sequence for the set of benchmark kernels. Depth of loop

unrolling is 4, data is double-precision, and all vectors are aligned to module .

Table 5 Natural vs Ordered Performance (Interleaved - Uniform)

Computation
Natural Ordered

% Increase

daxpy 239.8 640.0 166.9

dvaxpy 213.2 640.0 200.2

LL-1 239.8 640.0 166.9

LL-3 319.4 640.0 100.4

LL-4 319.4 640.0 100.4

LL-5 239.8 640.0 166.9

LL-7 213.2 640.0 200.2

LL-11 319.4 640.0 100.4

LL-12 319.4 640.0 100.4

LL-20 180.0 640.0 255.6

LL-21 239.8 640.0 166.9

LL-22 199.9 640.0 220.2

LL-24 640.0 640.0 0.0

BW BW

M0

76

For this system, access ordering improves performance over the natural access sequence

for the given computations from 60% to 189%. Once again LL-24 is the exception as only

a single vector is referenced.

Table 6 compares effective memory bandwidth for ordered accesses as calculated analyti-

cally and measured via simulation. Once again, analytic results represent a lower bound

on performance. However, for the computations and conditions modeled, analytic and

simulation results differ by less than 1%. Note that as a result of start-up transients in the

Table 6 Analytic vs Simulation Results (Interleaved - Both)

Computation

Uniform-access Page-mode

Analysis Simulation Analysis Simulation

daxpy 640.0 640.0 127.9 127.9

dvaxpy 640.0 640.0 121.8 121.8

LL-1 640.0 640.0 100.9 100.9

LL-3 640.0 640.0 106.5 106.5

LL-4 640.0 640.0 106.3 106.1

LL-5 640.0 640.0 100.9 101.0

LL-7 640.0 640.0 102.3 102.3

LL-11 640.0 640.0 98.3 98.3

LL-12 640.0 640.0 98.3 98.3

LL-20 640.0 640.0 102.7 102.7

LL-21 640.0 640.0 124.7 123.4

LL-22 640.0 640.0 99.9 99.9

LL-24 640.0 640.0 317.5 316.9

BW BW BW BW

77

simulation, measured performance falls below the theoretical lower bound for several

computations.

5.4.4 Summary

Section 5.4 develops access ordering algorithms for a interleaved system of uniform-

access and page-mode components under the assumption that stream alignment is

unknown. Performance predictors are derived for the effective memory bandwidth

achieved by ordered accesses.

For a system of uniform-access components, access ordering attempts to maximize mod-

ule concurrency. The algorithm divides references into two phases: a read phase and a

write phase. Accesses from each phase are ordered to maximize concurrency for individ-

ual streams and increase the likelihood of concurrency among accesses from different

streams. Ordering is trivial, with a time complexity linear in the number of accesses. Per-

formance predictors assume that accesses from different streams can not be serviced con-

currently, and thus represent a lower bound.

For a system of page-mode components, the access ordering algorithm results in a

sequence consisting of (potentially intermixed) access sets arranged to maximize reduc-

tion in page overhead achievable via intermixing and wrap-around adjacency. No attempt

Table 7 Module Parameters (Interleaved - Page)

Parameter Value

8

4096

50

75

200

w

p

Tp/ r

Tp/ w

Tp/ m

78

is made to increase potential concurrency. The access ordering algorithm has a time com-

plexity exponential in the number of streams. Again performance predictors assume no

concurrency between access from different streams and thus represent a lower bound.

Simulation results are presented for interleaved systems of both uniform-access and page-

mode components. Access ordering is shown to significantly increase effective memory

bandwidth over that achieved by the natural sequence of reference for the set of bench-

mark kernels. Performance models are validated.

Table 8 Natural vs Ordered Performance (Interleaved - Page)

Computation
Natural Ordered

% Increase

daxpy 48.0 127.9 166.5

dvaxpy 42.7 121.8 185.2

LL-1 48.0 100.9 110.2

LL-3 63.9 106.5 66.7

LL-4 63.9 106.1 66.0

LL-5 48.0 101.0 110.4

LL-7 42.7 102.3 139.6

LL-11 60.9 98.3 61.4

LL-12 60.9 98.3 61.4

LL-20 35.6 102.7 188.5

LL-21 77.3 123.4 59.6

LL-22 39.0 99.9 156.2

LL-24 315.1 316.9 0.6

BW BW

79

Recall that modules in an interleaved system may be buffered, as depicted in Figure 8.

Buffering potentially improves performance by allowing accesses from nonconflicting

streams to be initiated under conditions that would otherwise result in the processor block-

ing on a busy module; i.e. buffering may increase concurrency among accesses from dif-

ferent streams. The effect of buffering on reference sequences generated by the ordering

algorithms presented above is not studied here.

5.5 Access Ordering Algorithms for Known Alignments

For a sequentially interleaved memory system, access ordering algorithms and perfor-

mance predictors are derived based on the assumption that stream alignments are known

at compile time. In this context, stream alignment refers to the module that services the

first access from a given stream. Note that if relative alignment is known, one stream can

be assumed aligned to a specific module with the remaining streams aligned appropriately;

relative alignment is sufficient to completely define module contention between accesses

from different streams. For a system of page-mode components, no assumption is made

concerning stream alignment with respect to pages.

Section 5.5.1 presents results for the optimal access of independent streams used in the

general ordering algorithms. Sections 5.5.2 and 5.5.3 derive access ordering algorithms

and performance predictors for systems of uniform-access and page-mode components,

respectively. The effectiveness of access ordering and accuracy of performance models are

demonstrated via simulation in section 5.5.4. Section 5.5.5 summarizes results.

5.5.1 Optimal Access of Independent Streams

Given a set S of independent streams, knowledge of stream alignment allows for the spec-

ification of an access sequence that results in optimal effective memory bandwidth. A

methodology for generating such a sequence is presented below.

80

To derive an optimal access sequence, the depth of loop unrolling b, chosen in mapping

logical streams to physical streams S, is restricted to values such that on each succes-

sive loop iteration the first access from each stream references the same module as the first

access from the previous iteration. Restricting b in this manner guarantees a repetitive

sequence of module references per stream per loop iteration.

Lemma 5.4: For stream , if the number of accesses per iteration is a multiple of

the number of modules referenced , i.e. , then on each successive loop iteration

references exactly the same set of modules in exactly the same sequence, with each mod-

ule servicing exactly accesses.

Proof: By Lemma 5.1, stream references modules in a sequence with period .

Therefore, if then each set of accesses must reference exactly the same set of

modules in exactly the same sequence with accesses per module.

Loop Unrolling Restriction: For a set S of independent streams, to derive an optimal

access sequence the depth of loop unrolling b, chosen in forming S, is restricted to values

such that for all , .

For most scientific codes, the number of accesses per iteration from a given stream equals

the depth of loop unrolling. Given a set of streams S, if for all then b is

restricted to a multiple of the maximum number of modules accessed by any stream; i.e.

 for all and .

In the context of scalar microprocessor systems, the number of modules in an interleaved

memory is expected to be modest. Thus while the loop unrolling restriction potentially

results in a large value of b, for most codes this is not the case.

For N independent streams S and a loop depth b satisfying the loop unrolling restriction,

an optimal access sequence is derived as follows. Consider the mapping of stream

S L()

ti S∈ εi

µi µi�|� εi ti

ψi

ti µi µi

µi�|� εi εi µi

ψi εi µi⁄=

ti S∈ µi�|� εi

εi b= ti S∈

b k max µi()() km≤= ti S∈ k Z+∈

81

accesses to modules that results from a single loop iteration when all accesses from each

stream are initiated consecutively, as in the sequence

At each module , the relative sequence of accesses serviced can be repre-

sented by , respectively. Sequences are relative in the sense

that the order in which stream accesses are serviced is specified, not the particular stream

accesses in a given loop iteration. For example, specifies

that module satisfies accesses from stream , followed by accesses from

stream followed by accesses from stream ; the specific accesses serviced from

each of the three steams, e.g. , is alignment dependent. Note that are con-

stant for all iterations as a result of the loop unrolling restriction.

Figure 12 presents the Module Sequence Algorithm (MSA) for defining the sequences

 that result from a consecutive access sequence. The algorithm defines

 by mapping streams in decreasing order of number of modules accessed;

i.e. is mapped prior to if .

Lemma 5.5: Given streams S and sequences derived via the Module

Sequence algorithm, each round robin selection of accesses from , i.e. the set

of accesses formed by taking the ‘next’ access from each sequence , has the

property that for each stream referenced: there are exactly accesses from , and

accesses from do not conflict, i.e. do not reference a module referenced by any other

access in the set.

Proof: Located in Appendix B.1.

a1: ε1 … aN: εN, ,〈 〉

M0 … Mm 1−, ,

A0 … Am 1−, , A0 … Am 1−, ,

A0 a1: ψ1 a3: ψ3 a4: ψ4, ,〈 〉=

M0 ψ1 t1 ψ3

t3 ψ4 t4

a1
k A0 … Am 1−, ,

A0 … Am 1−, ,

A0 … Am 1−, ,

ti tj µi µj>

A0 … Am 1−, ,

A0 … Am 1−, ,

A0 … Am 1−, ,

ti µi ti

ti

82

Theorem 5.6: Given a set S of independent streams and sequences derived

via the Module Sequence algorithm, is an optimal access

sequence.

Proof: Accesses from are initiated round robin. By Lemma 5.5, for each

round robin sequence of accesses it is observed that

• for each stream referenced exactly accesses are initiated, maximizing concurrency

for stream ,

• accesses from a stream do not conflict, maximizing concurrency between accesses

from different streams, and

• the total number of accesses is equal to the number of modules that service the remain-

ing accesses, maximizing module utilization.

Furthermore, for a given loop iteration, accesses from a stream are serviced consecu-

tively at each module referenced, minimizing page overhead when applicable.

// for each stream in the set of streams S selected

// in decreasing order of number of modules referenced.

for all selected in decreasing order of

// for each module accessed by

for all

// concatenate accesses from to the sequence

A0 … Am 1− ∅= = =

ti

ti S∈ µi

Mj ti

Mj Zi∈

ti Aj

Aj Aj ai: ψi〈 〉,〈 〉←

Figure 12 Module Sequence Algorithm

A0 … Am 1−, ,

S̃ A0 … Am 1−, ,[]〈 〉=

A0 … Am 1−, ,

ti µi

ti

ti

ti

83

To illustrate, an optimal access sequence is derived for a set of three read streams

. For each stream data size equals word size, stride of access is 2 and the

number of accesses per iteration is equal to the depth of loop unrolling; i.e.

. Assume a 4 module interleaved system with stream aligned to

module , and streams and aligned to module . Then each stream accesses 2

modules, so that by the loop unrolling restriction b is a multiple of 2.

For , assume the MSA defines the following sequences: , ,

 and . The resulting optimal access sequence

defines the linear sequence of references

The above sequence is annotated to illustrate both the round robin selection of accesses

and the specific mapping of accesses to modules as determined by alignment; e.g.

 specifies chosen from sequence generates a reference to module .

Note that in the general case of mapping to a linear sequence of refer-

ences, a particular access selected from a relative sequence does not necessarily

specify a reference to module ; may in fact specify access to any module in , the

set of all modules referenced by stream . This is demonstrated in the example above for

accesses to stream .

5.5.1.1 Request Buffering

For an interleaved system, modules may be buffered as depicted in Figure 8. Ordering

accesses as above results in a sequence that references each module at most once per

S tx ty tz, ,{ }=

εx εy εz b= = = tx

M3 ty tz M0

b 2= A0 ry rz,〈 〉= A1 rx〈 〉=

A2 ry rz,〈 〉= A3 rx〈 〉=

S̃ A0 A1 A2 A3, , ,[]〈 〉 ry rz,〈 〉 rx〈 〉 ry rz,〈 〉 rx〈 〉, , ,[]〈 〉= =

ry A0 M0,() rx A1 M3,() ry A2 M2,() rx A3 M1,() rz A0 M0,() rz A2 M2,(), , , , ,〈 〉

rx A1 M3,() rx A1 M3

A0 … Am 1−, ,[]〈 〉

ai Ak

Mk ai Zi

ti

tx

84

round robin selection of accesses from . If individual accesses require

an equal amount of time to complete, then the sequence achieves opti-

mal effective memory bandwidth without the need for request buffering. This is the case

for a system of uniform-access components and streams of the same mode.

If individual access times vary, then the sequence provides optimal

bandwidth only if buffering is sufficient to eliminate access gaps that result in increased

completion time for all accesses in a loop. An access gap is defined as a period of time

during which a module is idle due to the memory system blocking on a busy module. Such

is the case for an interleaved system of page-mode components. For this analysis, buffer-

ing is assumed sufficient so that the sequence results in optimal perfor-

mance.

5.5.2 Interleaved Storage and Uniform-access Components

For an interleaved system of uniform-access components, an access ordering algorithm

need only maximize module concurrency. Unfortunately, in the presence of dependencies,

determining an access sequence that maximizes concurrency is NP-complete with a time

complexity exponential in the number of accesses; this result is obtained by restriction to

precedence constrained scheduling [GaJo79]. As an optimal solution is intractable, a heu-

ristic solution is presented below.

In defining an access sequence for streams S, accesses are performed in two phases: a read

phase and a write phase. By the stream interaction restriction, streams associated with

each phase are independent. Thus, an optimal access sequence can be derived for each

phase based on the results of section 5.5.1.

For streams S, is defined as the subset of all read streams and the subset of all write

streams; loop depth b is assumed to satisfy the loop unrolling restriction defined in 5.5.1.

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, ,[]〈 〉

Sr Sw

85

Sequences and are defined by the MSA for and ,

respectively. Then the access sequence employed is

In the above sequence, accesses associated with each phase are ordered to maximize con-

currency, resulting in optimal effective memory bandwidth for that phase. However, the

aggregate solution is likely suboptimal as potential concurrency among read and write

accesses is not exploited. Dependencies are maintained as all read accesses are performed

prior to any writes.

5.5.2.1 Performance Predictor

For a set of streams S and an access sequence as defined above, a performance predictor

is derived for the average time per data item accessed and effective processor-mem-

ory bandwidth .

Let define the time required to complete all read accesses for a given loop iteration.

From the sequence , represent the relative sequences of read operations

serviced at modules respectively. As accesses proceed concurrently at all

modules, the time to complete all reads is equal to the time to complete accesses at the

module servicing the greatest number of reads. Let define the number of read opera-

tions in the sequence . Then is the maximum number of accesses at any module mul-

tiplied by the uniform-access read cycle time ; i.e.

P0 … Pm 1−, , Q0 … Qm 1−, , Sr Sw

S̃ P0 … Pm 1−, ,[] Q0 … Qm 1−, ,[],〈 〉=

S̃

Tavg

BW

Tr

S̃ P0 … Pm 1−, ,

M0 … Mm 1−, ,

Pi

Pi Tr

Tu/ r

Tr max P0 … Pm 1−, ,()Tu/ r=

86

 is defined as the time to complete all write operations for a given iteration and is com-

puted analogously to , so that

An upper bound on the time to complete all accesses in a given iteration, and hence a

lower bound on performance, is the sum of the time to complete all read and write

accesses; i.e.

Note that is an upper bound as it assumes no concurrency among read and write oper-

ations at the boundaries between the read and write phases of the sequence . An exact

model of performance can not be expressed as a closed form equation.

From the above, the average time per data item accessed is computed as the time to

complete all accesses in a given iteration divided by the number of data items referenced,

resulting in

The effective memory bandwidth is the number of bytes of relevant data transferred

per iteration divided by the time to complete all access; i.e.

All times are assumed to be in nanoseconds and bandwidth is measured in megabytes per

second.

Tw

Tr

Tw max Q0 … Qm 1−, ,()Tu/ w=

Ttot Tr Tw+=

Ttot

S̃

Tavg

Tavg

Ttot

εiγi
ti S∈
∑

=

BW

BW

103 εiγidi
ti S∈
∑
Ttot

=

87

5.5.3 Interleaved Storage and Page-mode Components

For an interleaved system constructed from page-mode components, optimal performance

results from an access sequence that balances maximizing concurrency with minimizing

page overhead to achieve minimum completion time. Determining such a sequence is NP-

complete with a time complexity exponential in the number of accesses; this result is

obtained by restriction to precedence constrained scheduling [GaJo79]. As an optimal

solution is intractable, a heuristic solution analogous to that derived in 5.5.2 is presented

below.

In the sections that follow, a base access sequence is first developed for computations that

do not specify a read-modify-write. Intermixing and wrap-around adjacency are then

employed to reduce page overhead for computations implementing this operation. The

general access ordering algorithm is presented and a performance predictor is derived.

5.5.3.1 A Base Access Sequence

In defining an access sequence for streams S, accesses are performed in two phases: a read

phase and a write phase. As streams associated with each phase are independent, an opti-

mal access sequence can be derived for a phase based on the results of section 5.5.1.

For streams S, is defined as the subset of all read streams and the subset of all write

streams; loop depth b is assumed to satisfy the loop unrolling restriction defined in 5.5.1.

Sequences and are defined by the MSA for and ,

respectively. Then the base access sequence employed is

In the above sequence, accesses associated with each phase are ordered to maximize con-

currency and minimize page overhead. Again, the aggregate solution is likely suboptimal

Sr Sw

P0 … Pm 1−, , Q0 … Qm 1−, , Sr Sw

S̃B P0 … Pm 1−, ,[] Q0 … Qm 1−, ,[],〈 〉=

88

as potential concurrency among read and write accesses is not exploited. Dependencies

are maintained as all read accesses are performed prior to any writes.

5.5.3.2 Intermixing and Wrap-around Adjacency

For streams S implementing a read-modify-write, intermixing and wrap-around adjacency

may reduce page overhead in each phase of the base sequence , potentially reducing

completion time for all accesses. Note that in this context, intermixing refers to read

accesses immediately preceding corresponding write accesses at a given module; read and

write operations are not interleaved so that accesses associated with each phase remain

separate.

In deriving the base sequence , sequences and are defined

via the MSA by mapping streams in decreasing order of number of modules referenced.

Intermixing and wrap-around adjacency are employed by choosing a legal mapping order

such that one or more pair of streams benefits from these relationships.

5.5.3.3 Access Ordering Algorithm

For a set of stream S with no pair of streams implementing a read-modify-write, the access

sequence employed is the base sequence ; i.e. . Access within each phase of

can be mapped in any order that satisfies the requirements of the MSA.

If S contains one or more pairs of streams implementing a read-modify-write, then an

access sequence in the form of the base sequence is derived as follows:

Given streams S with read streams and write streams , determine the legal order

for mapping elements of and to form and , respec-

tively, in the base sequence that results in the minimum completion time for all

accesses in a given loop iteration.

S̃B

S̃B P0 … Pm 1−, , Q0 … Qm 1−, ,

S̃B S̃ S̃B= S̃

S̃ S̃B

Sr Sw

Sr Sw P0 … Pm 1−, , Q0 … Qm 1−, ,

S̃B

89

Note that for a given ordering of stream mappings, simply computing reduction in page

overhead at a particular module is not sufficient as reduction in completion time for all

accesses is not guaranteed. Thus for each ordering, the average time to complete an itera-

tion of the sequence must be computed as derived below in section 5.5.3.5.

Determining the order for stream mappings that results in minimum average completion

time is exponential in the number of streams in S. However, as stated previously for access

ordering algorithms with similar time complexity, the stream count N tends to be small.

Furthermore, the number of legal mappings may be severely restricted by the require-

ments of the MSA. Finally, page overhead is only affected by the relative mapping order

of streams involved in read-modify-writes, again reducing the number of mapping orders

that need be considered. The result is an efficient algorithm.

5.5.3.4 Example Problem

The following example illustrates the application of the ordering algorithm defined above.

Consider the vaxpy computation

that generates the four streams , where ,

, , and .

For each vector assume data size equals word size and stride of access is defined by

 and . Assume a 2 module interleaved system with all streams aligned

to module . The loop depth b is chosen to be 2, so that .

Recall that the MSA maps streams in decreasing order of number of modules accessed.

Thus the ordering algorithm considers two legal forms of the base sequence :

• and

• .

i∀ yi aixi yi+←

S ta tx tyr
tyw

, , ,{ }= ta a sa da r, , ,() : εa=

tx x sx dx r, , ,() : εx= tyr
y sy dy r, , ,() : εyr

= tyw
y sy dy w, , ,() : εyw

=

sa 1= sx sy 2= =

M0 εa εx εyr
εyw

2= = = =

S̃B

ra rx rx ryr
ryr

, , , ,〈 〉 ra〈 〉,[] wyw
wyw

,〈 〉 〈 〉,[],〈 〉

ra ryr
ryr

rx rx, , , ,〈 〉 ra〈 〉,[] wyw
wyw

,〈 〉 〈 〉,[],〈 〉

90

In the first sequence write accesses benefit from intermixing, as the corresponding read

accesses immediately precede at module . In the second sequence intermixing is not

exploited. Note that wrap-around adjacency can not occur as accesses to stream must be

initiated first at both modules, since and .

Thus the access ordering algorithm for the vaxpy computation results in the first of the two

sequences listed above, generating the corresponding linear sequence of references

5.5.3.5 Performance Predictor

For a set of streams S and an access sequence defined as above, a performance predictor

is derived for the average time per data item accessed and the processor-memory

bandwidth .

Functions modeling page overhead derived in chapter 4 for a single module system are

applicable to accesses at individual modules of an interleaved system. Recall that in gen-

eral, average page miss count is modeled by the function . For stream accesses

that are wrap-around adjacent or intermixed, average page miss count is modeled by the

functions and respectively. In employing these functions for an inter-

leaved system, stride s is module stride and the number of accesses c is the number at each

module; i.e. for a stream , and .

In the sequence , represent the sequences of read accesses serviced at

modules . Each serviced at module is composed of some number of

component sequences , where the first subscript i is defined to be that of the stream

referenced. Thus, represents the read access set . Similarly, is the

sequence of write accesses serviced at and represents the write access set

.

M0

ta

µa 2= µx µyr
µyw

1= = =

S̃ ra ra rx rx ryr
ryr

, , , wyw
wyw

,, , ,〈 〉=

S̃

Tavg

BW

η s d c V, , ,()

ω s d c, ,() ρ s d c, ,()

ti s ξi= c ψi=

S̃ P0 … Pm 1−, ,

M0 … Mm 1−, , Pk Mk

P i k,()

P i k,() ri: ψi〈 〉 Qk

Mk Q i k,()

wi: ψi〈 〉

91

The time required to complete all accesses in the sequence is the sum of the number

of accesses multiplied by the page-hit read cycle time and the average page miss

count multiplied by the page miss time ; i.e.

Note that in modeling page miss count, conditions that determine appropriate use of mod-

eling functions must be applied in the context of the module accessed. is wrap-

around adjacent if there exists a such that read stream and write stream imple-

ment a read-modify-write, is the first access set in and is the last access

set in ; then correctly models page overhead. Otherwise,

is the applicable model where the number of vectors V is the number accessed at module

. For clarity, functions modeling page overhead are subscripted with the module num-

ber to denote context.

Similarly, the time required to complete all accesses in the sequence is the sum of

the number of accesses multiplied by the page-hit write cycle time and the aver-

age page miss count multiplied by the page miss time , so that

In this context, is intermixed if there exists a such that read stream and

write stream implement a read-modify-write, is the last access set in and

 is the first access set in .

P i k,()

ψi Tp/ r

Tp/ m

T P i k,()() ψiTp/ r

ωk ξi di ψi, ,()Tp/ m when� P i k,() �is�wrap-around�adjacent

ηk ξi di ψi V, , ,()Tp/ m otherwise



+=

P i k,()

Q j k,() ti tj

P i k,() Pk Q j k,()

Qk ωk ξi di ψi, ,() ηk ξi di ψi V, , ,()

Mk

Q i k,()

ψi Tp/ w

Tp/ m

T Q i k,()() ψiTp/ w

ρk ξi di ψi, ,()Tp/ m when� Q i k,() �is�intermixed

ηk ξi di ψi V, , ,()Tp/ m otherwise



+=

Q i k,() P g k,() tg

ti P g k,() Pk

Q i k,() Qk

92

From the preceding analysis, the time to complete all read operations in the sequence is

the sum of the time to complete all accesses in each component sequence; i.e.

Then the time to complete all read accesses in an iteration of the sequence is the maxi-

mum time to complete read operations at any module, so that

Similarly, the time to complete all write operations in the sequence is the sum of the

time to complete all accesses in each component sequence; i.e.

And the time to complete all write operations in an iteration of the sequence is

Note the tacit assumption in computing and is that buffering is sufficient so that

each phase of the sequence proceeds without access gaps that result in increased comple-

tion time for that phase; this is discussed in section 5.5.1.1.

Pk

T Pk() T P i k,()()
P i k,() Pk∈

∑=

S̃

Tr max T P0() … T Pm 1−(), ,()=

Qk

T Qk() T Q i k,()()
Q i k,() Qk∈

∑=

S̃

Tw max T Q0() … T Qm 1−(), ,()=

Tr Tw

93

An upper bound on the time to complete all accesses in a given iteration, and hence a

lower bound on performance, is the sum of the time to complete all read and write

accesses so that

 is an upper bound as it assumes no concurrency among read and write operations at

the boundaries between the read and write phases. An exact model of performance can not

be expressed as a closed form equation. Note that is the value used by the access

ordering algorithm in determining the order for stream mappings that results in minimum

completion time.

From the above, the average time per data item accessed is computed as the time to

complete all accesses in a given iteration divided by the number of data items referenced,

resulting in

The effective memory bandwidth , in megabytes per second, is the number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

Ttot Tr Tw+=

Ttot

Ttot

Tavg

Tavg

Ttot

εiγi
ti S∈
∑

=

BW

BW

103 εiγidi
ti S∈
∑
Ttot

=

94

5.5.4 Simulation Results

For scientific kernels previously simulated, vector strides are such that all m modules in a

sequentially interleaved system are referenced by each stream for any . Thus

ordering algorithms do not benefit from alignment information as all streams are conflict-

ing. Simulation and analytic results for algorithms derived under the assumption of known

alignment are identical to those presented in section 5.4.3 for algorithms that assume

alignment is unknown.

Consider again the vaxpy computation

that generates the four streams , where ,

, , and .

For each vector assume data size equals word size, thus , and

stride of access is defined by and . Assume a non-buffered 4 module

system of page-mode components with module parameters as previously defined in

Table 7. Streams and are aligned to module and streams and are aligned to

module .

Table 9 presents simulation and analytic results comparing performance of the vaxpy

computation ordered under the assumptions of known and unknown alignment for a range

of loop depths b. Assuming known alignment, access ordering improves performance over

the natural reference sequence from 96% to 216%; under the assumption of unknown

alignment performance is improved from 49% to 139%. Note that for unknown alignment

the performance predictor is below the effective bandwidth achieved, as all streams are

incorrectly assumed to be conflicting.

m 2n=

i∀ yi aixi yi+←

S ta tx tyr
tyw

, , ,{ }= ta a sa da r, , ,() : εa=

tx x sx dx r, , ,() : εx= tyr
y sy dy r, , ,() : εyr

= tyw
y sy dy w, , ,() : εyw

=

εa εx εyr
εyw

b= = = =

sa 1= sx sy 2= =

ta tx M0 tyr
tyw

M1

95

For this example knowledge of stream alignment allows accesses from nonconflicting

streams to be scheduled to proceed concurrently, resulting in increased performance over

the case where alignment is unknown.

5.5.5 Summary

Section 5.5 develops access ordering algorithms for an interleaved system of uniform-

access and page-mode components under the assumption that alignment is known. Perfor-

mance predictors are derived for the effective memory bandwidth achieved by ordered

accesses.

For a system of uniform-access components, the ordering algorithm divides accesses into

two phases: a read phase and a write phase. Accesses associated with each phase are

ordered to maximize concurrency, resulting in optimal effective memory bandwidth for

that phase. The aggregate solution is likely suboptimal, as potential concurrency among

read and write accesses is not exploited. Ordering is trivial with a time complexity of

 where N is the number of streams, representing the implied sort in the

Table 9 Simulation and Analytic Results (Interleaved - Page)

Algorithm b

Simulation Analysis

% Increase
Natural Ordered Ordered

Unknown
Alignment

4 93.0 138.3 127.9 48.7

8 93.0 192.9 182.5 107.4

12 93.0 222.0 212.9 138.7

Known
Alignment

4 93.0 182.4 182.5 96.1

8 93.0 254.9 255.0 174.1

12 93.0 293.5 293.9 215.6

BW BW BW

O N lg N()()()

96

MSA. Performance predictors assume no concurrency at the boundaries between read and

write phases and thus represent a lower bound.

For a system of page-mode components, ordering is performed analogous to the uniform-

access case. However intermixing and wrap-around adjacency are employed to reduce

page overhead in each phase, potentially reducing completion time for all accesses. The

ordering algorithm has a time complexity exponential in the number of streams.

Recall that modules in an interleaved system may be buffered, as depicted in Figure 8. The

tacit assumption for systems of page-mode components is that buffering is sufficient so

that each phase of the sequence proceeds without access gaps that result in increased com-

pletion time for that phase; this is discussed in section 5.5.1.1. If buffering is not sufficient,

performance is degraded and performance predictors are no longer guaranteed to represent

a lower bound.

97

6 Multicopy Architecture

This chapter derives access ordering algorithms and performance predictors for a multi-

copy memory system as depicted in Figure 13. A multicopy memory is proposed here as a

parallel memory system consisting of m modules of replicated data such that if

represents the contents of address a at module , then .

The multicopy architecture is defined to function as follows. Read accesses specify the

module to which the request is to be directed. If input buffer space is available then the

request is queued at the appropriate module, otherwise the memory system blocks until a

buffer slot is freed. Write accesses are broadcast to all modules to maintain consistency

among copies. If the input buffer is full at one or more modules, the memory system

blocks until the appropriate buffer slots are freed; all writes are queued simultaneously.

* Mk a,()

Mk * M0 a,() … * Mm 1− a,()= =

. . .M1M0 Mm-1

A
dd

re
ss

 S
ou

rc
e

D
at

a
Si

nk

Figure 13 Multicopy Architecture

98

Access requests are serviced at a module in the order queued, with data from read requests

placed in the module’s output buffer.

Recall that for parallel memory systems it is assumed read accesses are tagged and that

data may be returned in the requested order at the rate satisfied. In modeling maximum

effective bandwidth, the request rate is assumed sufficient such that performance is limited

by the memory. These assumptions are identical to those for the sequentially interleaved

architecture analyzed in chapter 5.

A multicopy memory system increases the potential for read access concurrency, as maxi-

mum concurrency is achievable for all strides of reference. Furthermore, for systems of

page-mode components, read stream page overhead can be more effectively amortized by

directing stream accesses to a smaller number of modules. However write operations must

be broadcast to maintain coherence, serializing an otherwise parallel operation. Thus it is

intuitive that the relative performance of a multicopy system is dependent on a high read

to write ratio; simulation results verify this to be the case.

Section 6.1 discusses the problem space for efficient utilization of a multicopy memory.

Notation is developed in section 6.2 for expressing the mapping of read accesses to mod-

ules. Sections 6.3 and 6.4 derive access ordering algorithms and performance predictors

for a multicopy system of uniform-access and page-mode components, respectively. The

effectiveness of a multicopy architecture and accuracy of performance models are demon-

strated via simulation in section 6.5. Section 6.6 summarizes results.

6.1 Problem Dimensions

In general, to efficiently utilize a multicopy system, stream accesses must be ordered to

• maximize concurrency and

• minimize page overhead, when applicable.

99

Ordering reads to maximize concurrency is a matter of distributing accesses uniformly

across modules. Write accesses are broadcast to all modules so that concurrency is not an

issue.

Techniques for minimizing page overhead come directly from analytic results derived in

chapter 4 for a single memory module. Page miss count for a given stream is minimized if

elements of that stream are referenced consecutively from a single module on each loop

iteration. For two streams that implement a read-modify-write, page miss count may fur-

ther be reduced via intermixing and wrap-around adjacency.

Optimal effective memory bandwidth results from an access sequence that minimizes

completion time for all accesses in a loop. As with a sequentially interleaved memory,

such a sequence usually requires a trade-off between minimizing page overhead and max-

imizing concurrency.

To illustrate, consider mapping onto a 2 module system accesses from the three read

streams , and . Assume all streams are stride 1 with 4 accesses per stream per itera-

tion. Figure 14 demonstrates the time to complete a typical loop iteration for three differ-

ent mappings of accesses to modules given that an access to the current page requires 1

time unit and a page miss incurs a 3 time unit penalty . Figure 14(a)

depicts a mapping that results in the minimum page miss count, with all accesses from a

given stream serviced by a single module. Figure 14(b) depicts a mapping that maximizes

concurrency for a given stream by distributing accesses evenly across all modules. Finally,

Figure 14(c) depicts an optimal solution that balances minimizing page overhead and

maximizing concurrency.

tx ty tz

Tp/ r() Tp/ m()

100

6.2 Module Access Notation

To facilitate the specification of an access sequence that maps read accesses to specific

modules, the MAP notation developed in section 3.1 is augmented as follows. For individ-

ual read accesses, denotes access to the next element of stream from module

. This notation augments the previous definition of with the specification of the mod-

ule to which the access is directed.

0 2 4 6 8 10 12 14

Time (units)

(a)

(b)

(c)

Figure 14 Minimizing Completion Time

16

x x x x z z z z

y y y y

x x y y z z

x x y y z z

x x x x z z

y y y y z z

M0

M1

M0

M1

M0

M1

r i Mk,() ti

Mk ri

101

6.3 Multicopy Storage and Uniform-access Components

Deriving an optimal access ordering algorithm for a multicopy system of uniform-access

components is trivial. Concurrency is maximized and dependence maintained by distribut-

ing read accesses uniformly across all modules and initiating all reads prior to the first

write.

For streams S, let through be read streams and through be write streams.

Let R be the total number of read accesses, so that

Then m sequences are defined such that the R accesses are evenly distrib-

uted among the sequences. That is, of the sequences contain

reads, with the remaining sequences containing read accesses.

Furthermore, accesses in sequence are tagged for service at module .

Then an optimal access sequence is

The above sequence maximizes concurrency among read accesses while maintaining

dependencies. Note that module buffering is not required to achieve optimal bandwidth, as

read access times are uniform and read requests are initiated across modules in a strict

round-robin sequence.

t1 tNr
tNr 1+ tN

R εi
ti S∈

mi r=

∑=

A0 … Am 1−, ,

m R�mod� m()− R m⁄

R�mod� m() R m⁄ 1+

Ak Mk

S̃ A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,〈 〉=

102

6.3.1 Performance Predictor

For streams S and an access sequence defined as above, a performance predictor is

derived for the average time per data item accessed and processor-memory band-

width .

Let be the time required to complete all read accesses. Then is the time to complete

accesses at the module servicing the greatest number of requests, that is

Similarly, let be the time to complete all write accesses. By definition every write

request generates a memory access that is serviced at all modules, so that

Then the average time per data item accessed is the time to complete all accesses in a

given iteration divided by the number of data items referenced, i.e.

S̃

Tavg

BW

Tr Tr

Tr

R
m

Tu/ r when R�mod� m 0=

R
m

1+() Tu/ r when R�mod� m 1≥





R
m

Tu/ r=

=

Tw

Tw εi
ti S∈

mi w=

∑ Tu/ w=

Tavg

Tavg

Tr Tw+

εiγi
ti S∈
∑

=

103

And the effective memory bandwidth is the number of bytes of relevant data trans-

ferred per iteration divided by the time to complete all accesses, so that

All times are in nanoseconds and sizes in bytes, with bandwidth measured in megabytes

per second.

6.4 Multicopy Storage and Page-mode Components

For a multicopy system of page-mode components, optimal performance results from a

sequence that balances maximizing concurrency with minimizing page overhead to

achieve minimum completion time. Determining such a sequence is NP-complete with a

time complexity exponential in the number of accesses; this result is obtained by restric-

tion to multiprocessor scheduling [GaJo79]. As an optimal solution is intractable, a heuris-

tic solution is presented below.

In the sections that follow, a base access sequence and module reference model are devel-

oped. Intermixing and wrap-around adjacency are then discussed for computations imple-

menting a read-modify-write. A heuristic is developed that determines the order and

mapping for read operations. Finally, a general ordering algorithm is presented and a per-

formance predictor derived.

6.4.1 A Base Access Sequence

For streams S, let through be read streams and through be write streams.

Then the base access sequence employed is

BW

BW

103 εiγidi
ti S∈
∑

Tr Tw+=

t1 tNr
tNr 1+ tN

S̃B A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,〈 〉=

104

In the above, the sequences specify read operations for streams through

 where accesses in are directed to module . The read sequences

are defined by a mapping heuristic that attempts to minimize completion time. Write

accesses are grouped by stream to minimize page overhead; recall that writes are broad-

cast so that concurrency is not an issue. Write accesses follow reads, maintaining depen-

dence relations. Intermixing and wrap-around adjacency are employed at the boundary of

read and write accesses in a greedy fashion.

6.4.1.1 Request Buffering

For a multicopy system, modules may be buffered as depicted in Figure 13. Ordering

accesses as above results in a sequence that references each module at most once per

round robin selection of accesses . Since individual access times vary,

the sequence provides maximum bandwidth only if buffering is suffi-

cient to eliminate access gaps that result in increased completion time for all accesses in a

loop. Recall that an access gap is defined as a period of time during which a module is idle

due to the memory system blocking on a busy module. For this analysis, buffering is

assumed sufficient so that results in maximum performance for that

sequence.

6.4.2 A Module Reference Model

For defined in the base access sequence , assume that references from

each read stream are distributed uniformly among some number of sequences, and

hence modules, . Furthermore, assume all accesses from in a sequence are

arranged consecutively. Such a sequence arises from the mapping heuristic derived in sec-

tion 6.4.4.

A0 … Am 1−, , t1

tNr
Ak Mk A0 … Am 1−, ,

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, ,[]〈 〉

A0 … Am 1−, , S̃B

ti S∈

µ̂i ti Ak

105

Mapping accesses as above minimizes page miss count for references serviced at a given

module. However, the absolute page miss count is dependent on the overall pattern of ref-

erence.

To illustrate, 4 accesses from a stream and 2 from a stream are mapped to a 2 module

system as depicted in Figure 15. For the references of Figure 15(a), elements of stream

are accessed alternately from each module so that the observed stride at a given module is

. Such a mapping results from the sequence .

Alternatively, references depicted in Figure 15(b) access consecutive elements of at

each module so that the observed stride is . Such a mapping results from the sequence

.

For accesses from the same stream, page miss count at a given module is a function of the

distance between individual references. As demonstrated above, this distance is dependent

on the overall pattern of reference and as such can not be expressed as a closed form equa-

tion.

For the remainder of this discussion, the observed stride of reference for accesses from a

read stream serviced at a given module is modeled as the product of the stream stride

and the number of modules referenced; i.e.

The module stride is the stride that results if elements of are accessed alternately

from each of the modules referenced. Thus performance models represent estimated

performance rather than bounds.

Note that modules accessed and module stride are analogous to parameters derived

in chapter 5 for a sequentially interleaved architecture and are represented by the same

symbols augmented with a hat (^).

ta tb

ta

2sa r a 0,() : 2〈 〉 r a 1,() : 2 r b 1,() : 2,〈 〉,[]〈 〉

ta

sa

r a 0,() : 2〈 〉 r b 1,() : 2 r a 1,() : 2,〈 〉,[]〈 〉

ti

ξ̂i µ̂isi=

ξ̂i ti

µ̂i

µ̂i ξ̂i

106

6.4.3 Greedy Intermixing and Wrap-around Adjacency

For streams S implementing a read-modify-write, intermixing and wrap-around adjacency

may reduce page miss count in each phase of the base sequence , potentially reducing

completion time for all accesses. Note that in this context, intermixing refers to read

accesses immediately preceding corresponding write accesses at a given module; read and

write operations are not interleaved.

Because the base sequence separates accesses by mode and because write accesses are

broadcast, at most two pairs of streams may benefit from intermixing and wrap-around

adjacency. Furthermore, intermixing generally reduces the time for writes to complete

only if corresponding read accesses reference all modules.

Intermixing and wrap-around adjacency are employed in a greedy fashion by choosing

prior to access mapping the two pair of streams most likely to benefit from these relation-

(a)

(b)

Figure 15 Dependence of Module Stride on Reference Pattern

M0

M1

M0

M1

ra
1

ra
3

ra
2

ra
4 rb

1
rb

2

ra
1 ra

2

rb
1 rb

2 ra
3

ra
4

S̃B

107

ships. From streams S, and are a pair of read and write streams, respec-

tively, designated to be mapped for wrap-around adjacency. Similarly, and

are designated to be mapped for intermixing. All else being equal, streams with the small-

est stride have the lowest average page miss count per access and hence the most to gain;

 () and () are chosen accordingly. For S consisting of fewer

than two read-modify-write operations, and are chosen in that order, with

one or both remaining undefined.

Then in the base sequence , the first write sequence specifies accesses

to stream and the last write sequence specifies accesses to , if

defined. Similarly, in defining , the read mapping heuristic insures that

accesses to occur at the beginning of a sequence and accesses to occur at

the end, as appropriate.

6.4.4 Read Mapping Heuristic

For read sequences of the base sequence , an optimal mapping of read

accesses to modules usually requires a trade-off between minimum page overhead and

maximum concurrency as discussed in section 6.1. Minimizing completion time results in

a balanced load of accesses such that if is the time to complete accesses in the

sequence , then

That is, for any pair of modules the time required to complete all read accesses differs by

no more than the maximum read access time.

The Read Mapping Heuristic (RMH) derived below approximates an optimal solution as

follows. For a read stream , accesses are mapped uniformly to a number of modules

proportional to the ratio of the minimum time to complete accesses from at a single

tr- wadj tw- wadj

tr- imix tw- imix

tr- wadj tw- wadj tr- imix tw- imix

tr- wadj tr- imix

S̃B wNr 1+ : εNr 1+〈 〉

tw- imix wN: εN〈 〉 tw- wadj

A0 … Am 1−, ,

tr- wadj tr- imix

A0 … Am 1−, , S̃B

T Ak()

Ak

T Ak() T Al()− Tp/ r Tp/ m+≤ for� 0 k l, m 1−≤ ≤

ti µ̂i

ti

108

module and the minimum time to complete all read accesses at a single module. Essen-

tially, each stream is assigned resources proportional to the amount of work to be com-

pleted; over-allocation limits the amortization of page misses while under-allocation limits

concurrency. Load balancing is performed in a greedy fashion by mapping accesses from

 to the modules with the minimum load. Page miss count is minimized at each mod-

ule as references to are initiated consecutively.

To compute and perform load balancing in mapping, a model is required for the time to

complete accesses to at a single module. From the performance models derived in chap-

ter 4, the time to complete c consecutive accesses to at a given module is the sum of c

multiplied by the page-hit read cycle time and the average page miss count multiplied

by the page miss time , so that

The function is parameterized for stride s so that completion time can be com-

puted both for all accesses to a single module where , as when computing fraction

of total work load to determine , and for accesses to one of modules where ,

as when computing module load for balancing. Note that in the page miss count modeling

function , the number of vectors V is the number referenced by all streams in

S. For a multicopy system, not all modules necessarily service accesses referencing V vec-

tors; however, for load balancing the number to be referenced is not known until mapping

is complete. Thus the computed values of module load for balancing may be an over-esti-

mate under certain conditions.

ti µ̂i

ti

µ̂i

ti

ti

Tp/ r

Tp/ m

Γi s c,() cTp/ r

ω s di c, ,()Tp/ m when� ti tr- wadj= �(wrap-around�adj.)

η s di c V, , ,()Tp/ m otherwise



+=

Γi s c,()

s si=

µ̂i µ̂i s ξ̂i=

η s d c V, , ,()

109

For all read streams in S, the minimum time to complete one iteration of accesses at a sin-

gle module is

Then accesses from read stream are mapped to a number of modules computed as

Note that the number of modules servicing is rounded to the nearest integer with a lower

bound of 1, as determined by the function, and an upper bound of the total number of

accesses to , as determined by the function.

For each module of the multicopy system, the load at module is the time to com-

plete read accesses in the sequence . As state previously, load balancing is performed in

a greedy fashion by mapping accesses from to the modules with the minimum load.

Thus the accesses to are distributed uniformly by placing references

in the sequences with the minimum module loads, and references

in each of the remaining sequences. For a sequence to which is

mapped, the load at module is recomputed as

where or , as appropriate.

∆ Γi si εi,()
ti S∈

mi r=

∑=

ti µ̂i

µ̂i min εi max 1
Γi si εi,()

∆ m 0.5+,(),()=

ti

max

ti min

Λk Mk

Ak

ti µ̂i

εi ti εi µ̂i⁄ 1+ ri

εi�mod� µ̂i() εi µ̂i⁄ ri

µ̂i εi�mod� µ̂i()− Ak ti

Mk

Λk Λk Γi ξ̂i c,()+=

c εi µ̂i⁄= c εi µ̂i⁄ 1+=

110

Figure 16 presents the complete read mapping heuristic (RMH). To summarize, for each

read stream

• the number of modules to reference is computed, and

• access are distributed uniformly to the sequences referencing modules with the min-

imum loads.

6.4.4.1 RMH Performance

Table 10 compares results of the RMH with an optimal mapping of read accesses as deter-

mined via exhaustive search. The general form of the problem mapped is

Due to the time complexity of optimal assignment, problem sizes are small. The number

of modules m is 2 or 4, the number of read streams is between 2 and 4 and the depth of

loop unrolling b is between 1 and 3, inclusive; variables are chosen from a uniform ran-

dom distribution.

Table 10 contains ratios of RMH to optimal performance, where performance is defined as

the average time to complete all read operations for a given iteration. Only read accesses

are considered to avoid skewing results in favor of the RMH, as write accesses in the gen-

eral problem take the same time regardless of the read mapping.

Table 10 RMH / Optimal Performance Ratios

Category
Percentage of tests for which

S1 90 100 100 100

S1SL 77 81 89 93

SRND 71 81 91 97

ti S∈

µ̂i

µ̂i

i∀ y i() fn x1 i() … xn i(), ,()=

RMH�performance
Optimal�performance

C≤

1.0= 1.1≤ 1.2≤ 1.3≤

111

// if the total number of read accesses R is less than the

// number of modules, assign one access to each sequence (module)

if

assign each , , one read access;

else

{

 for ;

// for each read stream in S

// note: first and last, as appropriate.

for all such that

{

compute ;

determine modules with smallest

such that ;

// assign accesses from to sequences and recompute

// module loads.

for (to)

{

if

;

else

;

;

;

}

}

}

R m≤

Ai 0 i R 1−≤ ≤

Λi 0←() �and� Ai ∅←() 0 i m 1−≤ ≤

ti
tr- wadj tr- imix

ti S∈ mi r=

µ̂i

Mp 1() … M
p µ̂i()

, , µ̂i Λi

Λp 1() …≤ Λ
p µ̂i()

≤

ti

k 1= µ̂i

k εi�mod� µ̂i≤

c εi µ̂i⁄ 1+←

c εi µ̂i⁄←

Ap k() Ap k() r i Mp k(),() : c〈 〉,〈 〉←

Λp k() Λp k() Γi ξ̂i c,()+←

Figure 16 Read Mapping Heuristic (RMH)

112

Results from 300 tests are presented, with 100 from each of 3 different categories. Cate-

gory S1 presents results for streams of stride one access. Category S1SL presents results

from streams with a mixture of stride one and stride ‘large’, where large is defined as 1

data item per page. Finally, category SRND presents results for a mixture of strides chosen

from a uniform random distribution between 1 and , where p is page size and w

is word size. Overall, the RMH achieved optimal performance in 79% of the trials and was

within 20% of optimal for 93% of the trials.

6.4.5 Access Ordering Algorithm

Recall that for streams S, with read streams through and write streams

through , the base access sequence employed is

For deriving a specific access sequence in the form of the base sequence , the com-

plete access ordering algorithm consists of the following steps:

1. From the pairs of streams in S implementing a read-modify-write, if extant, choose a

pair to map for wrap-around adjacency, and , and a pair to map for inter-

mixing, and ; define write accesses in the sequence accordingly.

2. Apply the RMH to determine read sequences in the access sequence ;

 and are mapped first and last, respectively.

The ordering algorithm is efficient, with a time complexity of for read

streams in S; this complexity represents the sorts required for load balancing in the

RMH.

1.5 p w⁄()

t1 tNr
tNr 1+

tN

S̃B A0 … Am 1−, ,[] wNr 1+ : εNr 1+ … wN: εN, , ,〈 〉=

S̃ S̃B

tr- wadj tw- wadj

tr- imix tw- imix S̃

A0 … Am 1−, , S̃

tr- wadj tr- imix

O Nr
2 Nrlog()() Nr

Nr

113

6.4.6 Example Problem

For a 2 module multicopy system, an access sequence is generated for the canonical axpy

operation to illustrate the ordering algorithm derived above. Recall that axpy is defined as

and generates the three streams where ,

, and .

For each vector assume that data size equals word size and stride of access is 1. The depth

of loop unrolling b is 2, so that .

The initial step identifies streams for intermixing and wrap-around adjacency, as discussed

in 6.4.3. For the axpy computation, and ; and

are undefined.

The RMH is employed to derive the read sequences and of the access sequence .

First, the number of modules to service each stream is computed. For the given stream

parameters, the average times to complete accesses to and at a single module are

Approximations for and derived above are used to simplify expressions

in the remaining computations.

Then the time to complete all read accesses is

i∀ yi axi yi+←

S tx tyr
tyw

, ,{ }= tx x sx dx r, , ,() : εx=

tyr
y sy dy r, , ,() : εyr

= tyw
y sy dy w, , ,() : εyw

=

εx εyr

εyw

2= = =

tyr
tr- wadj= tyw

tw- wadj= tr- imix tw- imix

A0 A1 S̃

tyr
tx

Γyr

1 2,() 2Tp/ r ω 1 w 2, ,()Tp/ m+ 2Tp/ r≈=

Γx 1 2,() 2Tp/ r η 1 w 2 2, , ,()Tp/ m+ 2Tp/ r Tp/ m+≈=

Γyr

1 2,() Γx 1 2,()

∆

∆ Γyr

1 2,() Γx 1 2,()+ 4Tp/ r Tp/ m+= =

114

Finally, the number of modules servicing each of and is

The RMH load balancing criteria insures that accesses from streams and are placed

in sequences and respectively. As accesses from are mapped first,

though in this example the order is irrelevant.

Thus application of the access ordering algorithm to the axpy computation defined above

results in the access sequence

representing the linear sequence of references

Figure 17 depicts a typical iteration of the above sequence, assuming an access to the cur-

rent page requires 1 time unit and a page miss incurs an additional 2 time

unit penalty .

6.4.7 Performance Predictor

For streams S and an access sequence defined as above, a performance predictor is

derived for the average time per data item accessed and the processor-memory band-

width . Recall that as a result of the module reference model developed in section

6.4.2, performance models represent estimated performance rather than bounds.

tyr
tx

µ̂yr
min 2 max 1

Γyr

1 2,()

∆ 2 0.5+,(),() 1= =

µ̂x min 2 max 1
Γx 1 2,()

∆ 2 0.5+,(),() 1= =

tyr
tx

A0 A1 tyr
tr- wadj= tyr

S̃ r yr M0,() : 2 r x M1,() : 2,[] wyw
: 2〈 〉,〈 〉=

r yr M0,() r x M1,() r yr M0,() r x M1,() wyw
wyw

, , , , ,〈 〉

Tp/ r Tp/ w,()

Tp/ m()

S̃

Tavg

BW

115

Functions modeling page overhead derived in chapter 4 for a single module system are

applicable to accesses at individual modules of a multicopy system. Recall that in general,

average page miss count is modeled by the function . For stream accesses that

are wrap-around adjacent or intermixed, average page miss count is modeled by the func-

tions and respectively. In employing these functions for a multicopy

system, stride s is module stride.

Let define the sequence of reads serviced by module for an iteration of the access

sequence . Each is composed of a number of component sequences where the

first subscript i is defined to be that of the stream referenced. Thus represents the

read access set , where or as appropriate.

Similarly, is the sequence of write accesses serviced at and represents the

write access set ; recall that writes are broadcast so that each module services all

accesses from write stream .

ryr

1

rx
1

ryr

2

rx
2 wyw

1

wyw

1

wyw

2

wyw

2

0 1 2 3 4 5 6 7 8

Time (units)

M0

M1

Figure 17 Multicopy Example

η s d c V, , ,()

ω s d c, ,() ρ s d c, ,()

Pk Mk

S̃ Pk P i k,()

P i k,()

r i Mk,() : c〈 〉 c εi µ̂i⁄= c εi µ̂i⁄ 1+=

Qk Mk Q i k,()

wi: εi〈 〉 εi

ti

116

The time required to complete all accesses in the sequence is the sum of the number

of accesses c multiplied by the page-hit read cycle time and the average page miss

count multiplied by the page miss time ; i.e.

Note that in modeling page miss count, conditions that determine appropriate use of mod-

eling functions must be applied in the context of the module accessed. is wrap-

around adjacent if there exists a such that read stream and write stream imple-

ment a read-modify-write, is the first access set in and is the last access

set in ; then models page miss count. Otherwise, is the

applicable model where the number of vectors V is the number accessed at module .

For clarity, functions modeling page overhead are subscripted with the module number to

denote context. Note that for a wrap-around adjacent access set, the page miss count

 is an upper-bound representative of the page miss count at the module servic-

ing , the access from read stream for a given iteration; this effect is a conse-

quence of distributed reads and broadcast writes.

Similarly, the time required to complete all accesses in the sequence is the sum of

the number of accesses multiplied by the page-hit write cycle time and the aver-

age page miss count multiplied by the page miss time , so that

P i k,()

Tp/ r

Tp/ m

T P i k,()() cTp/ r

ωk ξ̂i di c, ,()Tp/ m when� P i k,() �is�wrap-around�adj. �

ηk ξ̂i di c V, , ,()Tp/ m otherwise



+=

P i k,()

Q j k,() ti tj

P i k,() Pk Q j k,()

Qk ωk ξ̂i di c, ,() ηk ξ̂i di c V, , ,()

Mk

ωk ξ̂i di c, ,()

ri
µ̂i µ̂i

th ti

Q i k,()

εi Tp/ w

Tp/ m

T Q i k,()() εiTp/ w

ρk si di εi, ,()Tp/ m when� Q i k,() �is�intermixed

ηk si di εi V, , ,()Tp/ m otherwise



+=

117

In this context is intermixed if there exists a such that read stream and

write stream implement a read-modify-write, is the last access set in and

 is the first access set in . Note that for an intermixed access set, the page miss

count is an upper-bound representative of the overhead at the module servic-

ing the last reference from the corresponding read access set ; again this is a conse-

quence of distributed reads and broadcast writes.

From the preceding analysis, the time to complete all read operations in the sequence is

the sum of the time to complete all accesses in each component sequence; i.e.

Then the time to complete all read accesses in an iteration of the sequence is the maxi-

mum time to complete read operations at any module, so that

Note the tacit assumption in computing is that buffering is sufficient so that read

accesses proceed without access gaps that result in increased completion, as discussed in

section 6.4.1.1.

Similarly, the time to complete all write operations in the sequence is the sum of the

time to complete all accesses in each component sequence; i.e.

And the time to complete all write operations in an iteration of the sequence is

Q i k,() P g k,() tg

ti P g k,() Pk

Q i k,() Qk

ρk si di εi, ,()

rg
ε

g

Pk

T Pk() T P i k,()()
P i k,() Pk∈

∑=

S̃

Tr max T P0() … T Pm 1−(), ,()=

Tr

Qk

T Qk() T Q i k,()()
Q i k,() Qk∈

∑=

S̃

Tw max T Q0() … T Qm 1−(), ,()=

118

Then an estimate of the time to complete all accesses in a given iteration is the sum of the

time to complete all read and write accesses so that

From the above, the average time per data item accessed is computed as the time to

complete all accesses in a given iteration divided by the number of data items referenced,

resulting in

The effective memory bandwidth , in megabytes per second, is the number of bytes of

relevant data transferred per iteration divided by the time to complete all access; i.e.

6.5 Simulation Results

For a multicopy memory system there is no ‘natural’ mapping of accesses to modules.

Thus the quality of an access ordering algorithm is best captured by comparison with an

optimal reference sequence. Such a comparison is presented in section 6.4.4.1 for a system

of page-mode components; for a system of uniform-access devices, access ordering results

in an optimal reference sequence. For access sequences generated by each ordering algo-

rithm, simulation results are presented to validate the accuracy of performance models.

To assess the viability of a multicopy system two factors must be considered: performance

and cost. Performance is evaluated relative to a sequentially interleaved memory, as inter-

leaving is the most common parallel memory storage scheme. Cost is evaluated in terms

of both hardware complexity and data space.

Ttot Tr Tw+=

Tavg

Tavg

Ttot

εiγi
ti S∈
∑

=

BW

BW

103 εiγidi
ti S∈
∑
Ttot

=

119

6.5.1 Performance Predictors

Results are first presented to validate performance predictors for the set of benchmark

computational kernels defined in section 4.4. A non-buffered 2 module multicopy system

of both uniform-access and page-mode components is considered; module parameters for

both component types are defined in Table 11.

Table 12 compares performance of ordered accesses as calculated analytically and mea-

sured via simulation; for all benchmarks, the depth of loop unrolling is 4 and vector oper-

ands are double precision. For the computations and conditions modeled, analytic and

simulation results differ by less than 1%. Two exceptions are highlighted. Recall from sec-

tion 6.4.1.1 that in modeling performance of read operations for a system of page-mode

components, buffering is assumed sufficient so that accesses proceed at the maximum rate.

For both cases noted, a non-buffered system results in access gaps that reduce perfor-

mance; for a buffer size of 1, simulated performance achieves the predicted bandwidth.

Table 11 Module Parameters (Multicopy - Both)

Uniform-access Page-mode

Parameter Value Parameter Value

8 8

4096

40 40

40 40

120

w w

p

Tu/ r Tp/ r

Tu/ w Tp/ w

Tp/ m

120

6.5.2 Evaluation of Multicopy Performance

A multicopy system offers a number of advantages over a sequentially interleaved mem-

ory. For read streams, maximum concurrency is achievable regardless of stride and page

overhead can be more effectively amortized by directing accesses from a given stream to a

smaller number of modules. However, because read accesses must be tagged to reference

a specific module, to fully utilize concurrency the number of read accesses in a loop must

equal or exceed the number of memory modules. Furthermore, write operations are broad-

Table 12 Analytic vs Simulation Results (Multicopy - Both)

Computation

Uniform-access Page-mode

Analysis Simulation Analysis Simulation

daxpy 240.0 240.0 171.0 170.9

dvaxpy 256.0 256.0 177.2 159.2

LL-1 240.0 240.0 171.0 170.6

LL-3 320.0 320.0 397.7 394.6

LL-4 320.0 320.0 388.6 386.4

LL-5 240.0 240.0 171.0 170.6

LL-7 256.0 256.0 152.0 152.0

LL-11 213.3 213.3 133.0 133.1

LL-12 213.3 213.3 133.0 133.1

LL-20 261.8 261.8 171.0 171.1

LL-21 240.0 240.0 161.3 156.7

LL-22 228.6 228.6 142.5 142.3

LL-24 320.0 320.0 395.4 393.1

BW BW BW BW

121

cast to all modules to maintain coherence and thus represent the serialization of an other-

wise parallel operation.

For a multicopy system to deliver greater bandwidth than an equivalent interleaved mem-

ory, increases in parallelism and/or reduction in page overhead for read accesses must

dominate the loss of parallelism for writes; in this context an equivalent system is one with

the same number of modules, equal buffer depth, and constructed from identical memory

components. Note that in all but extreme circumstances, a multicopy system of uniform-

access components is not competitive as page overhead is not a concern. Thus only sys-

tems of page mode components are considered here.

Table 13 presents simulation results comparing bandwidth delivered by a 4 module multi-

copy system with buffer depth 1 to an equivalent interleaved system for the benchmark

kernels. Module parameters are those of Table 11 with a page miss versus hit cycle time

ratio of 4:1, typical of current DRAMs. For the interleaved system, access ordering is per-

formed assuming known alignment. In all cases, the depth of loop unrolling is 4 and vec-

tor operands are double precision.

For the computations measured, vector strides are such that all m modules in a sequen-

tially interleaved system are referenced by each stream for any . Thus the multi-

copy system can reduce page overhead for read accesses but achieves no greater

parallelism. Performance results are mixed: 4 computations achieve greater bandwidth, 5

computations experience a reduction in bandwidth, and 4 computations achieve approxi-

mately the same bandwidth. Note that LL-3 and LL-4 represent dot products and do not

generate write streams, thus the substantial increase in performance.

For next generation DRAMs the page miss-hit cycle time ratio will increase dramatically

[NEC92]. This situation benefits a multicopy architecture as reduction in page overhead

becomes even more critical to obtaining good performance, as illustrated below.

m 2n=

122

Assume a 4 module multicopy system with buffer depth 1 and an equivalent interleaved

system. Module parameters are defined in Table 14 with a page miss-hit cycle time ratio of

10:1. Table 15 presents simulation results comparing bandwidth achieved for the set of

benchmark computations, given a loop depth of 4 and double-precision vector operands.

Relative performance of the multicopy architecture is improved: 8 computations achieve

greater bandwidth than the sequentially interleaved system, 4 computations experience

modest degradation of less than 15%, and only 1 computation experiences a substantial

reduction in bandwidth of 21%. Note that for LL-3 and LL4, which generate no write

Table 13 Multicopy vs Interleaved (4:1)

Computation

4:1

%Increase
Interleaved Multicopy

daxpy 266.7 199.2 (25.3)

dvaxpy 246.2 199.3 (19.0)

LL-1 200.0 199.2 (0.4)

LL-3 200.0 786.2 293.1

LL-4 200.0 751.6 275.8

LL-5 200.0 199.2 (0.4)

LL-7 200.0 227.8 13.9

LL-11 200.0 145.2 (27.4)

LL-12 200.0 145.2 (27.4)

LL-20 200.0 256.5 28.3

LL-21 266.7 188.4 (29.4)

LL-22 200.0 190.1 (4.5)

LL-24 781.7 772.8 (1.1)

BW BW

123

streams, the multicopy architecture achieves nearly an order of magnitude more band-

width than the equivalent interleaved system.

A multicopy architecture can substantially improve performance over an equivalent inter-

leaved memory for computations with a high read to write ratio, as demonstrated above.

Many computations exhibit this characteristic naturally; for others, intelligent use of cache

memory and strip-mining or tiling techniques can increase the read-write ratio by holding

modified vector elements in cache.

6.5.3 Evaluation of Multicopy Cost

A multicopy architecture can provide increased bandwidth over an equivalent interleaved

memory. However, additional cost is incurred in terms of both hardware complexity and

data space. Each of these issues is considered below.

The additional hardware complexity for a multicopy system is minimal. A sequentially

interleaved memory distributes accesses to modules based on low-order address bits, as

discussed in chapter 5. For read accesses, a multicopy architecture distributes references

to modules based on high-order address bits; these bits can be set at compile time as a

result of mapping as performed by the RMH. Write accesses require additional hardware

for broadcast to all modules.

Table 14 Module Parameters (Multicopy - Page)

Parameter Value

8

4096

10

10

90

w

p

Tp/ r

Tp/ w

Tp/ m

124

A strict multicopy system provides only the address space of an equivalent

interleaved architecture as data is replicated at all m modules. Note however that the hard-

ware requirements for the two systems are very similar. It is easy to imagine a memory

controller capable of implementing both schemes. In fact, given proper hardware support,

multicopy and interleaved memory can be implemented concurrently by designating a

portion of the interleaved address space for multicopy access.

Table 15 Multicopy vs Interleaved (10:1)

Computation

10:1

%Increase
Interleaved Multicopy

daxpy 457.1 398.8 (12.8)

dvaxpy 412.9 454.3 10.0

LL-1 320.0 397.7 24.3

LL-3 320.0 3039.7 849.9

LL-4 320.0 2681.5 738.8

LL-5 320.0 398.8 24.6

LL-7 320.0 489.6 53.0

LL-11 320.0 278.3 (13.0)

LL-12 320.0 277.4 (13.3)

LL-20 320.0 550.9 72.2

LL-21 457.1 360.3 (21.2)

LL-22 320.0 408.1 27.5

LL-24 3091.3 2894.7 (6.4)

BW BW

1 m⁄() th

125

Thus the cost of a multicopy architecture is considerably less than the functional descrip-

tion might imply. Building multicopy support into an interleaved architecture can provide

a low cost means for increasing effective memory bandwidth for amenable computations.

6.6 Summary

This chapter develops access ordering algorithms for a proposed multicopy architecture.

Performance predictors are developed for the effective memory bandwidth achieved by

ordered accesses.

For a multicopy system of uniform-access components, the ordering algorithm divides

accesses into two phases: a read phase and a write phase. Read accesses are distributed

uniformly across modules, optimizing concurrency; write accesses are broadcast and

hence proceed sequentially. Ordering is trivial and a performance predictor is derived in a

straight-forward fashion. Simulation demonstrates the performance model to be accurate.

In general, a multicopy system of uniform-access components does not represent a viable

alternative to an equivalent sequentially interleaved architecture.

For a multicopy system of page-mode components ordering is analogous to the uniform-

access case. However, mapping read accesses to modules is performed via a heuristic.

Intermixing and wrap-around adjacency are employed in a greedy fashion at the bound-

aries of the read and write phases. The ordering algorithm has a time complexity of

 for read streams that is representative of load balancing in the RMH.

Simulation demonstrates performance models for ordered accesses to be accurate.

Performance results indicate that a multicopy system of page-mode components can pro-

vide increased bandwidth over an equivalent interleaved memory for computations with a

high read to write access ratio. Furthermore, multicopy access can be implemented with a

minimal increase in hardware complexity as part of a heterogenous interleaved/multicopy

memory architecture.

O Nr
2 Nrlog()() Nr

126

7 Implementation Issues

Access ordering algorithms derived in the preceding chapters are memory centric and do

not reflect processor constraints; in particular, register file size, pipelined functional units,

and bus characteristics are not considered. Furthermore, all memory references are

assumed to be non-caching, even though many codes benefit from caching a subset of the

vectors operands. Finally, reference sequences are assumed to adhere to the stream inter-

action restriction, thus limiting the applicable problem domain. Each of these implementa-

tion issues is addressed below.

7.1 Relieving Register Pressure

Access ordering employs loop unrolling to increase the number of accesses within a given

loop that can be reordered, thus increasing the potential for minimizing page overhead,

maximizing concurrency, and fully utilizing wide words, as applicable. However, loop

unrolling creates register pressure and has traditionally been limited by register resources.

Lee [Lee91] presents a technique that employs cache memory to mimic a set of vector reg-

isters, effectively increasing register file size for vector computations. Storage is defined

for a set of vectors, each of which represents a pseudo register; vector length corresponds

to register size. For example, two 64-element ‘vector registers’ are defined in the C pro-

gramming language as

Prior to performing computations, each pseudo register element is referenced via a stan-

dard caching load instruction so that the vector register address space is likely to reside in

cache memory. Note that to insure pseudo vector register elements do not conflict in

cache, vector storage must not exceed cache capacity for a direct-mapped cache or

 cache capacity for an n-way set-associative cache [LaRW91].

double VectorRegister[2][64];

1 n⁄() th

127

Within a loop, vector operands are loaded into the pseudo vector registers, arithmetic

operations are performed on vector register data, and vector register results are stored back

to the appropriate vector elements in memory. Vector registers are loaded by first loading

each vector element into a processor register via a non-caching access, and then storing

the value to the appropriate vector register location in cache.

By applying the above technique, processor register pressure is relieved and the effective

vector register space is limited only by the cache size.

7.2 Pipelined Processors and Bus Bandwidth

Recall that for a system constructed from page-mode components, interleaving references

from a pair of streams implementing a read-modify-write can often reduce page overhead

for write operations. For example, given a single memory module, read stream , and

write stream , section 4.1.1 derives the general intermix sequence as

Though intermixing minimizes page miss count for the write stream, the resulting

sequence reduces data-bus bandwidth and may not be amenable for execution on a pipe-

lined processor.

To illustrate, consider the vector scaling operation

that generates read stream and write stream ; assume one data item per word. The

optimal access sequence resulting in a write stream page miss count of zero is

ti

tj

… ri: c wj: c,〈 〉: h …, ,〈 〉

i∀ yi kyi←

tyr
tyw

ryr
wyw

,〈 〉: εyr
〈 〉

128

Implementing this sequence requires reading an element of the vector , performing a

multiplication, then immediately storing the result. Thus multiplication must be performed

in a scalar (non-pipelined) rather than pipelined mode. Furthermore, the data-bus must

remain idle for one bus cycle between read and write operations to avoid interference

between outgoing write data and incoming read data. Thus alternating access modes

increases the number of idle cycles and hence reduces effective bus bandwidth.

If the stride of is small then the non-interleaved sequence results in a

negligible increase in page miss count while maximizing bus bandwidth and allowing

multiplication operations to be pipelined. If the stride of is large, e.g. 1 data-item per

DRAM page, then the additional page overhead resulting from the non-interleaved refer-

ence sequence may exceed the gains from pipelined arithmetic operations and increased

bus bandwidth.

Let and represent the times to complete one iteration of accesses for a read-mod-

ify-write operation with an interleaved and non-interleaved reference sequence, respec-

tively. Values for and are computed as the maximum of the bus transfer and

memory access times, where bus transfer time is processor dependent and memory access

time comes directly from performance models developed for each memory architecture.

Let and represent the times to complete one iteration of arithmetic operations for a

read-modify-write operation in scalar and pipelined modes, respectively. Values for

and are processor dependent.

Then implementing scalar operations and an interleaved reference sequence achieves the

maximum computation rate if

y

y ryr
: εyr

wyw
: εyw

,〈 〉

y

TI TNI

TI TNI

TS TP

TS

TP

max TI TS,() max TNI TP,()<

129

Otherwise, maximum computation rate is obtained from pipelined arithmetic operations

and a non-interleaved sequence of references. Note that this formula assumes computation

is overlapped with memory latency.

Of the access ordering algorithms derived in preceding chapters, only two potentially

interleave references for a read-modify-write operation: the algorithm for a single module

system and the algorithm for a sequentially interleaved system under the assumption of

unknown alignments. All other ordering algorithms separate read and write accesses into

distinct phases, so that the interleaving of references is not an issue.

7.3 Combining Caching and Non-Caching Memory Access

Access ordering algorithms presume the use of non-caching load instructions to control

via software the sequence of requests observed by the memory system and to avoid extra-

neous data references. However many codes generate multiple references to a subset of

vector operands and hence can benefit from caching, particularly when implemented using

strip-mining and tiling techniques [CaKe89, Wolf89]. Thus access ordering and caching

should be used together to complement one another, exploiting the full memory hierarchy

to maximize memory bandwidth.

Perhaps the simplest method for combining caching and non-caching access in a coherent

fashion is to preload the cache with multiply-referenced data and utilize non-caching

accesses for single-visit items. Access ordering can then be applied to all accesses in the

inner loop, to maintain dependencies, with only the effect of non-caching accesses consid-

ered for maximizing memory system performance.

To illustrate, consider implementing the matrix-vector multiply operation

where A and B are matrices and and are vectors.

y A B+() x=

n m× y x

130

Figure 18(a) depicts code for a straight-forward implementation of the matrix-vector mul-

tiply operation. Figure 18(b) strip-mines the computation to reuse elements of ; partition

size is dependent on cache size and structure [LaRW91]. Elements of are preloaded into

cache memory at the appropriate loop level, and elements of A and B are referenced via

non-caching loads; the reference to is a constant within the inner loop and is preloaded

into a processor register. Access ordering can now be applied to the inner loop to maxi-

mize bandwidth for references to A and B.

y

y

x

(a) // Straight-forward implementation: y = (A + B)x

for j = 1 to m

for i = 1 to n

y[i] = y[i] + (A[i,j] + B[i,j]) * x[j];

(b) // Strip-mined implementation: y = (A + B)x

for IT = 1 to n by IS

{

preload y[IT] through y[min(n, IT + IS - 1)] into cache;

for j = 1 to m

{

preload x[j] into a processor register;

// Each element of A and B referenced exactly once via a

// non-caching load.

for i = IT to min(n, IT + IS - 1)

y[i] = y[i] + (A[i,j] + B[i,j]) * x[j];

}

}

Figure 18 Combining Caching and Non-Caching Access

131

If the pseudo vector register technique described in section 7.1 is used to relieve processor

register pressure for loop unrolling, care must be taken to insure that vector registers and

cached operands do not collide in cache memory; the same is true for multiple cached

operands. Lam et al [LaRW91] analyze a technique that eliminates cache conflicts by

copying data to be cached into a contiguous address space. Note that in applying this copy

optimization, non-caching loads, and hence access ordering, can be used to reduce cache

conflict and extraneous data movement.

By combining intelligent cache management with access ordering techniques, the full

memory hierarchy is exploited to maximize effective bandwidth.

7.4 Relaxation of the Stream Interaction Restriction

Access ordering algorithms derived in preceding chapters presume access streams adhere

to the stream interaction restriction, defined in section 3.4 as:

Stream Interaction Restriction: For any two access streams , implies

that the streams have non-intersecting address spaces; in particular, streams reference

no pages in common. When stream parameters are identical except in mode,

where by definition .

Though analysis is simplified, dependence between accesses belonging to different

streams is limited to two types: loop-independent antidependence and data dependence in

the data flow sense.

Minor relaxation of the stream interaction restriction significantly increases the scope of

computations to which the access ordering algorithms can be applied. Relaxation tech-

niques are considered below for two special cases: self-antidependence cycles and read

streams with overlapping address spaces.

ti tj, S∈ vi vj≠

vi vj=

mi mj≠

132

7.4.1 Self-Antidependence Cycles

Some common computations exhibit a loop-carried antidependence of the form

Streams generated by this computation violate the stream interaction restriction by refer-

encing overlapping, rather than identical or non-intersecting, address spaces.

For the simple self-antidependence cycle demonstrated above, common access ordering

techniques, such as loop unrolling and grouping accesses by stream, can easily be applied.

However, modeling page miss count and managing concurrency are more complex for

streams involved in a loop-carried antidependence than for streams implementing a strict

read-modify-write.

Access ordering algorithms derived in preceding chapters can accommodate streams gen-

erated by a self-antidependent computation in a suboptimal fashion by ordering accesses

from each stream independently and insuring that all reads are initiated prior to the first

write. A simple optimization places references from the read and write streams adjacent to

potentially reduce write access page miss count, when applicable; this technique is analo-

gous to intermixing for streams implementing a strict read-modify-write.

7.4.2 Overlapping Read Address Spaces

The stream interaction restriction states that read streams must have non-intersecting

address spaces, suggesting that ordering algorithms are not applicable to common compu-

tations such as

However, access ordering algorithms derived in preceding chapters can easily accommo-

date intersecting read streams in a suboptimal fashion by ordering accesses from each

i∀ yi fn yi k+()← k Z+∈

i∀ yi x3i x3i 1++←

133

stream independently. Read streams with intersecting address spaces may exhibit input

dependence, however this can be ignored for non-volatile memory locations. A simple

optimization places references from intersecting read streams adjacent, potentially reduc-

ing page miss count when applicable.

7.4.3 Access Ordering and Vectorizable Computations

A vectorizable loop is one with no multi-statement dependence cycles and only self-

dependence cycles that are ignorable or represent known reduction or recurrence opera-

tions for which vector instructions exist; in testing if a loop is vectorizable, input depen-

dence is ignored for non-volatile memory locations [Wolf89].

Relaxing the stream interaction restriction as discussed above allows access ordering algo-

rithms to be applied to the class of vectorizable loops, an arguable large and interesting

problem domain.

134

8 Conclusions

Access ordering, a loop optimization that reorders accesses to better utilize memory sys-

tem resources, is a compiler technology developed in this thesis to address the memory

bandwidth problem for scalar processors executing scientific codes. For a given computa-

tion, memory architecture, and memory device type, an access ordering algorithm deter-

mines a well-defined interleaving of vector references that maximizes effective

bandwidth. Consequently, analytic models of performance can also be derived. Access

ordering algorithms developed are applicable to a superset of the class of vectorizable

loops, an arguably large and interesting problem domain.

Access ordering is fundamentally different from, though complementary to, access sched-

uling techniques that attempt to overlap computation with memory latency but do not con-

sider the performance of the resulting access sequence. Simulation results demonstrate

that for a given computation, access ordering can significantly increase effective memory

bandwidth over that achieved by the natural sequence of references. Simulation results

validate analytic models of performance as well.

Access ordering algorithms presume the use of non-caching load instructions to control

the sequence of requests observed by the memory system and to avoid extraneous data ref-

erences. For computations that benefit from caching a subset of the vector operands,

access ordering is shown complementary to strip-mining and tiling techniques. By intelli-

gent caching of multiply referenced data items, and careful ordering of non-caching refer-

ences to single visit operands, the full memory hierarchy is exploited.

The following summarizes results for each of the ordering algorithms derived. Perfor-

mance modeling features and applications are discussed. Finally, potential impact and

future extensions of this work are considered.

135

8.1 Summary of Access Ordering Algorithms

Because access ordering exploits features of the underlying memory system, an ordering

algorithm must be derived for each target memory architecture and device type. Three

memory architectures are analyzed in the preceding chapters: single module, sequentially

interleaved, and multicopy. For each architecture two memory component types are con-

sidered: uniform-access and page-mode.

Chapter 4 derives access ordering algorithms for a single module memory architecture.

For uniform-access components ordering is trivial since all orderings perform equally

well. For page-mode components an ordering algorithm is derived that minimizes page

overhead to achieve optimal performance for a given computation. Accurate models of

performance are developed in both cases. Theorems derived for the optimal access of a

single memory module form the basis for analyzing parallel memory systems.

Simulation results for a range of scientific kernels demonstrate that access ordering can

achieve a significant increase in effective memory bandwidth at a single module of page-

mode components with a modest degree of loop unrolling. Ordered accesses achieve up to

189% more bandwidth than the natural reference sequence for the benchmark computa-

tions simulated. Analytic models predict simulation results to within 1%.

Chapter 5 derives access ordering algorithms for a sequentially interleaved memory archi-

tecture. Ordering algorithms are derived assuming both unknown and known stream align-

ments. If stream alignment is unknown then an optimal ordering algorithm can not be

derived. If stream alignment is known then determining an optimal access sequence is NP-

complete with a time complexity exponential in the number of accesses; as an optimal

solution is intractable, a heuristic solution is required.

Simulation results for a range of scientific kernels demonstrate that access ordering can

achieve a significant increase in effective memory bandwidth for a sequentially inter-

136

leaved system at a modest depth of loop unrolling. For a 4 module system of uniform-

access components, ordered accesses achieve up to 256% more bandwidth than the natural

reference sequence for computations simulated; for a 2 module system of page-mode

components up to 189% more bandwidth is achieved. Analytic bounds on performance are

validated and shown to accurately predict performance for the computations considered.

Finally, chapter 6 derives access ordering algorithms for a proposed multicopy architec-

ture that replicates data across modules. Read accesses may be directed to any module;

write accesses are broadcast to maintain coherence. Maximum concurrency for read

streams is achievable for all strides of reference and page overhead can be more efficiently

amortized, when applicable.

A multicopy system of uniform-access components does not represent a viable alternative

to an equivalent sequentially interleaved architecture. However, simulation results indi-

cate that a multicopy system of page-mode components can provide increased bandwidth

over an equivalent interleaved memory for computations with a high read to write access

ratio; an order of magnitude better performance is achieved in some benchmarks. Further-

more, multicopy access can be implemented with a minimal increase in hardware com-

plexity as part of a heterogeneous interleaved-multicopy memory architecture.

8.2 Performance Modeling

Performance models derived for the systems above are unique in several aspects in that

• the reference sequence is not stochastic, but rather deterministically ordered for each

member of a well defined class of computations,

• module performance is not assumed insensitive to the sequence of requests but is mod-

eled to accurately reflect current memory component technology, and

• data item size is not restricted to word size, rather, wide word access is incorporated

naturally into the models.

137

Performance modeling based on access ordering has direct application in a number of

evaluation tools, in particular for

• system evaluation - to provide a benchmark both for cost-performance analysis of dif-

ferent memory systems and for matching memory performance to processor require-

ments, and

• algorithm evaluation - to provide a benchmark for algorithm selection based on effec-

tive bandwidth utilization for a given memory system.

Analytic results presented throughout this work provide a basic and extensible set of tools

for capturing memory system behavior and for understanding the interaction of reference

sequences with memory architecture and component characteristics.

8.3 Potential Impact and Future Work

Access ordering may impact future processor architectures and memory components. Few

processors currently implement the non-caching load instruction required for access order-

ing. However, just as the demonstrable advantages of prefetching [CaKP91, KlLe91] led

to processors with prefetch instructions, access ordering may provide the impetus for more

manufacturers to implement a non-caching load. Similarly, access ordering demonstrates

the true potential for page-mode memory components and provides incentive to further

reduce page-hit times.

Access ordering is an original concept and the work presented forms only the initial basis;

much still remains to be done. Below are topics of first-order importance for future

research.

Relaxation of the stream interaction restriction to encompass the class of vectorizable

loops is discussed in section 7.4. However, the more complex stream interactions that

result should be incorporated formally into both ordering algorithms and performance

models.

138

Page-mode components are modeled as if implemented with a single on-chip cache line,

reflecting current DRAM technology. Future high-speed DRAMs will incorporate multi-

ple pages, among other exploitable features. Rambus [Slat92] represents such a technol-

ogy. As memory components evolve, access ordering algorithms and performance models

must be developed that reflect these changes.

A number of implementation issues remain to be solved. Combining caching and non-

caching loads requires detection of multiply and singly referenced vectors and the applica-

tion of strip-mining and tiling techniques. Utilizing the cache to implement pseudo vector

registers, thereby relieving processor register pressure, requires inserting additional

accesses into the instruction stream and introduces cache management issues. Modeling

the effect of an interleaved reference sequence on effective computation rate requires fur-

ther formalization than provided in section 7.2. Other implementation issues are sure to

arise.

Naturally, incorporating access ordering into an optimizing compiler represents the most

important part of this work that remains to be done.

139

Appendix A

Intermix Sequences

A.1 Proof of Optimal Intermix Pattern

Given: read stream and write stream specifying a read-modify-write, i.e. .

Prove: the intermix sequence is the optimal interleave pattern.

Proof: Consider the general interleave case

where, by definition, must proceed and

Let

It is easily seen that for , . If there exists a then there must

exist at least one u such that , in which case

• the page miss count in performing the read sequence can be greater

than in the case where since may access a sequentially ear-

lier page than ;

• similarly, the page miss count in performing the write sequence can

be greater than in the case where as may access a

sequentially earlier page than .

ti tj vi vj=

… ri: c wj: c,〈 〉: h …, ,〈 〉

… ri: q1 wj: k1 … ri: qn wj: kn …, , , , , ,〈 〉

ri
k wj

k

ql
l 1=

n

∑ kl
l 1=

n

∑=

ql
l 1=

λ

∑ S q λ,()= and kl
l 1=

λ

∑ S k λ,()=

λ n< S q λ,() S k λ,()≥ ql kl≠

S q u,() S k u,()>

… ri: qu 1+ …, ,〈 〉

S q u,() S k u,()= wj
S k u,()

ri
S q u,()

… wj: ku 1+ …, ,〈 〉

S q u,() S k u,()= wj
S k u,() 1+

ri
S q u,() 1+

140

Thus, the minimum page miss count is achieved when for ; i.e.

when for .

 is the optimal interleave pattern.

A.2 Derivation of

Given the intermix sequence where and specify a read-mod-

ify-write operation, i.e. , the function is the average page miss count in

performing each set of c write accesses.

Recall that if then stream parameters for and are identical except in mode; in

particular, and . Thus s and d are used below to denote stride and data size,

respectively, for streams and .

In deriving , the following observation is made: in performing c accesses from a

given stream the address space spanned, in bytes, is .

Assume , then the address space spanned touches at most two pages. If

 is the probability that c accesses touch one page, and is the probability that two

pages are touched, then

That is, for the access sequence , the write operations

through , , suffer exactly two page misses when and reference

a different page; otherwise write operations through page-hit.

The number of d-aligned starting positions in a given page for a set of c read accesses is

S q u,() S k u,()= u n≤

ql kl= 1 l n≤ ≤

… ri: c wj: c,〈 〉: h …, ,〈 〉∴

ρ s d c, ,()

… ri: c wj: c,〈 〉: h …, ,〈 〉 ti tj

vi vj= ρ sj dj c, ,()

vi vj= ti tj

si sj= di dj=

ti tj

ρ s d c, ,()

c 1−() sd d+

c 1−() sd d+ p≤

p1 p2

ρ s d c, ,() p1 0() p2 2()+ 2p2= =

… ri: c wj: c,〈 〉: h …, ,〈 〉 wj
k 1−() c 1+

wj
kc 1 k h≤ ≤ ri

k 1−() c 1+ ri
kc

wj
k 1−() c 1+ wj

kc

S
p
d

=

141

The number of starting positions resulting in c read accesses touching exactly one page is

Then the probability that a set of c read accesses touches exactly one page is

and the probability that two pages are touched is

Thus, when , the average page miss count in performing each set of c

write accesses is

When the address space spanned touches at least two pages, implying

that each set of c write accesses must begin with a page miss. Then the average page miss

count is one plus the remaining accesses, , divided by the number of accesses per

page; i.e.

Combining the results derived above

S1
p c 1−() sd d+()−

d
1+=

p1

S1

S
1

c 1−() sd
p

−= =

p2 1 p1−
c 1−() sd

p
= =

c 1−() sd d+ p≤

ρ s d c, ,() 2p2
2 c 1−() sd

p
= =

c 1−() sd d+ p>

c 1−

1
c 1−

φ s d,()+

ρ s d c, ,()

2 c 1−() sd
p

when c 1−() sd d p≤+

1
c 1−

φ s d,()+ when c 1−() sd d+ p>





=

142

Appendix B

Module Sequence Algorithm

B.1 Properties of the MSA

Given: N streams , , mapped to sequences via the

Module Sequence algorithm.

Prove: each round-robin selection of accesses from has the property that for

each stream referenced:

1. there are exactly accesses to , and

2. accesses from do not conflict.

Proof of property 1:

Let . Assume that . Then there exists

a such that for all , . Accesses to immediately precede accesses to

in a sequence such that . If each round-robin selection of accesses from

 that references initiates exactly accesses to , then each sub-

sequent round-robin selection of accesses that references must initiate exactly

accesses to .

If for all it is true that , then is the first stream accessed

in a sequence such that ; this is the default when . In this case it is easily

seen that each round-robin selection of accesses that references must initiate exactly

 accesses to .

 By induction, each round-robin selection of accesses from that refer-

ences must initiate exactly accesses to .

t1 … tN, , µ1 … µN≥ ≥ A0 … Am 1−, ,

A0 … Am 1−, ,

ti

µi ti

ti

U tj�|� Zj Zi∩ Zi= tj t1 … ti 1−, ,{ }∈,{ }= U ∅≠

tL U∈ tj U∈ L j≥ tL ti

Ak Mk Zi∈

A0 … Am 1−, , tL µL ZL= tL

ti µi Zi=

ti

tj t1 … ti 1−, ,{ }∈ Zj Zi∩ ∅= ti

Ak Mk Zi∈ i 1=

ti

µi Zi= ti

∴ A0 … Am 1−, ,

ti µi ti

143

Proof of property 2:

Property 2 is a direct result of property 1. Since each round-robin selection of accesses that

references must initiate exactly accesses to , then a sequence such that

 can not simultaneously specify references to any other stream.

 In a given round-robin selection of accesses from , accesses from do

not conflict.

ti µi Zi= ti Ak

Mk Zi∈

∴ A0 … Am 1−, , ti

144

Bibliography

[AvCK87] Aven-O, Coffman-E, Kogan-Y, “Stochastic Analysis of Computer Storage”,

Kluwer Academic Publishers, Norwell, MA, 1987, pp. 102-118.

[Bail87] Bailey-D, “Vector Computer Memory Bank Contention”, IEEE Trans. Com-

put.,36, 3, 1987, pp. 293-298.

[BeDa91] Benitez-M, Davidson-J, “Code Generation for Streaming: an Access/Execute

Mechanism”, Proc. ASPLOS-IV, 1991, pp. 132-141.

[BeRo91] Bernstein-D, Rodeh-M, “Global Instruction Scheduling for Superscalar

Machines”, Proc. SIGPLAN’91 Conf. Prog. Lang. Design and Implementa-

tion, 1991, pp. 241-255.

[BuCo70] Burnett-G, Coffman-E, “A Study of Interleaved Memory Systems”, 1970

Spring Joint Computer Conference, AFIPS Conf. Proc.,36, 1970, pp. 467-

474.

[BuKu71] Budnik-P, Kuck-D, “The Organization and Use of Parallel Memories”, IEEE

Trans. Comput.,20, 12, 1971, pp. 1566-1569.

[CaCK90] Callahan-D, Carr-S, Kennedy-K, “Improving Register Allocation for Sub-

scripted Variables”, Proc. SIGPLAN ‘90 Conf. Prog. Lang. Design and

Implementation, 1990, pp. 53-65.

[CaKe89] Carr-S, Kennedy-K, “Blocking Linear Algebra Codes for Memory Hierar-

chies”, Proc. of the Fourth SIAM Conference on Parallel Processing for Sci-

entific Computing, 1989.

[CaKP91] Callahan-D, Kennedy-K, Porterfield-A, “Software Prefetching”, Proc. ASP-

LOS-IV, 1991, pp. 40-52.

[ChKL77] Chang-D, Kuck-D, Lawrie-D, “On the Effective Bandwidth of Parallel

Memories”, IEEE Trans. Comput.,26, 5, 1977, pp. 480-489.

[ChSm86] Cheung-T, Smith-J, “A Simulation Study of the CRAY X-MP Memory Sys-

tem”, IEEE Trans. Comput.,35, 7, 1986, pp. 613-622.

145

[CoBS71] Coffman-E, Burnett-G, Snowdon-R, “On the Performance of Interleaved

Memories with Multiple-Word Bandwidths”, IEEE Trans. Comput., 20, 12,

1971, pp. 1570-1573.

[GaJo79] Garey-M, Johnson-D, “Computers and Intractability: A Guide to the Theory

of NP-Completeness”, Freeman, New York N.Y., 1979.

[GoCh84] Goodman-J, Chiang-M, “The Use of Static Column RAM as a Memory Hier-

archy”, Proc. 11th Annual Intl. Symp. on Comput. Architecture, 1984,

pp. 167-174.

[GuSo88] Gupta-R, Soffa-M, “Compile-time Techniques for Efficient Utilization of

Parallel Memories”, SIGPLAN Not., 23, 9, 1988, pp. 235-246.

[HaJu87] Harper-D, Jump-J, “Vector Access Performance in Parallel Memories Using

a Skewed Storage Scheme”, IEEE Trans. Comput., 36, 12, 1987, pp. 1440-

1449.

[HaLi89] Harper-D, Linebarger-D, “A Dynamic Storage Scheme for Conflict-Free

Vector Access”, Proc. 16th Intl. Symp. Comput. Architecture, 1989, pp. 72-

77.

[Harp89] Harper-D, “Address Transformations to Increase Memory Performance”,

Proc. 1989 Intl. Conf. Parallel Processing, 1989, pp. 237-241.

[Harp91] Harper-D, “Block, Multistride Vector, and FFT Accesses in Parallel Memory

Systems”, IEEE Trans. Parallel and Dist. Systems, 2, 1, 1991, pp. 43-51.

[Hell66] Hellerman-H, “On the Average Speed of a Multiple-Module Storage Sys-

tem”, IEEE Trans. Comput., 15, 8, 1966, p. 670.

[Inte89] Intel Corporation, “i860 64-Bit Microprocessor Hardware Reference Man-

ual”, ISBN 1-55512-106-3, 1989.

[KlLe91] Klaiber-A, Levy-H, “An Architecture for Software-Controlled Data

Prefetching”, Proc. 18th Annual Intl. Symp. Comput. Architecture, 1991,

pp. 43-53.

[KuSt82] Kuck-D, Stokes-R, “The Burroughs Scientific Processor (BSP)”, IEEE

Trans. Comput., 31, 5, 1982, pp. 363-375.

146

[Lam88] Lam-M, “Software Pipelining: An Effective Scheduling Technique for

VLIW Machines”, Proc. SIGPLAN’88 Conf. Prog. Lang. Design and Imple-

mentation, 1988, pp. 318-328.

[LaRW91] Lam-M, Rothberg-E, Wolf-M, “The Cache Performance and Optimizations

of Blocked Algorithms”, Fourth International Conf. on Arch. Support for

Prog. Langs. and Operating Systems, 1991, pp. 63-74.

[LaVo82] Lawrie-D, Vora-C, “The Prime Memory System for Array Access”, IEEE

Trans. Comput., 31, 5, 1982, pp. 435-442.

[Lee90] Lee-K, “On the Floating-Point Performance of the i860 Microprocessor”,

NASA Ames Research Center, NAS Systems Division, RNR-090-019, 1990.

[Lee91] Lee-K, “Achieving High Performance on the i860 Microprocessor with

Naspack Subroutines”, NASA Ames Research Center, NAS Systems Divi-

sion, RNR-091-029, 1991.

[Mcma90] McMahon-F, FORTRAN Kernels: MFLOPS, Lawrence Livermore National

Laboratory, Version MF443.

[Moye91] Moyer-S, “Performance of the iPSC/860 Node Architecture”, University of

Virginia, IPC-TR-91-007, 1991.

[NEC92] NEC Corporation, “16Mb Synchronous DRAM”, Preliminary Data Sheet

v3.1, Oct. 1992.

[OeLa85] Oed-W, Lange-O, “On the Effective Bandwidth of Interleaved Memories in

Vector Processor Systems”, IEEE Trans. Comput., 34, 10, 1985, pp. 949-957.

[PeVa87] Peelen-T, Van de Goor-A, “Using the Page Mode of Dynamic RAMs to

Obtain a Pseudo Cache”, Microprocessors and Microsystems, 11, 9, 1987,

pp. 469-473.

[Quin91] Quinnell-R, “High-speed DRAMs”, EDN, May 23, 1991, pp. 106-116.

[RaSY89] Rau-B, Schlansker-M, Yen-D, “The Cydra 5 Stride-Insensitive Memory Sys-

tem”, Proc. 1989 Intl. Conf. Parallel Processing, 1989, pp. 242-246.

147

[Rau91] Rau-B, “Pseudo-Randomly Interleaved Memory”, Proc. 18th Intl. Symp.

Comput. Architecture, 1991, pp. 74-83.

[Ravi72] Ravi-C, “On the Bandwidth and Interference in Interleaved Memory Sys-

tems”, IEEE Trans. Comput., 21, 8, 1972, pp. 899-901.

[RaWa81] Ramamoorthy-C, Wah-B, “An Optimal Algorithm for Scheduling Requests

on Interleaved Memories for a Pipelined Processor”, IEEE Trans. Comput.,

30, 10, 1981, pp. 787-799.

[ShTu72] Shedler-G, Tung-C, “Locality in Page Reference Strings”, SIAM J. on Com-

puting, 1, 3, 1972, pp. 218-241.

[Slat92] Slater-M, “Rambus Unveils Revolutionary Memory Interface”, Micropro-

cessor Report, March 4, 1992, pp. 15-21.

[SpDe72] Spirn-J, Denning-P, “Experiments with Program Locality”, AFIPS Confer-

ence Proc., Fall Joint Comput. Conf., 41, 1972, pp. 611-621.

[Stev92] Stevens-R, “Computational Science Experiences on the Intel Touchstone

DELTA Supercomputer”, Compcon Spring 92 Digest of Papers, 1992,

pp. 295-299.

[WeSm90] Weiss-S, Smith-J, “A Study of Scalar Compilation Techniques for Pipelined

Supercomputers”, ACM Trans. Math. Soft., 16, 3, 1990, pp. 223-245.

[Wolf89] Wolfe-M, “Optimizing Supercompilers for Supercomputers”, MIT Press,

Cambridge, Mass., 1989.

