
Automatically Hardening Web Applications  
Using Precise Tainting 

Anh Nguyen-Tuong   Salvatore Guarnieri   Doug Greene   David Evans
 

University of Virginia Computer Science Technical Report CS-2004-36 
December 2004 

{nguyen, evans}@cs.virginia.edu 
 

ABSTRACT 
Most web applications contain security vulnerabili-
ties.  The simple and natural ways of creating a web 
application are prone to SQL injection attacks and 
cross-site scripting attacks (among other less common 
vulnerabilities).  In response, many tools have been 
developed for detecting or mitigating common web 
application vulnerabilities.  Existing techniques either 
require effort from the site developer or are prone to 
false positives.  This paper presents a fully automated 
approach to securely hardening web applications.  It is 
based on precisely tracking taintedness of data and 
checking specifically for dangerous content in only in 
parts of commands and output that came from 
untrustworthy sources.  Unlike previous work in 
which everything that is derived from tainted input is 
tainted, our approach precisely tracks taintedness 
within data values.  We describe our results and 
prototype implementation on the predominant LAMP 
(Linux, Apache, MySQL, PHP) platform.  

 

1. INTRODUCTION 
Nearly all web applications are security critical, but 
only a small fraction of deployed web applications 
can afford a detailed security review.  Even when 
such a review is possible, it is tedious and can 
overlook subtle security vulnerabilities.  Serious 
security vulnerabilities have been found in the largest 
commercial web applications including Gmail 
[Wei04], eBay [eBay01], Yahoo [Grey04], Hotmail 
[Grey04] and Microsoft Passport [Eye02]. 

Several tools have been developed to partially 
automate aspects of a security review, including static 
analysis tools that scan code for possible 
vulnerabilities [Huang04] and automated testing tools 
that test web sites with inputs designed to expose 
vulnerabilities [Bene02, Hua03, Ricca01].  Taint 

analysis identifies inputs that come from 
untrustworthy sources (including user input) and 
tracks all data that is affected by those input values.  
An error is reported if tainted data is passed as a 
security-critical parameter, such as the command 
passed to an exec command.  Taint analysis can be 
done statically or dynamically.  Section 3 describes 
previous work on security web applications. 

For an approach to be effective for the vast majority 
of web applications, it needs to be fully automated.  
Many people build websites that accept user input 
without any understanding of security issues.  For 
example, PHP & MySQL for Dummies [Val02] 
provides inexperienced programmers with the 
knowledge they need to set up a database backed web 
application.  Although the book does include some 
warnings about security (for example, p. 213 warns 
readers about malicious input and advises them to 
check correct format, and p. 261 warns about <script> 
tags in user input), many of the examples in the book 
that accept user input contain security vulnerabilities 
(e.g., Listings 11-3 and 12-2 allow SQL injection, and 
Listing 12-4 allows cross-site scripting).  This is 
typical of most introductory books on web site 
development. 

We propose a completely automated mechanism for 
preventing two important classes of web application 
security vulnerabilities: command injection (including 
SQL injection) and cross-site scripting.  Our solution 
involves replacing the standard PHP interpreter with a 
modified interpreter that precisely tracks taintedness 
and checks for dangerous content in uses of tainted 
data.  A web application developer does not need to 
do anything to benefit from our technique, as long as 
the hosting server uses our modified version of PHP. 

The main contribution of our work is the development 
of precise tainting in which taint information is 
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maintained at a fine level of granularity and checked 
in a context-sensitive way.  This enables us to design 
and implement fully-automated defense mechanisms 
against both command injection attacks, including 
SQL injection, and cross-site scripting attacks.  Next, 
we describe common web application vulnerabilities.  
Section 3 reviews prior work on securing web 
applications.  Section 4 describes our design and 
implementation, and explains how we prevent 
exploits of web application vulnerabilities. 

2. VULNERABILITIES 
Figure 1 shows a typical web application. A client 
sends input to the web server in the form of an HTTP 
request (step 1 in Figure 1).  GET and POST are the 
most common requests.  The request encodes data 
created by the user in HTTP header field including 
file names and parameters included in the requested 
URI.   If the URI is a PHP file, the HTTP server will 
load the requested file from the file system (step 2) 
and execute the requested file in the PHP interpreter 
(step 3).  The parameters are visible to the PHP code 
through predefined global variable arrays (including 
$_GET and $_POST).  

The PHP code may use these values to construct 
commands that are sent to PHP functions such as a 
SQL query that is sent to the database (steps 4 and 5) 
and then to produce an output web page based on the 
returned results and return it to the client (step 6).  If 
an attacker can access confidential information or 
corrupt the application state by carefully constructing 
a malicious input, the application is vulnerable to a 
command injection attack.  If the attacker can arrange 
for the server to produce a page that will execute a 
script constructed by the attacker, the application is 
vulnerable to a cross-site scripting attack. 

2.1 Command Injection 

2.1.1 PHP Injection 
Scripting languages such as PHP and Perl that drive 
the generation of dynamic web pages represent the 
first line of defense against other forms of attacks, i.e, 
SQL injections and XSS, as well as the first target for 
attackers. A successful injection at the scripting 
language level yields control of the web site to 
attackers, including the ability to execute dangerous 
OS commands. 

Here is a simple example of a PHP injection that was 
present in phpGedView (version 2.65.1 and earlier), an 
online viewing system for genealogy information 
[Jei04]. The attack URL is of the form: 

http://[target]/[phpGedView-directory]/ 
editconfig_gedcom.php?gedcom_config=../../../../..
/../etc/passwd 

The vulnerable PHP code uses the gedcom_config 
value as a filename: require($gedcom_config);. The 
semantics of require is to load the file and either 
interpret it as PHP code (if the PHP tags are found) or 
display the content. Thus this code leaks the content 
of the password file.  Abuse of require and its related 
functions is a commonly reported occurrence 
[Gentoo04, Manip04, Więsek03]. 

Properly configured, PHP can thwart this type of 
attack.  PHP’s safe mode provides the open_basedir 
and allow_url_fopen settings to control access to the 
local filesystem or prevent remote files from being 
read.  Unfortunately from a security point of view, the 
default settings are permissive. The growing 
popularity of PHP (PHP is used at over 1.3 IP 
addresses and is installed with 50% of Apache servers 
[Netcraft04]), coupled with PHP’s emphasis on 
functionality over security, ensures the continued 
availability of exploitable web sites. 

The next example illustrates a recent and 
sophisticated attack on phpMyAdmin, a popular 
package for managing databases [Simb04]. 

phpMyAdmin stores database configuration parameters 
in the array $cfg. An attack can add an additional 
server configuration parameters by growing the array 
through the use of GET variables.  The attacker then 
sets up its own SQL server and waits for a connection. 
Note that the attacker breaks the implicit and common 

 
 

Figure 1.  Web application architecture. 
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assumption of a trusted database server. PhpMyAdmin 
will then query the attacker’s database for a list of 
table names. 

The following code then eventually executes, using a 
table name (controlled by the attacker) in an argument 
to eval: 

$eval_string = '$tablestack[\''  
   . implode('\'][\'', $_table) . '\'][\'pma_name\'][]  
   = \'' . str_replace('\'', '\\\'', $table) . '\';'; 
eval($eval_string); 

The authors of phpMyAdmin included code to perform 
sanitization of the table name before passing it to eval. 
However, the sanitization routine does not properly 
handle quotes. A table name of the form 

\\';exec(\"<Attack Code>\");/* 

results in a successful attack as eval evaluates the 
attack string as PHP code. In turn, the PHP exec 
command will execute the commands in the attack 
code on the host server. 

This multi-step attack illustrates the level of 
sophistication of attackers and the dangers of ad-hoc 
sanitization routines. 

2.1.2 SQL Injection 
Attacking web applications by injecting SQL 
commands was first described as early as 1998 
[Rai98], and remains a common method of attacking 
web applications [Kost04, Litchfield03, Spett02]. 

We illustrate a SQL injection attack with a simple 
example based on a common practice of 
authenticating web site visitors with a login form 
requesting a name and password. Suppose the 
following code fragment is used to construct an SQL 
query to authenticate users against a database (it is 
inadvisable to store passwords in cleartext, but many 
commercial websites do): 

$cmd="SELECT user FROM users WHERE user = ' "  
          . $user . "'  AND password = ' "   
 . $password . " ' "; 
 

The value of $user comes from $_POST['user'], a 
value provided by the client using the login form.  A 
malicious client can enter the value: ' OR 1 = 1 ; --'   
(-- begins a comment in SQL which continues to the 
end of the line).  The resulting SQL query will be: 

SELECT user FROM users WHERE  
   user = ' ' OR 1 = 1 ; -- ' AND password = 'x' 

The injected command closes the quote and comments 
out the AND part of the query.  Hence, it will always 
succeed regardless of the entered password. 

The main problem here is that the single quote 
provided by the attacker closes the open quote, and 
the remainder of the user-provided string is passed to 
the database as part of the SQL command.   

In fact, this attack would be thwarted by PHP 
installations that retain the default magic quotes 
option. When enabled, magic quotes automatically 
sanitize input data by adding a backslash to all strings 
submitted via web forms or cookies. However, the 
magic quote option is not a panacea in defending 
against SQL injections. First, many web 
administrators turn off magic quotes as their use may 
interfere with applications that explicitly manipulate 
quotes and backslashes prior to inserting data into a 
database [Fuecks02]. Second, as the following 
example illustrates, even if magic quotes are enabled 
there are SQL injection attacks that succeed without 
needing to insert a quote character. 

This example illustrates a SQL injection vulnerability 
in PHPnuke, a widely used open-source web portal 
management system, in which an attacker can acquire 
the administrator’s password hash (which, because of 
a mistake in the way PHPnuke did authentication with 
cookies was enough to be able to login without 
cracking the actual password) [Arm2003]. This is 
done using a select fish attack in which the attacker 
guesses the value of a column in a database one 
character at a time. In this case, the column holds the 
MD5 hash of the administrator’s password.  

The full attack string and exploit description is 
available online [Arm2003].  The attack injects SQL 
code using a parameter in a URL (+ encodes a space):  

http://site/modules.php?name=search&query= 
   &days=1+or+mid(a.pwd,1,1)=6&type=stories 
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The salient part of the resulting query string is:  

SELECT s.sid, a.url FROM nuke_stories s, 
                                     nuke_authors a  
    WHERE s.aid=a.aid OR mid(a.pwd,1,1)=6 

In this example, the attacker guesses that the first 
character of the password hash is 6. If the attacker 
guesses correctly the WHERE test is satisfied and the 
generated output displays a matching record.  Since 
MD5 hashes are 32 characters long with 16 possible 
values for each character [0-9, A-F], the attacker can 
obtain the full password hash with a maximum of 512 
guesses.  A program can easily be written to automate 
this process and steal the password hash in a matter of 
minutes.  

The authors of PHPnuke provided an ad-hoc fix for 
this vulnerability in version 6.0 by checking for 
parenthesis in GET variables. However, they neglected 
to check POST variables, which permitted a similar 
exploit to succeed [Arm2003].  This example 
illustrates the sophistication of attackers, the danger of 
relying on ad-hoc fixes, and underscores the need for 
an automated approach to prevent SQL injections. 

One solution to SQL injection vulnerabilities is to use 
SQL prepared statements, supported in MySQL 4.1 
[Fisk04] and PHP 5.0 [PHP5]. A prepared statement 
is a query string with placeholders for variables that 
are subsequently bound to the statement and type-
checked.  This clean delineation between application 
data and logic prevents SQL injections. However, this 
depends on programmers changing development 
practices and replacing legacy code.  Dynamic 
generation of queries using regular queries will 
continue to be prevalent for the foreseeable future.  

2.2 Cross-Site Scripting 
A cross-site scripting vulnerability enables an attacker 
to insert script code in a web page produced by a site 
trusted by the victim.  The script code can steal the 
victim’s cookies or capture data the victim 
unsuspectingly enters into the web site.  This is 
especially effective in phishing attacks in which the 
attacker sends the victim an email convincing the 
victim to visit a URL.  The URL may be a trusted 
domain, but because of a cross-site scripting 
vulnerability the attacker can construct parameters to 
the URL that cause the trusted site to create a page 

containing a form that sends data back to the attacker.   
For example, the attacker constructs a link like this: 

<a href='http://www.trusted.com/search.php? 
    key=<script src="http://malice.com/attack.js"> 
    </script>'> 

If the implementation of search.php uses the key 
parameter provided in the URL in the generated we 
page, the malicious script will appear on the resulting 
page: 

    print "Results for: " . $_GET['key']; 

A clever hacker can use character encodings to make 
the malicious script appear nonsensical to a victim 
who inspects the URL before opening it. 

Four years ago, CERT Advisory 2000-02 [CERT00] 
described the problem of cross-site scripting and 
advised users to disable scripting languages and web 
site developers to validate web page output.  
Nevertheless, cross-site scripting problems remain a 
serious problem today.  Far too much functionality of 
the web depends on scripting languages, so most users 
are (for good cause) unwilling to disable them.  Even 
security-conscious web developers frequently produce 
websites that are vulnerable to cross-site scripting 
attacks.  Hoglund and McGraw [Hog2004] describe 
several different examples of websites vulnerable to 
simple cross-site scripting attacks.   

An example typical a recent cross-site scripting 
vulnerabilities was one reported by Rafel Ivgi in 
microsoft.com in October 2004 [Ivgi04].  An attacker 
was able to inject scripting code into a web page 
generated by microsoft.com using a URL parameter: 

href="http://www.microsoft.com/.../download.asp? 
   sTarget=javascript:<attack code>" 

The attack code would appear in a link on the 
generated page, and execute if the victim clicked on 
that link. 

A particularly dangerous cross-site scripting 
vulnerability was found in Microsoft’s Hotmail 
application [Eye02].  Hotmail displays email in 
HTML format which can be sent to the user from 
anyone.  The site took measures to filter out the most 
obvious dangerous content in received messages 
including applets and JavaScript.  However, if the 
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user clicks on a link in an email message to a MSN 
site, the user’s Passport credentials are transmitted to 
the new site.  The http://auctions.msn.com/ site 
included an ASP script ErrorMsg.asp that could be 
passed arguments.  A URL that links to these scripts 
with scripting code in the arguments would be 
interpreted, thus executing a script created by the 
attacker when the victim clicks on the link.  Because 
this site has access to the victims Passport credentials, 
the attack script could steal the victim’s cookie and 
send these credentials to the attacker. 

The initial fixes to this vulnerability [Eye02] involved 
filtering script arguments to ignore dangerous tags 
and common scripting code.  The filters, however, 
could be circumvented by using alternate character 
encodings.  (The ErrorMsg.asp script is no longer 
supported.)  As with PHPNuke, ad hoc approaches 
rarely fix the whole problem.  

Cross-site scripting vulnerabilities continue to be 
found in widely-used web sites [Endler02].  In the 
past few weeks, several vulnerabilities have been 
found in Google [Ley04] and Gmail [Wei04].  The 
persistence of cross-site scripting vulnerabilities stems 
from the need to accept user input to provide 
functionality in web applications, combined with the 
lack of a clear separation between content and code.  
Ad hoc solutions can close the vulnerabilities, but 
often fail to prevent all exploits and are easily 
overlooked by even security-conscious developers.  
Hence, we focus on fully automated solutions. 

3. PRIOR WORK 
Numerous approaches have been proposed for 
securing web applications including vulnerability 
testing [Bene02, Hua03, Ricca01] and static analysis.  
Describing all work on web application security is 
outside the scope of this paper; instead, we focus here 
on describing the most relevant work from an 
information flow perspective. 

All of the web vulnerabilities described in Section 2 
stem from insecure information flow: data from 
untrusted sources is used in a trusted way.  The 
security community has studied information flow 
extensively [Sab03].  The earliest work focused on 
confidentiality, in particular in preventing flows from 
trusted to untrusted sources [Bell73].  In our case, we 
are primarily concerned with integrity.  Biba showed 

that information flow can also be used to provide 
integrity by considering flows from untrusted to 
trusted sources [Biba77].   

Information flow policies can be enforced statically, 
dynamically or by a combination of static and 
dynamic techniques.  Static taint analysis has been 
used to detect security vulnerabilities in C programs 
[Eva02, Shan01].  Static approaches have the 
advantage of increased precision, no run-time 
overhead and the ability to detect and correct errors 
before deployment.  However, they require substantial 
effort from the programmer.  Since we are focused on 
solutions that will be practically deployed in typical 
web development scenarios, we focus on dynamic and 
hybrid techniques.   

Information flow policies can be enforced 
dynamically at any of the steps in Figure 1.  Input and 
output filtering observes traffic between the client and 
web server.  The most closely related work to ours is 
taint checking. 

3.1 Input and Output Filtering 
Scott and Sharp [Sco02] developed a system for 
providing an application-level firewall for preventing 
malicious input from reaching vulnerable web servers.  
Their approach required a specification of constraints 
on different inputs, and compiled those constraints 
into a checking program.  Their approach requires a 
programmer to provide a correct security policy 
specific to their application, so is ill-suited to 
protecting typical web developers.   

Several commercial web application firewalls have 
been developed including AppShield [Watch04] and 
InterDo [Kavado04] and Teros-100 APS [Teros04].  
These tools provide both input and output filtering, 
observing web traffic to detect possible attacks.  For 
example, Teros-100 APS can be configured to detect 
text that appears to be a credit card number in output 
pages and prevent it from being returned. Without 
extensive configuration, however, the tools are prone 
to both false positives and false negatives [Dyck03]. 

3.2 Taint Checking 
Taint checking enforces information flow policies 
during application execution. Perl and Ruby are 
popular scripting languages that enforce information 
flow policies using dynamic checking.  Perl’s taint 
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mode provides simple rules for preventing the use of 
untrusted data in critical functions [PerlSec]. The 
general approach is to mark external data as tainted, 
and track the taint information through Perl 
expressions. Perl implements a simple rule: any 
tainted data in a subexpression taints the entire 
expression. To untaint variables requires a regular 
expression pattern match.  This assumes that the 
pattern match provides the needed data validation. In 
contrast, we have chosen to force developers to 
untaint variables explicitly. The disadvantage of our 
approach is that it forces developers to modify their 
application code if they need to untaint a variable 
because of a false positive in our PHP injection or 
XSS detection code. We mitigate this potential 
problem by keeping track of tainting at the level of a 
single character in PHP strings. Armed with this 
information, we can selectively apply our injection 
detection algorithms, which is the strength and 
novelty of our precise tainting approach.  

Ruby provides several levels of taint modes [Tho04]. 
Ruby’s safe level 1 corresponds roughly to Perl’s taint 
mode and our own use of taint information to prevent 
PHP injections. Ruby’s stricter safe levels define 
additional restrictions on the use of tainted variables, 
including the ability to completely sandbox tainted 
variables from untainted ones. Ruby’s additional safe 
levels are designed for a generic environment, unlike 
PHP which is primarily targeted for web development 
where distinguishing between external and trusted 
input is usually sufficient. 

While Perl and Ruby provide a generic mechanism for 
tainting all variables, we have focused on maintaining 
taint information for strings only. In practice, we have 
not seen the need in PHP to taint non-string variables; 
in PHP external sources of data such as cookies, get, 
post, database and session values are all represented 
as strings.  

Finally we note that the notion of precise tainting is 
complementary to the coarse-grain tainting of Perl 
and Ruby. Our approach for hardening web 
applications using precise tainting could be applied 
effectively to Perl, Ruby and other languages as well. 

Newsome and Song [New05] used dynamic tainting 
at the granularity of memory locations to detect and 
analyze security exploits on binaries.  They modified 
the Valgrind x86 emulator [Net03] to mark all input 

from untrusted sources as tainted and to keep track of 
tainting information as a program executes machine 
instructions.  An attack is detected if tainted data is 
used as a jump target, or passed to certain system 
calls.  As in our approach, using precise taint 
information enables an automated defense with few 
false positives.  Tracking taint information at the 
machine level, however, is very expensive and 
imposes unacceptable overhead for most applications.  
Since our approach is at the level of programming 
language semantics, we are able to perform precise 
tainting with minimal overhead. 

Huang et. al developed a hybrid approach to securing 
web applications [Hua04].  Their WebSSARI tool 
used a static analysis based on type-based information 
flow to identify possible vulnerabilities in PHP web 
applications.  Input from external sources is 
considered tainted and a type-based static analysis is 
used to detect insecure uses of tainted data.  Their 
type-based approach operates at a coarse-grain: any 
data derived from tainted input is considered fully 
tainted.  In addition to reporting warnings describing 
the detected vulnerabilities, WebSSARI would insert 
calls to sanitization routines.  These routines could be 
programmed by the programmer to filter potentially 
dangerous content from tainted values before they are 
passed to security-critical functions.  Our precise 
tainting approach is more automated than WebSSARI; 
all we require is that the server uses our modified 
interpreter PHP and all web applications running on 
the server are protected.  Further, our precise tainting 
and context-specific checking approach limits the 
number of false positives. 

4. AUTOMATIC WEB HARDENING 
Our design is based on maintaining precise 
information about what data is tainted through the 
processing of a request, and checking that user input 
sent to an external command or output to a resulting 
web page contains only safe content.  Our solution is 
fully automatic: it prevents a large class of common 
security vulnerabilities without any direct effort 
required from web application developer.   

Figure 2 illustrates our system architecture.  The only 
change from the standard LAMP architecture is we 
replace the standard PHP interpreter with a modified 
interpreter that identifies which data comes from 
untrusted sources and precisely tracks how that data 
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propagates through PHP code interpretation (Section 
4.1), check that parameters to commands do now 
contain dangerous content derived from user input 
(Section 4.2), and ensure that generated web pages do 
not contain scripting code created from untrusted 
input (Section 4.3).  Section 4.4 evaluates the 
performance of our prototype implementation. 

4.1 Taint Marking 
We mark an input from untrusted sources including 
data provided by client requests as tainted (step 1 in 
Figure 2).  In PHP, all external variables are strings.  
We modified the PHP interpreter’s implementation of 
the string datatype to include tainting information for 
string values at the granularity of individual 
characters.  We propagate taint information across 
function calls, variable assignments and composition 
at the granularity of a single character. We call this 
fine-grained level of maintaining taint information 
precise tainting. The application of precise tainting 
enables the prevention of SQL injection attacks and 
the ability to easily filter output for XSS attacks.  If a 
function uses a tainted variable in a dangerous way, 
then we can either reject the call to the function (as is 
done with SQL queries or PHP system functions) or 
sanitize the variable values (as is done for preventing 
cross-site scripting attacks).  

Web application developers often remember to 
sanitize inputs from GET and POSTs, but will forget or 
omit to check other variables that can be set directly 
by manipulating the HTTP protocol directly. Our 
approach ensures that all such external variables, e.g. 
hidden form variables, cookies and HTTP header 
information, are marked as tainted.  External variables 
are accessible in PHP via the associative arrays 
$_GET, $_POST, $_COOKIE, $_REQUEST and 
$_SERVER. The values in $_GET, $_POST and 
$_COOKIE correspond respectively to the parameters 
passed in HTTP GET and POST requests and 

transmitted in cookies. The $_REQUEST array 
aggregates the values in the $_GET, $_POST and 
$_COOKIE arrays. The $_SERVER array contains 
variables set by the web server or related to the 
execution environment of the current script. We only 
mark as tainted those variables in $_SERVER that are 
sent by the client: HTTP_ACCEPT, HTTP_ACCEPT-
_CHARSET, HTTP_ACCEPT_ENCODING, HTTP_AC-
CEPT_LANGUAGE, HTTP_CONNECTION, HTTP_HOST, 
HTTP_REFERER, and HTTP_USER_AGENT. 

We also keep track of taint information for session 
variables and database results. Session variables 
provide a mechanism for web developers to keep 
track of application state information without having 
this information exposed and potentially manipulated 
by clients (provided that the session id is difficult to 
guess).  

4.1.1 Taint Strings 
For each PHP string, we track tainting information for 
individual characters.  This is done by associating a 
taint string with each string value.  The taint string 
can be NULL, indicating that the entire string is 
untainted, or can be an array of characters 
representing the taintedness of each character.  While 
this is not an efficient encoding—we do not need the 
full 8 bit to encode taint information, and typical taint 
strings have long sequences of the same character—it 
does make for a simple implementation for our proof-
of-concept prototype.  (We do not yet handle multi-
byte characters, although they could be handled 
similarly.) 

To provide more precise tracking, we maintain the 
source of tainting in the taint string.  The taint 
markings are: 

-  untainted 
G  tainted, from a GET method 
P  tainted, from a POST method 
C  tainted, from a cookie 
D  tainted, from a database response 
S  tainted, from a session variable 
 

Consider the following code fragment where part of 
the string $x came from an external input and $y came 
from a cookie:  

 

Figure 2.  Modified web server architecture. 
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$x = "Hello " . $_GET['name1'] . "."; 
$y = "I am "  . $_COOKIE['name2'] . "."; 
$x .= $y;  

The values of $_GET['name1'] and 
$_COOKIE['name2'] are fully tainted (we assume they 
are Alice and Bob); this tainting propagates through 
the concatenations.  After the final assignment, the 
value of $x and its taint markings will be: 

Hello Alice. I am Bob. 
------GGGGG-------CCC- 

This illustrates precise tainting: (1) taint information 
is kept for each character, (2) the source of the taint is 
maintained, and (3) taint information is kept 
throughout the lifetime of a PHP script. 

4.1.2 Functions 
We keep track of taint information across function 
calls, in particular functions that manipulate and 
return strings. Whenever feasible we keep track of 
taint information at the granularity of a single 
character. For example, consider the substring 
function (tainted characters are underlined): 

$original = "precise taint me"; 
$x = substr($original, 0, 6); // precise 
$y = substr($original, 8, 9); // ta 
 

The taint markings for the results of the substr call 
depend on the part of the string they select.   

Table 1 lists the functions for which we keep track of 
fine-grained taint information. The list of functions 
we obtained from the PHP list of string functions 
[PHPs].   

 

 

Type Function Name 
Formatting sprintf, sscanf  

(taint information only kept for string 
variables) 

String 
conversion 

strtolower, strtoupper, ucfirst, 
ucwords, addslashes, addcslashes, 
stripslashes, stripcslashes 

String 
selection 

substr, str_split, strsts, stristr, strchr 

White space chop, ltrim, rtrim, trim 
Other string 
functions 

implode, explode, str_ireplace, 
str_pad str_replace, substr_replace, 
str_split 

Table 1. Taint-preserving string functions. 

Table 2 provides several examples of precise tainting 
through various string functions.  For other functions 
the mapping between input and output characters is 
less obvious, so it is only feasible to keep track of 
taint information at a coarse level:  the result strings 
are marked tainted if any of the arguments to the 
function are tainted.  These include the regular 
expression functions (preg_grep, preg_match, 
preg_match_all, preg_quote, preg_replace, 
preg_split) as well as complex string functions like 
get_headers and get_meta_tags. 

Unlike the approach in Perl where a regular pattern 
expression match is indicative of a sanitization routine 
and implicitly untaints a variable [PerlSec], we do not 
assume pattern matching expressions produce 
untainted results.  To allow developers to circumvent 
the taint markings, we provide the untaint function 
that explicitly marks its string parameters as 
untainted.  This is more conservative than the Perl 
approach in which tainting information may be lost 
accidentally, or an attack permitted through a faulty 

Function Result 
sprintf("Bye %s", "John"); 
sscanf("Bye %s","Bye John"); 
strtolower("HELLO"); 
strtoupper("hello"); 
ltrim("    hello"); 
str_replace("bonjour", "hello", "bonjour John") 
explode(":", "col1:col2") 
implode(‘:’, array("col1", "col2")) 

Bye John 
John 
hello 
HELLO 
hello 
hello John 
col1, col2 
col1:col2 

Table 2. Precise tainting examples. 
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pattern expression.   It increases the risk, however, 
that legitimate web site uses will fail because of 
overly strict tainting.  We mitigate this by providing 
context sensitive checking of how tainted values are 
used. 

In general we eschew the implicit untainting of 
variables as potentially dangerous.  However cast 
operations, whether implicit or explicit, from strings 
to another type will untaint variables. In the following 
example $s is untainted: 

$t = $_GET['aNumber']; // $x is tainted  
$x = $t + 3; // implicit cast to integer 
$y = (float)$t; //explicit cast to float 
$s = “x = $x   y = $y”; // $s is untainted 

4.1.3 Database values 
Databases provide another potential venue for 
attackers to insert malicious values. Three options for 
dealing with are to (1) disallow tainted data from 
being stored into the database, (2) maintain tainting 
information in the database, or (3) consider data 
received from the database untrustworthy.  The first 
option is too strict and would break the functionality 
of many web applications.  Applications typically use 
the database to keep track of user input, so it is not 
reasonable to disallow storing tainted data in the 
database.  A variation could attempt to check stored 
data for potentially dangerous content; however, as 
we will see in several examples in Sections 4.2 and 
4.3, it is not possible to safely determine if content is 
dangerous without knowing about the context in 
which it will be used.   

The second option would provide the most precise 
tainting information, but would require either 
modifications to the database server or modifications 
of the application database (for example, keeping a 
shadow table corresponding to the tainting 
information for each entry in the data table).  Neither 
implementation option is desirable.  Modifying the 
database server would tie applications to a particular 
database server.  Modifying the application would 
involve extensive rewriting of all database commands.  
This could be automated, but the added complexity 
would increase the likelihood of security 
vulnerabilities. 

Hence, we opt for the third option and treat strings 
that are returned from database queries as untrusted 

and mark them as tainted. While this approach may 
appear overly restrictive, in the sense that legitimate 
uses may be prevented, we show in Section 4.3 how 
precise tainting and our approach to checking for 
cross-site scripting mitigates this potential problem 
for typically web applications.  The other advantage 
of this option, is that if the database is compromised 
by some other means, the attacker is still not able to 
use the compromised database to construct a cross-site 
scripting attack. 

We modified the PHP functions that return data from 
the database (mysql_fetch_array, mysql_fetch_row, 
mysql_fetch_assoc, mysql_result) to automatically 
mark all characters in the resulting string values as 
tainted. While we focus on MySQL, it is 
straightforward to modify the analogous functions for 
other databases. 

4.1.4 Session variables 
The stateless nature of HTTP (HyperText Transfer 
Protocol), the protocol that underlies the world wide 
web, requires developers to keep track of application 
state across client requests. However, exposing 
session variables to clients would allow attackers to 
manipulate applications. Thus well-designed web 
applications will keep session variables on the server  
only and use a session id to communicate with clients. 
Several steps are commonly used to protect the 
session id, including encrypting traffic by using 
HTTPS (HTTP over Secure Socket Layer), generating 
session ids that are difficult to predict, and timing out 
sessions. 

By default, PHP stores and retrieves session variables 
in files. We modified PHP to store and retrieve 
tainting information as well.  When the session 
variable is read from the file, its taint markings are 
restored.  PHP allows developers to replace the 
default implementations with their own handlers, for 
example by storing session state in shared memory or 
a back-end database.  Since this will circumvent our 
modified handlers, developers using this approach 
will either lose tainting information or need to modify 
their handlers to maintain it. 

4.2 Preventing Command Injection 
The tainting information is used to determine whether 
or not calls to security-critical functions are safe.  To 
prevent command injection attacks, we check that the 
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tainted information passed to a command is safe.  The 
actual checking depends on the command, and is 
designed to be precise enough to allow typical web 
applications to function without false positives. 

4.2.1 PHP Injection 
To prevent PHP injection attacks we disallow calls to 
the functions shown in Table 3 if one of their 
arguments is tainted. These are similar, though not as 
extensive, as the functions disallowed by Perl’s taint 
mode and Ruby’s taint level 1.  Unlike the SQL 
injection and cross-site scripting checking, checking 
here is done at a coarse level: any tainted input to 
these functions is too dangerous to allow.  

Type Functions 
Program 
execution  

system, exec, passthru, shell_exec, 
proc_open 

Filesystem fopen, glob, mkdir, popen, readfile, 
file 

PHP 
language 

eval, include, require, include_once, 
require_once 

Table 3.  Taint-checked PHP functions. 

Both attacks described in Section 2.1.1 are thwarted 
as we propagate tainting information from the first 
GET or POST variables, through string manipulation 
functions and database operations, to their eventual 
use in the arguments to require and eval. In the 
PhpGedView example [Jei04], the argument to require 
is marked tainted. 

In the phpMyAdmin attack example, the database table 
name $_table is marked as tainted as it comes from 
the result of a database query (in this case, to the 
trojan database setup by the attacker).  The value of 
$eval_string is indirectly derived from $_table and is 
thus partially tainted.  Hence, the call to eval is not 
permitted and the attack is unsuccessful. 

4.2.2 SQL Injection 
To prevent SQL injection attacks, we modify the PHP 
functions that can send commands to the database 
(mysql_query and mysql_unbuffered_query) to check 
for the presence of special SQL tokens in the tainted 
portion of the query string before allowing the 
command to be sent to the database. Our algorithm for 
detecting SQL injection involves four steps: 

1. Tokenize the query string, preserving taint 
markings within the tokens. 

2. Scan each token for identifiers and operator 
symbols (ignore literals, i.e., strings, numbers, 
boolean values). 

3. If an operator symbol is marked as tainted, 
then we have detected an SQL injection. 
Operator symbols are: 

     ,()[].;:+-*/\%^<>=~!?@#&|` 
          
4. If an identifier is marked as tainted and it is a 

keyword, then we have detected an SQL 
injection. Example keywords include UNION, 
SELECT, DROP, WHERE, OR, AND.1 

While step 2 appears simple, its implementation is 
quite complicated and potentially error prone. It must 
deal with various complex quoting rules in SQL 
commands.  We adopted the scanner from the 
Postgres implementation (which appeared easier to 
extract and modify than the mySQL scanner).  We 
stripped the Postgres scanner of any code related to 
parsing and kept just the tokenizer.  

Our approach would prevent certain sites from 
working properly, especially those whose application 
semantic is to explicitly allow users to issue SQL 
queries, e.g., PhpMyAdmin. For these, developers need 
to call untaint explicitly.  

Using the examples in Section 2.1.2, we show how 
our techniques defend against SQL injections. Recall 
the first example: 

$cmd="SELECT user FROM users WHERE user = ' "  
          . $user . "'  AND password = ' "   
 . $password . " ' "; 

in which the attacker provides a malicious value for 
$user: ' OR 1 = 1 ; -- '.  The resulting query string is 
tainted as follows: 

SELECT user FROM users WHERE  
   user = ' ' OR 1 = 1 ; -- ' AND password = 'x' 

                                                      

1 The list of keywords was obtained by merging the keywords 
found in the MySQL and Postgres scanners. As an additional 
preventative measure we could also add critical table names to 
this list or potentially harmful stored procedures. In our 
inspection of SQL injection exploits to date, we have found that 
the existing rules suffice. 
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We detect the injection since OR is tainted and a 
keyword (step 4 of our algorithm). Note that we 
would also have detected the injection at the =, ; or --  
tokens.  After detecting the injection, our modified 
PHP interpreter returns an error result from 
mysql_query, instead of sending the command to the 
database. 

In the second example, the query string is: 

SELECT s.sid, a.url FROM nuke_stories s, 
                                      nuke_authors a  
    WHERE s.aid=a.aid OR mid(a.pwd,1,1)=6 

Injection is again detected because OR is tainted.  In 
contrast to the ad hoc filtering in the original patch of 
PhPNuke, our approach stops the attack using not just 
parenthesis but a comprehensive list of SQL tokens.   

4.3 Preventing Cross-Site Scripting 
Our approach to preventing cross-site scripting relies 
on checking generated output.  Any potentially 
dangerous content in generated HTML pages must 
contain only untainted data.  We accomplish this by 
modifying the PHP output functions (print, echo, 
printf and other printing functions) with functions that 
check for tainted output containing dangerous content.  
The replacement functions output untainted text 
normally, but keep track of the state of the output 
stream as necessary for checking.  For a contrived 
example, consider an application that opens a script 
and then prints tainted output: 

print "<script>document.write ($user)</script>"; 

An attacker can inject JavaScript code by setting the 
value of $user to a value that closes the parenthesis 
and executes arbitrary code: " me");alert("yo".  Note 
that the opening script tag could be divided across 
multiple print commands.  Hence, our modified 
output functions need to keep track of open and 
partially open tags in the output.  We do not need to 
parse the output HTML completely (and it would be 
unadvisable to do so, since many web applications 
generate ungrammatical HTML). 

Checking output instead of input avoids many of the 
common problems with ad hoc filtering approaches.  
Since we are looking at the generated output any 
tricks involving separating attacks into multiple input 
variables or using character encodings can be handled 
systematically.   

Further, our checking involves whitelisting safe 
content rather than blacklisting dangerous content.  
Whereas a blacklist attempts to prevent cross-site 
scripting attacks by identifying known dangerous 
tags, such as <SCRIPT> and <OBJECT>.  This fails to 
prevent script injection involving other tags.  For 
example, a script can be injected into the apparently 
harmless <B> (bold) tag using its parameters.  The 
text below would enable an attacker to steal the 
victim’s cookie without using any script tags of 
apparent calls to JavaScript routines: 

<b onmouseover= 
   'location.href ="http://evil.com/steal.php?"  
   + document.cookie'> 
 

Our defense takes advantage of precise tainting 
information to identify web page output generated 
from untrusted sources.  Any tainted text that could be 
dangerous is either removed from the output or altered 
to prevent it being interpreted (for example, replacing 
< in unknown tags with &lt;).  Our conservative 
assumptions mean that some safe content may be 
inadvertently suppressed; however, because of the 
precise tainting information, this is limited to content 
that is generated from untrusted sources. 

4.4 Performance 
Our current prototype implementation implements 
precise tainting and performs the checking necessary 
to prevent command injection and cross-site scripting 
attacks. We report its performance on both micro-
benchmarks designed to stress the modified PHP 
interpreter, and benchmarks typical of web 
applications.  Our prototype implementation is 
designed as a simple proof-of-concept, and there 
would be many opportunities to improve performance 
in a production implementation.  Nonetheless, its 
performance is adequate for typical web applications.   

Table 4 presents results from some micro-benchmark 
tests.  Each micro-benchmark measures the time 
required to execute 10,000 iterations of a loop body 
that executes specific PHP functions.  This illustrates 
the worst-case performance of our mechanisms.  The 
highest measures overhead is 77% for the sql.php 
micro-benchmark which isolates the SQL injection 
checking.  It creates a partially tainted string and 
passes it to the function that checks SQL commands.   
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Benchmark 
Standard 
PHP (ms) 

Tainting 
PHP (ms) Overhead 

concat.php 16.57 17.10 3.2% 
print.php 117.78 171.56 45.7% 
sql.php 32.73 57.88 76.8% 

Table 4. Micro-benchmark Results.   
Each time is the average for 100 executions.  The 
concat.php benchmark concatenates tainted strings; the 
print.php benchmark prints partially tainted strings; the 
sql.php benchmarks checks a partially tainted SQL 
command (but does not send a request to the database). 

We also measured our system overhead by testing 
typical web application requests: processing a login, 
entering a message and generating an output page 
from the contents of a database table.  Table 5 
summarized the impact of our modified interpreter on 
the request rate.  For all the application benchmarks 
the measured overhead was below 5%.  With some 
simple optimizations to our implementation, this 
could be reduced. 

Benchmark 

Standard 
PHP 

(req/s) 

Tainting 
PHP 

(req/s) Overhead
login.php 69.7 67.9 2.6% 
message.php 32.8 31.8 2.9% 
members.php 25.0 23.9 4.9% 

Table 5. Application benchmark Results.   
Each time is the average for 100 requests.  We use 
Flood [Flood04] to test the application benchmarks by 
starting the modified and normal server on the same 
machine using different ports.  The login.php 
benchmark tests a login that involves constructing a 
SQL query and generating a welcome page.   The 
message.php benchmark posts a message.  The 
members.php benchmark executes several SQL queries 
and generates a large output page containing 100 
entries. 

5. CONCLUSION 
We have described a fully automated, end-to-end 
approach for hardening web applications.   By 
exploiting precise tainting that takes advantage of 
program language semantics and performing context-
dependent checking, we are able to prevent a large 
class of web application exploits without requiring 
any effort from the web developer.   

The Internet continues to be riddled with insecure 
web applications, despite much work on detecting 

vulnerabilities and hardening web applications.  
Effective solutions need to balance the need for 
precision with the limited time and effort most web 
developers will spend on security.  Fully automated 
solutions, such as the one described in this paper, 
provide an important point in this design space.   
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