Thumbnail Rectilinear Steiner Trees*

Joseph L. Ganley and James P. Cohoon

Department of Computer Science, University of Virginia, Charlottesville, Virginia 22903

Abstract

The rectilinear Steiner iree problem is to find a
mintmum-length set of horizontal and vertical line
segments thatl interconnect a given set of points in
the plane. Here we study the thumbnail rectilinear
Steiner tree problem, where the input poinis are drawn
from a small integer grid. Specifically, we devise
a full-set decomposition algorithm for computing op-
timal thumbnail rectilinear Steiner trees. We then
present experimental results comparing this algorithm
with two ezisting algorithms for computing optimal
rectilinear Steiner trees. The thumbnail rectilinear
Steiner tree problem has applications in VLSI place-
ment algorithms based on geometric partitioning and
in global routing of field-programmable gate arrays.

1 Introduction

The rectilinear Steiner tree (RST) problem is defined
as follows: given a set P of k points in the plane, find
a set S of additional points called Steiner poinis such
that the length of a minimum spanning tree of PU S
is minimized. The RST problem is NP-complete, sug-
gesting that no polynomial-time algorithm can solve it
exactly. However, many exponential-time algorithms
have appeared in the literature that efficiently solve
small problem instances [7, 9, 10, 12, 17].

Here we consider the RST problem when the point
set P is drawn from an m x m integer grid, where m
is small. We call this the thumbnail rectilinear Steiner
tree (TRST) problem. The TRST problem has sev-
eral applications in VLSI physical design automation.
In particular, several researchers [2, 16, 18] have con-
sidered VLSI placement heuristics based on m x m
geometric partitions of the circuit area. In these al-
gorithms, TRSTs are heavily used; typically they are
precomputed and stored for use by the placement algo-
rithm. Such an approach limits m to about 4 or less
due to space requirements, so efficient computation
of TRSTs would allow investigation of this place-
ment technique for larger m. Another application is

*The authors gratefully acknowledge the support of National
Science Foundation grants MIP-9107717 and CCR-9224789.
JLG also gratefully acknowledges a Virginia Space Grant
Fellowship.

1066-1395/95 $4.00 © 1995 IEEE

46

in global routing of field-programmable gate arrays,
which are typically composed of logic blocks arranged
in a small grid, with rectilinear wires connecting them.

Researchers have previously investigated Euclidean
Steiner trees of point sets from small grids [3, 4, 5]
and triangular and hexagonal grids [14], but this is
the first known study of the rectilinear problem. Note
that the Euclidean problem is very different from the
rectilinear one. For the Euclidean case, most previous
work [3, 4] focuses on simple, mechanical constructions
that are conjectured but not proven to be optimal. In
the rectilinear case there seem to be no such simple
constructions for which optimality can be reasonably
conjectured. In particular, the Euclidean construc-
tions largely focus on the complete m x m point set,
which is uninteresting in the rectilinear case since a
minimum spanning tree is an optimal TRST for such
an instance. Cockayne and Hewgill {5] use their exact
algorithm for the general Euclidean Steiner tree prob-
lemn to compute optimal Euclidean Steiner trees for a
number of point sets on a small integer grid.

Our goal in this research is to exploit the special
nature of the inputs to devise algorithms that are more
efficient than simply applying existing algorithms to
these point sets.

This paper presents some preliminary results on the
TRST problem. We devise a full-set decomposition al-
gorithm for computing optimal TRSTs, which uses the
special nature of the inputs to improve the screening
of candidate full sets. We then present experimen-
tal results comparing this algorithm with two existing
algorithms for computing optimal rectilinear Steiner
trees. The reader should note that all results presented
here are easily generalized to rectangular, rather than
square, grids.

2 Terminology

A problem instance consists of a set P of k points
called terminals, drawn from an m x m integer grid.

A set T of terminals is a full set if, in every opti-
mal RST of T, every terminal is a leaf. An RST of a
full set is called a full tree. Hwang [13] proved that a
full set must have one of two simple topologies. These
topologies are illustrated in Figure 1. Hwang’s theo-
rem allows computation of an optimal RST of a full
set in linear time.

[1] IIIII

Figure 1: Possible full tree topologies according to
Hwang’s theorem.

3 Simple Approaches

As mentioned previously, VLSI placement algorithms
that utilize TRSTs do so by precomputing the op-
timal TRST for every possible point set and simply
looking them up at runtime. This is obviously quite
time-efficient, but requires 0(2'"2) space, which is pro-
hibitive for m larger than 4. By exploiting the fact
that the grid is symmetrical under a 90-degree ro-
tation, one can save a factor of four in the space
requirements by sacrificing the O(1) table lookup
for an O(m?) binary search. Even with this reduc-
tion, however, storing the TRSTs for all point sets
for m = 5 requires approximately 40 megabytes of
storage. While this might be feasible on some ma-
chines, for m = 6, storage would require roughly 120
gigabytes of space, which is currently impractical.

Another simple approach is to enumerate all
TRSTs for a given point set, and choose the one with
minimum length. We would thus like a bound on the
total number of possible TRSTs. This question is also
interesting since many of the placement algorithms
that use TRSTs enumerate all optimal TRSTs.

The number of TRSTs is clearly bounded by the
number ? of spanning trees in the complete m x m grid
graph. There is no closed form for ¢ [15], but one can
easily show that it grows faster than 0(11122"‘2), and
therefore enumerating all spanning trees is slower than
the spanning tree enumeration algorithm described in
the next section.

4 Spanning Tree Enumeration

Another approach is to apply an existing algorithm
for the RST problem to thumbnail-sized inputs. One
such algorithm is Hakimi’s spanning tree enumeration
algorithm [12]. Hakimi’s algorithm has time com-
plexity O(n2"), where n is the number of candidate
Steiner points. Applied to terminals from an m x m
grid, the time complexity of Hakimi’s algorithm is at
most O(m?22™).

For the standard RST problem, Hakimi’s algorithm
is less efficient than many other algorithns [7, 9, 10,
17]. However, when applied to thumbnail-sized inputs,
Hakimi’s algorithm is faster. The practical algorithm
with the best known time complexity for the general

47

RST problem is due to Ganley and Cohoon [10]. Its
time complexity is O(k22.62%) for k terminals. When
applied to points from an m by m grid, this time com-
plexity can be as large as O(m?#2.62™"), which is worse
than Hakimi’s algorithm.

5 A Dynamic Programming Algorithm

Another natural approach is to apply the Aho, Garey,
and Hwang (AGH) algorithm for terminals on a small
number of parallel lines [1]. For TRSTs, the terminals
lie on a set of at most m parallel lines.

The AGH algorithm proceeds from left to right in
the grid, building an optimal RST of the terminals
in an £ by m grid from optimal RSTs in an z — 1
by m grid, which have been stored from the previous
iteration.

The AGH algorithm has time complexity O(m16™).
This is clearly asymptotically superior to the other
two algorithms described above. However, as will
be shown empirically in Section 7, for the small val-
ues of m considered here, the AGH algorithm is
slower than the others described earlier. In addi-
tion, note that the AGH algorithm requires O(m8™)
space, and thus it is inapplicable to the TRST problem
with m > 7.

6 Full-Set Decomposition

The key concept in the Steiner tree algorithms of
Cockayne and Hewgill [5, 6], Salowe and Warme [17],
and Winter [19] is that of full-set decomposition. A
well-known theorem on Steiner trees is that every op-
timal Steiner tree can be decomposed into a number of
full trees joined at terminals of degree greater than 1.
Since Hwang’s theorem enables linear-time computa-
tion of optimal full trees, one can compute an optimal
RST by finding the full-set decomposition with min-
imum total length. The algorithms mentioned above
examine every subset of the set of terminals, producing
a set of candidate full sets. They then use a branch
and bound algorithm to find a set of candidate full
sets of minimum total length, whose union spans all
the terminals.

Here we devise such an algorithm for the TRST
problem. The fact that inputs are drawn from a small
grid allows us some algorithmic improvements beyond
those for the standard RST problem.

Let M ST(T) denote the length of a minimum span-
ning tree of a set T of terminals. A set T of terminals
is compact if MST(T) = |T| -1 (i.e., if a minimum
spanning tree of T' contains only unit-length edges).

Theorem 1 There ezisls an optimal TRST 7 in
which every compact subset T of the sel of terminals
induces a connected component in r.

Proof: See Ganley and Cohoon [11]. O
Let |Ja—b|| denote the rectilinear distance between two
points a and b.

Corollary 1.1 There can be no two terminals a and b
in a candidate full set such that |la — b} = 1. O

These results allow us to eliminate many full sets from
candidacy. For every compact subset S of the termi-
nals, every full set containing more than two terminals
in S is eliminated from candidacy. The subset S is
then added to the set of candidate full sets. While it
is not technically a full set, it behaves as one in the
decomposition since no other candidate full set can
intersect it at more than one terminal.

We can also eliminate candidate full sets of
cardinality exceeding m.

Theorem 2 For m > 4, every candidate full set on
an m x m grid contains alt most m terminals.

Proof: See Ganley and Cohoon [11]. o

In our implementation, we precompute a TRST for
every possible full set on an m x m grid. The algo-
rithm then reads in those full sets that are subsets
of the input set T of terminals. Since no two ter-
minals in a full set can share an z or y coordinate,
the total number of full sets is at most O(m™), and
consequently the time complexity of the algorithm is
at most O(2™"). Note that O(m™) = O(c™°e™)
for constant ¢, which is an improvement on the best
known bound of O(n1.62%) = O(m21.62™") on the
number of full sets in an unrestricted point set [10].
Table 1 shows the total number of possible full sets
of cardinality 3 or greater on an m x m grid, along
with the value of the upper bound m™, for small val-
ues of m. Note that since not every set of m or fewer

m 3 4 5 6 7
Full sets | 17 | 196 | 1258 | 5368 | 20157
m"™ 27 | 256 | 3125 | 46656 | 823543

Table 1: Number of full sets in an m x m grid.

terminals is a full set, the bound of O(m™) is not tight.

If an edge in a full tree of a full set S intersects a ter-
minal in T — S, then that terminal would have degree
greater than 1, and thus the full set is eliminated from
candidacy. Thus, the number of full sets that must be
considered for a given instance is typically far smaller
than the total number of possible full sets. Empirical
results on the total number of candidate full sets are
given in Section 7.

48

7 Experimental Results

We have implemented the spanning tree enumeration,
dynamic programming, and full set decomposition al-
gorithms in order to compare them experimentally.
The results of these experiments are shown in Table 2.
For m < 4, the values shown result from one run on

each of the (";2) possible point sets. For m > 5, the

values shown result from one run on each of 1000 dif-
ferent randomly generated point sets. There are a

m| k STE DP | FSD || WMST f
3| 3 | 0.001 [0.627 | 0.011 81.0 3
3| 6 | 0.001]0.629 | 0.013 95.2 4
41 4 | 0.002 [0.682 | 0.013 66.0 8
4 | 8 | 0.009 | 0.823 | 0.020 72.2 37
4 |12 |} 0.002 | 0.695 | 0.014 98.2 5
51 5 || 0.020 | 2.020 | 0.020 47.7 14
5 | 10 || 0.737 | 2.010 | 0.055 51.3 52
5 |15} 0.120 | 2.007 { 0.051 72.0 41
5 | 20 j| 0.004 | 2.030 | 0.023 99.0 8
6 | 6 || 0.450 | 25.33 | 0.030 34.1 28
6 | 12 || 152.5 | 25.97 | 1.639 31.9 91
6 |18 || 23.01 | 26.19 | 9.616 44.8 78
6 {241 1.048 | 25.91 | 0.213 77.7 35
6 | 30 || 0.007 | 26.67 | 0.040 99.2 7
71 7 if 13.55 | 830.7 | 0.079 21.0 35
7 | 14 || 18632 | 889.8 | 55.69 17.3 173
7 |21 |[15867 | 862.6 | 205.2 29.1 144
7 | 28 || 455.0 | 901.0 | 74.69 46.6 74
7 135 6317 | 907.8 | 0.223 84.1 32
7 {42 | 0.014 | 906.6 | 0.109 99.5 8

Table 2: Average runtime (in seconds) for the
spanning tree enumeration (STE), dynamic pro-
gramming (DP), and full-set decomposition (FSD)
algorithms. %MST indicates the percentage of the
instances for which the TRST has the same length as
the MST. The value of f is the maximum number of
candidate full sets.

number of noteworthy features of these results.

First, note that in spite of its asymptotic superior-
ity, the dynamic programming algorithm is too slow
to be used on instances with m < 7. (Also, recall that
the space requirements of the algorithm prohibit its
use on instances with m > 7.)

Second, note that the spanning tree enumeration
and full-set decomposition algorithms are quite fast
on very sparse or very dense instances. This is not
surprising: for sparse instances, there are few termi-
nals, and for dense instances, there are few candidate
Steiner points (for Hakimi’s algorithm) or candidate
full sets (for the FSD algorithm).

For all but the smallest instances, the FSD algo-
rithm is faster than both the STE and DP algorithms.
In addition, the current branch and bound algorithm

for finding the optimal full-set decomposition it quite
simple. We believe that its efficiency can be consid-
erably improved by using more elaborate strategies to
prune the search space [17].

Lastly, note that often a minimum spanning tree is
an optimal TRST. Clearly a TRST cannot have length
less than k — 1, so the algorithms first compute an
MST, and if it has length k — 1, it is returned as the
optimal TRST. However, in many cases the MST has
length exceeding k — 1, but is nonetheless an optimal

TRST.

8 Conclusions

This is the first known study of the thumbnail rectilin-
ear Steiner tree problem. We are continuing this work
in a number of directions.

For VLSI placement applications, there is another
important aspect of the TRST problem that we have
not yet addressed: how to enumerate different opti-
mal TRSTs. However, we believe that once a single
TRST is computed, we can use an algorithm similar to
that of Eppstein, Galil, Italiano, and Nissenzweig [8]
to enumerate all optimal TRSTs.

As mentioned in Section 7, often a minimum span-
ning tree of a thumbnail-sized instance is an optimal
TRST. Thus, one possible approach is to precompute
and store only those TRSTs that are shorter than a
minimum spanning tree, and look them up at runtime.

The algorithms examined here are not radically dif-
ferent from algorithms for the general R8T problem;
they simply use the restricted nature of the inputs to
improve such algorithms. We believe it is possible to
exploit the nature of the TRST problem more com-
pletely, and thus to devise much faster algorithms for
it. Our ultimate goal is an algorithm that can com-
pute an optimal TRST for any point set on an m x m
grid for small m < 10 in less than one second.

References

[1] A. V. Aho, M. R. Garey, and F. K. Hwang. Recti-
linear Steiner trees: Efficient special-case algorithms.
Networks, 7:37-58, 1977.

[2] S. Bapat and J. P. Cohoon. A parallel VLSI circuit
layout methodology. In Proceedings of the Sizth IEEE
International Conference on VLSI Design, January
1993.

[3] F. R. K. Chung, M. Gardner, and R. L. Gra-
ham. Steiner trees on a checkerboard. Mathematics
Magazine, 62:83-96, 1989.

[4] F. R. K. Chung and R. L. Graham. Steiner trees for
ladders. Annals of Discrete Mathematics, 2:173-200,
1978.

49

[5] E. J. Cockayne and D. E. Hewgill. Exact computation
of Steiner minimal trees in the plane. Information
Processing Letters, 22:151-156, 1986.

[6] E. J. Cockayne and D. E. Hewgill. Improved compu-
tation of plane Steiner minimal trees. Algorithmica,
7:219-229, 1992.

[7] S. E. Dreyfus and R. A. Wagner. The Steiner problem
in graphs. Networks, 1:195-207, 1972.

[8] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig. Sparsification: A technique for speeding
up dynamic graph algorithms. In Proceedings of the
Thirty-third Symposium on Foundations of Computer
Science, pages 60-69, 1992.

J. L. Ganley and J. P. Cohoon. A faster dynamic
programming algorithm for exact rectilinear Steiner
minimal trees. In Proceedings of the Fourth Great
Lakes Symposium on VLSI, pages 238-241, 1994.

J. L. Ganley and J. P. Cohoon. Optimal rectilin-
ear Steiner minimal trees in O(n?2.62") time. In
Proceedings of the Sizth Canadian Conference on
Computational Geomelry, pages 308-313, 1994.

J. L. Ganley and J. P. Cohoon. Thumbnail rectilinear
Steiner trees. Technical Report CS-95-01, Depart-
ment of Computer Science, University of Virginia,
Charlottesville, Virginia, 1995.

S. L. Hakimi. Steiner’s problem in graphs and its
implications. Networks, 1:113-133, 1971.

[13] F. K. Hwang. On Steiner minimal trees with rectilin-
ear distance. SIAM Journal of Applied Mathematics,
30:104-114, 1976.

F. K. Hwang and D. Z. Du. Steiner minimal trees
on the Chinese checkerboard. Mathematics Magazine,
64:332-339, 1991.

G. Kreweras. Complexité et circuits Eulériens dan
les sommes tensorielles de graphes. Journal of Com-
binatorial Theory, Series B, 24:202-212, 1978. (in
French).

S. Mayrhofer and U. Lauther. Congestion-driven
placement using a new multi-partitioning heuristic.
In Proceedings of the International Conference on
Computer-Aided Design, pages 332-335, 1990.

J. S. Salowe and D. M. Warme. An exact recti-
linear Steiner tree algorithm. In Proceedings of the
International Conference on Computer Design, pages
472-475, 1993.

P. R. Suaris and G. Kedem. A quadrisection-based
place and route scheme for standard cells. IFEFE
Transactions on Computer-Aided Design, 8:234-244,
1989.

{19} P. Winter. An algorithm for the Steiner problem in
the Euclidean plane. Networks, 15:323-345, 1985.

[0

[10]

fi1]

(12]

(14]

(15]

(16]

(17]

(18]

