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 Abstract

Real-time systems are being extensively used in applications that are

mission-critical and life-critical, such as space exploration, aircraft avionics,

and robotics. Since these systems are usually operating in environments that

are non-deterministic, and even hazardous, it is extremely important that hard

deadlines of tasks be met even in the presence of certain failures. To tolerate

processor failures in a real-time multiprocessor system, the problem of sched-

uling a set of hard real-time tasks with duplication is studied. We first prove

that the problem of scheduling a set of non-preemptive tasks on m ≥ 3 proces-

sors to tolerate one arbitrary processor failure is NP-complete even when the

tasks share a common deadline. A heuristic algorithm is then proposed to solve

the problem. The schedule generated by the scheduling algorithm can tolerate,

in the worst case, one arbitrary processor failure, but in the best case

processor failures, where m is the number of processors in the system. Experi-

mental data and analysis show that the performance of the algorithm is near-

optimal. The research described in this paper is a part of our on-going research

effort to address the problem of supporting timeliness and dependability simul-

taneously in a system.

Keywords: real-time scheduling, parallel processing, fault-tolerance
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I. Introduction

The support of computer systems is indispensable to many applications that are mission-

critical and life-critical, such as space exploration, aircraft avionics, and robotics. These applica-

tions require not only long duration of reliable services, but also timeliness of operations. Com-

puter systems that are built to support these applications include SIFT [28], FTMP [9], the space

shuttle primary computer system [26], and MAFT [11]. These mission critical systems are mainly

parallel or distributed systems that are embedded into complex, even hazardous environments,

under tight constraints on timeliness and dependability of operations. A great deal of efforts has

been invested to make computer systems highly dependable and predictable, just to cite a few, [1]

[10] [12] [17] [18] [21] [22] [24] [27].

Yet, conspicuously lacking in this scenario is a formal approach towards supporting timeli-

ness (real-time) and dependability (fault-tolerance) simultaneously in a system at the level of task

scheduling. Traditional approaches to provide fault-tolerance and real-time in a system have been

to separate the concern of the two issues, i.e., the timeliness of tasks are ensured through real-time

scheduling, with the assumption that processors and tasks are fault-free, while the dependability

of processors or tasks is achieved through redundancy techniques, assuming that task deadlines

can be met separately. These two assumptions have been challenged recently by several research-

ers [25], arguing that real-time and fault-tolerant requirements are not orthogonal. Consequently,

some efforts [23] have been made to address the joint requirement of timeliness and dependabil-

ity. However, the approaches adopted so far have either been ad hoc or limited to specific case

studies. A formal approach which addresses the problem in a top-down or bottom-up manner is

needed, because such approach is essential in building timeliness and dependability into a single

computer system.

Our approach, which we deem formal, is to formalize this real-time fault-tolerant problem at

the level of task scheduling, and systematically study the various cases of this general scheduling

problem. In the formation, tasks are characterized not only by timing constraints, but also by

degree of redundancy. The scheduling goal is twofold: timeliness and dependability. The general

approach of studying scheduling problems is used, i.e., the complexity of the various cases of the

scheduling problems is examined, and then optimal algorithms or heuristic algorithms are devised

to solve them. By studying the general scheduling problem, we hope that we will be able to

answer such critical questions in designing highly responsive and resilient computer systems as

the following one: given the overall system requirement of dependability and timeliness, and the

characteristics of a task set (possibly with duplicated tasks or different versions) and those of pro-

cessors, can the task set be scheduled such that the overall system requirement be met? If so, how
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to schedule it?

Since most cases of the general real-time scheduling problem are intractable, it is reasonable

to expect that many cases of the general real-time fault-tolerant scheduling problem are also

intractable. This is indeed the case, as shown by some of the results in this paper. However, this

fact neither makes the problem go away nor render our approach ineffective, rather it requires that

heuristics be developed where the problem instances are NP-complete. In this paper, we present a

formal definition of the scheduling problem, followed by our major results on a special case of the

scheduling problem. It is shown that the problem of scheduling a set of real-time tasks with a

common deadline on m ≥ 3 processors for the tolerance of one arbitrary processor failure is NP-

complete.

Since NP-complete problems are widely believed to be computationally intractable, a heu-

ristic algorithm is proposed to obtain an approximate solution. The schedule generated by the

scheduling algorithm can tolerate, in the worst case, one arbitrary processor failure, but in the best

case,  processor failures, where m is the number of processors in the system. Simulation

and analysis have been carried out to evaluate the performance of the algorithm, and it is shown

that the algorithm finds the optimal solution in most of the cases.

The organization of the paper is as follows. The related work is described in Section II. The

scheduling problem is defined and a special case of it proven to be NP-complete in Section III.

The scheduling heuristic is presented in Section IV. The analysis of the performance of the algo-

rithm and the simulation results for the algorithm are given in Section V. We conclude this paper

in Section VI with a look at future work.

II. Related Work

In this section, we focus our review on those studies that are related to the real-time fault-

tolerant scheduling problem. It is obvious from our studies that research efforts in this area has

been quite limited, and it should be noted that these resultes reviewed below are remotely related

to the problem we are considering. Balaji et al [2] presented an algorithm to dynamically distrib-

ute the workload of a failed processor to other operable processors. The tolerance of some proces-

sor failures is achieved under the condition that the task set is fixed, and enough processing power

is available to execute it. Bannister and Trivedi [3] considered the allocation of a set of periodic

tasks, each of which has the same number of clones, onto a number of processors, so that a certain

number of processor failures can be sustained. An approximation algorithm is proposed, and the

ratio of the performance of the algorithm to that of the optimal solution, with respect to the bal-

m 2⁄
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ance of processor utilization, is shown to be bounded by(9m) / (8 (m - r + 1)), wherem is the

number of processors to be allocated, andr is the number of clones for each task. Their allocation

algorithm is based on the assumption that sufficient processors are available to accommodate the

scheduling of tasks.

Krishna and Shin [13] proposed a dynamic programming algorithm that ensures that

backup, or contingency, schedules can be efficiently embedded within the original, “primary”

schedule to ensure that hard deadlines continue to be met even in the face of processor failures.

They assume that a given algorithmP, which finds the optimal nonfault-tolerant schedule for sys-

tems, can be split into two subalgorithms:P1, which finds the optimal allocation of tasks to pro-

cessors and also the optimal schedule, by callingP2, which is an optimal scheduler for a single

processor. Each task in the task set has a cost function associated with it. The scheduling goal is

therefore to minimize the total cost of the system. The fault-tolerant algorithmQ is derived from

algorithmP, such that for each processor,Q takes as its inputs the set of primary clones and the

set of backup clones, and produces as its output a fault-tolerant schedule that can sustain up to

 processor failures, while the total cost of the system is minimized. However, the algorithm

in [13] has a severe drawback for the following reason: the problem to schedule a set of indepen-

dent and preemptive tasks with different release times and deadlines and different weighted func-

tions to minimize the total cost on a single processor isNP-hard [14]. This implies that it is

unlikely to find an efficient algorithm P, which was assumed to exist and used as the base algo-

rithm for Q. Furthermore, no such algorithm asP has yet been found, that can be split into two

subalgorithms that are both optimal.

We have investigated several special cases of the real-time fault-tolerant scheduling prob-

lem. Two scheduling algorithms [19] [20] have been proposed to obtain approximate solutions to

those special cases. The complexity result presented in this paper is the first solid evidence that

even for a very simple case of the scheduling problem, it is intractable. The heuristic thus devised

is an improvement over the previous ones.

III. Problem Formulation and Complexity Result

We assume that processors fail in the fail-stop manner and the failure of a processor can be

detected by other processors. The means of processor monitoring, failure detection, and failure

notification are not considered here. We further assume that all tasks have hard deadlines and

their deadlines must be met even in the presence of processor failures. We say that a task meets its

deadline if either its primary copy or its backup copy finishes before or at the deadline. Because

Nsust
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processor failure is unpredictable and the task deadlines are hard, no optimal dynamic scheduling

algorithm exists. We therefore focus on static scheduling algorithm to ensure that task deadlines

are met even in the presence of processor failures. The scheduling problem can be formally

defined as follows:

A set of n tasks  is given to be scheduled on m processors. Each task

is characterized by the tuple − , where  is the release time of task i,  is the

computation time of task i,  is the period of task i, and  is the deadline of task i. If  is speci-

fied as a variable, then the task system is termed an aperiodic task system. Otherwise, it is a peri-

odic task system. Associated with each task are a number of primary copies and a number of

backup copies. A k-Timely-Fault-Tolerant (hereinafter k-TFT) schedule is defined as the schedule

in which no task deadlines are missed, despite k arbitrary processor failures. Then, given a set

of n tasks, m processors, the scheduling problem (hereinafter referred to as the TFT scheduling

problem) can be defined, in terms of a decision problem, as deciding whether there exists a sched-

ule, which is k-TFT for the task set  on m processors. In reality, it is more likely that a task set

 is given, and the scheduling goal is to find the minimum number of processors m, such that a k-

TFT schedule can be constructed for the task set  on m processors. This then becomes an opti-

mization problem. If a decision problem is NP-complete, then its corresponding optimization

problem is at least NP-complete.

The TFT scheduling problem is a natural extension to the real-time scheduling problem.

Figure 1 depicts the structure of the TFT problem. On the real-time dimension, the parameters are

essentially the same as those used in real-time scheduling. On the fault-tolerance dimension, hard-

ware and software redundancy, more specifically processor and task redundancy, are incorporated

into the scheduling problem. The scheduling goal is represented by the k-TFT parameter, the

meaning of which is given above.

ℜ τ1 τ2 … τn, , ,{ }=
τi ri ci pi di, , ,( )= ri ci

pi di pi

ℜ

ℜ
ℜ

ℜ

precedence-constraints (independent / tree /...)

periodicity

preemptive / non-preemptive

Real-Time

Fault-Tolerance

k-TFT (processor / task)

task redundancy
(Duplicated / Multi-Version)

processor
redundancy

Figure 1: The TFT Scheduling Problem
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In the following, a special case of the TFT scheduling problem is considered. The tasks are

assumed to be independent and non-preemptive. Each task has a primary copy and a backup copy,

and the scheduling goal is to achieve 1-TFT for processor failure, i.e., the tolerance of one arbi-

trary processor failure. This case of the TFT problem is chosen to be studied, because it is the sim-

plest case. Our strategy to tackle the TFT scheduling problem is to start with the simplest cases,

and then walk our way towards more complicated cases.

The task redundancy scheme specified in the above case actually corresponds to the pri-

mary-backup copy approach or recovery block approach. Primary-backup copy approach requires

the multiple implementation of a specification [10]. The first implementation is called the primary

copy, and the other implementations are called the backup copies. The primary and if necessary,

the backup copies, execute in series. If the primary copy fails, one of the backup copies is

switched in to perform the computation again. This process is repeated until that either correct

results are produced or all the backup copies are exhausted. Here we consider a special case of the

primary-backup copy approach, i.e., each task has one backup copy only. The following Lemmas

guarantee that having one backup copy for each task is sufficient for the tolerance of one arbitrary

processor failure. The proofs of these Lemmas can be found in [20].

Lemma 1: In order to tolerate one or more processor failures and guarantee that the deadline

of a task is met using the primary-backup copy approach, the computation time of the task must

be less than or equal to half of the period of the task, assuming that the deadline coincides with the

period.

Lemma 2: One arbitrary processor failure is tolerated and the deadlines of tasks are met, if

and only if the primary copy and the backup copy of each task is scheduled on two different pro-

cessors and there is no overlapping in time between their executions.

An obvious implication of Lemma 1 is that for each task, if the computation time of the task

is larger than half of its period, it is impossible to find a schedule which is 1-TFT. This is due to

the observation that if the primary copy fails at the very end, there will not be enough time left to

complete a backup copy, assuming that the backup copy has the same computation time require-

ment as the primary copy. This fact is used implicitly in many situations throughout this paper.

In scheduling the backup copies, we have the options of allowing them to be overlapped or

forbidding them from overlapping. Here we consider the case where the backup copies are not

allowed to be overlapped with each other. What we mean by disallowing them to be overlapped is

that backup copies of the tasks whose primary copies are scheduled on different processors are

not allowed to overlap in time of their executions on a processor. For obvious reasons, backup

copies of the tasks whose primary copies are scheduled on the same processor should not be

scheduled to overlap in time of their executions on a processor. When the given number of pro-
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cessors is two, there obviously exists an optimal algorithm to schedule a set of tasks having a

common deadline so as to tolerate one arbitrary processor failure. However, for more than two

processors, the scheduling problem isNP-complete, even when the tasks have the same deadline.

Task Sequencing Using Primary-Backup with a Common Deadline(Non-Overlapping of Backups)

Instance: Set  of tasks, number of processors , for each task , one primary copy

 and one backup copy , a length (the set of natural numbers), a com-

mon release time , a common deadlined(t) = , and  =

. No overlapping of backup copies is allowed.

Question: Is there anm-processor schedule for  that is1-TFT, i.e., for each task ,

+ , and + , where , i and j

designate the index of processors.

Theorem 1: Task Sequencing Using Primary-Backup with a Common Deadline is NP-complete.

Proof: It is sufficient to prove that this scheduling problem isNP-complete even in the case ofm

= 3. It is easy to verify that this problem is inNP. We next transform the PARTITION problem−
anNP-complete problem− to the scheduling problem.

The PARTITION problem [7] is stated as follows: Given a finite set A and a “size”

 for each , is there a subset  such that  = ?

Given an instance of A =  of the PARTITION problem, we construct a

task set  using the primary-backup copy approach to run on three processors for the tolerance of

a single arbitrary processor failure, such that can be scheduled, if and only if there is a solution

to the PARTITION problem.  consists ofn +1 tasks as follows:

, ,

, where ,  = 2B (this can be assumed without

loss of generality);

and one other task:

, , .

It is easy to see that this transformation can be constructed in polynomial time. What we

need to show is that the setA can be partitioned into two sets and  such that  =

 and  + = A, if and only if the task set can be scheduled.

First, suppose that A can be partitioned into two sets and  such that  =

 = B and  + = A. Then we schedule, for each , the primary copy of the

task  with  =  on processor 2 anywhere between time interval[0, B), and its backup copy

on processor 3 anywhere between time interval[B, 2B). For each task  with  = , the

ℜ m 3≥ t ℜ∈
P t( ) G t( ) l t( ) Z+∈

r Z+∈ D Z+∈ l P t( )( ) l G t( )( )=
l t( )

σ ℜ t ℜ∈
σi P t( )( ) l P t( )( ) σj G t( )( )≤ σi G t( )( ) l G t( )( ) D≤ i j≠

s a( ) Z+∈ a A∈ A′ A⊆ s a( )
a A′∈∑ s a( )

a A A′−∈∑
a1 a2 … an, , ,{ }

ℜ
ℜ

ℜ

r t( ) 0= l t( ) at=

d t( ) 2B= t τ1 τ2 … τn, , ,{ }∈ ai1 i n≤ ≤∑

β

r β( ) 0= l β( ) B= d β( ) 2B=

S1 S2 s a( )a S1∈∑
s a( )a S2∈∑ S1 S2

S1 S2 s a( )a S1∈∑
s a( )a S2∈∑ S1 S2 α S1∈

α l α( ) a

α S2∈ l α( ) a
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primary copy of task  is scheduled on processor 3 anywhere between time interval [0, B) and its

backup copy on processor 1 anywhere between time interval[B, 2B). Therefore, the2*n copies of

then tasks can be scheduled on processors satisfying the condition set inLemma 2. For task , its

primary copy is scheduled on processor 1 during time period [0, B), and its backup copy is sched-

uled on processor 2 between time period[B, 2B), as shown in Figure 2. Thus, the task set can

be scheduled on three processors such that the schedule is1-TFT.

Conversely, if the task set  is scheduled on three processors such that the schedule is1-

TFT, we claim that for all tasks scheduled between the time interval[0, B) on processor 2, the sum

of the tasks’ lengths isB, i.e., = B. To be able to tolerate one arbitrary processor

failure, the primary copy of a task and its backup copy must be scheduled on two different proces-

sors and their execution time must not be overlapped. This later requirement is guaranteed by the

primary-backup copy approach. Since the common deadline is2B and the total task execution

time is2*(2B+B) = 6B, any1-TFT schedule should have no idle time during the time interval[0,

2B) on all three processors. Therefore, any1-TFT schedule must be equivalent to the schedule

shown in Figure 3, if processors are properly renamed and the primary copies are moved in front

of all the backup copies for each processor. Shuffling the primary copies in front of all the backup

copies will not violate any scheduling constraint, since primary copies can start earlier than sched-

uled and backup copies can start later than scheduled, as long as the release time and the deadline

constraints are not violated. For processor 3, exactly one copy, either primary or backup, of any

task among then tasks must be scheduled on it. This is because any1-TFT schedule for the three

processor requires that no idle time exists on any processor, and the primary copy of a task and its

backup copy must never be scheduled on the same processor. Therefore, we let all the tasks

scheduled on processor 2 between time interval[0, B) be the set , and the tasks on processor 1

α

β

B 2B

P S1( )
G S2( )

P S2( ) G S1( )

P(β)

G(β)

0

processor 1

processor 2

processor 3

Figure 2: Mapping from PARTITION to Task Sequencing

ℜ

ℜ

s a( )a S1∈∑

processor 3

processor 2

processor 1

2BB0

Figure 3: Mapping from Task Sequencing to PARTITION

P(β) P(U2)

P(U2)

P(U1)

G(U1)

G(U2)

G(β)

S1
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between time interval [B, 2B) be the set . We then have  =  and  +

= A. We have solved the PARTITION problem. The scheduling is therefore NP-complete.

IV. A 1-Timely-Fault-Tolerant Scheduling Algorithm

Since the scheduling problem is NP-complete, a heuristic scheduling algorithm is presented

in this section to obtain approximate solution.

In scheduling a set of tasks on m processors, the algorithm must be designed to minimize

the schedule length on each processor such that the task set can be successfully scheduled, and at

the meantime, to prevent the overlapping of the primary copy of a task and its backup copy. This

scheduling problem, at a first glance, seems very much to resemble the scheduling problem of

minimizing the makespan of a schedule in a multiprocessor system. Since the scheduling to mini-

mize the makespan of a schedule is NP-complete, several scheduling heuristics have been devel-

oped, among which LPT [8] and MULTIFIT [6] are notable ones. However, there are two key

issues that set this scheduling problem apart from the one to minimize the makespan: the require-

ment of scheduling primary copies as well as backup copies, and the requirement that the primary

copy of a task can not overlap its backup copy, and backup copies of different tasks can not over-

lap each other in execution either. The MULTIFIT algorithm, though out-performing LPT in the

worst cases, is not easily adapted to solve the 1-TFT scheduling problem. The LPT algorithm is

therefore adopted here to serve as the base algorithm upon which a scheduling heuristic is devel-

oped.

The algorithm starts by first scheduling the primary copies on the m processors using the

LPT algorithm. It then schedules the backup copies, by following several rules described below,

such that the primary copy of a task and its backup copy are scheduled on different processors,

and the backup copies of those tasks, whose primary copies are scheduled on a processor, are also

scheduled on one processor. The algorithm is given as follows. Note that D is the common dead-

line of the tasks.

Algorithm 1 (Input: Task Set , m, 1-TFT; Output: success, schedule)

Step 1: Sort the tasks in order of non-increasing computation times and rename them

. Compute . If  or ,

then report that the task set can not be scheduled on m processors by this algo-

rithm such that a 1-TFT schedule can be produced. Otherwise, go to Step 2.

Step 2: Apply the LPT algorithm to schedule the task set on m processors.

Step 3: Sort the primary schedules for the m processors in order of non-increasing sched-

S2 s a( )a S1∈∑ s a( )a S2∈∑ S1

S2

ℜ

T1 T2 … Tn, , , Ω l Ti( )i 1=
n∑= Ω mD( ) 2⁄> l T1( ) D 2⁄>
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ule lengths. Duplicate the primary schedules to form m backup schedules and

append them at the end of the primary schedules (Figure 4a).

Step 4: Swap the backup schedules according to the swapping rules defined below (Figure

4b). Shift the backup schedules to obtain the mixed schedules according to the

shifting rules defined below (Figure 4c).

Step 5: Find the maximum length among the mixed schedules and compare it to D. If it is

longer than D, the task set cannot be scheduled. Otherwise, the mixed schedules

generated in Step 4 are the schedules which are 1-TFT as a whole.

The functioning of the algorithm is illustrated by the following simple example.

Example 1: Using Algorithm 1 to schedule the following task set on four processors:  =

,  = , r = 0, and D = 25. First, the LPT

algorithm is used to schedule the primary copies of the tasks on four processors, as shown by Fig-

ure 5a. Secondly, the four primary schedules are sorted in non-increasing order. Thirdly, the pri-

mary schedules are duplicated to form the backup schedules, which are then appended to the back

of the primary schedules. Finally, the backup schedules are swapped and shifted appropriately.

The final result is shown in Figure 5b. Note that if the number of processors available is three, the

task set cannot be scheduled by this algorithm.

D

primary schedules

D

D
D/2

D/2 D/2

primary backup idle

swapped backup schedules

sorted primary schedule shifted backup schedule

m processors

m processors

primary schedules appended backup schedules

Figure 4a: Schedules after Appending

Figure 4c: Schedules after Shifting

Figure 4b: Schedules after Swapping

ℜ
τ1 τ2 … τ7, , ,{ } l τi( ) i 1 … 7, ,={ } 10 8 8 7 6 6 3, , , , , ,{ }

8
8

7
6

25

processor 2

processor 4
processor 3

6

3
10processor 1

primary backup idle

Figure 5a: Schedule Generated by LPT
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The reason to sort the primary schedules before appending is to minimize the maximum

length of the mixed schedule along with the swapping and shifting processes in the later stages.

The swapping process makes sure that the backup copy of a task is not scheduled on the same pro-

cessor as its primary copy. The purpose of shifting is to minimize the finishing time of the mixed

schedule as well as to avoid the overlapping of backup copies among different tasks. To elaborate

on the swapping and shifting processes, we formally define the swapping and shifting rules.

Swapping Rules:

(1) If the number of processors m is even, the longest backup schedule is appended behind

the shortest primary schedule, and the second longest backup schedule is appended

behind the second shortest primary schedule, and so forth.

(2) If m is odd, then the backup schedules of the three central processors are appended in

acyclic fashion. The three central processors are the ones whose positions are in the

middle. The backup schedules of the rest of the processors are swapped by following

swapping rule (1).

To define the shifting rules, we need the following definitions.

Definition 1: Two processors are called twin processors if backup copies of the tasks in the

primary schedule on a processor are appended after the primary schedule of the other processor.

The two schedules on twin processors are called twin schedules. For example, in Figure 5b, pro-

cessors 1 and 4 are twin processors, so are processors 2 and 3.

Definition 2: For the primary schedule of a processor ,  is defined as its primary

schedule length.  is defined as the computation time of the first task in the primary schedule.

Obviously, ≥ . Though  denotes the length of a schedule, it will also be used to

denote the corresponding time interval whose length is .

Shifting Rules:

Suppose the backup schedule of processor  is appended behind the primary schedule of

processor .

(1) If ≤ D/2 and ≤ D/2, then the tasks in  are shifted together ahead of

time such that the starting time of the first task in  is . If

8 7

25

processor 2

processor 4
processor 3 6

6810
3

8 37
8processor 1 6 10

37 6
primary backup idle

Figure 5b: Schedule Generated after Swapping and Append-

i lp i( )
lq i( )

lp i( ) lq i( ) lp i( )
lp i( )

j

i

lp i( ) lp j( ) lp j( )
lp j( ) max lp i( ) lp j( ),{ }
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≠ , the starting time of the first task in  can be moved to and

the rest of the backup copies can be moved ahead accordingly.

(2) If ≤ D/2 and  > D/2, the tasks in  are shifted together ahead of time

such that the starting time of the first task in  is .

(3) If  > D/2 and ≤ D/2, the tasks in  are shifted together ahead of time

such that the starting time of the first task in  is .

(4) If  > D/2 and  > D/2, the tasks in  are shifted together ahead of time

such that the starting time of the first task in  is .

(5) Apply the above rules to every schedule on the processors.

The schedule thus generated by Algorithm 1 is 1-TFT, as shown by the following theorem.

Theorem 2: Algorithm 1 produces a 1-Timely-Fault-Tolerant schedule.

Proof: Since any primary copy of a task and its backup copy are scheduled on two different

processors, as guaranteed by the Swapping Rules, we need only show that there is no overlapping

between the primary copy of a task and its backup copy. Obviously, there is no overlapping

between the primary copy of a task and its backup copy after the swapping process, but before the

shifting process. What we need to show is that no overlapping occurs when the shifting is carried

out. There are four cases to consider.

Case 1: ≤ D/2 and ≤ D/2: Since the starting time for the first task in  is

, there is no overlapping between the primary copies of the task scheduled on

processor j and their corresponding backup copies on processor i. If ≠ , there must be

at least two tasks in the primary schedule on processor j. Also, the inequality  >  must

hold. If not, the second task on processor j should be scheduled on processor i according to the

LPT algorithm. Since  > , no overlapping can occur between any primary copy and its

corresponding backup copy.

Case 2: ≤ D/2 and  > D/2: Since  > , there must be at least two tasks

in the primary schedule on processor j. Following similar argument used in Case 1 yields that no

overlapping can occur between any primary copy and its corresponding backup copy.

Case 3:  > D/2 and ≤ D/2: No overlapping can possibly occur between any pri-

mary copy and its corresponding backup copy in this case.

Case 4:  > D/2 and  > D/2: Obviously, no overlapping can possibly occur

between any primary copy and its corresponding backup copy in this case. If this case occurs, no

1-TFT schedule can be generated.

Since Step 5 in the scheduling algorithm ensures that any backup copy finishes before the

lp j( ) Lq j( ) lp j( ) lp i( )

lp i( ) lp j( ) lp j( )
lp j( ) lp i( )

lp i( ) lp j( ) lp j( )
lp j( ) lp i( )

lp i( ) lp j( ) lp j( )
lp j( ) lp i( )

lp i( ) lp j( ) lp j( )
max lp i( ) lp j( ),{ }

lp j( ) lq j( )
lp i( ) lq j( )

lp i( ) lq j( )

lp i( ) lp j( ) lp j( ) lp i( )

lp i( ) lp j( )

lp i( ) lp j( )
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deadline D, the schedule thus generated is 1-TFT. The theorem holds.

Observation: The schedule generated by Algorithm 1 is 1-TFT in the worst case and

-Fault-Tolerant in the best case, where m is the number of processors. The schedule is 1-

TFT by Theorem 2. The schedule is -Fault-Tolerant, because the failure of up to

number processors can be sustained, if none of the  processors that fail has its twin among

them. In the schedule generated by Algorithm 1 as shown in Figure 5b, if processors 1 and 2 fail,

their twin processors − processors 3 and 4 can execute the backup copies such that none of the

task deadline is missed.

V. Analysis and Performance Evaluation

In order to evaluate the performance of the scheduling algorithm, we develop another heu-

ristic algorithm that calls the above algorithm to solve its corresponding optimization problem. In

other words, we assume that the number of processors is not known and the scheduling goal is to

find the minimum number of processors required to execute a set of tasks. Then this is the optimi-

zation problem corresponding to the schedule problem described above. We use the typical binary

search technique to find the minimum number of processors required to schedule a given set of

tasks such that the schedule generated is 1-TFT. The algorithm is given as follows:

Algorithm 2 (Input: Task Set , 1-TFT; Output: m and schedule);

Step 1: LowerB := ; UpperB := n;

Step 2: m := ; IF (LowerB=m) THEN {m := m + 1; EXIT};

Step 3: Invoke Algorithm 1 ( , m, 1-TFT, success, schedule);

IF success THEN UpperB := m ELSE LowerB := m; Goto Step 2.

Example 2: Suppose the same task set is given as in Example 1, and the question is to find

the minimum number of processors necessary to execute the task set, allowing for one processor

failure. The number of processors returned by executing Algorithm 2 is four, which is in fact

equal to the optimal number of processors required.

The time complexity of Algorithm 1 is , where  is the number of

tasks, and  is the number of processors. The sorting process takes  time. The LPT in

Step 2 takes  time. Algorithm 2 takes  time, since the

binary search is bounded by .

To evaluate the performance of the algorithms − Algorithm 1, we generate task sets ran-

domly, and run Algorithm 2. Since the scheduling problem is NP-complete, it is hopeless in prac-

m 2⁄
m 2⁄ m 2⁄

m 2⁄

ℜ

l Ti( )i 1=
n∑[ ] D⁄

LowerB UpperB+( ) 2⁄

ℜ

O n nlog n mlog+( ) n

m O n nlog( )
O n mlog( ) O n nlog n mlog+( ) nlog( )

O nlog( )
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tice to use enumeration techniques to find the optimal solution even when the number of tasks is

small. However, to find out how well the algorithms perform, we consider the lowest bounds pos-

sible for each schedule. Since backup copies are allowed to overlap, the minimum number of pro-

cessors required to schedule the task set is , where Sum is the total computation time

of the tasks, and D is the deadline or period. The factor of 2 comes from the fact that no overlap-

ping of backup copies is allowed. Therefore, we use  as the lowest bound possible for

each schedule.

Our simulation is carried out in the following fashion: First, a common deadline D is cho-

sen. Then a range of values is chosen, from which the computation times of the tasks are ran-

domly generated. Algorithm 2 is run for each set of tasks, the number of which is incremented for

each run. The ratio between the common deadline and the maximum computation time of the

tasks is kept between 2 and 7. For each different value D, we invoke 100 task sets, each of which

differs from the previous one in number of one. Eighty different values of D are chosen from the

range of 20 and 99. For a particular value of D (D = 90), the performance of the scheduling algo-

rithm is given in Figure 6. It is evident from our extensive simulation that the difference between

the number of processors computed by this algorithm and the lowest bound possible is only one or

two. Thus it is concluded that the performance of the algorithm is near-optimal.

The performance of the scheduling heuristic - Algorithm 1 may seem surprisingly good at

the first glance. However, it is not surprising at all if we take a closer look at the performance of

the heuristic. Graham [8] proved that the worst case performance of LPT was tightly bounded by

2Sum D⁄

2Sum D⁄

Figure 6: Performance of the Scheduling Algorithm (D = 90, 1 ≤ Ci ≤ 90)
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4/3 - 1/3m, wherem is the number of processors. However, that bound is only achievable by a

pathological example, where, with the exception of one processor, the number of tasks scheduled

on each processor is only two. Coffman and Sethi [5] later generalized Graham’s bound to be

(k+1)/k - 1/(km), wherem is the number of processors, andk is the least number of tasks on any

processor, ork is the number of tasks on a processor whose last task terminates the schedule. This

result shows that the worst case performance bound for LPT approaches unity approximately as1

+ 1/k. The worst case performance of Algorithm 1 is therefore expected to be better than1 + 1/k.

In our experiments, each processor is approximately assigned five tasks, and thus the worst

case performance bounds for both heuristics are expected to be less than 1 + 1/5 = 1.2, according

to the above analysis. Also, it is quite unlikely to randomly generate a task set, which can coincide

with the worst cases for the heuristic.

VI. Conclusion

The contribution of this paper is twofold: One is that the NP-completeness result tells us

that the TFT scheduling problem is a very hard problem to solve, even in the simple case when

there are only three processors and the tasks share a common deadline. Therefore, heuristic

approaches are called for to solve the problem. The second contribution is that a scheduling heu-

ristic is proposed to generate a schedule that can tolerate one arbitrary processor failure. It is

shown that the performance of the algorithm is near-optimal.

Many problems remain open, since we only consider a special case of the general real-time

fault-tolerant scheduling problem. The tolerance of more than one processor failures requires that

the number of primary copies or backup copies be more than one for each task. Also, good heuris-

tics are needed to obtain approximate solutions to the scheduling problem where tasks have dif-

ferent deadlines. Furthermore, it is interesting to mathematically derive the worst-case

performance bound of the scheduling algorithm presented in this paper. We are currently investi-

gating these problems.

References2

[1] Avizienis, A. “The N-version approach to fault-tolerant software,” IEEE Transactions on
Software Engineering 11, 1985, pp. 1491-1501.

2. Due to space limit, not all the references are listed.



 15

[2] Balaji, S. et al. “Workload redistribution for fault-tolerance in a hard real-time distributed
computing system,” FTCS-19, Chicago, Illinois, June 1989, pp. 366-373.

[3] Bannister, J.A. and K. S. Trivedi. “Task allocation in fault-tolerant distributed systems,”
Acta Informatica, 20, Springer-Verlag, 1983, pp. 261-281.

[4] Coffman, E.G., Jr. Computer and Job Shop Scheduling Theory, New York: Wiley, 1975.

[5] Coffman, E.G., Jr. and R. Sethi. “A generalized bound on LPT sequencing,” Revue
Francaise d’Automatique Informatique Recherche Operationelle, Vol. 10, No. 5, 1976,
Suppl., pp. 17-25.

[6] Coffman, E.G., Jr., M.R. Garey, and D.S. Johnson. “An application of bin-packing to mul-
tiprocessor scheduling,” SIAM J. Computing 7, 1978, pp. 1-17.

[7] Garey, M.R. and D.S. Johnson. Computers and Intractability: A guide to the theory of NP-
completeness, W.H. Freeman and Company, NY, 1978.

[8] Graham, R.L. “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math., 17,
1969, pp. 416-429.

[9] Hopkins, A.L. et al. “FTMP-A highly reliable fault-tolerant multiprocessor for aircraft,”
Proceedings of the IEEE, Vol. 66, No. 10, October, 1978.

[10] Johnson, B.W. Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley,
1989.

[11] Kieckhafer, R.M., C.J. Walter, A.M. Finn, and P.M. Thambidurai. “THe MAFT Architec-
ture for distributed fault tolerance,” IEEE Transactions on Computers, Vol. 37, No. 4,
April 1988, pp. 398-405.

[12] Knight, J.C. and P.E. Ammann. “Design fault tolerance,” Reliability Engineering and Sys-
tem Safety 32, 1991, pp. 25-49.

[13] Krishna, C.M. and K.C Shin. “On scheduling tasks with a quick recovery from failure,”
IEEE Transactions on Computers, C-35(5), May 1986, pp. 448-454.

[14] Labetoulle, J., E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. “Preemptive schedul-
ing of uniform machines subject to release dates,” Report BW 99, Mathematisch Centrum,
Amsterdam, 1979.

[15] Leung, J.Y.T. and J. Whitehead. “On the complexity of fixed-priority scheduling of peri-
odic, real-time tasks,” Performance Evaluation, Vol. 2, pp. 237-250, 1982.

[16] Liestman, A.L. and R.H. Campbell. “A fault tolerant scheduling problem,” IEEE Transac-
tions on Software Engineering, SE-12(11), November 1986, pp. 1089-1095.

[17] Liu, C.L., and J. Layland. “Scheduling algorithms for multiprogramming in a hard real-
time environment,” JACM 10(1), 1973.

[18] Liu. J.W.S., K-J. Lin, W-K. Shih, A. Yu, A-Y. Chung, and W. Zhao “Algorithms for
scheduling imprecise computations,” Computer, Vol. 24, No. 5, May 1991, pp. 58-69.

[19] Oh, Y., and S.H. Son. “Multiprocessor support for real-time fault-tolerant scheduling,”



 16

IEEE 1991 Workshop on Architectural Aspects of Real-Time Systems, San Antonio,
Texas, pp. 76-80, Dec. 3, 1991.

[20] Oh, Y., and S.H. Son. “An algorithm for real-time fault-tolerant scheduling in multiproces-
sor systems,” 4th Euromicro Workshop on Real-Time Systems, Athens, Greece, June
1992.

[21] Pradhan, D.K. Fault-Tolerant Computing -- Theory and Techniques, Volumes I and II,
Prentice-Hall, Englewood Cliffs, N.J., 1986.

[22] Ramamritham, K. and J.A. Stankovic. “Scheduling strategies adopted in Spring: a over-
view,” Chapter in Foundations of Real-Time Computing: Scheduling and Resource Allo-
cation (ed.) by A.M. van Tilborg and G.M. Koob, 1991.

[23] Ramos-Thuel, S., and J.K. Strosnider. “The transient server approach to scheduling time-
critical recovery operations,” RTSS, 1991, pp. 286-295.

[24] Sha, L., and J.B. Goodenough. “Real-time scheduling theory and Ada,” Computer, April
1990, pp. 53-65.

[25] Shin, K.G., G. Koob, and F. Jahanian. “Fault-tolerance in real-time systems,” IEEE Real-
Time Systems Newsletter, Vol. 7, No. 3, 1991, pp. 28-34.

[26] Spector, A., and D. Gifford. “The space shuttle primary computer system,” CACM, Sep-
tember 1984, pp. 874-900.

[27] Stankovic, J.A. “Misconception of real-time computing,” IEEE Computer, October 1988,
pp. 10-19.

[28] Wensley, et.al. “SIFT: design and analysis of a fault-tolerant computer for aircraft con-
trol,” Proc.of the IEEE, Vol. 66, No. 10, October 1978, pp. 1240-1255.


