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Abstract

As modern factory automation systems become more distributed through the use of
local area network technology, their need for high throughput, low latency communication
increases. The Xpress Transfer Protocol (XTP) provides a rich new set of functionalities
specifically targeted to the needs of these distributed, real-time applications. When imple-
mented in hardware with the Protocol Engine, XTP can provide transport layer communica-
tions services at the same speed as the underlying network media. This paper discusses the
motivation and history of XTP development, the new functionality which the protocol pro-
vides, the protocol optimizations which enhance performance, and current plans for its VLSI
implementation.

1. MOTIVATION AND HISTORY OF XTP

Traditional transport protocols were designed for an era when network bandwidth was
low and error rates were high. Thus they made assumptions about where protocol processing
should be performed (in the host computer), how data should be transmitted (connection-
oriented), how to recover from errors (go-back-n retransmission), and how many applications
should simultaneously communicate (two). However, the move toward distributed computer
systems in general, and distributed factory automation environments in particular, negate
these assumptions. Modern systems can benefit from moving the protocol processing off-
host onto an attached communications processor (implemented in VL.SI hardware). We can
take advantage of this paradigm shift by defining a new communications protocol which, in
addition to being conducive to silicon implementation, provides the new services required of
distributed applications.

The movement toward off-host processing permits us to off-load more than just the pro-
tocol processing; indeed, protocol processing alone is just a fraction of the work required in a
network interface. To really influence performance, we must optimize network subsystem
processing, defined here to include multiple layers of protocol processing, data movement to
and from the network, data movement to and from the host, buffer management, operating
system interface, application program interface, backplane bus interface, and network device
handling. , : '



With that goal in mind, a group of international researchers, under the leadership of Dr.
Greg Chesson at Silicon Graphics Inc., undertook the challenge of designing a new commun-
ications protocol for distributed applications which would provide the new functionality and
higher performance required by this new environment. Corporate membership in the design
group included AMD, Artel/NASA, Boeing, Concurrent, Crosfield Electronics, DY-4, E-
Systems, IBM, Intel, Intergraph, Interphase, Linotype-Hell, Lockheed, SBE, Scitex, Unisys,
and Xerox. In addition, a large number of not-for-profit organizations participated, including
Admiralty Research Establishment, Bowman Gray School of Medicine, Concordia Univer-
sity, Electronics and Telecommunications Research Institute, Laboratoire de Genie Informa-
tique, Johns Hopkins University, National Center for Supercomputer Applications, Naval
Ocean Systems Center, Naval Surface Warfare Center, Superconducting Supercollider Lab,
University of Kentucky, University of Massachusetts, University of Melbourne, and Univer-
sity of Virginia.

This group undertook the task of trying to understand what functionality and perfor-
mance would be required by these new distributed applications. In addition to the traditional
connection-oriented services provided by classic protocols such as the Transmission Control
Protocol (TCP) [1] and the ISO Transport Protocol class 4 (TP4) [2], we saw a need for tran-
sactions (to support database query/response), reliable datagrams (for certain types of sensor
data distribution), multicast (communication among any number of peers, rather than
between just two peers), latency control and intra-protocol scheduling (to support real-time
applications), and more flexible error control procedures (rather than the current choice of
either fully reliable or totally unacknowledged). We think that modern factory automation
systems will exploit all of this new functionality.

The performance requirements of individual systems are clearly application-dependent.
" Nevertheless, we saw a clear trend toward requiring sub-millisecond delivery of transport
layer services (not just datalink layer services); for example, robotic arm control and parts
placement control require reliable but fast data exchange between the ‘controller and the con-
trolled device.

One way to attack the problem was to make a list of changes required to some extant
protocol, but after reflection, we concluded that we were more likely to succeed if we
designed a new protocol rather than tinker with an old one. If this decision ultimately proves
to be the correct one, then XTP will be accepted by the standardization bodies and eventually
issued as an international standard; if we were in error in judging the inertia of the current
protocol suites, then, at the least, XTP. will provide some experience with new protocol
mechanisms which should prove helpful in augmenting existing standards.

In promoting XTP, we make no religious arguments either for or against extant proto-
cols. Rather than saying that XTP is better than protocol X in some absolute sense, we say
that XTP is different and then explain how it is different and what advantage is expected to
accrue from that difference. In that sense, the design of XTP has been a legitimate academic
chalienge, and our ultimate goals of standardization, commercialization, and acceptance are
controlled more by the user community than by the designers.

Our philosophy throughout has been to reuse whatever protocol mechanisms have been
shown by experience to be useful, and then to augment those ideas with new services and
new mechanisms which we think will be required in the 1990s. Toward that end, X'TP grate-
fully acknowledges the work which has gone before, particularly the lessons learned and
experience gained with TCP/IP [1,3], TP4 (2], Delta-t [4], NETBLT [5], GAM-T-103 {6],



VMTP [7], URP [8], and Datakit [9]. From these beginnings we have designed new ser-
vices, provided a set of orthogonal protocol options, separated policy from mechanism,
enabled fast implementation through intelligent design, and encouraged VLSI implementa-
tion. The documentation for the resulting protocol can be found in two places: the official
XTP specification [10] and a professional reference book {11] which describes XTP’s his-
tory, the protocols which influenced it, the XTP architectural model, XTP’s protocol pro-
cedures, packet structure, and packet formats, the use of address encapsulation, the role of
multicast, and the design of the Protocol Engine.

2. FUNCTIONAL ADVANTAGES

XTP is seen to have functional advantages with regard to accommodating a large data
pipeline size, providing rate and burst control, managing a rich message priority structure,
transporting out-of-band data, allowing selectable error control options, permitting selectable
flow control options, separating policy from mechanism, and providing a transport layer reli-
able multicast facility. These functional advantages are discussed in turn.

Data Pipeline Size. As technology progresses, modern distributed systems will have more
and more data outstanding in the data pipeline among communicating applications. This
increased density in the bitpipe is unavoidable as networking technology is upgraded from
the 10 Mbits/sec of Ethernet to the 100 Mbits/sec of FDDI to the gigabit/sec speeds of ATM
networks. In anticipation of these ever-increasing speeds and the resulting increase in the -
amount of data outstanding on each connection, XTP currently supports a 32-bit sequence
space which permits a 4 gigabyte sliding window. XTP can also use an internal synchroniza-
tion field to augment its sequence number field, resulting in a 64-bit sequence number; this
possibility will ease integration into future terabit/sec networks.

Error Prevention. All transport protocols protect the application from media errors (by using
- CRCs) and from protocol, host, or router errors (by using transport checksums). XTP pro-
vides these services as well. But in addition, XTP recognizes that, with the advent of fiber
optic technology and its characteristic error rate of 10712, the probability of packet loss from
buffer overflow and internal system congestion is far higher than the probability of packet
loss due to media errors. Thus, XTP introduces rate control and burst control. When end-
systems negotiate the quality of service of their connection, the receiver can throttle the
transmitter by imposing a maximum rate (in bytes/sec) and a maximum burst (in bytes/burst)
on the sender. Significantly, these parameters apply to the path followed by the data, and
network routers are permitted to adjust these parameters dynamically in order to avoid
congestion. Figure 1 shows how rate and burst control affect transmission.
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Effect of Rate and Burst Control

Message Priorities. Most datalink protocols provide a priority mechanism that can be used
to discriminate among user data types of varying importance (Ethernet is the notable excep-
fion; it provides no such capability). XTP allows this discrimination to be visible at the level
of the user’s message. Each message can be tagged with a 32-bit indication of its impor-
tance, and all packets which result from the segmentation of that message inherit that
message’s priority. At each scheduling opportunity, a node selects and operates on its most
important packet. Thus it can be said that, with a granularity of one packet’s transmission
time, an XTP implementation is always working on its most important packet. Better yet,
this operational definition is applied consistently, meaning that it is operative within all inte-
rior routers. This is clearly an essential feature to support real-time applications where
latency control is paramount. S

Out-of-Band Data. It is sometimes useful to send information about the data stream without
embedding it within the data stream. As an option, XTP can carry with each packet up to 8
bytes of tagged data. Tagged data is passed from the transmitter to the receiver, and its pres-
ence is indicated to the receiver, but it is never interpreted by XTP. Tagged data is expected
to be useful to upper layer protocols (e.g., presentation layer) for providing semantic infor-
mation about the data. Tagged data also provides an expedient way to timestamp data being
transmitted. '

Selectable Error Control. XTP provides three types of error control. Traditional error con-
trol (provided by transport checksums) is provided for normal data and results in fully reli-
able, error-checked transmission. As an option, a receiver can generate a fast negative ack-
nowledgement in order to speed the retransmission process. This will prove useful in
environments (like local area networks) where out-of-sequence data implies lost (as opposed



to delayed) data. Another option is no-error mode which suspends the normal retransmission
scheme. Correctly received data is properly sequenced, but gaps are not retransmitted. This
mode is expected to find utility when carrying digital voice and video.

Selectable Flow Control. As with error control, three orthogonal options are provided.
Traditional flow control is available for normal data. Reservation mode practices a conserva-
tive flow control policy whereby the receiver may only issue a credit for buffers dedicated to
this connection; this assures that data will not be lost due to buffer starvation at the destina-
tion. The third mechanism is to disable flow control entirely by using the naﬂow option.
Note that such a "free flow” or "streaming” mode of operation is not avaﬂable in other proto-
cols; this mode may prove useful for multimedia applications.

Policy vs. Mechanism. XTP goes to great lengths to separate policy from mechanism. XTP
assumes that the user knows best how to optimize the parameters of a connection. Said
another way, the protocol designer knows the least about how any individual application will
use the protocol, so the designer’s role is to provide capabilities, not enforce policies. Exam-
ples of this separation are evident in the discussions of selectable flow control and selectable
error control (above), and in the discussion of selective acknowledgement and selective
retransmission in the next section.

Multicast. Traditional transport protocols make the assumption that a connection establishes
bidirectional communication between two peers. But as control systems become distributed,
the need for group communication becomes more acute. XTP multicast permits any one
transmitter to send data reliably to an arbitrarily large group of receivers. In the context of
multicast, "reliable” transmission means that every active member of the receiver group will
receive the data, and that any data errors encountered are transparently recovered by the pro-
tocol. However, multicast group management is intentionally outside the XTP definition, so
operations such as dynamically joining, leaving, and rejoining an on-going multicast com-
munication are handled separately (see [12] for a discussion of useful group management
techniques). Multicast is ideal for updating multiple clients simultaneously, and so has obvi-
ous utility for applications such as sensor data distribution or maintaining multiple consistent
copies of a database. Reliable transport multicast is arguably the most innovative single new
feature in XTP.

3. PERFORMANCE ADVANTAGES

In addition to increased functionality, XTP offers the promise of higher performance,
especially when implemented in hardware. Performance is enhanced by utilizing a
header/trailer protocol design, fixing the position of option bits in the header, optimizing
connection setup and address translation, integrating the transport and network layers into a
transfer layer architecture, utilizing selective retransmission and selective acknowledgement,
aligning data on long word boundaries, and, finally, promoting a VLSI implementation.

Header/trailer Protocol. Conventional protocols are header protocols, meaning that all pro-
tocol control and error checking information is in the message header. This implies that the
transport checksum must be calculated and inserted in the header before transmission can
begin, which in turn implies that the message must be complete before transmission can be



initiated. XTP puts the 4-byte checksum in a protocol trailer, thereby allowing it to be com-
puted and appended on-the-fly by appropriate hardware. Moving the checksum to the trailer
permits "streaming” of data through the protocol, and also eliminates one data copy opera-
tion.

Fixed-position Control Informatioh. All protocols allow the user to make selections from a
set of options; however, this often results in variable length control information in the packet
header. With an eye toward a hardware implementation, XTP defines option bits in the
header, but fixes the position of the option bits regardless of whether the option is selected.
This little bit of intelligent design clearly increases performance and decreases complexity in
the silicon implementation.

Connection Management. Reliable data transmission in TP4 requires a three-way (six
packet) handshake: two to request and confirm the connection, two to send and acknowledge
data, and two to release the connection and confirm disconnection. Figure 2 below shows
how an association can open a connection, send data, then acknowledge the data and release
the connection with a three-packet exchange. As an additional optimization, XTP allows
data to be carried in the first packet transmitted. While non-traditional, this approach antici-
pates a successful connection setup and allows data to be processed immediately thereafter.

(¢ DESTINATION PACKET FUNCTION
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Address Translation. Traditional network layer protocols send a full network address with
every packet, thereby reducing overall network efficiency. Common remedies for this
include cacheing schemes or header prediction algorithms. The former becomes expensive
when the number of network addresses simultaneously in use is large; the latter fails to
increase performance when network traffic is'random (e.g., X-window server). In contrast,
XTP uses a key-based scheme in which the network address, carried in full in the first packet
that establishes the connection, is resolved into a 32-bit key. After the first packet has been
processed, all subsequent packets carry only the key, which is used as a simple index into a
lookup table. . ‘



Newwork Addressing Plan. XTP does not introduce (yet another) network addressing plan,
The first packet on a connection contains a parameterized address consisting of an address -
type and an address segment. Network addresses are resolved by reference to the addressing
plan for the selected address type. Currently, 12 different addressing schemes are identified,
including Internet and ISO 8348 network addresses. Other popular types could be added on
demand.

Transfer Layer Architecture. XTP is a transfer layer architecture, patterned after the French
military standard for real-time local area networks called GAM-T-103 [6]. The transfer
architecture recognizes the efficiency of providing end-to-end reliability and network routing
in the same layer, thus enabling the concept of an end-to-end "silicon path." This collapse of
the traditional transport and network layers into a single transfer layer is easily the most con-
tentious design decision in XTP, and probably will not survive the standardization bodies.

Nevertheless, as currently specified [10], XTP achieves a speedup from this integration.

Selective Retransmission. TCP and TP4 use go-back-n retransmission; i.e., when an error is
detected, the transmission window is reset and begins again with the first byte (in TCP) or
packet (in TP4) which was lost or received in error. Thus, depending upon circumstances,
go-back-n may retransmit data which has already been received correctly. XTP can use
either go-back-n or selective retransmission; in the latter, the receiver acknowledges spans of
correctly received data and the sender retransmits only the gaps. The user selects which
scheme to use, if any (recall that retransmission can be defeated entirely using no-error
mode).

Selective Acknowledgement. Acknowledging every packet (1) assumes that the network
often loses packets, (2) assumes that the transmitter wants acknowledgements, and (3)
embeds policy with mechanism. XTP allows the user to decide if and when acknowledge-
ments are desirable. Acknowledgements are provided whenever the transmitter requests
them, thereby allowing the user to select an acknowledgement frequency ranging from
always to sometimes to never. Philosophically, acknowledgement generation from the
receiver is decoupled from data arrivals or window sizes. Whenever the transmitter wants to
“know the status of the connection, it asks; when the receiver responds, it tells everything it
knows about its current status,

Data Altgnment Although it is a simple notion, data alignment pays big dividends. First,
the major fields of the header/trailer are aligned on 4-byte boundaries; this minimizes the
number of memory accesses needed to retrieve a field. Second, the user’s data itself need
neither begin nor end on a 4-byte boundary, although the transmitted frame will do so. An
offset field identifies the start of the data in the information field, while a lengrh field
identifies its end. This technique makes it simple to handle the case when the user data is
smaller than the smallest allowable frame.



4, WHY THIS PROTOCOL?
In summary, XTP provides six major advantages:

(1) It accommodates the realities of modern networks: high data rates, densely packed bit-
pipes, low bit error rates, and different data transfer paradigms supported simultaneously by
a single protocol.

(2) The protocol is programmable in the sense that XTP provides mechanisms while the user
sets policy. This reflects the observation that the user is best equipped to judge what data
transfer paradigm is most appropriate for a given application.

(3) XTP is evolutionary. It preserves the common features found in extant protocols, while
simultaneously extending them in support of distributed applications.

(4) The transfer layer architecture integrates the operation of the transport and network
layers. End-systems can be more tightly coordinated because intermediate systems (routers)
participate in rate and burst control.

(5) XTP supports parametric addressing. Rather than introducing yet another network
addressing plan, it can potentially work with any scheme. It specifically recognizes the dom-
inance of Internet addressing and ISO 8348 addressing.

(6) XTP retains a basic finite state machine design which encourages implementation in sili-
comn.

5. THE PROTOCOL ENGINE

~ The Protocol Engine (PE) is a multi-chip, programmable device which seeks to off-load

from the host many of the tasks associated with the network subsystem. To do this at media
speeds requires a "flow-through" architecture such that packet processing can be pxpclmed
Figure 3 shows the processing timeline when the PE is connected to an FDDI network in
which the shortest legal packet is 60 bytes in length. Thus, at the 100 Mbits/sec data rate of
FDDI, this permits only 5 microseconds for packet processing.
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Protocol Engine Packet Processing Timeline

To achieve such a high degree of performance, processing functionality is divided into
four distinct VLSI chips as shown in Figure 4. Each chip is composed of a microprogramm-
able core processor, sequencers, FIFOs, and bus interface logic. Two busses, the data bus
(DBus) and the control bus (CBus), allow the chips to communicate without disturbing the
primary stream of network data. |
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MPORT. The MAC Port (MPORT) connects the PE to a particular network’s Medium
Access Control (MAC) hardware. The MPORT moves data bidirectionally between the
MAC device and the high-speed network buffer memory. On its receive side, the PE’s MAC
device will filter incoming packets based on their destination MAC addresses; if destined for
this device, they are then passed to the MPORT. The MPORT validates the checksum in
hardware and extracts protocol control information from the header; the packet payload is
demultiplexed according to its context (i.e., the connection to which it applies). Protocol
control information is passed on the CBus while the packet itself is passed on the DBus. On
its transmit side, data is moved from the network buffer memory, across the DBus, into a
transmit FIFO (which corrects timing problems between the speed of the DBus and the speed
of the network), and finally to the MAC device for transmission.

HPORT. The Host Port (HPORT) processes data flowing between the network buffer
memory in the PE and the memory in the host, including the interface to the host’s backplane
bus. When the host has data to transmit, the HPOR'T interrogates the context, generates the
packet header, calculates the checksum and generates the trailer, updates the sequence
number information, and performs the utility functions of byte swapping (if needed to go
from a little-endian to a big-endian machine or vice versa), word alignment, and padding.
When the HPORT is receiving data from the network, it separates protocol information from
payload data, delivering them separately to the user memory in the host.



BCTL. The Buffer Controller (BCTL) is the simplest of the four chips. It provides the inter-
face between the DBus and two memory subsystems, the network buffer memory and non-
volatile memory. The BCTL allows the DBus to have direct access to the network buffer
memory when data is flowing between the MPORT and HPORT. Like the MPORT and -
HPORT, BCTL is programmable, and its non-volatile memory is used for instruction
storage.

CP. The Control Processor (CP) implements high-level protocol processing functions such
as association management and path management. The CP can be a microprogrammable
RISC processor, or its functionality can be accomplished by the host. Whereas the MPORT,
HPORT, and BCTIL perform generic functions, the operations of the CP are protocoi-
specific. ‘The first three chips together form the Protocol Accelerator, while the four chips
together make a Protocol Engine.

The Protocol Engine is currently being developed commercially by Protocol Engines
Inc., Santa Barbara, California. The protocol accelerator chips are expected to be available
in late 1992. A board-level product interfacing the protocol accelerator chips to a commer-
cial FDDI MAC on the network side and to an SBus or VMEbus controller on the host side is
expected in early 1993.

5. SUMMARY

In summary, the Xpress Transfer Protocol offers a variety of new functionalities which
are thought to be needed in the distributed systems to be built in the 1990s. XTP’s realiza-
tion in the Protocol Engine represents a very high performance network processing subsys-
tem, and one which addresses the real-time messaging requirements of factory automation.
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