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Abstract

Assurance BasedDevelopment (ABD) is a novel approach to the synergistic construction of critical
soware systems and their assurance arguments. InABD, theneed for assurance drives a unique process
synthesis mechanism that results in a detailed process for building both soware and an argument
demonstrating its fitness for use in given operating contexts. In this paper, we introduce the ABD
process synthesis mechanism. A key element of ABD process synthesis is the success argument, an
argumentwhich documents developers’ rationale for believing that the development effort in progress
will result in a system that demonstrably meets an acceptable balance of all stakeholder goals. Such
goals include safety and security requirements for systems using the soware as a component and time
and budget constraints. We also present the details of a case study in which we used ABD to develop
the control soware for a prototype artificial heart pump.

1 Introduction

Assurance Based Development (ABD) [12, 20] is an approach to constructing soware systems in which
creation of the soware is combined with explicit creation of assurance of the soware in the form of
rigorous argument. Using ABD, developers can be confident to the extent possible that the construction
effort will succeed, and that the resulting system will be demonstrably fit for use.

Driven by each soware system’s unique assurance needs, the ABD process synthesis mechanism pro-
duces, for a given system, a detailed development process for building both the soware and evidence of
its fitness for use. In this paper, we describe the ABD process synthesis mechanism.

ABD process synthesis is centered on two rigorous arguments: a fitness argument and a success argu-
ment. Together, we refer to these arguments as ABD’s assurance arguments. Both are derived from related
work on safety arguments [16]. A fitness argument gives the developers’ rationale for believing that the
system being built is fit for use, including both demonstrably adequate functionality and demonstrably
adequate dependability. e success argument gives the developers’ rationale for believing that the de-
velopment effort under way will yield an adequate system on time and within budget. To be considered
acceptable, both arguments need to be compelling.
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Soware engineering is about choices. We contend that development choices should be driven by the
need for assurance and judged according to the assurance that they provide. InABD, the fitness and success
arguments organize and focus all of the information that is necessary tomake this possible. e state of the
arguments at any time during development makes developers aware of the assurance needs so as to prompt
them to consider the right options. e arguments also provide a sound basis for judging each option in
the context of both the particular soware development effort at hand and the development choices that
have already been made.

Knowing that a critical soware system is fit for use in its expected environment is essential. ere are
many techniques available to developers of such soware, but inmost cases the benefits of such techniques
have been shown only in isolation and developers oen cannot fully exploit the benefits that they bring.
For example, developers might use formal methods for the “critical parts of the system,” but they are oen
unable to evaluate the ensuing effect on the system as a whole. In ABD, the development process is derived
from the fitness and success arguments, and the arguments are evaluated and updated if necessary contin-
uously throughout system development. ABD developers use the process synthesis mechanism to create a
soware development process that they can be confident will result in soware upon which stakeholders
can justifiably depend. A process repair mechanism allows choices that did not support the arguments as
expected to be corrected.

Assurance Based Development ensures that the technology selected to create a soware system yields
the correct evidence to justify the desired confidence. eABDprocess synthesis mechanism fills the void
between the need for a rigorous assurance argument and themechanism by which soware will be built to
meet that need. Process synthesis is especially important in circumstances where certification authorities
require an assurance argument but provide little or no other guidance. Such is the case with the British
Ministry of Defence’s Standard 00-56 [18]. e standard requires the creation of a safety argument but
provides no indication of acceptable soware development practices.

In this paper, we present the ABD process synthesis mechanism. In section 2, we define fitness for
use and describe how fitness arguments can be used to demonstrate that delivered soware has all of the
properties, including safety and security properties, that it must have if it is to be considered acceptable.
In section 3, we define success for soware development efforts, explain how traditional process models
attempt to facilitate success, and how success arguments document the developer’s rationale for believing
that the planned process will yield success. In section 4, we present the details of ABDprocess synthesis. In
section 5 we describe a case study evaluation of ABD and its process synthesis mechanism. In section 6 we
describe the soware development activity that was the subject of that case study. In section 7, we present
metrics and artifacts from the development activity, in section 8 we give observation that we made during
the case study, and in section 9 we present the results of our case study. Finally, we present related work in
section 10 and conclude in section 11.
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2 Soware Fit For Use

egoal ofABD is to facilitate the production of a soware system that is demonstrably fit for use in a given
operating context. Every engineered system has a variety of stakeholders whose needs must be considered.
In many cases, these needs conflict: the public demands a system that is as safe as practicable and also as
secure as practicable, while those funding the effort demand lowcost and rapid deployment. If a system is to
be considered adequate, itmust demonstrablymeet a balance of stakeholder needs. Moreover, that balance
must be acceptable to the stakeholders. Achieving an acceptable balance is crucial because demonstrating
that a systemmeets any one goal is not sufficient. A system that is safe but fails tomeet the customers needs
or provide adequate security is unacceptable. We say that a system that demonstrably meets such a balance
is fit for use.

2.1 Fitness Arguments

Each soware system produced by ABD is accompanied by a fitness argument¹ giving the developers’ ra-
tionale for believing in the main fitness claim shown below. Other researchers have referred to similar
arguments as dependability arguments [8].

Main fitness claim: e system is adequately fit for use in the context(s) in which it will be
operated.

enotion used here of a fitness argument is deliberatelymore comprehensive than that of other forms
of assurance argument, such as a safety argument. Because achieving an acceptable balance of stakeholder
concerns is crucial, the main claim of the fitness argument is broad enough to include dependability con-
siderations as well as functionality and any other considerations that might be said to bear on whether or
a given stakeholders will find a given system acceptable.

Safety and other assurance arguments have been recorded in a variety of notations, including Adelard’s
graphical Claims Argument Evidence (ASCAD) notation [3] and natural language text. In the case study
development reported in this paper, we have used the graphical Goal Structuring Notation (GSN) [16] to
document fitness arguments. We selectedGSNbecause the notation is in active industrial use as ameans of
recording safety arguments, but there is no reasonwhyABDcouldnot be adapted to any suitably expressive
argument notation.

2.2 Systems Versus Soware

In many applications, some important dependability properties, such as safety and security, can only be
discussed sensibly in terms of their impact on a wider system in which soware is a component. For exam-

¹In earlier work [12], we referred to the ABD fitness argument as the assurance argument.
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ple, speaking of a soware component in isolation as being “safe”makes no sense; instead, wemust speak of
what the sowaremust do or refrain from doing if the wider system inwhich it operates is to be adequately
safe or secure (or both).

In ABD, a soware system that will be embedded in a larger system cannot be considered fit for use in
that context unless it demonstrably possesses the properties upon which the larger system’s functionality
and dependability rely. ese properties, collectively, form a fitness contract between the soware com-
ponent and the larger system into which the soware will be integrated. e contract is two-way since
it includes assumptions about the larger system upon which the soware can depend. Contracts might
change over time as development of the larger system progresses or as developers of the soware system
“push back,” and any written version of a contract might be incomplete.

WhenABD is used to produce soware to be embedded in a larger system, it does not demand the use
of any particular assurance methodology for that encompassing system. If a safety argument is developed
for the larger system, the argument and evidence produced for the soware component has to justify the
claims about that component in the system-level safety argument. If, instead, the adequate safety of the
larger system is demonstrated by showing that development was carried out in compliance with an appro-
priate safety standard, then the soware component’s argument must justify concluding that the parts of
the standard that apply to the soware component were, in fact, adhered to. In either case, the contract
between the two systems specifies what the soware component may assume about the larger system and
what properties the soware and the soware’s development must have.

Whenbuilding stand-alone soware systems— i.e. not embedded systems— activities such as require-
ments engineering, hazard analysis, fault analysis, security threat modeling, and the like might be done as
part of the soware system development effort rather than as part of a separate effort at the level of a wider
“system.” In such cases, there is no contract from an outside system specifying what the soware system
must do. Developers must instead argue from the available evidence and from their assumptions about the
operating context that the soware system they produce will be fit for use in that context.

3 Soware Development Effort Success

3.1 Success Arguments

Fitness arguments speak only to properties of the product. Separately, issues such as meeting development
cost and schedule goals have to be considered. ese goals are about development of the product, and so
they are not characterized by the fitness argument.

To organize such information, and to give developers justifiable confidence that the detailed process
they propose to use to build a specific system will result in success, we have introduced a different kind
of engineering argument, a success argument [11]. e role of the ABD fitness argument is to address
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operational risk by forcing the developer to express a rationale for believing that a soware product is fit
for use. Likewise, the role of the ABD success argument is to address development risk by forcing the
developer to express a rationale for believing that a planned process will yield a system that is fit for use on
time and within budget.

As with a fitness argument, a success argument always has a fixed main claim:

Main Success Claim: e effort will lead to an acceptable system in acceptable time and at
acceptable cost.

We define an acceptable system as a system accompanied by an acceptable fitness argument. emean-
ing of the terms “acceptable time” and “acceptable cost,” however, will vary from effort to effort. e devel-
opers of any given project will define these phrases in the context of their project. Like fitness arguments,
we have chosen to record success arguments in the GSN notation.

Fitness arguments and success arguments, in addition to having different main claims and address-
ing different types of risk, evolve in different ways over the course of soware development. A fitness
argument, though draed early and updated throughout development, is completed when the system is
completed and its conclusions should be taken as holding from that point forward. A success argument,
however, is never complete: a success argument is used continuously throughout development to evaluate
the likelihood of success at any given moment and becomes moot with the delivery of the system. At any
time during development, the success argument shows what assumptions the developers have made, and
the strength of the argument shows the confidence that can justifiably be placed in the claim that the effort
underway will be successful.

3.2 Traditional Process Models

eABDprocess synthesis mechanism is quite different from that surrounding traditional processmodels
such as the Waterfall model and the Spiral process model [5]. e Spiral model brought flexibility to the
soware process. ABD ismore flexible still. As we have shown in prior work [11], the Spiral processmodel
can itself be modeled using a success argument.

Wenote thatABDmandatesnothing about the formof the process the developer synthesizes. e syn-
thesized process might well take the form of a Spiral model or any other familiar form. All that is required
is that the process support both arguments fully and that the arguments be both complete and compelling.
Support of the arguments means that the actual evidence generated during development will be precisely
that which was defined (and therefore expected) in the arguments when the process was synthesized.
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3.3 e ABDApproach to Ensuring Success

e essence of ABD is to force developers to argue explicitly that the development choices they make,
taken together, will produce a system that is: (a) fit for use; and (b) completed on time and within bud-
get. Certainly, arguments exist in traditional development, but they are oen implicit, fragmented, and
approached in an ad hoc manner. Making arguments and selection of choices explicit does not produce
inefficiencies or impediments to progress. Rather, the explicit nature of selection and the need to justify
choices in the two arguments makes developers aware of the choices they are making and provides the
context for reasoning about those choices. We claim that making the arguments explicit, complete, and
justified can only benefit the developer.

4 Process Synthesis

ABD is based on two key concepts:

1. Engineering choices should be driven by the need to produce evidence for the assurance arguments.

2. Argument should be used to document the rationale for believing that the system is fit for use.

e core of the ABD process synthesis mechanism is illustrated in Figure 1. e input to the core
mechanism is the sequence of assurance obligations represented by unaddressed goals in the fitness and
success arguments. ese obligations drive development choices that yield process fragments which are the
output of the process synthesis mechanism. Combining these process fragments yields a complete process
for building both the desired soware and the necessary evidence of its fitness.

4.1 Soware Development As a Sequence of Choices

Assurance Based Development is based upon a conceptual view of soware engineering which holds that
developers make (and revise) a sequence of development choices, each of which contributes an element
to the soware development process. Each development choice could be characterized as an answer to
the question, “How can <x> be demonstrably accomplished?”. Every time a developer decides to build a
specification or a prototype, to use a specific programming language, to carry out testing of a certain form,
to purchase and use specific tools, or makes any other decision that materially affects the development
process or its results, he or she is, in our model, making a development choice. Each choice simultaneously
yields a portion of the development process and evidence that the process or an artifact that results from
executing it has a particular property. at evidence, collectively, forms the grounds for theABDassurance
arguments.

In traditional development, developersmightnot explicitly conceive ofwhat they are doing asmaking a
choice, or even consciously conceive of the choice or of any alternatives. If a certain programming language
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Figure 1: ABD process synthesis

will be used to develop a given soware system, for example, then its selection is still a choice irrespective
of whether the developers: (a) explicitly considered alternatives; (b) adopted the programming language
because it was dictated by a standard or by a non-functional requirement given by the customer; (c) chose
the programming language because finding and hiring programmers versed in that language is easier than
in some alternative; or (d) have always used that language and never conceive of using anything else. A
choice to use that particular programming language has been made, even if implicitly.

By contrast, the choices that are made in a given ABD soware development effort are explicit. ese
choice and the order in which they aremade together determine the soware development process for that
effort. e synthesized process is a description of what has been or will be done in the course of developing
the soware, including any detail that will materially affect the development process or its results.

4.2 e Process Synthesis Mechanism

Informally, process synthesis begins with defining: (a) a top-level goal for the fitness argument (the details
of what fitness means in this case); and (b) a top-level goal for the success argument (the details of what
process success means in this case). Both arguments are then elaborated by selecting developing choices
and merging the argument fragments that would result from those choices into the evolving fitness and
success arguments. e process is derived from the choices, and synthesis is complete when no further
refinement of either argument is needed.

e ABD process synthesis mechanism is effected as a step performed multiple times by one or more
developers. In each step, the developer performing the synthesis considers the state of the assurance argu-
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ments, selects an obligation to address, assembles a set of options, evaluates these based on the argument
fragment(s) that each supplies, makes a development choice that will yield the necessary evidence, and
modifies the planned process and the assurance arguments accordingly. Fig. 2 illustrates this procedure.

At any time during process synthesis, the unaddressed goals in the evolving assurance arguments rep-
resent assurance obligations that the developers must satisfy. e developer selects from among these a
goal or goals to be addressed and then seeks a way to do so. When choosing a goal to address, developers
should consider: (a) their area of expertise; (b) the perceived risk that each goal might be infeasible to
address; and (c) the need to minimize interdependency and so avoid the case where developers simultane-
ously make mutually-incompatible decisions.

Sequencing of choices does not reflect the ordering of activities in the planned process. During process
synthesis, choices can be made, changed, and updated in any order that reflects their overall impact on the
fitness and success arguments. For example, a choice that is mandated by some applicable standard should
be made first so as to ensure that its feasibility is not precluded by other choices.

Once a developer has selected an assurance obligation to be satisfied, he or she then sets about gathering
a set of options that might be used to satisfy it. Note that multiple choices might be necessary to satisfy an
assurance obligation in full. is is usually the case at the beginning of process synthesis where high-level
obligations are addressed. As described in prior work [12], the developer gathers options from a variety
of sources including his or her own experience, the experience of colleagues, the relevant literature, and
a library of ABD patterns. We expect that patterns will be useful in helping developers propose options.
Each option is then assessed using a set of criteria including whether the option supports or precludes
achieving needed functionality, the likely restrictions it imposes on later choices, the costs it imposes, its
feasibility, applicable standards, and any relevant non-functional requirements.

Evaluating an option can be daunting since choices depend both on each other and on prior choices,
and because they affect future choices. e choice to use a particular programming language, for example,
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may preclude the subsequent use of static analysis techniques that rely on certain language features. A de-
veloper need not enumerate all plausible options or consider only options that assess each choice perfectly.
Enumerating and evaluating alternative options requires time and effort, and so developers must balance
the perceived risk of making (and thus having to redress) a poor choice against the time required to make
a more considered decision.

Aer a choice is made, the argument fragments that the choice yields are added to the two ABD as-
surance arguments and the associated process element is added to the planned process by recording it in
the appropriate project documents. Where evidence is not available at the time the choice is made but will
result from execution of the process element, an annotation in either the fitness or success argument (as
appropriate) is used to indicate that the evidence is forthcoming; this annotation is removed when actual
evidence replaces the defined evidence.

4.3 eComplete ABDApproach

In ABD, process synthesis operates concurrently with execution of the process. e complete ABD ap-
proach is illustrated in Figure 3. ABD concurrency is show in the figure through the feedback paths: as
the execution of the planned process results in artifacts and experience, the process synthesis mechanism
captures this evidence and incorporates it into the assurance arguments.

Because developers are informed during process synthesis of what remains to be demonstrated if the
fitness and success arguments are to be complete and compelling, they can make fully informed choices
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that add to or modify the process. e process, and the artifacts that result from its execution, in turn
contribute evidence to the two assurance arguments thereby refining them.

Choices carry some risk that their process contribution will not yield the expected evidence. For ex-
ample, static proof of freedom from memory leaks might prove to be infeasible because the soware com-
plexity makes comprehensive static analysis intractable. If executing the planned process results in the
expected evidence, the evidence placeholder in the arguments is replaced with the actual evidence. If not,
ABD accommodates the unexpected result via the process repair mechanism (discussed in section 4.4).

In some cases, choices cannot be made at all because they depend on evidence that will accrue during
development. A developer might need to build a throwaway prototype, for example, in order to obtain
information needed for further process synthesis. While we expect that the bulk of process synthesis in
most soware development efforts will be completed early in the project, ABD supports process execution
before a complete process is synthesized in order to accommodate such cases.

4.4 Repairing the Planned Process

At any point in the creation or execution of the planned process, a developer might discover a flaw in
the planned process, the arguments, or both. For example, a developer might find: (a) that a previous
choice has led to a goal that cannot be satisfied; (b) that a portion of one of the assurance arguments is not
logically valid; (c) that a development choice did not lead to the expected evidence; or (d) that the process
element(s) contributed by a choice cannot be executed because it was not feasible as stated or because
critical resources have become unavailable.

In such cases, a developer must readdress one or both assurance arguments, the planned development
process, or all three using theABD repairmechanism. First, any faults in the argument itself, such as logical
fallacies, poor assumptions, unwarranted inferences, or evenflaws in the notation are corrected. If the argu-
ment is still not compelling, the problem lies with a poor development choice that is infeasible or does not
contribute the necessary evidence. Repair is effected by identifying the choice, enumerating alternatives,
selecting one, and thenmodifying both the planned process description and the two assurance arguments.

If no reasonable alternative can be found, the problem of the poor choice has its roots in a previous
choice which must itself be readdressed. e developer must identify the prior choice(s) that influenced
this one and consider alternatives to those until a suitable one can be found.

5 ACase Study of ABD

5.1 System Studied

In order to assessABDprocess synthesis, we have conducted a case study development of a specimen safety-
critical system, theUniversity of Virginia’sLifeFlowLeVentricular Assist Device (LVAD) [21]. LifeFlow
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is a prototype artificial heart pump designed for the long-term (10–20 year) treatment of heart failure.
LifeFlow is a continuous-flow, axial design. Magnetic bearings and a brushless DC motor will keep the
pump’s impeller centered in the pump housing and turning without the need for mechanical bearings or
sha seals. Careful design of the pump cavity, impeller, and blades, aided by computational fluid-dynamics
simulations, minimizes the damage done to blood cells, thus reducing the potential for the formation of
dangerous blood clots.

Control of themagnetic suspensionbearings is provided, inpart, by a digital control algorithmrunning
on a microcontroller. In hard real-time, the controller must sample the position of the rotor as reported
by a self-sensing circuit, compute the coil currents necessary to keep the rotor adequately centered, and
direct the coil driver to achieve those currents. Individual magnetic coils can fail and such failures are
anticipated to be more likely than is acceptable, and so the control soware is also required to be capable
of reconfiguring to a variety of backup modes in which rotor levitation is accomplished with the coils
remaining aer a failure. Figure 4 shows theplacement of thepump, the batteries and the controller, a cross-
sectionof thepump, and theoverall structure of the controller. Table 1briefly summarizes the requirements
for the magnetic bearing control soware.

e LifeFlow team is presently constructing a prototype pump: (a) to determine whether the target
blood damage characteristics can be achieved; (b) to demonstrate the efficiency of the impeller position-

11



Table 1: Magnetic bearing control soware requirements

Functionality 1. Trigger and read ADCs to obtain impeller position vector u⃗.

2. Determine whether reconfiguration is necessary, and if so, select
appropriate gain matricesA, B,D, and E.

3. Compute target coil current vector y⃗ and next controller state vector x⃗:

y⃗k = D× x⃗k + E× u⃗k

⃗xk+1 = A× x⃗k + B× u⃗k

4. Update DACs to output y⃗ to coil controller.

Timing is functionality must be provided in hard realtime with a frame rate of 5 kHz.

Reliability No more than 10-9 failures per hour of operation.

sensing mechanism; and (c) to determine whether soware could be built to support the final LifeFlow
system’s fitness goal.

We chose development of the Magnetic Bearing Control Soware (MBCS) for the prototype Life-
Flow LVAD for the case study because the system presents significant process challenges. We obtained the
soware requirements from the LifeFlow developers and built the necessary soware as described in the
following sections.

5.2 Case Study Process

Ideally, wewouldhave conducted a controlled experimentwith replicates to obtain a statistically significant
assessment of the effect of ABD upon soware development outcomes. Such an experiment would be far
too costly, and so instead we conducted a case study to determine whether any of a set of potential pitfalls
would manifest in practice. In particular, our study aimed to determine whether:

1. ABD is feasible. ABD would be infeasible if it required the developer to perform tasks of which
he or she were not capable or if the additional effort required to create and maintain the fitness and
success arguments was prohibitively high.

2. Unsupported goals in the assurance arguments are appropriate drivers for development choices.
ABD might be less effective than traditional methods if the developer was precluded from making
the right choice or if the developerwas distracted from the right choice byABD’s focus on assurance.

12



3. e effect of a choice on the assurance arguments is a sufficient basis on which to judge it. ABD
is based on the premise that if fitness and success can each be adequately guaranteed we will achieve
all project aims. ABD would fail if any development choice brought a concept of value that could
not be represented in either assurance argument.

4. e ABD development choice criteria are the right criteria. e effectiveness of ABD would be
compromised if the set of criteria according to which developers are asked to evaluate options is
missing an important criterion or if the criteria forced developers to spend too much time consid-
ering irrelevant aspects of a choice.

To provide a basis for making these determinations, we conducted our case study development in con-
formance with a strict protocol that required us to answer 23 questions each time we made a choice and
5 questions each time we invoked the repair mechanism. For each development choice and each of the
ABD decision criteria, we recorded answers to the questions “What assessment of each option was made
based on this criterion?” and “Was assessment of the options in terms of this criterion: (a) not useful;
(b) somewhat useful; or (c) critical?” and rated the difficulty of making the assessment on a scale.

For each development choice we also answered the general question “Was there a factor inmaking this
decision that was not raised by analysis in terms of the criteria? If so, what was it?”. We considered whether
it was clear in foresight, hindsight, or both that the assurance obligations prompted the choice, listed the
traditional soware engineering artifacts that a given choice might have been recorded in, and answered
the question “Are there other development choices that could have been made in parallel?”.

6 e LifeFlowMBCS Soware Development Activity

Using ABD and following the case study protocol described in section 5.2, we created a planned process
and executed it to create theUVALifeFlowMagnetic BearingControl Soware (MBCS).emajormile-
stones for our effort were:

1. Evolutionary Prototype 1. is prototype, developedwhile wewaited for a complete requirements
dra from the LifeFlow systems engineering team, included an implementation of control compu-
tation in the correct form and was subjected to thorough formal verification.

2. Evolutionary Prototype 2. is prototype, developed aer details about the target computer sys-
tem had arrived but before final control constants were available, allowed us to check the I/O in-
struction sequences provided with the requirements.

3. Final Deliverable. e final deliverable consisted of soware suitable for use with as part of the
LVAD First Prototype in laboratory and animal testing.
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Process execution began with planning tasks, such as estimating task durations and recording tasks,
durations, and dependencies in the project schedule document we decided to create. Execution finished
when the last process stephadbeen completed and thefitness argumentwas completedwith the integration
of all referenced artifacts.

Space considerations preclude us frompresenting all results including each of the development choices
we made, their effects on the assurance arguments, the options at our disposal, the rationale behind the
selected choice, the result of executing the synthesized process fragment, and the details of the temporal
interleaving of process synthesis and execution. Instead, we summarize the development process below,
presenting details of selected choices and other events in the order in which they occurred so as to illustrate
ABD and its application to the LifeFlow MBCS.

6.1 Arrival: First Dra of Requirements

Our case study began when the LVAD systems engineers delivered the first dra of the MBCS require-
ments. ese requirements define the fitness contract between the MBCS and the larger LifeFlow LVAD
system. In so doing, they define fitness for use: the MBCS is fit for use in the context of the LifeFlow
LVAD if it meets the documented requirements imposed upon it by the LifeFlow LVAD.

e first dra of the requirements document described the form that the control equations would
eventually take, the approximate speed atwhich theymust be computed, and the general formof the system
inwhich the sowarewould be used. While the dra requirements document lacked critical details such as
the target hardware platform, the exact control constants, and the applicable dependability requirements,
it nevertheless provided a basis upon which to begin ABD development.

6.2 Synthesis: DC-001 / Elaborating the Argument Context

efirst development choicewemadewas to elaborate the context for theABDassurance arguments. is
choice is obvious, and we present it because we expect that many ABDprojects will begin with this choice.

Obligations: e unsupported main fitness and success claims.

Options Considered:

1. Elaboration of the context.

Reasoning: is option was deemed acceptable.
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Table 2: Context for magnetic bearing control soware

System e magnetic bearing control soware.

Operating context e system is a component of the LifeFlow LVAD First Prototype.

Requirements Requirements imposed by the LifeFlow LVAD First Prototype are
recorded in <path of file>.

Acceptable time By the LifeFlow LVAD First Prototype delivery date.

Acceptable cost Presently available resources and staff plus target hardware costs.

Process Fragment Contributed:

1. Elaborate the context for the ABD assurance arguments by defining the terms used in the standard-
ized main fitness and success claims and linking to the provided requirements.

is process fragment was executed immediately aer it was synthesized.

ArgumentFragmentsContributed: Executionof the process fragment produced by this choice resulted
in the creation of GSN context elements in both the fitness argument and success argument. e content
of these elements is summarized in Table 2.

6.3 Synthesis: DC-002 / Review Argument Before Execution

e second development choice we made was to require that the success argument be reviewed and found
to be compelling before releasing process elements for execution. We present this choice because the the
observations we made during this process synthesis activity highlight the concerns that govern process
execution and the interaction between process synthesis and process execution.

Obligations: e unsupported main fitness and success claims.

Options Considered:

1. Require an acceptable success argument prior to beginning process execution.

is process synthesis step beganwith a suggestion: why don’t we impose this rule? We reflected upon
the problem this suggestion was meant to solve and determined that there was a development risk associ-
ated with starting process execution before we could justifiably be confident in the synthesized process: if
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we discovered that our early decisions had created an unsatisfiable assurance obligation, we would have to
revise those decisions, potentially wasting effort. While reflecting upon the question clarified the nature
and impact of the proposed option, it did not cause us to consider alternative options.

Reasoning: During ABD option evaluation, we noted that it might be necessary to execute certain pro-
cess elements before completing process synthesis in order to generate the information needed to synthe-
size an adequate process. at is, we might need to perform simple experiments or construct throwaway
prototypes in order to help us choose between options. We accepted the option aer modifying it to ad-
dress this concern.

Process Fragment Contributed:

1. Review the success argument.

2. Do not execute any process element before the success argument has been reviewed and deemed
acceptable unless completion of the element is necessary to drive process synthesis.

Argument Fragment Contributed: A success argument fragment citing the new policy as evidence of
adequate mitigation of the risk that effort will be wasted by following an inadequate development plan.

6.4 Elided Events

For brevity, we omit details of the third development choice. is choice resulted in both the creation
of a soware development schedule document into which process steps could be recorded and in process
tasks to estimate task durations and populate the schedule. e existence of the schedule, in turn, provided
evidence used as part of an argument that the system would be completed in adequate time.

6.5 Synthesis: DC-004 /eUse of SPARKAda

At this point in process synthesis, we had elaborated the development context and chosen to create a de-
velopment schedule but not made any choices yielding evidence of fitness. We present the details of this
choice in order to illustrate how the ABD process synthesis mechanism functioned in practice near the
beginning of our development effort.

Obligations:

1. Show that the delivered system satisfies its requirements.

2. Show that the risk that details missing from the requirements will not be made available in time for
the effort to succeed has been adequately mitigated.
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3. Show that the risk that the dependability goals might be impossible to meet successfully has been
adequately mitigated.

4. Show that the risk that the real-time goals might not be demonstrably achievable has been ade-
quately mitigated.

We chose, arbitrarily, to address the first obligation.

Options Considered:

1. Use a refinement approach such as the B method [1].

2. Develop a formal specification in Z [19].

3. Develop a formal specification in PVS [19].

4. Adopt the SPARK Ada programming language [4] and its associated tools to prove that the imple-
mentation complies with the low-level specification embodied in the SPARK-annotated subpro-
gram contracts.

5. Use the Echo approach [22, 23] to formal verification. In the Echo approach, one: (a) constructs a
high-level, abstract specification in a language such as PVS; (b) constructs a soware implementation
and a low-level specification of its behavior such as an annotated SPARK Ada program; (c) con-
structs an implementation proof showing that the source code refines the low-level specification us-
ing, for example, the SPARK tools; (d) extracts a high-level specification from the low-level speci-
fication and code using Echo tools; and (e) establishes a formal implication proof that the extracted
specification refines the abstract specification using amechanical proof checker such as PVS.e im-
plementation proof and implication proof, taken together, form a complete verification argument
showing that the code refines the high-level specification. is approach is illustrated in Figure 5.

None of these options would have addressed our goal in its entirety. e development of a formal
specification, for example, might address a small part of G_ReqSatisfied by reducing the risk that a mis-
understanding would give rise to an executable that did not satisfy the requirements, but cannot, by itself,
support that goal. ere were many other options we could have considered that would at least partially
address the goal. We drew this list of options mainly from our experience and our interest in formal meth-
ods, but we might have considered options such as various forms of testing. We proceeded with this set of
options despite its limitations because we thought it was likely to contain at least one suitable option.

17



Abstract specification

Extracted specification

SPARK annotations

Ada implementation

Implication
proof

Implementation
proof

Verification argument

Reverse synthesis

Development activities

Figure 5: e Echo formal verification process

Reasoning:

• Option 1: A refinement approachwould bring strong evidence that the source code refines a formal
specification. Choosing a refinement approach would constrain us to programming languages and
tools suitable for that approach.

• Option 2: Developing a formal specification is thought to help uncover defects, and formal speci-
fications are less prone to misunderstanding than ones written in natural language. e choice of Z
would necessitate translation if we later chose to use tools made for a different language.

• Option 3: A formal specification in PVS notation would bring the same benefits as a formal speci-
fication in Z. Again, the choice of a specific notation restricts later choices.

• Option 4: Use of the SPARK Ada language and its associated tools yields strong evidence that the
code complies with the low-level specification given in the SPARK annotations. Making this choice
would mandate the later selection of an Ada compiler for the target microcontroller.

• Option 5: Use of Echo would bring strong evidence that the code implies the functional part of a
formal specification. While the approach can in principle be used with various programming and
specification languages, the tools are at present available only for SPARK Ada and PVS, thus re-
stricting later choices. e technique and its tools are still under development; their use thus carries
a risk.

We chose option 4 because we decided that the fitness evidence produced by using the SPARK Ada
programming language and its associated tools was indispensable in this effort. It was not yet clear whether
a proof that the low-level specification implied a formal specification was necessary or whether a simpler
approach could justifiably be used for this system. In later choices, we selected the Echo approach and the
use of a formal specification in PVS.
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Process Fragment Contributed:

1. Select and procure a compiler.

2. Build low-level specification in the form of annotated SPARK Ada subprogram declarations.

3. Implement subprogram bodies.

4. Use the SPARKExaminer to: (a) demonstrate freedom fromflow errors; (b) show compliance with
SPARK language restrictions; and (c) generate Verification Conditions (VCs) sufficient to show
freedom from exception and compliance with low-level spec.

5. Use the SPADE Simplifier to automatically discharge VCs.

6. Build custom Simplifier rules as necessary.

7. Use the prover to prove custom Simplifier rules and VCs not discharged by the simplifier.

8. Use the POGS tool to compile a report on the disposition of each VC, and use this report to deter-
mine when all VCs have been discharged.

Argument Fragment Contributed: e fitness argument fragment resulting from this choice is shown
in Figure 6.²

In the figure, the diamond decoration on the strategy element ST_ArgOverRefinement indicates that
it is not yet completely supported. e choice to use SPARKAda only partially addresses the obligation to
show that the requirements have been satisfied, and so the argument fragment provides only partial support
for goalG_ReqSatisfied. e later choices provided the remaining support, including support for claims
that: (a) the specification refines the requirements; (b) the low-level specification refines the specification;
and (c) the executable refines the source code.

e diamond decoration on solution S_POGSReport indicates that the evidence represented by that
solution is forthcoming. When the SPARK proofs had been completed and the report was available, we
removed the decoration. If the proofs could not have been completed as expected, we would have had to
repair our planned process and fitness argument.

6.6 Elided Events

For brevity, we omit the details of the next few development choices. ese include the choice to perform
integration testing, the choice to perform requirements-based functional testing with MC/DC structural
coverage [6], and to use functional decomposition to derive the soware design.

²We initially inserted an oversimplified argument, which we later expanded through the repair process. e figure depicts the
repaired argument.
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Figure 6: Assurance contribution from choice DC-004
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6.7 Synthesis: DC-007 /WCET

At this point in process synthesis, we had made development choices that partially addressed G_Req-
Satisfied by providing evidence that the delivered soware would be functionally correct. We present the
details of DC-007 and DC-008 both because they illustrate how we treated the belated discovery of an
implicit choice and because they are examples of development choices made aer the initial choices had
established the broad outlines of the fitness and success arguments.

Obligations:

1. A success argument goal to show that the timing requirements could be met demonstrably.

2. A related fitness argument goal to show that the real-time requirements would be met.

3. Other obligations that we deemed less pressing.

Options Considered:

1. Analyze the worst-case execution time (WCET) of the control calculation using a technique to be
chosen later.

2. Use a watchdog timer to stop the calculation and re-issue the control outputs from the last frame if
the deadline would be otherwise be missed.

Reasoning:

• Option 1: WCET analysis would supply strong evidence that the hard real-time deadlines would
be met.

• Option 2: is option was deemed unacceptable because it would force us to demonstrate both
that: (a) re-issuing the last frame’s outputs would be done rarely, and (b) that doing so that rarely
would be sufficient to keep the impeller from striking the pump’s inner housing.

Accordingly, we chose option (1).

Process Fragment Contributed:

1. Select and procure a WCET tool.

2. Use this tool to perform WCET analysis of the control calculation.

e second task was a placeholder. When the first task was executed and a tool selected, we returned
to the process synthesis mechanism to replace this task with detailed tasks specific to the selected tool.
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ArgumentFragmentContributed: Making this choice generated a fitness argument fragment that cited
a report from the as-yet-unspecified tool to support a claim that the control calculations would always
complete within their allotted time bounds. Like the second task in the contributed process fragment, this
argument fragment was clarified aer the WCET tool had been selected.

Integrating this fragment into the fitness argument required a change to the structure shown in Figure
6: we added a layer of argument betweenG_ReqSatisfied and ST_ArgOverRefinement that decomposed
the obligation to show that the requirements had been met into an argument over real-time and non-real-
time requirements. e argument fragment supporting ST_ArgOverRefinement shown in Figure 6 was
kept to show that the functional requirements had been met, and the new argument fragment was added
to show that the real-time requirements had been met.

6.8 Synthesis: DC-008 / Real-Time Structure

e process of formulating argument fragments related to DC-007 raised two important questions: (i) of
what, exactly, were we going to measure the WCET; and (ii) how would establishing that WCET con-
tribute to knowing that the real-time deadlines would bemet? ese questions prompted us to realize that
we had implicitly chosen to structure the soware in the form of a cyclic executive. at is, we had cho-
sen to construct a single-threaded application containing one main loop operating as a fixed-rate real-time
frame, with individual tasks performed either in every iteration or in every nth iteration as their scheduling
needs dictate.

Obligations: Explicitly consider the real-time structure of the MBCS as our next process synthesis step.

Options Considered:

1. Use a cyclic executive design.

2. Use a real-time operating system, to be chosen later, with the control computation implemented as
a task.

3. Use a concurrent design based on Ravenscar Profile tasking in SPARK Ada.

Reasoning:

• Option 1: We reasoned that such a structure was feasible butmight complicate the implementation
of a low-priority, non-real-time task such as logging, if one were to be later introduced. (We would
need to divide the implementation of such a task into pieces that each demonstrably fit within the
real-time frame.)
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• Option2: Wereasoned that this optionmight be infeasible if no suitable operating systemwas avail-
able for the target hardware (which had not yet been chosen), and we noted that it might restrict
our choice of compilers. We also noted that this choice would bring derived dependability require-
ments: wewould need to shownot only that the chosenOSwould guarantee the necessary real-time
properties but that it would not interfere with the functionality of the task implementation that we
would provide.

• Option 3: We reasoned that this option might restrict our choice of compilers to those that pro-
vided a demonstrably suitable implementation of the necessary portions of theAda run-time library.

Of these, we elected to remain with our original choice, option (1).

Process Fragment Contributed:

1. Design a schedule for the cyclic executive, specifying its frame rate and the conditions under which
each task would be executed on a given iteration.

2. Add the cyclic executive structure to the specification.

3. Implement the cyclic executive.

Argument Fragment Contributed: Given choice DC-007, the making of choice DC-008 contributed
two new sub-arguments to the success argument: (a) if the microcontroller is sufficiently fast and if it is
possible to schedule new tasks brought about by requirements change, then we should be able to create a
suitable schedule for our cyclic executive design; and (b) ifWCETanalysis of the code for each task and the
executive structure is possible, then it should be possible to demonstrablymeet the real-time requirements.
e new sub-goals in these fragments prompted a later choice to provide the LifeFlow systems engineers
with criteria for the selection of the microcontroller so that they could select one compatible with our
development choices.

6.9 Elided Events

We omit the details of the next few events. Briefly:

1. We chose to use carefully-reviewed argument to show that our specification refines the given re-
quirements.

2. We chose to use the Echo verification process described in section 6.5.

3. When complete requirements were not delivered on schedule, we chose to construct Evolutionary
Prototype 1.
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4. We chose to prepare advice for the systems engineering team regarding processor selection and did
so.

5. We reviewed the arguments and repaired them accordingly. e repairs consisted of clarifications
and the addition of an unsupported sub-goal to represent evidence found to be missing.

6. We chose to assume, for the purposes of the prototype, that single-precision floating-point arith-
metic is sufficient.

7. We constructed a formal specification of the control calculations in PVS.

8. We implemented the control calculations in SPARK Ada.

9. We performed basic testing on the prototype executable.

10. We completed Echo formal verification of the control calculations.

6.10 Delivery: Evolutionary Prototype 1

At this point in the development effort, we had successfully completed development of a prototype that
included formally-verified control calculations in the correct form. is prototype, in turn, became evi-
dence for our success argument. Successful completion of the process elements involved in the prototype’s
construction suggested that we would be able to complete similar process elements when building the final
soware.

6.11 Elided Events

Aer we completed Evolutionary Prototype 1, the systems engineering team delivered an updated require-
ments document. Additions to the document included the specification of Freescale’s MPC5554 micro-
processor [10] but not the final control constants. As a result, we made development choice DC-014,
opting to proceed with construction of a second evolutionary prototype that would demonstrate our abil-
ity to target the selected processor. Following choice DC-014, briefly:

1. We chose to use AdaCore’s GNAT Pro High Integrity Edition Ada compiler [2].

2. We chose to search for an appropriate WCET tool.

3. We chose to conduct a small experiment to gauge the likely size of the final executable and did so.

4. We repaired the success argument’s treatment of development risks related to insufficiently fast or
capacious memory.
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5. We chose the layout of executable segments in the processor’s various memories.

6. We repaired the success argument to add a goal of adequate mitigation of the risk of error in the
hardware I/O details provided in the new requirements dra.

7. We repaired the fitness argument’s treatment of assurance to include a new goal: assurance that the
executable will write to hardware registers in the prescribed order.

6.12 Choice: DC-019 / Inspection of RegisterWrite Order

Repair of the fitness argument resulted in the creation of an unsupported subgoal,G_ControlRegsWrit-
tenInCodeOrder. We present the details of development choice DC-019, which addressed this goal, as
an example of choice made toward the end of the development effort. Unlike process synthesis near the
beginning of the project, in which the assurance obligations we addressed were broad and general, the
assurance obligation we faced during later choices were quite specific.

Obligations: We mapped variables in our SPARK Ada program to the registers controlling the micro-
controller’s ADC and other peripheral units, and marked these with the Atomic pragma. Unfortunately,
while the language semantics guarantee that the writes to each variable will be atomic and will not be re-
ordered, they do not guarantee that writes to different registers controlling the same peripheral will not
be re-ordered with respect to each other. Checking revealed that our compiler was not re-ordering these
writes. However, we needed a guarantee of this property.

Options Considered: We considered only one option: inspection of the disassembled binary. Had in-
spections proven unsatisfactory, wemight have considered alternatives such as writing all interactions with
memory-mapped registers in hand-coded assembly language.

Reasoning: We deemed this option acceptable.

Process Fragment Contributed: As a result of this choice, we modified our planned process to: (1) call
for the use of the objdump tool to disassemble the compiled binary; and (2) include a formal inspection of
the disassembly to confirm the write order.

Argument Fragment Contributed: is choice contributed the fitness argument fragment shown in
Fig. 7. Because the disassembly is correct and inspection shows that the write order in the disassembly is
correct, we believe that the write order in the compiled binary is correct. e strength of this belief rests
upon confidence in the adequacy of the inspection protocol (G_InspProtocolAdqt3) and upon confi-
dence in the disassembly tool and our use of it (G_DisassemblyCorrect).
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Figure 7: Sub-argument demonstrating memory-mapped register write order
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6.13 Elided Events

We again omit the details of the next few events. Briefly:

1. We discovered an issue that precluded debugging any executable larger than 1.5 KiB and asked our
tool vendors for help in isolating the cause of that issue.

2. We revised the goals of Evolutionary Prototype 2 to enable further progress despite our debugging
difficulty.

3. We completed a miniature prototype capable of serial communication with the DAC.

4. We discovered errors in the hardware I/O details given in the requirements document and obtained
a corrected version from the systems engineers.

5. With the help of our tool vendors, we discovered the cause of our debugging issue and implemented
a solution.

6. We revised again the goals for Evolutionary Prototype 2 in light of the lied restriction.

6.14 Delivery: Evolutionary Prototype 2

At this point in the project, we had completed construction and evaluation of Evolutionary Prototype 2.
e completion of this prototype offered evidence for use in the success argument. Because the prototype
included the hardware I/O functionality that the final system would have, its completion provided evi-
dence that development risks related to the correctness of hardware I/O details in the requirements and
to implementation of these in SPARK Ada had been adequately mitigated. In addition, because the pro-
gram texts of Evolutionary Prototype 2 and the final system were not expect to differ in a way that would
substantially contribute to code size or run time, successful completion of the prototype also provided
evidence that development risks related to speed and memory size were unlikely to manifest.

6.15 Elided Events

Much of the activity that followed the release of Evolutionary Prototype 2 consisted of repair activity,
andmuch of that was in the nature of clarification. Having developed a broad approach that had produced
working prototypes and demonstrated the feasibility of our chosen formal verification strategy, we focused
on perfecting the fitness argument. Where the fitness argument was vague, we clarified. Where detail was
missing or assumed, we added detail. Where the argument could make use of an argument fragment used
elsewhere, we repeated the familiar fragment so as to make the argument structure easier to parse. ese
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changes resulted in many new argument elements added near the leaves of the hierarchical structure. e
fitness argument grew dramatically but retained its general high-level form.

e choices made during this time added detail to the general process I had already synthesized. ey
were:

1. e choice of whichWCET tool to use, replacing a “TBD” in the planned process.

2. e choice to formally document the configuration management procedure that we had been using
as a matter of course, taking particular care with features that we now knew to provided critical
fitness evidence.

3. e choice to use inspection to confirm the correctness of the frame synchronization logic given in
our specification.

4. e choice to use inspection to verify that specific inputs to the WCET tool are correct.

5. e choice to use inspection to confirm that the right kind of floating-point arithmetic is used. (For-
mal verification shows that the computation would be correct if real-valued arithmetic was used in
lieu of floating point; the inspections show that we are using floating-point arithmetic in a reason-
able way as a substitute for perfect arithmetic.)

6. e choice to rely solely upon testing to confirm the correctness of logging features that were added
to facilitate field debugging. (Formal verification confirms that the logging implementationwill not
interfere with other functionality, but does not show that logging itself functions correctly.)

7. e choice to use a hardware probe to capture test execution traces non-intrusively in order to pro-
vide evidence of the structural coverage of the functional test plan.

6.16 Delivery: Final Deliverable

Completion of the planned development activities (with some exceptions discussed in Section 7.6) has
yielded both a fully-functional implementation of the MBCS and a full formal verification of that im-
plementation. is implementation will be turned over to the systems engineering team for integration
testing and use in the LifeFlow LVAD First Prototype.

7 Metrics and Artifacts

7.1 Development Choices And Repairs

During the course of development, we made a total of 27 development choices, and invoked the repair
process a total of 44 times. e spacing of these activities over time is shown in Figure 8.
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Figure 8: Development choices and repairs

e figure depicts several choices as though they weremade in parallel by developers working indepen-
dently. ese choices were actually made in sequence by one developer. Our case study protocol, however,
directed us to consider whether each choice could have been made in parallel with the previous choices.
Choices are shown in parallel in the figure where our response to the study question indicated that parallel
decision-making was possible. Since the study questions do not include a question about repair activities
being possible in parallel, all repair activities are shown sequentially even though it is likely, in our opinion,
that some of them could have been made in parallel.

Choices were more frequent than repairs at the beginning of development. is relationship reversed
near the end of the project as we refined and clarified our arguments. Choices that could only be made
sequentially were common near the beginning of the project but became rare later on. We hypothesize
that this is a result of the changing nature of choices: the first choices suggest broad, partial solutions
to abstractly-stated problems, whereas later choices provided narrow, tailored solutions to very specific,
isolated problems.

7.2 e Formal Specification

We created a specification to serve as the basis for implementation and formal verification. is specifica-
tion contained:

• A formal portion written in PVS. e content of the formal portion is summarized in Table 3.

• An informal portion written in natural language. e informal portion describes the mapping be-
tween formal variables and signals visible at the computer interface, specifies how signals are to be
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Table 3: Content of the PVS portion of the MBCS specification

Lines

Blank and comment lines 87

Control and other constants 57

Type declarations 35

Needed arithmetic theorems 17

Input and output conversion 32

Control calculation 23

Real-time frame synchronization 24

TOTAL 275

sampled or emitted, defines the state that the hardware should be initialized to, and provides an
informal explanation of the formal specification.

7.3 Implementation Source Code

e MBCS implementation consisted of:

• SPARKAda source code. e implementation contains 2,510 lines of SPARK Ada, distributed as
shown inTable 4. Of the 579 total lines implementing the control calculations, 127 contain control
constant declarations. Of the 1,185 lines implementing the hardware interface, 739 contain the
register bitfield type declarations, memory mapped variable declarations, and associated pragmas.
Some of the remaining bulk of the hardware interface is a result of writing constant declarations so
that each bit field in the constant is named and given a value on a separate line.

• Library routines in non-SPARK Ada. e GNAT Pro compiler generates calls to memcpy and
memset. Since we are not deploying a runtime library containing implementations of these routines,
we have provided our own implementation. Because the implementation uses Ada access types, it is
not legal SPARK and cannot be analyzed by the SPARK tools.

• A startup routine in PowerPC assembly language. e startup routine, which configures the
MPC5554’s external bus, consists of 106 instructions over 133 lines and contains no loops or con-
ditional expressions.
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Table 4: Measures of the SPARK Ada implementation

Control Main program / Hardware
calculation cyclic executive interface Logging Support TOTALS

Code lines 309 47 1,185 92 34 1,667

Comment & 198 46 268 16 28 556
annotation lines

Blank lines 72 21 168 23 3 287

Total lines 579 114 1,621 131 65 2,510

End of line comments 0 0 211 0 0 211

Public types 6 0 1 0 32 39

All type definitions 22 0 21 6 32 81

Public sub-programs 1 1 11 1 0 14

All sub-program bodies 5 3 12 1 0 21

All statements 83 22 101 19 0 225

All declarations 47 7 323 34 0 411

Logical SLOC 146 29 424 53 33 685

Table 5: Implementation proof VCs and how these were discharged

Proved by or using
Examiner Simplifier Proof checker Review TOTAL

Assert or post 12 13 13 16 54

Runtime check 0 92 0 1 93

Refinement VCs 19 0 0 1 20

TOTALS 31 105 13 18 167
(19%) (63%) (8%) (11%)
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7.4 e Implementation and Implication Proofs

eSPARKAda implementation proofs consisted of 167 verification conditions produced by the SPARK
Examiner. We discharged these using the methods shown in Table 5. e 18 VCs discharged by review
consisted of: (a) 16 checks that the value in a control register conforms to the type of the variable bound
to that register; (b) a check that required knowledge of the hardware floating-point–to–integer conver-
sion semantics; and (c) a VC checking that a hardware input routine was equivalent to the artificial proof
function created to represent it in the Echo process.

e Echo implication proof, checked by PVS, shows that the low-level specification embodied in the
SPARK annotations complies with the PVS specification. e proof is divided into 54 formulas: 19 type
correctness conditions (TCCs) and 35 implication lemmas. ese formulas were proved successfully in
210 seconds on a dual 1GHz machine with the following exceptions:

• A TCC and two implication lemmas related to the time type. We use a mod2**64 type in Ada to
represent time values derived from the MPC5554’s 64-bit time base. is type, however, is given as
an unbounded integer in the specification. e difference is not problematic as the time base will
not “wrap around” in centuries of operation.

• A TCC related to the type of the cells in the controller input, state, and output vectors. ese are
represented as single-precision floating-point variables in the implementation but as real numbers
in the specification. e LifeFlow LVAD control engineers assure us that they can prove that these
values will not exceed the limits of single-precision floating-point storage.

7.5 e Fitness and Success Arguments

e fitness argument grew over the course of development from the single, unsubstantiated, top-level goal
mandated by the ABD process to a final total of 350 GSN elements as shown in Table 6 and Table 7. e
widest argument step in the final argument derived support for one goal from5 child elements. e longest
support path from a solution or assumption to the final argument’s top-level goal was 26 elements.

Over the course of this effort, the success argument grew from its ABD-mandated top-level goal to a
peak size of 50 GSN elements before becoming moot with final delivery. Its widest argument step — 10
elements — consisted of an argument over all enumerated development risks.

7.6 Artifacts Not Completed

Due to time and budget constraints, we did complete all development activities. e purpose of this case
study was to evaluate ABD process synthesis, not to obtain a soware artifact fit for use with a human
patient. Accordingly, we synthesized a process fit for a soware development teamwithmore resources and
forwent executing some of the costly or time-consuming process steps that we synthesized. In particular:
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Table 6: Success Argument Metrics

‘

All Uninstan- Unsup- Max. Max.
Revision elements Gs STs Cs Ss As Js tiated -ported depth branching

1 1 0 0 0 0 0 0 1 1

1 6 1 0 5 0 0 0 0 1 1

2 10 4 0 5 1 0 0 0 2 4 2

3 14 7 0 6 1 0 0 0 3 4 2

4 16 9 0 6 1 0 0 0 5 4 4

5 20 13 0 6 1 0 0 0 9 4 8

6 20 13 0 6 1 0 0 0 9 4 8

7 20 13 0 6 1 0 0 0 9 4 8

8 21 14 0 6 1 0 0 0 10 4 8

9 22 14 0 6 1 1 0 0 10 4 8

10 22 14 0 6 1 1 0 0 10 4 8

11 25 15 0 7 1 2 0 0 10 4 8

12 34 17 1 8 2 6 0 0 14 6 8

13 39 20 1 8 4 6 0 2 15 6 8

14 39 20 1 8 4 6 0 2 13 6 8

15 43 20 1 8 4 10 0 2 12 6 8

16 42 18 2 9 4 9 0 0 5 7 8

17 40 18 2 9 2 9 0 0 7 8 9

18 40 18 2 9 2 9 0 0 7 8 9

19 44 19 2 10 3 10 0 1 8 8 9

20 44 19 2 10 3 10 0 0 6 8 9

21 45 19 2 10 4 10 0 0 5 8 9

22 46 20 2 10 4 10 0 0 6 8 10

23 49 21 2 10 5 11 0 0 6 8 10

24 49 21 2 10 5 11 0 0 6 8 10

25 52 23 2 11 5 11 0 0 7 8 10
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Table 6: Success Argument Metrics

All Uninstan- Unsup- Max. Max.
Revision elements Gs STs Cs Ss As Js tiated -ported depth branching

26 50 25 2 11 5 7 0 0 4 10 10

27 50 25 2 11 5 7 0 0 4 10 10

28 50 24 2 11 6 7 0 0 4 9 10

29 50 24 2 11 6 7 0 0 4 9 10

30 50 24 2 11 6 7 0 0 4 9 10

31 50 24 2 11 6 7 0 0 4 9 10

32 50 24 2 11 6 7 0 0 4 9 10

33 50 24 2 11 6 7 0 0 4 9 10

34 49 24 2 11 6 6 0 0 4 9 10

35 49 24 2 11 6 6 0 0 4 9 10

Table 7: Fitness Argument Metrics

All Uninstan- Unsup- Max. Max.
Revision elements Gs STs Cs Ss As Js tiated -ported depth branching

1 1 0 0 0 0 0 0 1 1

1 4 1 0 3 0 0 0 0 1 1

2 4 1 0 3 0 0 0 0 1 1

3 4 1 0 3 0 0 0 0 1 1

4 4 1 0 3 0 0 0 0 1 1

5 13 5 3 4 1 0 0 0 5 8 2

6 21 9 4 5 3 0 0 0 8 8 2

7 25 11 5 6 3 0 0 0 10 9 2

8 28 12 5 6 4 1 0 0 12 9 2

9 32 14 5 7 5 1 0 0 16 9 3

10 34 18 3 7 4 2 0 0 16 8 3
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Table 7: Fitness Argument Metrics

All Uninstan- Unsup- Max. Max.
Revision elements Gs STs Cs Ss As Js tiated -ported depth branching

11 33 17 3 7 4 2 0 0 16 8 3

12 39 19 4 8 5 3 0 0 17 9 3

13 34 17 3 8 4 2 0 7 14 8 3

14 41 20 4 9 5 3 0 9 16 8 3

15 41 20 4 9 5 3 0 9 16 9 3

16 34 16 2 8 5 3 0 9 14 8 3

17 38 20 2 8 5 3 0 9 17 8 4

18 42 22 2 8 7 3 0 10 17 8 4

19 42 22 2 8 7 3 0 10 17 8 4

20 42 22 2 8 7 3 0 10 17 8 4

21 42 22 2 8 7 3 0 10 17 8 4

22 43 23 2 8 7 3 0 10 18 8 4

23 43 23 2 8 7 3 0 10 18 8 4

24 45 23 2 8 9 3 0 10 18 8 4

25 45 23 2 8 9 3 0 10 18 8 4

26 45 23 2 8 9 3 0 10 18 8 4

27 68 41 3 10 10 4 0 6 23 11 4

28 94 56 5 13 13 6 1 10 32 13 5

29 103 62 5 12 18 5 1 13 33 15 5

30 103 60 5 14 17 6 1 15 31 15 5

31 108 61 5 15 19 7 1 17 32 20 5

32 111 61 5 16 18 9 2 17 31 20 5

33 233 102 36 42 25 20 8 31 47 24 5

34 270 120 43 48 26 25 8 33 49 25 7

35 308 139 46 52 36 27 8 30 48 28 7
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1. We did not complete functional testing with MC/DC structural coverage. During process syn-
thesis, we decided how such testing would be performed. We decided, for example, that structural
coverage would be ascertained by tool-supported analysis of test execution traces. We also decided
to use a high-speed probe to capture the execution traces directly from the embedded microcon-
troller executing them so as to avoid the need to modify the test binary by instrumenting it to log
trace data.

2. We did not perform the planned inspections. We did, however, choose what to inspect and which
properties to inspect for.

We also le some fitness goals, such as G_InspProtocolAdqt3 in Figure 7, unsupported. In modern
practice, many such goals are implicitly assumed to follow from the experience and professionalism of the
responsible engineers. We do not intend to address the question of how well such goals can be supported
explicitly in this work.

Because we did not complete these activities, we cannot claim that the soware we produced meets its
dependability requirements. e fitness argument, however, shows that if we had, and if these activities
had resulted in the expected evidence, wewould have obtained soware in which confidence was justified.

8 Observations

8.1 Success Arguments Enable Progress Despite Missing Information

e success argument enabled development efforts to progress despite incomplete requirements from the
systems engineers. Incompleteness of, and uncertainty and change in, requirements are an unfortunate
reality in many development efforts. In this effort, the incompleteness was severe: the initial requirements
did not specify the microcontroller to be used, the dependability requirements, or the precise control con-
stants to be used. e control constants in particular were not made available until near the end of devel-
opment.

Because development could not be delayed, we proceeded with development despite incomplete re-
quirements. iswas not an exception in the executionofABD,but rather a deliberate development choice
that met the development effort’s specific needs: we proceeded only aer arguing convincingly that, when
themissing details weremade available, they could be integrated into the soware and the evidence needed
to support the fitness argument generated. e flexibility gained by using the success argument in lieu of a
rigid soware lifecycle model allowed accommodation of the impact of missing information in an explicit
and orderly way.
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8.2 Success Arguments Systematically Addressed Technology Risks

In this development, the risk of choosing inadequate technology was a serious issue because of its potential
impact on the LifeFlow LVAD system dependability. e LifeFlow system requires that the active mag-
netic bearing control soware be ultra-dependable, and so we sought to demonstrate that the combination
of tools and techniques selected would achieve that dependability. is assurance obligation shaped Evo-
lutionary Prototype 1: while laying out the argument associated with the prototype, we made choices as
to what should be included from the prototype, what should be assumed, and what could be excluded that
were appropriate given what the prototype’s development was meant to demonstrate.

In ABD, the success argument is the focus for development risk. In this development effort, an argu-
ment over enumerated development risks formed the bulk of our success argument. Whenever a choice
created a development risk, as occurred with our choice to use SPARK Ada without first knowing the tar-
get architecture, we added this risk to the success argument as an unsupported goal so that the risk would
be addressed by subsequent choices. Had repeated requirements delays not reduced our schedule concerns
to “complete as soon as practicable,” we might have demanded more support for a constructive line of ar-
gument that established the accuracy of our schedule estimates and predicted acceptable time and cost. We
might have, for example, decided to conduct a detailed review of the schedule and the time estimates con-
tained within it, or decided to periodically review and update the schedule so as to ensure that it remained
accurate and consistent as development progressed and experience accumulated.

8.3 Maintaining Arguments Forced Us ToUnderstande Process In Detail

Maintaining both assurance arguments forced us to think critically about the conclusions that could be
supported by the use of a particular tool or technique. When thinking about how to integrate evidence
fromfunctional testing intoourfitness argument, for example, wenoted that the test caseswouldbederived
from the requirements, and not the specification. us, the test results are evidence that the code complies
with the requirements but say nothing about the correctness of the specification. is distinction is both
subtle and crucial. Many legs of any fitness argument, whether implicit or explicit, will be supported by
evidence that, although imperfect, is the best available.

Developersmust understand both the limitations inherent in each process element and project artifact
and the implications of these limitations upon assurance of fitness if they are to construct a system that
stakeholders can justifiably trust. Writing a sufficiently detailed argument both forces the developer to
consider the specificmeaning of the specific actions he or she plans to take and exposes that understanding
to direct criticism.
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8.4 e Scope of Choices Narrowed Over Time

When we first began to synthesize the process, we were faced with broad assurance obligations that no
single development choice could fully address. As a result, we considered options that spanned a broad
spectrum of categories. Our first decision, for example, could easily have been the choice of a program-
ming language, the choice of a specification technique, or the choice of a verification technique. Upon
making any one of these choices, we would have decomposed the assurance obligation into a part that was
supported by our choice and the remainder, which would serve to prompt later choices. Later choices, in
contrast, tended to address tightly focused assurance obligations.

8.5 Patterns Could Capturee Bulk Ofe Arguments

Patterns have proven to be a useful tool for capturing experience in many disciplines. Since no pattern li-
brary yet exists for ABD, we did not create our fitness and success arguments by instantiating documented
patterns. During the process of creating, revising, and reviewing these arguments, however, we have noted
twelve patterns that might benefit future ABD developers. ese twelve patterns might have been instan-
tiated to produce 23 of 49 (47%) of success argument elements and 146 of 308 (47%) of fitness argument
elements. Examples of instantiations of two of these patterns are shown in Fig. 7.

9 Results OfeCase Study

From the case study, we are able to draw conclusions about our study goals. Our first study goal was to
determine whether ABD is feasible, and our experience suggests that it is. Although our study subject
was small, its size belies its complexity. Meeting the requirements meant meeting significant real-time
deadlines, operating on an embedded target with no operating system, interfacing with analog signals, and
reconfiguring following coil failures, and doing so with high levels of assurance. Despite these challenges,
we observed no difficulties that we foresee challenging developers building other systems.

e second goal was to determine whether unsupported goals in the assurance arguments are appro-
priate drivers for development choices. In total, we made 28 choices. In 19 of these, we followed and
recorded a direct line of reasoning from the assurance obligations to the choice that we made. In 6 other
cases, we did not recall being prompted by the obligations, but made a choice that addressed an obligation
in whole or in part. In 2 cases, we realized that we were considering an assurance obligation arising from
a development risk not yet added to the success argument. In the remaining case, we formalized a choice
that we had made implicitly before the goals that it addresses were added to the arguments as detail added
during repair. Had this detail been added when the choices that gave rise to it were made, as might have
happened had we the guidance of a pattern, this choice too might have followed clearly from an obliga-
tion. In any case, in all choices except the last, there was a discernible relationship to the obligations in the
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arguments. We conclude that assurance obligations were an appropriate driver for development choices in
the case of this soware development activity.

e third goal was to determine whether the assurance arguments are a sufficient basis for judging a
choice. Our case study protocol forced us to consider all of the value that a given choice might bring. We
did not observe a value that could not be added as evidence to one of the arguments. We conclude that
effect upon the assurance arguments was a sufficient basis upon which to judge choices in this case.

e fourth goalwas to determinewhether theABDdecision criteria are the right criteria for evaluation
of choices. In 20 of the choices wemade, we determined that the decision criteria covered all aspects of the
choice. An unrepresented aspect that we observed frequently was effect upon schedule. We conclude that
effect upon schedule should be added as a criterion.

10 RelatedWork

Prescriptive Standards. ere are many standards designed to promote soware assurance that pre-
scribe a set of process elements that all efforts to develop compliant soware must include whether this
will demonstrably achieve the necessary assurance or not. (Some of these assign soware to a small range
of soware integrity levels, but offer a fixed prescription for all soware in each level.) ABD instead com-
pels the developer to assess the unique dependability needs of each part of a system and make appropriate
choices; the developer can thus economize in some parts of the system while remaining assured that the
system as a whole will be fit for use.

e Common Criteria. An important quality standard in the soware area is the Common Criteria
for Information Technology Security Evaluation [7]. is standard defines evaluation criteria for soware
systems in security applications, and the overall approach is to define basic development requirements and
then to assess their application and efficacy for a given system. Seven levels of assurance are defined with
development rigor increasing as the level of assurance increases. e Common Criteria are a prescriptive
standard and, as such, have value in establishing assurance but rely onprescriptions such as the use of formal
methods (EAL 7). ere is no attempt to derive development technology choices from assurance, merely
from the overall security goal.

Safety Cases. Other safety-critical soware development work is assessed via a safety case. Some stan-
dards [18] and researchers [16] call for safety cases to be constructed early and updated oen during sys-
tem development and subsequent change. ABD takes this advice to its logical limit. Other research has
extended the safety argument concept to address all aspects of dependability [8] and provided methods
for proposing and evaluating dependability trade-offs [9].
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Problem-Oriented Engineering (POE). POE [15] aims to create a system and an argument that it is
fit for use. In POE, the problem to be solved is documented, possibly using a Problem Frames notation,
and progressively transformed, via transformations justified by the particulars of the effort, into an im-
plementable specification. While POE is intended to produce systems which demonstrably solve a given
problem,ABD is concernedwith awider problem: producing processes that produce soware that demon-
strably solves a given process and does so on time and within budget.

Evidence-Based Soware Engineering (EBSE). EBSE [17] calls upon developers to pose precise, an-
swerable questions to researchers and to use research results to guide development technology choices.
Because ABD process synthesis forces developers to pose such questions, the use of ABD is one way in
which a developer could participate in EBSE.

Design Rationales. Extensive work has been done on recording design rationales. ABD’s arguments
differ from recorded rationales in two important ways: (1) they explicitly record a complete rationale for
the entire development process rather than an isolated rationale for each choice; and (2) rather than attempt
to record everything, an ABD developer records only what is needed to justify the assurance argument
conclusions.

Process Evidence In Assurance Arguments. Other research has been conducted on the relationship
between process and assurance and the mechanics of including process details in the argument [13, 14].

11 Conclusion

Soware development processes are grounded in choices. Developers make choices between technologies,
between event orderings, about the adequacy of performance, andother issues. In traditional development,
the mechanism for making choices is implicit and ad hoc.

Assurance Based Development brings the notion of rigorous argument to the problem of selecting
choices. ABD generalizes the notion of argument to include an argument for fitness for use of the product
and an argument for success of the process. By doing so, ABD provides a comprehensive basis for develop-
ment choices.

Wehavepresented thedetails of how theABDarguments operate todrive theprocess synthesis activity.
Wehave illustratedABDwith a case study of the development of soware for a sophisticated, safety-critical
application.

e formof our case study does not permit us tomake strong claims about howABDwould perform in
larger development efforts, on efforts tobuild sowarewithdifferent requirements, or on efforts conducted
by other teams. Our study process did, however, force us systematically to examine this development effort
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for specific kinds of evidence that, if present, might rebut our hypotheses. Our failure to find evidence
that ABD did not work in the context of this team and this project despite systematically looking for
that evidence gives us confidence that, for this team and problem, and in those ways, ABD did work. We
anticipate extending our results with further studies on other specimen systems and encourage others to
replicate our efforts with other teams on other projects.
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