
Thumbnail Rectilinear S t einer Trees*

Joseph L. Ganley and James P. Cohoon

Department of Computer Science, University of Virginia, Charlottesville, Virginia 22903

Abstract

The rectilinear Steiner tree problem i s t o find a
manimum-length set of horizontal and vertical line
segments that interconnect a given set of points in
$he plane. Here we study the thumbnail rectilinear
S te iner tree problem, where the inpvt points are drawn
f r o m a small integer grid. Specifically, we devise
a full-set decomposition algorithm for computing op-
t ima l thumbnail rectalinear Steiner trees. W e then
present experimental results comparing this algorithm
with t w o existing algorithms for computing optimal
recdilinear Steiner trees. T h e thumbnail rectilinear
Steiner tree problem has applications in VLSI place-
ment algorithms based on geometric parti t ioning and
i n global routing of field-programmable gate arrays.

1 Introduction

The rectilinear Steiner tree (RST) problem is defined
as follows: given a set P of k points in the plane, find
a set S of additional points called Steiner points such
that the length of a minimum spanning tree of P U S
is minimized. The RST problem is NP-complete, sug-
gesting that no polynomial-time algorithm can solve it
exactly. However, many exponential-time algorithms
have appeared in the literature that efficiently solve
small problem instances [7, 9, 10, 12, 171.

Here we consider the RST problem when the point
set P is drawn from an m x m integer grid, where m
is small. We call this the thumbnail rectiiinear Steiner
tree (TRST) problem. The TRST problem has sev-
eral applications in VLSI physical design automation.
In particular, several researchers [2, 16, 181 have con-
sidered VLSI placement heuristics based on m x m
geometric partitions of the circuit area. In these al-
gorithms, TRSTs are heavily used; typically they are
precomputed and stored for use by the placement a lge
rithm. Such an approach limits m to about 4 or less
due to space requirements, so efficient computation
of TRSTs would allow investigation of this place-
ment technique for larger m. Another application is

*The authors gratefully acknowledge the support of National
Science Foundation grants MXP-9107717 and CCR-9224789.
JLG also gratefully acknowledges a Virginia Space Grant
Fellowship.

in global routing of field-programmable gate arrays,
which are typically composed of logic blocks arranged
in a small grid, with rectilinear wires connecting them.

Researchers have previously investigated Euclidean
Steiner trees of point sets from small grids [3, 4, 51
and triangular and hexagonal grids [14], but this is
the first known study of the rectilinear problem. Note
that the Euclidean problem is very different from the
rectilinear one. For the Euclidean case, most previous
work [3,4] focuses on simple, mechanical constructions
that are conjectured but not proven to be optimal. In
the rectilinear case there seem to be no such simple
constructions for which optimality can be reasonably
conjectured. In particular, the Euclidean construc-
tions largely focus on the complete m x m point set,
which is uninteresting in the rectilinear case since a
minimum spanning tree is an optimal TRST for such
an instance. Cockayne and Hewgill [5] use their exact
algorithm for the general Euclidean Steiner tree prob-
lem to compute optimal Euclidean Steiner trees for a
number of point sets on a small integer grid.

Our goal in this research is to exploit the special
nature of the inputs to devise algorithms that are more
efficient than simply applying existing algorithms to
these point sets.

This paper presents some preliminary results on the
TRST problem. We devise a full-set decomposition al-
gorithm for computing optimal TRSTs, which uses the
special nature of the inputs to improve the screening
of candidate full sets. We then present experimen-
tal results comparing this algorithm with two existing
algorithms for computing optimal rectilinear Steiner
trees. The reader should note that all results presented
here are easily generalized to rectangular, rather than
square, grids.

2 Terminology

A problem instance consists of a set P of k points
called terminals , drawn from an m x m integer grid.

A set T of terminals is a full set if, in every opti-
mal RST of T, every terminal is a leaf. An RST of a
full set is called a ful l tree. Hwang [13] proved that a
full set must have one of two simple topologies. These
topologies are illustrated in Figure 1. Hwang’s theo-
rem allows computation of an optimal RST of a full
set in linear time.

46
1066-1395/95 $4.00 0 1995 IEEE

RST problem is due to Ganley and Cohoon [lo]. Its
time complexity is 0(k22.62E) for k terminals. When
applied tca points from an m by m grid, this time com-
plexity can be as large as O(m42.62"'), which is worse
than Hakimi's algorithm.

Figure 1: Possible full tree topologies according to
Hwang 's theorem.

5 A CBynamic Programming Algorithm
3 Simple Approaches

As mentioned previously, VLSI placement algorithms
that utilize TRSTs do so by precomputing the op-
timal TRST for every possible point set and simply
looking them up at runtime. This is obviously quite
time-efficient, but requires 0(2ma) space, which is pro-
hibitive for m larger than 4. By exploiting the fact
that the grid is symmetrical under a 90-degree ro-
tation, one can save a factor of four in the space
requirements by sacrificing the O(1) table lookup
for an O(m2) binary search. Even with this reduc-
tion, however, storing the TRSTs for all point sets
for m = 5 requires approximately 40 megabytes of
storage. While this might be feasible on some ma-
chines, for m = 6, storage would require iroughly 120
gigabytes of space, which is currently impractical.

Another simple approach is to enumerate all
TRSTs for a given point set, and choose the one with
minimum length. We would thus like a bound on the
total number of possible TRSTs. This question is also
interesting since many of the placement algorithms
that use TRSTs enumerate all optimal TIESTs.

The number of TRSTs is clearly bounded by the
number t of spanning trees in the complete m x m grid
graph. There is no closed form for t [15], but one can
easily show that it grows faster than 0(n222m"), and
therefore enumerating all spanning trees is slower than
the spanning tree enumeration algorithm described in
the next section.

4 Spanning Tree Enumeration

Another approach is to apply an existing algorithm
for the RST problem to thumbnail-sized inputs. One
such algorithm is Hakimi's spanning tree enumeration
algorithm [12]. Hakimi's algorithm has time com-
plexity O(nzn), where n is the number of candidate
Steiner points. Applied to terminals from art m x m
grid, the time complexity of Hakimi's algorithm is at
most 0(m22ma).

For the standard RST problem, Hakimi's allgorithm
is less efficient than many other algoriChrns [7, 9, 10,
171. However, when applied to thumbnail-sized inputs,
Hakimi's algorithm is faster. The practical algorithm
with the best known time complexity for the general

Another natural approach is to apply the Aho, Garey,
and Hwang (AGH) algorithm for terminals on a small
number of parallel lines [I]. For TRSTs, the terminals
lie on a set of at most m parallel lines.

The AGH algorithm proceeds from left to right in
the grid, building an optimal RST of the terminals
in an z by m grid from optimal RSTs in an z - 1
by m grid, which have been stored from the previous
it er at ion.

The AGH algorithm has time complexity O(n116~).
This is clearly asymptotically superior to the other
two algorithms described above. However, as will
be shown empirically in Section 7, for the small val-
ues of rn considered here, the AGH algorithm is
slower than the others described earlier. In addi-
tion, note that the AGH algorithm requires O(m8")
space, and thus it is inapplicable to the TRST problem
with m > 7.

6 F'ulll-Set Decomposition

The key concept in the Steiner tree algorithms of
Cockayne and Hewgill [5, 61, Salowc and Warme [17],
and Wider [19] is that of full-set decomposition. A
well-known theorem on Steiner trees is that every op-
timal Steiner tree can be decomposed into a number of
full trees joined at terminals of degree greater than 1.
Since Hwang's theorem enables linear-lime computa-
tion of optimal full trees, one can compute an optimal
RST by finding the full-set decomposition with min-
imum total length. The algorithms mentioned above
examine every subset of the set of terminals, producing
a set of candidate full sets. They then use a branch
and bound algorithm to find a set of candidate full
sets of minimum total length, whose union spans all
the terminals.

Here we devise such an algorithm for the TRST
problem. The fact that inputs are drawn from a small
grid allows us some algorithmic improvements beyond
those for the standard RST problem.

Let M,ST(T) denote the length off a minimumspan-
ning tree of a set T of terminals. A set T of terminals
is compact if MST(T) = IT1 - 1 (i.e., if a minimum
spanning tree of T contains only unit-length edges).

47

Theorem 1 There exists an opt imal T R S T r in
which every compact subset T of the set of terminals
induces a connected component in r.

Proof: See Ganley and Cohoon [ll]. cl
Let 11a-bll denote the rectilinear distance between two
points a and b .

Corollary 1.1 There can be no t w o terminals a and b
0

These results allow us to eliminate many full sets from
candidacy. For every compact subset S of the termi-
nals, every full set containing more than two terminals
in S is eliminated from cmdidacy. The subset S is
then added to the set of candidate full sets. While it
is not technically a full set, it behaves as one in the
decomposition since no other candidate full set can
intersect it at more than one terminal.

We can also eliminate candidate full sets of
cardinality exceeding m.

Theorem 2 For m 2 4, every candidate full set on
an m x m grid contains at most m terminals .

in a candidate full set such that 11a - bll = 1.

Proof: See Ganley and Cohoon [ll]. 0
In our implementation, we precompute a TRST for

every possible full set on an m x m grid. The algo-
rithm then reads in those full sets that are subsets
of the input set T of terminals. Since no two ter-
minals in a full set can share an x or y coordinate,
the total number of full sets is at most O(mm), and
consequently the time complexity of the algorithm is

for constant c , which is an improvement on the best
known bound of O(n1.62") = O(m21.62"') on the
number of full sets in an unrestricted point set [lo].
Table 1 shows the total number of possible full sets
of cardinality 3 or greater on an m x m grid, along
with the value of the upper bound mm, for small val-
ues of m. Note that since not every set of m or fewer

at most O(2"). Note that O(mm) = O(cmlogm 1

4
4
5
5
5
5
6
6
6
6
6
7
7
7
7
7
7

8 0.009
12 0.002
5 0.020
10 0.737
15 0.120
20 0.004
6 0.450
12 152.5
18 23.01
24 1.048
30 0.007
7 13.55
14 18632
21 15867
28 455.0
35 6.317
42 0.014

terminals is afull set, the bound of O(mm) is not tight.
If an edge in a full tree of a full set S intersects a ter-

minal in T - S , then that terminal would have degree
greater than 1, and thus the full set is eliminated from
candidacy. Thus, the number of full sets that must be
considered for a given instance is typically far smaller
than the total number of possible full sets. Empirical
results on the total number of candidate full sets are
given in Section 7.

55.69
205.2
74.69
0.223
0.109

7 Experimental Results

17.3 173
29.1 144
46.6 74
84.1 32
99.5 8

We have implemented the spanning tree enumeration,
dynamic programming, and full set decomposition al-
gorithms in order to compare them experimentally.
The results of these experiments are shown in Table 2.
For m 5 4, the values shown result from one run on
each of the (";) possible point sets. For m 2 5, the
values shown result from one run on each of 1000 dif-
ferent randomly generated point sets. There are a

m 3 4 5 6
Fullsets 17 196 1258 5368
mm 27 256 3125 46656

7
20157
823543

DP
0.627
0.629
0.682
0.823
0.695
2.020
2.010
2.007
2.030
25.33
25.97
26.19
25.91
26.67
830.7
889.8
862.6
901.0
907.8
906.6

0.020 11 72.2 11 37

0.030

0.040 11 11 3l
0.079

Table 2: Average runtime (in seconds) for the
spanning tree enumeration (STE), dynamic pro-
gramming (DP), and full-set decomposition (FSD)
algorithms. %MST indicates the percentage of the
instances for which the TRST has the same length as
the MST. The value of f is the maximum number of
candidate full sets.

number of noteworthy features of these results.
First, note that in spite of its asymptotic superior-

ity, the dynamic programming algorithm is too slow
to be used on instances with m 5 7. (Also, recall that
the space requirements of the algorithm prohibit its
use on instances with m > 7.)

Second, note that the spanning tree enumeration
and full-set decomposition algorithms are quite fast
on very sparse or very dense instances. This is not
surprising: for sparse instances, there are few termi-
nals, and for dense instances, there are few candidate
Steiner points (for Hakimi's algorithm) or candidate
full sets (for the FSD algorithm).

For all but the smallest instances, the FSD algo-
rithm is faster than both the STE and DP algorithms.
In addition, the current branch and bound algorithm

48

for finding the optimal full-set decomposition it quite
simple. We believe that its efficiency can be consid-
erably improved by using more elaborate strategies to
prune the search space [17].

Lastly, note that often a minimum spanning tree is
an optimal TRST. Clearly a TRST cannot have length
less than k - 1, so the algorithms first compute an
MST, and if it has length k - 1, it is returned as the
optimal TRST. However, in many cases the IMST has
length exceeding k - 1, but is nonetheless an optimal
TRST.

8 Conclusions

This is the first known study of the thumbnail1 rectilin-
ear Steiner tree problem. We are continuing this work
in a number of directions.

For VLSI placement applications, there is another
important aspect of the TRST problem that we have
not yet addressed: how to enumerate different opti-
mal TRSTs. However, we believe that once a single
TRST is computed, we can use an algorithm similar to
that of Eppstein, Galil, Italiano, and Niswenzweig [8]
to enumerate all optimal TRSTs.

As mentioned in Section 7, often a minimum span-
ning tree of a thumbnail-sized instance ia; an optimal
TRST. Thus, one possible approach is to precompute
and store only those TRSTs that are shorter than a
minimumspanning tree, and look them up at runtime.

The algorithms examined here are not radically dif-
ferent from algorithms for the general R!$T problem;
they simply use the restricted nature of the inputs to
improve such algorithms. We believe it it3 possible to
exploit the nature of the TRST problem1 more com-
pletely, and thus to devise much faster a1,gorithms for
it. Our ultimate goal is an algorithm that can com-
pute an optimal TRST for any point set on an m x m
grid for small m 5 10 in less than one second.

References

A. V. Aho, M. R. Garey, and F. K. Hwang. Recti-
linear Steiner trees: Efficient special-case algorithms.
Networks, 7:37-58, 1977.
S. Bapat and J. P. Cohoon. A parallel VLSI circuit
layout methodology. In Proceedings of the Sizth IEEE
International Conference on VLSI Design, January
1993.
F. R. K. Chung, M. Gardner, and R. L. Gra-
ham. Steiner trees on a checkerboard. Mathematics
Magazine, 62:83-96, 1989.

F. R. K. Chung and R. L. Graham. Steiner trees for
ladders. Annals of Discrete Mathematicis, 2:173-200,
1978.

[5] E. J. Cockayne and D. E. Hewgill. Exact computation
of Steiner minimal trees in the plane. Information
Procizssing Letters, 22:151-156, 1986.

[6] E. J. Cockayne and D. E. Hewgill. Improved compu-
tatiom of plane Steiner minimal trees. Algorithmica,

[7] S. E. Dreyfus and R. A. Wagner. 'The Steiner problem
in graphs. Networks, 1:195-207, 1972.

[8] D. Elppstein, Z. Galil, G. F. Itdano, and A. Nis-
senzweig. Sparsification: A technique for speeding
up dynamic graph algorithms. In Proceedings of the
Thirty-third Symposium on Foundations of Computer
Sciercce, pages 60-69, 1992.

[9] J. L. Ganley and J. P. Cohoon. A faster dynamic
progi~amming algorithm for exact rectilinear Steiner
minimal trees. In Proceedings of the Fourth Great
Lakes Symposium on VLSI, pages 238-241, 1994.

Optimal rectilin-
ear Steiner minimal trees in O(~a~2.62") time. In
Proceedings of the Sixth Canadian Conference on
Com>putational Geometry, pages 308-313, 1994.

[ll] J. L. Ganley and J. P. Cohoon. Thumbnail rectilinear
Steiner trees. Technical Report CS-95-01, Depart-
ment of Computer Science, University of Virginia,
Charlot tesville, Virginia, 1995.

[12] S. L. Hakimi. Steiner's problem in graphs and its
implications. Networks, 1: 113-133, 1971.

[13] F. K . Hwang. On Steiner minimal trees with rectilin-
ear distance. SIAM Journal of Applied Mathematics,

[14] F. K. Hwang and D. Z. Du. Steiner minimal trees
on thle Chinese checkerboard. Mathematics Magazine,

[15] G. Kreweras. Complexit6 et circuits Eul6riens dan
les strmmes tensorielles de graphes. Journal of Com-
binatorial Theory, Series B, 24:202-212, 1978. (in
French).

Congestion-driven
placement using a new multi-partitioning heuristic.
In P'roceedings of the International Conference on
Com,puter-Aided Design, pages 332-335, 1990.

[17] J. S. Salowe and D. M. Warme. An exact recti-
linear Steiner tree algorithm. In Proceedings of the
International Conference on Computer Design, pages
472-475, 1993.

[18] P. R.. Suaris and G. Kedem. A quadrisection-based
place and route scheme for standard cells. IEEE
Transactions on Computer-Aided Design, 8:234-244,
1989.

[19] P. Winter. An algorithm for the Steiner problem in
the Ehclidean plane. Networks, 15:323-345, 1905.

7:2191-229, 1992.

[lo] J. L. Ganley and J. P. Cohoon.

30:1014-114, 1976.

64:332-339, 1991.

[16] S. MIayrhofer and U. Lauther.

49

