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Abstract 

The  rectilinear Steiner tree problem i s  t o  find a 
manimum-length set  of horizontal and vertical line 
segments that interconnect a given set  of points  in  
$he plane. Here we study the thumbnail  rectilinear 
S te iner  tree problem, where the inpvt  points  are drawn 
f r o m  a small  integer grid.  Specifically, we  devise 
a full-set decomposition algorithm for computing op- 
t ima l  thumbnail  rectalinear Steiner trees.  W e  then 
present experimental results comparing this algorithm 
with t w o  existing algorithms for computing optimal 
recdilinear Steiner trees.  T h e  thumbnail rectilinear 
Steiner tree problem has applications in  VLSI place- 
ment  algorithms based on  geometric parti t ioning and 
i n  global routing of field-programmable gate arrays.  

1 Introduction 

The rectilinear Steiner tree (RST) problem is defined 
as follows: given a set P of k points in the plane, find 
a set S of additional points called Steiner points such 
that the length of a minimum spanning tree of P U S 
is minimized. The RST problem is NP-complete, sug- 
gesting that no polynomial-time algorithm can solve it 
exactly. However, many exponential-time algorithms 
have appeared in the literature that efficiently solve 
small problem instances [7, 9, 10, 12, 171. 

Here we consider the RST problem when the point 
set P is drawn from an m x m integer grid, where m 
is small. We call this the thumbnail  rectiiinear Steiner 
tree (TRST) problem. The TRST problem has sev- 
eral applications in VLSI physical design automation. 
In particular, several researchers [2, 16, 181 have con- 
sidered VLSI placement heuristics based on m x m 
geometric partitions of the circuit area. In these al- 
gorithms, TRSTs are heavily used; typically they are 
precomputed and stored for use by the placement a lge  
rithm. Such an approach limits m to about 4 or less 
due to space requirements, so efficient computation 
of TRSTs would allow investigation of this place- 
ment technique for larger m. Another application is 
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in global routing of field-programmable gate arrays, 
which are typically composed of logic blocks arranged 
in a small grid, with rectilinear wires connecting them. 

Researchers have previously investigated Euclidean 
Steiner trees of point sets from small grids [3, 4, 51 
and triangular and hexagonal grids [14], but this is 
the first known study of the rectilinear problem. Note 
that the Euclidean problem is very different from the 
rectilinear one. For the Euclidean case, most previous 
work [3,4] focuses on simple, mechanical constructions 
that are conjectured but not proven to be optimal. In 
the rectilinear case there seem to be no such simple 
constructions for which optimality can be reasonably 
conjectured. In particular, the Euclidean construc- 
tions largely focus on the complete m x m point set, 
which is uninteresting in the rectilinear case since a 
minimum spanning tree is an optimal TRST for such 
an instance. Cockayne and Hewgill [5] use their exact 
algorithm for the general Euclidean Steiner tree prob- 
lem to compute optimal Euclidean Steiner trees for a 
number of point sets on a small integer grid. 

Our goal in this research is to exploit the special 
nature of the inputs to devise algorithms that are more 
efficient than simply applying existing algorithms to 
these point sets. 

This paper presents some preliminary results on the 
TRST problem. We devise a full-set decomposition al- 
gorithm for computing optimal TRSTs, which uses the 
special nature of the inputs to improve the screening 
of candidate full sets. We then present experimen- 
tal results comparing this algorithm with two existing 
algorithms for computing optimal rectilinear Steiner 
trees. The reader should note that all results presented 
here are easily generalized to rectangular, rather than 
square, grids. 

2 Terminology 

A problem instance consists of a set P of k points 
called terminals ,  drawn from an m x m integer grid. 

A set T of terminals is a full set  if, in every opti- 
mal RST of T, every terminal is a leaf. An RST of a 
full set is called a ful l  tree. Hwang [13] proved that a 
full set must have one of two simple topologies. These 
topologies are illustrated in Figure 1. Hwang’s theo- 
rem allows computation of an optimal RST of a full 
set in linear time. 

46 
1066-1395/95 $4.00 0 1995 IEEE 



RST problem is due to Ganley and Cohoon [lo]. Its 
time complexity is 0(k22.62E) for k terminals. When 
applied tca points from an m by m grid, this time com- 
plexity can be as large as O(m42.62"'), which is worse 
than Hakimi's algorithm. 

Figure 1: Possible full tree topologies according to 
Hwang 's theorem. 

5 A CBynamic Programming Algorithm 
3 Simple Approaches 

As mentioned previously, VLSI placement algorithms 
that utilize TRSTs do so by precomputing the op- 
timal TRST for every possible point set and simply 
looking them up at runtime. This is obviously quite 
time-efficient, but requires 0(2ma)  space, which is pro- 
hibitive for m larger than 4. By exploiting the fact 
that the grid is symmetrical under a 90-degree ro- 
tation, one can save a factor of four in the space 
requirements by sacrificing the O(1) table lookup 
for an O(m2) binary search. Even with this reduc- 
tion, however, storing the TRSTs for all point sets 
for m = 5 requires approximately 40 megabytes of 
storage. While this might be feasible on some ma- 
chines, for m = 6, storage would require iroughly 120 
gigabytes of space, which is currently impractical. 

Another simple approach is to enumerate all 
TRSTs for a given point set, and choose the one with 
minimum length. We would thus like a bound on the 
total number of possible TRSTs. This question is also 
interesting since many of the placement algorithms 
that use TRSTs enumerate all optimal TIESTs. 

The number of TRSTs is clearly bounded by the 
number t of spanning trees in the complete m x m grid 
graph. There is no closed form for t [15], but one can 
easily show that it grows faster than 0(n222m"), and 
therefore enumerating all spanning trees is slower than 
the spanning tree enumeration algorithm described in 
the next section. 

4 Spanning Tree Enumeration 

Another approach is to apply an existing algorithm 
for the RST problem to thumbnail-sized inputs. One 
such algorithm is Hakimi's spanning tree enumeration 
algorithm [12]. Hakimi's algorithm has time com- 
plexity O(nzn), where n is the number of candidate 
Steiner points. Applied to terminals from art m x m 
grid, the time complexity of Hakimi's algorithm is at 
most 0(m22ma). 

For the standard RST problem, Hakimi's allgorithm 
is less efficient than many other algoriChrns [7, 9, 10, 
171. However, when applied to thumbnail-sized inputs, 
Hakimi's algorithm is faster. The practical algorithm 
with the best known time complexity for the general 

Another natural approach is to apply the Aho, Garey, 
and Hwang (AGH) algorithm for terminals on a small 
number of parallel lines [I]. For TRSTs, the terminals 
lie on a set of at most m parallel lines. 

The AGH algorithm proceeds from left to right in 
the grid, building an optimal RST of the terminals 
in an z by m grid from optimal RSTs in an z - 1 
by m grid, which have been stored from the previous 
it er at ion. 

The AGH algorithm has time complexity O(n116~). 
This is clearly asymptotically superior to the other 
two algorithms described above. However, as will 
be shown empirically in Section 7, for the small val- 
ues of rn considered here, the AGH algorithm is 
slower than the others described earlier. In addi- 
tion, note that the AGH algorithm requires O(m8") 
space, and thus it is inapplicable to the TRST problem 
with m > 7. 

6 F'ulll-Set Decomposition 

The key concept in the Steiner tree algorithms of 
Cockayne and Hewgill [5, 61, Salowc and Warme [17], 
and Wider [19] is that of full-set decomposition. A 
well-known theorem on Steiner trees is that every op- 
timal Steiner tree can be decomposed into a number of 
full trees joined at terminals of degree greater than 1. 
Since Hwang's theorem enables linear-lime computa- 
tion of optimal full trees, one can compute an optimal 
RST by finding the full-set decomposition with min- 
imum total length. The algorithms mentioned above 
examine every subset of the set of terminals, producing 
a set of candidate full sets.  They then use a branch 
and bound algorithm to find a set of candidate full 
sets of minimum total length, whose union spans all 
the terminals. 

Here we devise such an algorithm for the TRST 
problem. The fact that inputs are drawn from a small 
grid allows us some algorithmic improvements beyond 
those for the standard RST problem. 

Let M,ST(T)  denote the length off a minimumspan- 
ning tree of a set T of terminals. A set T of terminals 
is compact if MST(T) = IT1 - 1 (i.e., if a minimum 
spanning tree of T contains only unit-length edges). 
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Theorem 1 There exists an opt imal  T R S T  r in 
which every compact subset T of the set of terminals  
induces a connected component in r. 

Proof: See Ganley and Cohoon [ll]. cl 
Let 11a-bll denote the rectilinear distance between two 
points a and b .  

Corollary 1.1 There can be no t w o  terminals  a and b 
0 

These results allow us to eliminate many full sets from 
candidacy. For every compact subset S of the termi- 
nals, every full set containing more than two terminals 
in S is eliminated from cmdidacy. The subset S is 
then added to the set of candidate full sets. While it 
is not technically a full set, it behaves as one in the 
decomposition since no other candidate full set can 
intersect it at more than one terminal. 

We can also eliminate candidate full sets of 
cardinality exceeding m. 

Theorem 2 For m 2 4, every candidate full set on 
an m x m grid contains at most  m terminals .  

in a candidate full  set  such that 11a - bll = 1. 

Proof: See Ganley and Cohoon [ll]. 0 
In our implementation, we precompute a TRST for 

every possible full set on an m x m grid. The algo- 
rithm then reads in those full sets that are subsets 
of the input set T of terminals. Since no two ter- 
minals in a full set can share an x or y coordinate, 
the total number of full sets is at most O(mm), and 
consequently the time complexity of the algorithm is 

for constant c ,  which is an improvement on the best 
known bound of O(n1.62") = O(m21.62"') on the 
number of full sets in an unrestricted point set [lo]. 
Table 1 shows the total number of possible full sets 
of cardinality 3 or greater on an m x m grid, along 
with the value of the upper bound mm, for small val- 
ues of m. Note that since not every set of m or fewer 

at most O(2"). Note that O(mm) = O(cmlogm 1 

4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 

8 0.009 
12 0.002 
5 0.020 
10 0.737 
15 0.120 
20 0.004 
6 0.450 
12 152.5 
18 23.01 
24 1.048 
30 0.007 
7 13.55 
14 18632 
21 15867 
28 455.0 
35 6.317 
42 0.014 

terminals is afull set, the bound of O(mm) is not tight. 
If an edge in a full tree of a full set S intersects a ter- 

minal in T - S ,  then that terminal would have degree 
greater than 1, and thus the full set is eliminated from 
candidacy. Thus, the number of full sets that must be 
considered for a given instance is typically far smaller 
than the total number of possible full sets. Empirical 
results on the total number of candidate full sets are 
given in Section 7. 

55.69 
205.2 
74.69 
0.223 
0.109 

7 Experimental Results 

17.3 173 
29.1 144 
46.6 74 
84.1 32 
99.5 8 

We have implemented the spanning tree enumeration, 
dynamic programming, and full set decomposition al- 
gorithms in order to compare them experimentally. 
The results of these experiments are shown in Table 2. 
For m 5 4, the values shown result from one run on 
each of the (";) possible point sets. For m 2 5, the 
values shown result from one run on each of 1000 dif- 
ferent randomly generated point sets. There are a 

m 3 4  5 6 
Fullsets 17 196 1258 5368 
mm 27 256 3125 46656 

7 
20157 
823543 

DP 
0.627 
0.629 
0.682 
0.823 
0.695 
2.020 
2.010 
2.007 
2.030 
25.33 
25.97 
26.19 
25.91 
26.67 
830.7 
889.8 
862.6 
901.0 
907.8 
906.6 

0.020 11 72.2 11 37 

0.030 

0.040 11 11 3l 
0.079 

Table 2: Average runtime (in seconds) for the 
spanning tree enumeration (STE), dynamic pro- 
gramming (DP), and full-set decomposition (FSD) 
algorithms. %MST indicates the percentage of the 
instances for which the TRST has the same length as 
the MST. The value of f is the maximum number of 
candidate full sets. 

number of noteworthy features of these results. 
First, note that in spite of its asymptotic superior- 

ity, the dynamic programming algorithm is too slow 
to be used on instances with m 5 7. (Also, recall that 
the space requirements of the algorithm prohibit its 
use on instances with m > 7.) 

Second, note that the spanning tree enumeration 
and full-set decomposition algorithms are quite fast 
on very sparse or very dense instances. This is not 
surprising: for sparse instances, there are few termi- 
nals, and for dense instances, there are few candidate 
Steiner points (for Hakimi's algorithm) or candidate 
full sets (for the FSD algorithm). 

For all but the smallest instances, the FSD algo- 
rithm is faster than both the STE and DP algorithms. 
In addition, the current branch and bound algorithm 
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for finding the optimal full-set decomposition it quite 
simple. We believe that its efficiency can be consid- 
erably improved by using more elaborate strategies to 
prune the search space [17]. 

Lastly, note that often a minimum spanning tree is 
an optimal TRST. Clearly a TRST cannot have length 
less than k - 1, so the algorithms first compute an 
MST, and if it has length k - 1, it is returned as the 
optimal TRST. However, in many cases the IMST has 
length exceeding k - 1, but is nonetheless an optimal 
TRST. 

8 Conclusions 

This is the first known study of the thumbnail1 rectilin- 
ear Steiner tree problem. We are continuing this work 
in a number of directions. 

For VLSI placement applications, there is another 
important aspect of the TRST problem that we have 
not yet addressed: how to enumerate different opti- 
mal TRSTs. However, we believe that once a single 
TRST is computed, we can use an algorithm similar to 
that of Eppstein, Galil, Italiano, and Niswenzweig [8] 
to enumerate all optimal TRSTs. 

As mentioned in Section 7, often a minimum span- 
ning tree of a thumbnail-sized instance ia; an optimal 
TRST. Thus, one possible approach is to precompute 
and store only those TRSTs that are shorter than a 
minimumspanning tree, and look them up at runtime. 

The algorithms examined here are not radically dif- 
ferent from algorithms for the general R!$T problem; 
they simply use the restricted nature of the inputs to 
improve such algorithms. We believe it it3 possible to 
exploit the nature of the TRST problem1 more com- 
pletely, and thus to devise much faster a1,gorithms for 
it. Our ultimate goal is an algorithm that can com- 
pute an optimal TRST for any point set on an m x m 
grid for small m 5 10 in less than one second. 
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