
Automatically Hardening Web Applications
Using Precise Tainting

Anh Nguyen-Tuong Salvatore Guarnieri Doug Greene David Evans

University of Virginia Computer Science Technical Report CS-2004-36
December 2004

{nguyen, evans}@cs.virginia.edu

ABSTRACT
Most web applications contain security vulnerabili-
ties. The simple and natural ways of creating a web
application are prone to SQL injection attacks and
cross-site scripting attacks (among other less common
vulnerabilities). In response, many tools have been
developed for detecting or mitigating common web
application vulnerabilities. Existing techniques either
require effort from the site developer or are prone to
false positives. This paper presents a fully automated
approach to securely hardening web applications. It is
based on precisely tracking taintedness of data and
checking specifically for dangerous content in only in
parts of commands and output that came from
untrustworthy sources. Unlike previous work in
which everything that is derived from tainted input is
tainted, our approach precisely tracks taintedness
within data values. We describe our results and
prototype implementation on the predominant LAMP
(Linux, Apache, MySQL, PHP) platform.

1. INTRODUCTION
Nearly all web applications are security critical, but
only a small fraction of deployed web applications
can afford a detailed security review. Even when
such a review is possible, it is tedious and can
overlook subtle security vulnerabilities. Serious
security vulnerabilities have been found in the largest
commercial web applications including Gmail
[Wei04], eBay [eBay01], Yahoo [Grey04], Hotmail
[Grey04] and Microsoft Passport [Eye02].

Several tools have been developed to partially
automate aspects of a security review, including static
analysis tools that scan code for possible
vulnerabilities [Huang04] and automated testing tools
that test web sites with inputs designed to expose
vulnerabilities [Bene02, Hua03, Ricca01]. Taint

analysis identifies inputs that come from
untrustworthy sources (including user input) and
tracks all data that is affected by those input values.
An error is reported if tainted data is passed as a
security-critical parameter, such as the command
passed to an exec command. Taint analysis can be
done statically or dynamically. Section 3 describes
previous work on security web applications.

For an approach to be effective for the vast majority
of web applications, it needs to be fully automated.
Many people build websites that accept user input
without any understanding of security issues. For
example, PHP & MySQL for Dummies [Val02]
provides inexperienced programmers with the
knowledge they need to set up a database backed web
application. Although the book does include some
warnings about security (for example, p. 213 warns
readers about malicious input and advises them to
check correct format, and p. 261 warns about <script>
tags in user input), many of the examples in the book
that accept user input contain security vulnerabilities
(e.g., Listings 11-3 and 12-2 allow SQL injection, and
Listing 12-4 allows cross-site scripting). This is
typical of most introductory books on web site
development.

We propose a completely automated mechanism for
preventing two important classes of web application
security vulnerabilities: command injection (including
SQL injection) and cross-site scripting. Our solution
involves replacing the standard PHP interpreter with a
modified interpreter that precisely tracks taintedness
and checks for dangerous content in uses of tainted
data. A web application developer does not need to
do anything to benefit from our technique, as long as
the hosting server uses our modified version of PHP.

The main contribution of our work is the development
of precise tainting in which taint information is

 2

maintained at a fine level of granularity and checked
in a context-sensitive way. This enables us to design
and implement fully-automated defense mechanisms
against both command injection attacks, including
SQL injection, and cross-site scripting attacks. Next,
we describe common web application vulnerabilities.
Section 3 reviews prior work on securing web
applications. Section 4 describes our design and
implementation, and explains how we prevent
exploits of web application vulnerabilities.

2. VULNERABILITIES
Figure 1 shows a typical web application. A client
sends input to the web server in the form of an HTTP
request (step 1 in Figure 1). GET and POST are the
most common requests. The request encodes data
created by the user in HTTP header field including
file names and parameters included in the requested
URI. If the URI is a PHP file, the HTTP server will
load the requested file from the file system (step 2)
and execute the requested file in the PHP interpreter
(step 3). The parameters are visible to the PHP code
through predefined global variable arrays (including
$_GET and $_POST).

The PHP code may use these values to construct
commands that are sent to PHP functions such as a
SQL query that is sent to the database (steps 4 and 5)
and then to produce an output web page based on the
returned results and return it to the client (step 6). If
an attacker can access confidential information or
corrupt the application state by carefully constructing
a malicious input, the application is vulnerable to a
command injection attack. If the attacker can arrange
for the server to produce a page that will execute a
script constructed by the attacker, the application is
vulnerable to a cross-site scripting attack.

2.1 Command Injection

2.1.1 PHP Injection
Scripting languages such as PHP and Perl that drive
the generation of dynamic web pages represent the
first line of defense against other forms of attacks, i.e,
SQL injections and XSS, as well as the first target for
attackers. A successful injection at the scripting
language level yields control of the web site to
attackers, including the ability to execute dangerous
OS commands.

Here is a simple example of a PHP injection that was
present in phpGedView (version 2.65.1 and earlier), an
online viewing system for genealogy information
[Jei04]. The attack URL is of the form:

http://[target]/[phpGedView-directory]/
editconfig_gedcom.php?gedcom_config=../../../../..
/../etc/passwd

The vulnerable PHP code uses the gedcom_config
value as a filename: require($gedcom_config);. The
semantics of require is to load the file and either
interpret it as PHP code (if the PHP tags are found) or
display the content. Thus this code leaks the content
of the password file. Abuse of require and its related
functions is a commonly reported occurrence
[Gentoo04, Manip04, Więsek03].

Properly configured, PHP can thwart this type of
attack. PHP’s safe mode provides the open_basedir
and allow_url_fopen settings to control access to the
local filesystem or prevent remote files from being
read. Unfortunately from a security point of view, the
default settings are permissive. The growing
popularity of PHP (PHP is used at over 1.3 IP
addresses and is installed with 50% of Apache servers
[Netcraft04]), coupled with PHP’s emphasis on
functionality over security, ensures the continued
availability of exploitable web sites.

The next example illustrates a recent and
sophisticated attack on phpMyAdmin, a popular
package for managing databases [Simb04].

phpMyAdmin stores database configuration parameters
in the array $cfg. An attack can add an additional
server configuration parameters by growing the array
through the use of GET variables. The attacker then
sets up its own SQL server and waits for a connection.
Note that the attacker breaks the implicit and common

Figure 1. Web application architecture.

 3

assumption of a trusted database server. PhpMyAdmin
will then query the attacker’s database for a list of
table names.

The following code then eventually executes, using a
table name (controlled by the attacker) in an argument
to eval:

$eval_string = '$tablestack[\''
 . implode('\'][\'', $_table) . '\'][\'pma_name\'][]
 = \'' . str_replace('\'', '\\\'', $table) . '\';';
eval($eval_string);

The authors of phpMyAdmin included code to perform
sanitization of the table name before passing it to eval.
However, the sanitization routine does not properly
handle quotes. A table name of the form

\\';exec(\"<Attack Code>\");/*

results in a successful attack as eval evaluates the
attack string as PHP code. In turn, the PHP exec
command will execute the commands in the attack
code on the host server.

This multi-step attack illustrates the level of
sophistication of attackers and the dangers of ad-hoc
sanitization routines.

2.1.2 SQL Injection
Attacking web applications by injecting SQL
commands was first described as early as 1998
[Rai98], and remains a common method of attacking
web applications [Kost04, Litchfield03, Spett02].

We illustrate a SQL injection attack with a simple
example based on a common practice of
authenticating web site visitors with a login form
requesting a name and password. Suppose the
following code fragment is used to construct an SQL
query to authenticate users against a database (it is
inadvisable to store passwords in cleartext, but many
commercial websites do):

$cmd="SELECT user FROM users WHERE user = ' "
 . $user . "' AND password = ' "
 . $password . " ' ";

The value of $user comes from $_POST['user'], a
value provided by the client using the login form. A
malicious client can enter the value: ' OR 1 = 1 ; --'
(-- begins a comment in SQL which continues to the
end of the line). The resulting SQL query will be:

SELECT user FROM users WHERE
 user = ' ' OR 1 = 1 ; -- ' AND password = 'x'

The injected command closes the quote and comments
out the AND part of the query. Hence, it will always
succeed regardless of the entered password.

The main problem here is that the single quote
provided by the attacker closes the open quote, and
the remainder of the user-provided string is passed to
the database as part of the SQL command.

In fact, this attack would be thwarted by PHP
installations that retain the default magic quotes
option. When enabled, magic quotes automatically
sanitize input data by adding a backslash to all strings
submitted via web forms or cookies. However, the
magic quote option is not a panacea in defending
against SQL injections. First, many web
administrators turn off magic quotes as their use may
interfere with applications that explicitly manipulate
quotes and backslashes prior to inserting data into a
database [Fuecks02]. Second, as the following
example illustrates, even if magic quotes are enabled
there are SQL injection attacks that succeed without
needing to insert a quote character.

This example illustrates a SQL injection vulnerability
in PHPnuke, a widely used open-source web portal
management system, in which an attacker can acquire
the administrator’s password hash (which, because of
a mistake in the way PHPnuke did authentication with
cookies was enough to be able to login without
cracking the actual password) [Arm2003]. This is
done using a select fish attack in which the attacker
guesses the value of a column in a database one
character at a time. In this case, the column holds the
MD5 hash of the administrator’s password.

The full attack string and exploit description is
available online [Arm2003]. The attack injects SQL
code using a parameter in a URL (+ encodes a space):

http://site/modules.php?name=search&query=
 &days=1+or+mid(a.pwd,1,1)=6&type=stories

 4

The salient part of the resulting query string is:

SELECT s.sid, a.url FROM nuke_stories s,
 nuke_authors a
 WHERE s.aid=a.aid OR mid(a.pwd,1,1)=6

In this example, the attacker guesses that the first
character of the password hash is 6. If the attacker
guesses correctly the WHERE test is satisfied and the
generated output displays a matching record. Since
MD5 hashes are 32 characters long with 16 possible
values for each character [0-9, A-F], the attacker can
obtain the full password hash with a maximum of 512
guesses. A program can easily be written to automate
this process and steal the password hash in a matter of
minutes.

The authors of PHPnuke provided an ad-hoc fix for
this vulnerability in version 6.0 by checking for
parenthesis in GET variables. However, they neglected
to check POST variables, which permitted a similar
exploit to succeed [Arm2003]. This example
illustrates the sophistication of attackers, the danger of
relying on ad-hoc fixes, and underscores the need for
an automated approach to prevent SQL injections.

One solution to SQL injection vulnerabilities is to use
SQL prepared statements, supported in MySQL 4.1
[Fisk04] and PHP 5.0 [PHP5]. A prepared statement
is a query string with placeholders for variables that
are subsequently bound to the statement and type-
checked. This clean delineation between application
data and logic prevents SQL injections. However, this
depends on programmers changing development
practices and replacing legacy code. Dynamic
generation of queries using regular queries will
continue to be prevalent for the foreseeable future.

2.2 Cross-Site Scripting
A cross-site scripting vulnerability enables an attacker
to insert script code in a web page produced by a site
trusted by the victim. The script code can steal the
victim’s cookies or capture data the victim
unsuspectingly enters into the web site. This is
especially effective in phishing attacks in which the
attacker sends the victim an email convincing the
victim to visit a URL. The URL may be a trusted
domain, but because of a cross-site scripting
vulnerability the attacker can construct parameters to
the URL that cause the trusted site to create a page

containing a form that sends data back to the attacker.
For example, the attacker constructs a link like this:

<a href='http://www.trusted.com/search.php?
 key=<script src="http://malice.com/attack.js">
 </script>'>

If the implementation of search.php uses the key
parameter provided in the URL in the generated we
page, the malicious script will appear on the resulting
page:

 print "Results for: " . $_GET['key'];

A clever hacker can use character encodings to make
the malicious script appear nonsensical to a victim
who inspects the URL before opening it.

Four years ago, CERT Advisory 2000-02 [CERT00]
described the problem of cross-site scripting and
advised users to disable scripting languages and web
site developers to validate web page output.
Nevertheless, cross-site scripting problems remain a
serious problem today. Far too much functionality of
the web depends on scripting languages, so most users
are (for good cause) unwilling to disable them. Even
security-conscious web developers frequently produce
websites that are vulnerable to cross-site scripting
attacks. Hoglund and McGraw [Hog2004] describe
several different examples of websites vulnerable to
simple cross-site scripting attacks.

An example typical a recent cross-site scripting
vulnerabilities was one reported by Rafel Ivgi in
microsoft.com in October 2004 [Ivgi04]. An attacker
was able to inject scripting code into a web page
generated by microsoft.com using a URL parameter:

href="http://www.microsoft.com/.../download.asp?
 sTarget=javascript:<attack code>"

The attack code would appear in a link on the
generated page, and execute if the victim clicked on
that link.

A particularly dangerous cross-site scripting
vulnerability was found in Microsoft’s Hotmail
application [Eye02]. Hotmail displays email in
HTML format which can be sent to the user from
anyone. The site took measures to filter out the most
obvious dangerous content in received messages
including applets and JavaScript. However, if the

 5

user clicks on a link in an email message to a MSN
site, the user’s Passport credentials are transmitted to
the new site. The http://auctions.msn.com/ site
included an ASP script ErrorMsg.asp that could be
passed arguments. A URL that links to these scripts
with scripting code in the arguments would be
interpreted, thus executing a script created by the
attacker when the victim clicks on the link. Because
this site has access to the victims Passport credentials,
the attack script could steal the victim’s cookie and
send these credentials to the attacker.

The initial fixes to this vulnerability [Eye02] involved
filtering script arguments to ignore dangerous tags
and common scripting code. The filters, however,
could be circumvented by using alternate character
encodings. (The ErrorMsg.asp script is no longer
supported.) As with PHPNuke, ad hoc approaches
rarely fix the whole problem.

Cross-site scripting vulnerabilities continue to be
found in widely-used web sites [Endler02]. In the
past few weeks, several vulnerabilities have been
found in Google [Ley04] and Gmail [Wei04]. The
persistence of cross-site scripting vulnerabilities stems
from the need to accept user input to provide
functionality in web applications, combined with the
lack of a clear separation between content and code.
Ad hoc solutions can close the vulnerabilities, but
often fail to prevent all exploits and are easily
overlooked by even security-conscious developers.
Hence, we focus on fully automated solutions.

3. PRIOR WORK
Numerous approaches have been proposed for
securing web applications including vulnerability
testing [Bene02, Hua03, Ricca01] and static analysis.
Describing all work on web application security is
outside the scope of this paper; instead, we focus here
on describing the most relevant work from an
information flow perspective.

All of the web vulnerabilities described in Section 2
stem from insecure information flow: data from
untrusted sources is used in a trusted way. The
security community has studied information flow
extensively [Sab03]. The earliest work focused on
confidentiality, in particular in preventing flows from
trusted to untrusted sources [Bell73]. In our case, we
are primarily concerned with integrity. Biba showed

that information flow can also be used to provide
integrity by considering flows from untrusted to
trusted sources [Biba77].

Information flow policies can be enforced statically,
dynamically or by a combination of static and
dynamic techniques. Static taint analysis has been
used to detect security vulnerabilities in C programs
[Eva02, Shan01]. Static approaches have the
advantage of increased precision, no run-time
overhead and the ability to detect and correct errors
before deployment. However, they require substantial
effort from the programmer. Since we are focused on
solutions that will be practically deployed in typical
web development scenarios, we focus on dynamic and
hybrid techniques.

Information flow policies can be enforced
dynamically at any of the steps in Figure 1. Input and
output filtering observes traffic between the client and
web server. The most closely related work to ours is
taint checking.

3.1 Input and Output Filtering
Scott and Sharp [Sco02] developed a system for
providing an application-level firewall for preventing
malicious input from reaching vulnerable web servers.
Their approach required a specification of constraints
on different inputs, and compiled those constraints
into a checking program. Their approach requires a
programmer to provide a correct security policy
specific to their application, so is ill-suited to
protecting typical web developers.

Several commercial web application firewalls have
been developed including AppShield [Watch04] and
InterDo [Kavado04] and Teros-100 APS [Teros04].
These tools provide both input and output filtering,
observing web traffic to detect possible attacks. For
example, Teros-100 APS can be configured to detect
text that appears to be a credit card number in output
pages and prevent it from being returned. Without
extensive configuration, however, the tools are prone
to both false positives and false negatives [Dyck03].

3.2 Taint Checking
Taint checking enforces information flow policies
during application execution. Perl and Ruby are
popular scripting languages that enforce information
flow policies using dynamic checking. Perl’s taint

 6

mode provides simple rules for preventing the use of
untrusted data in critical functions [PerlSec]. The
general approach is to mark external data as tainted,
and track the taint information through Perl
expressions. Perl implements a simple rule: any
tainted data in a subexpression taints the entire
expression. To untaint variables requires a regular
expression pattern match. This assumes that the
pattern match provides the needed data validation. In
contrast, we have chosen to force developers to
untaint variables explicitly. The disadvantage of our
approach is that it forces developers to modify their
application code if they need to untaint a variable
because of a false positive in our PHP injection or
XSS detection code. We mitigate this potential
problem by keeping track of tainting at the level of a
single character in PHP strings. Armed with this
information, we can selectively apply our injection
detection algorithms, which is the strength and
novelty of our precise tainting approach.

Ruby provides several levels of taint modes [Tho04].
Ruby’s safe level 1 corresponds roughly to Perl’s taint
mode and our own use of taint information to prevent
PHP injections. Ruby’s stricter safe levels define
additional restrictions on the use of tainted variables,
including the ability to completely sandbox tainted
variables from untainted ones. Ruby’s additional safe
levels are designed for a generic environment, unlike
PHP which is primarily targeted for web development
where distinguishing between external and trusted
input is usually sufficient.

While Perl and Ruby provide a generic mechanism for
tainting all variables, we have focused on maintaining
taint information for strings only. In practice, we have
not seen the need in PHP to taint non-string variables;
in PHP external sources of data such as cookies, get,
post, database and session values are all represented
as strings.

Finally we note that the notion of precise tainting is
complementary to the coarse-grain tainting of Perl
and Ruby. Our approach for hardening web
applications using precise tainting could be applied
effectively to Perl, Ruby and other languages as well.

Newsome and Song [New05] used dynamic tainting
at the granularity of memory locations to detect and
analyze security exploits on binaries. They modified
the Valgrind x86 emulator [Net03] to mark all input

from untrusted sources as tainted and to keep track of
tainting information as a program executes machine
instructions. An attack is detected if tainted data is
used as a jump target, or passed to certain system
calls. As in our approach, using precise taint
information enables an automated defense with few
false positives. Tracking taint information at the
machine level, however, is very expensive and
imposes unacceptable overhead for most applications.
Since our approach is at the level of programming
language semantics, we are able to perform precise
tainting with minimal overhead.

Huang et. al developed a hybrid approach to securing
web applications [Hua04]. Their WebSSARI tool
used a static analysis based on type-based information
flow to identify possible vulnerabilities in PHP web
applications. Input from external sources is
considered tainted and a type-based static analysis is
used to detect insecure uses of tainted data. Their
type-based approach operates at a coarse-grain: any
data derived from tainted input is considered fully
tainted. In addition to reporting warnings describing
the detected vulnerabilities, WebSSARI would insert
calls to sanitization routines. These routines could be
programmed by the programmer to filter potentially
dangerous content from tainted values before they are
passed to security-critical functions. Our precise
tainting approach is more automated than WebSSARI;
all we require is that the server uses our modified
interpreter PHP and all web applications running on
the server are protected. Further, our precise tainting
and context-specific checking approach limits the
number of false positives.

4. AUTOMATIC WEB HARDENING
Our design is based on maintaining precise
information about what data is tainted through the
processing of a request, and checking that user input
sent to an external command or output to a resulting
web page contains only safe content. Our solution is
fully automatic: it prevents a large class of common
security vulnerabilities without any direct effort
required from web application developer.

Figure 2 illustrates our system architecture. The only
change from the standard LAMP architecture is we
replace the standard PHP interpreter with a modified
interpreter that identifies which data comes from
untrusted sources and precisely tracks how that data

 7

propagates through PHP code interpretation (Section
4.1), check that parameters to commands do now
contain dangerous content derived from user input
(Section 4.2), and ensure that generated web pages do
not contain scripting code created from untrusted
input (Section 4.3). Section 4.4 evaluates the
performance of our prototype implementation.

4.1 Taint Marking
We mark an input from untrusted sources including
data provided by client requests as tainted (step 1 in
Figure 2). In PHP, all external variables are strings.
We modified the PHP interpreter’s implementation of
the string datatype to include tainting information for
string values at the granularity of individual
characters. We propagate taint information across
function calls, variable assignments and composition
at the granularity of a single character. We call this
fine-grained level of maintaining taint information
precise tainting. The application of precise tainting
enables the prevention of SQL injection attacks and
the ability to easily filter output for XSS attacks. If a
function uses a tainted variable in a dangerous way,
then we can either reject the call to the function (as is
done with SQL queries or PHP system functions) or
sanitize the variable values (as is done for preventing
cross-site scripting attacks).

Web application developers often remember to
sanitize inputs from GET and POSTs, but will forget or
omit to check other variables that can be set directly
by manipulating the HTTP protocol directly. Our
approach ensures that all such external variables, e.g.
hidden form variables, cookies and HTTP header
information, are marked as tainted. External variables
are accessible in PHP via the associative arrays
$_GET, $_POST, $_COOKIE, $_REQUEST and
$_SERVER. The values in $_GET, $_POST and
$_COOKIE correspond respectively to the parameters
passed in HTTP GET and POST requests and

transmitted in cookies. The $_REQUEST array
aggregates the values in the $_GET, $_POST and
$_COOKIE arrays. The $_SERVER array contains
variables set by the web server or related to the
execution environment of the current script. We only
mark as tainted those variables in $_SERVER that are
sent by the client: HTTP_ACCEPT, HTTP_ACCEPT-
_CHARSET, HTTP_ACCEPT_ENCODING, HTTP_AC-
CEPT_LANGUAGE, HTTP_CONNECTION, HTTP_HOST,
HTTP_REFERER, and HTTP_USER_AGENT.

We also keep track of taint information for session
variables and database results. Session variables
provide a mechanism for web developers to keep
track of application state information without having
this information exposed and potentially manipulated
by clients (provided that the session id is difficult to
guess).

4.1.1 Taint Strings
For each PHP string, we track tainting information for
individual characters. This is done by associating a
taint string with each string value. The taint string
can be NULL, indicating that the entire string is
untainted, or can be an array of characters
representing the taintedness of each character. While
this is not an efficient encoding—we do not need the
full 8 bit to encode taint information, and typical taint
strings have long sequences of the same character—it
does make for a simple implementation for our proof-
of-concept prototype. (We do not yet handle multi-
byte characters, although they could be handled
similarly.)

To provide more precise tracking, we maintain the
source of tainting in the taint string. The taint
markings are:

- untainted
G tainted, from a GET method
P tainted, from a POST method
C tainted, from a cookie
D tainted, from a database response
S tainted, from a session variable

Consider the following code fragment where part of
the string $x came from an external input and $y came
from a cookie:

Figure 2. Modified web server architecture.

 8

$x = "Hello " . $_GET['name1'] . ".";
$y = "I am " . $_COOKIE['name2'] . ".";
$x .= $y;

The values of $_GET['name1'] and
$_COOKIE['name2'] are fully tainted (we assume they
are Alice and Bob); this tainting propagates through
the concatenations. After the final assignment, the
value of $x and its taint markings will be:

Hello Alice. I am Bob.
------GGGGG-------CCC-

This illustrates precise tainting: (1) taint information
is kept for each character, (2) the source of the taint is
maintained, and (3) taint information is kept
throughout the lifetime of a PHP script.

4.1.2 Functions
We keep track of taint information across function
calls, in particular functions that manipulate and
return strings. Whenever feasible we keep track of
taint information at the granularity of a single
character. For example, consider the substring
function (tainted characters are underlined):

$original = "precise taint me";
$x = substr($original, 0, 6); // precise
$y = substr($original, 8, 9); // ta

The taint markings for the results of the substr call
depend on the part of the string they select.

Table 1 lists the functions for which we keep track of
fine-grained taint information. The list of functions
we obtained from the PHP list of string functions
[PHPs].

Type Function Name
Formatting sprintf, sscanf

(taint information only kept for string
variables)

String
conversion

strtolower, strtoupper, ucfirst,
ucwords, addslashes, addcslashes,
stripslashes, stripcslashes

String
selection

substr, str_split, strsts, stristr, strchr

White space chop, ltrim, rtrim, trim
Other string
functions

implode, explode, str_ireplace,
str_pad str_replace, substr_replace,
str_split

Table 1. Taint-preserving string functions.

Table 2 provides several examples of precise tainting
through various string functions. For other functions
the mapping between input and output characters is
less obvious, so it is only feasible to keep track of
taint information at a coarse level: the result strings
are marked tainted if any of the arguments to the
function are tainted. These include the regular
expression functions (preg_grep, preg_match,
preg_match_all, preg_quote, preg_replace,
preg_split) as well as complex string functions like
get_headers and get_meta_tags.

Unlike the approach in Perl where a regular pattern
expression match is indicative of a sanitization routine
and implicitly untaints a variable [PerlSec], we do not
assume pattern matching expressions produce
untainted results. To allow developers to circumvent
the taint markings, we provide the untaint function
that explicitly marks its string parameters as
untainted. This is more conservative than the Perl
approach in which tainting information may be lost
accidentally, or an attack permitted through a faulty

Function Result
sprintf("Bye %s", "John");
sscanf("Bye %s","Bye John");
strtolower("HELLO");
strtoupper("hello");
ltrim(" hello");
str_replace("bonjour", "hello", "bonjour John")
explode(":", "col1:col2")
implode(‘:’, array("col1", "col2"))

Bye John
John
hello
HELLO
hello
hello John
col1, col2
col1:col2

Table 2. Precise tainting examples.

 9

pattern expression. It increases the risk, however,
that legitimate web site uses will fail because of
overly strict tainting. We mitigate this by providing
context sensitive checking of how tainted values are
used.

In general we eschew the implicit untainting of
variables as potentially dangerous. However cast
operations, whether implicit or explicit, from strings
to another type will untaint variables. In the following
example $s is untainted:

$t = $_GET['aNumber']; // $x is tainted
$x = $t + 3; // implicit cast to integer
$y = (float)$t; //explicit cast to float
$s = “x = $x y = $y”; // $s is untainted

4.1.3 Database values
Databases provide another potential venue for
attackers to insert malicious values. Three options for
dealing with are to (1) disallow tainted data from
being stored into the database, (2) maintain tainting
information in the database, or (3) consider data
received from the database untrustworthy. The first
option is too strict and would break the functionality
of many web applications. Applications typically use
the database to keep track of user input, so it is not
reasonable to disallow storing tainted data in the
database. A variation could attempt to check stored
data for potentially dangerous content; however, as
we will see in several examples in Sections 4.2 and
4.3, it is not possible to safely determine if content is
dangerous without knowing about the context in
which it will be used.

The second option would provide the most precise
tainting information, but would require either
modifications to the database server or modifications
of the application database (for example, keeping a
shadow table corresponding to the tainting
information for each entry in the data table). Neither
implementation option is desirable. Modifying the
database server would tie applications to a particular
database server. Modifying the application would
involve extensive rewriting of all database commands.
This could be automated, but the added complexity
would increase the likelihood of security
vulnerabilities.

Hence, we opt for the third option and treat strings
that are returned from database queries as untrusted

and mark them as tainted. While this approach may
appear overly restrictive, in the sense that legitimate
uses may be prevented, we show in Section 4.3 how
precise tainting and our approach to checking for
cross-site scripting mitigates this potential problem
for typically web applications. The other advantage
of this option, is that if the database is compromised
by some other means, the attacker is still not able to
use the compromised database to construct a cross-site
scripting attack.

We modified the PHP functions that return data from
the database (mysql_fetch_array, mysql_fetch_row,
mysql_fetch_assoc, mysql_result) to automatically
mark all characters in the resulting string values as
tainted. While we focus on MySQL, it is
straightforward to modify the analogous functions for
other databases.

4.1.4 Session variables
The stateless nature of HTTP (HyperText Transfer
Protocol), the protocol that underlies the world wide
web, requires developers to keep track of application
state across client requests. However, exposing
session variables to clients would allow attackers to
manipulate applications. Thus well-designed web
applications will keep session variables on the server
only and use a session id to communicate with clients.
Several steps are commonly used to protect the
session id, including encrypting traffic by using
HTTPS (HTTP over Secure Socket Layer), generating
session ids that are difficult to predict, and timing out
sessions.

By default, PHP stores and retrieves session variables
in files. We modified PHP to store and retrieve
tainting information as well. When the session
variable is read from the file, its taint markings are
restored. PHP allows developers to replace the
default implementations with their own handlers, for
example by storing session state in shared memory or
a back-end database. Since this will circumvent our
modified handlers, developers using this approach
will either lose tainting information or need to modify
their handlers to maintain it.

4.2 Preventing Command Injection
The tainting information is used to determine whether
or not calls to security-critical functions are safe. To
prevent command injection attacks, we check that the

 10

tainted information passed to a command is safe. The
actual checking depends on the command, and is
designed to be precise enough to allow typical web
applications to function without false positives.

4.2.1 PHP Injection
To prevent PHP injection attacks we disallow calls to
the functions shown in Table 3 if one of their
arguments is tainted. These are similar, though not as
extensive, as the functions disallowed by Perl’s taint
mode and Ruby’s taint level 1. Unlike the SQL
injection and cross-site scripting checking, checking
here is done at a coarse level: any tainted input to
these functions is too dangerous to allow.

Type Functions
Program
execution

system, exec, passthru, shell_exec,
proc_open

Filesystem fopen, glob, mkdir, popen, readfile,
file

PHP
language

eval, include, require, include_once,
require_once

Table 3. Taint-checked PHP functions.

Both attacks described in Section 2.1.1 are thwarted
as we propagate tainting information from the first
GET or POST variables, through string manipulation
functions and database operations, to their eventual
use in the arguments to require and eval. In the
PhpGedView example [Jei04], the argument to require
is marked tainted.

In the phpMyAdmin attack example, the database table
name $_table is marked as tainted as it comes from
the result of a database query (in this case, to the
trojan database setup by the attacker). The value of
$eval_string is indirectly derived from $_table and is
thus partially tainted. Hence, the call to eval is not
permitted and the attack is unsuccessful.

4.2.2 SQL Injection
To prevent SQL injection attacks, we modify the PHP
functions that can send commands to the database
(mysql_query and mysql_unbuffered_query) to check
for the presence of special SQL tokens in the tainted
portion of the query string before allowing the
command to be sent to the database. Our algorithm for
detecting SQL injection involves four steps:

1. Tokenize the query string, preserving taint
markings within the tokens.

2. Scan each token for identifiers and operator
symbols (ignore literals, i.e., strings, numbers,
boolean values).

3. If an operator symbol is marked as tainted,
then we have detected an SQL injection.
Operator symbols are:

 ,()[].;:+-*/\%^<>=~!?@#&|`

4. If an identifier is marked as tainted and it is a

keyword, then we have detected an SQL
injection. Example keywords include UNION,
SELECT, DROP, WHERE, OR, AND.1

While step 2 appears simple, its implementation is
quite complicated and potentially error prone. It must
deal with various complex quoting rules in SQL
commands. We adopted the scanner from the
Postgres implementation (which appeared easier to
extract and modify than the mySQL scanner). We
stripped the Postgres scanner of any code related to
parsing and kept just the tokenizer.

Our approach would prevent certain sites from
working properly, especially those whose application
semantic is to explicitly allow users to issue SQL
queries, e.g., PhpMyAdmin. For these, developers need
to call untaint explicitly.

Using the examples in Section 2.1.2, we show how
our techniques defend against SQL injections. Recall
the first example:

$cmd="SELECT user FROM users WHERE user = ' "
 . $user . "' AND password = ' "
 . $password . " ' ";

in which the attacker provides a malicious value for
$user: ' OR 1 = 1 ; -- '. The resulting query string is
tainted as follows:

SELECT user FROM users WHERE
 user = ' ' OR 1 = 1 ; -- ' AND password = 'x'

1 The list of keywords was obtained by merging the keywords
found in the MySQL and Postgres scanners. As an additional
preventative measure we could also add critical table names to
this list or potentially harmful stored procedures. In our
inspection of SQL injection exploits to date, we have found that
the existing rules suffice.

 11

We detect the injection since OR is tainted and a
keyword (step 4 of our algorithm). Note that we
would also have detected the injection at the =, ; or --
tokens. After detecting the injection, our modified
PHP interpreter returns an error result from
mysql_query, instead of sending the command to the
database.

In the second example, the query string is:

SELECT s.sid, a.url FROM nuke_stories s,
 nuke_authors a
 WHERE s.aid=a.aid OR mid(a.pwd,1,1)=6

Injection is again detected because OR is tainted. In
contrast to the ad hoc filtering in the original patch of
PhPNuke, our approach stops the attack using not just
parenthesis but a comprehensive list of SQL tokens.

4.3 Preventing Cross-Site Scripting
Our approach to preventing cross-site scripting relies
on checking generated output. Any potentially
dangerous content in generated HTML pages must
contain only untainted data. We accomplish this by
modifying the PHP output functions (print, echo,
printf and other printing functions) with functions that
check for tainted output containing dangerous content.
The replacement functions output untainted text
normally, but keep track of the state of the output
stream as necessary for checking. For a contrived
example, consider an application that opens a script
and then prints tainted output:

print "<script>document.write ($user)</script>";

An attacker can inject JavaScript code by setting the
value of $user to a value that closes the parenthesis
and executes arbitrary code: " me");alert("yo". Note
that the opening script tag could be divided across
multiple print commands. Hence, our modified
output functions need to keep track of open and
partially open tags in the output. We do not need to
parse the output HTML completely (and it would be
unadvisable to do so, since many web applications
generate ungrammatical HTML).

Checking output instead of input avoids many of the
common problems with ad hoc filtering approaches.
Since we are looking at the generated output any
tricks involving separating attacks into multiple input
variables or using character encodings can be handled
systematically.

Further, our checking involves whitelisting safe
content rather than blacklisting dangerous content.
Whereas a blacklist attempts to prevent cross-site
scripting attacks by identifying known dangerous
tags, such as <SCRIPT> and <OBJECT>. This fails to
prevent script injection involving other tags. For
example, a script can be injected into the apparently
harmless (bold) tag using its parameters. The
text below would enable an attacker to steal the
victim’s cookie without using any script tags of
apparent calls to JavaScript routines:

<b onmouseover=
 'location.href ="http://evil.com/steal.php?"
 + document.cookie'>

Our defense takes advantage of precise tainting
information to identify web page output generated
from untrusted sources. Any tainted text that could be
dangerous is either removed from the output or altered
to prevent it being interpreted (for example, replacing
< in unknown tags with <). Our conservative
assumptions mean that some safe content may be
inadvertently suppressed; however, because of the
precise tainting information, this is limited to content
that is generated from untrusted sources.

4.4 Performance
Our current prototype implementation implements
precise tainting and performs the checking necessary
to prevent command injection and cross-site scripting
attacks. We report its performance on both micro-
benchmarks designed to stress the modified PHP
interpreter, and benchmarks typical of web
applications. Our prototype implementation is
designed as a simple proof-of-concept, and there
would be many opportunities to improve performance
in a production implementation. Nonetheless, its
performance is adequate for typical web applications.

Table 4 presents results from some micro-benchmark
tests. Each micro-benchmark measures the time
required to execute 10,000 iterations of a loop body
that executes specific PHP functions. This illustrates
the worst-case performance of our mechanisms. The
highest measures overhead is 77% for the sql.php
micro-benchmark which isolates the SQL injection
checking. It creates a partially tainted string and
passes it to the function that checks SQL commands.

 12

Benchmark
Standard
PHP (ms)

Tainting
PHP (ms) Overhead

concat.php 16.57 17.10 3.2%
print.php 117.78 171.56 45.7%
sql.php 32.73 57.88 76.8%

Table 4. Micro-benchmark Results.
Each time is the average for 100 executions. The
concat.php benchmark concatenates tainted strings; the
print.php benchmark prints partially tainted strings; the
sql.php benchmarks checks a partially tainted SQL
command (but does not send a request to the database).

We also measured our system overhead by testing
typical web application requests: processing a login,
entering a message and generating an output page
from the contents of a database table. Table 5
summarized the impact of our modified interpreter on
the request rate. For all the application benchmarks
the measured overhead was below 5%. With some
simple optimizations to our implementation, this
could be reduced.

Benchmark

Standard
PHP

(req/s)

Tainting
PHP

(req/s) Overhead
login.php 69.7 67.9 2.6%
message.php 32.8 31.8 2.9%
members.php 25.0 23.9 4.9%

Table 5. Application benchmark Results.
Each time is the average for 100 requests. We use
Flood [Flood04] to test the application benchmarks by
starting the modified and normal server on the same
machine using different ports. The login.php
benchmark tests a login that involves constructing a
SQL query and generating a welcome page. The
message.php benchmark posts a message. The
members.php benchmark executes several SQL queries
and generates a large output page containing 100
entries.

5. CONCLUSION
We have described a fully automated, end-to-end
approach for hardening web applications. By
exploiting precise tainting that takes advantage of
program language semantics and performing context-
dependent checking, we are able to prevent a large
class of web application exploits without requiring
any effort from the web developer.

The Internet continues to be riddled with insecure
web applications, despite much work on detecting

vulnerabilities and hardening web applications.
Effective solutions need to balance the need for
precision with the limited time and effort most web
developers will spend on security. Fully automated
solutions, such as the one described in this paper,
provide an important point in this design space.

ACKNOWLEDGEMENTS
This work was funded in part by DARPA (SRS
FA8750-04-2-0246) and the National Science Foun-
dation (NSF CAREER CCR-0092945).

REFERENCES
[Arm2003] Lucas Armstrong. PHPNuke SQL

Injection. Bugtraq message, 20 February 2003.
[Bell73] D. E. Bell and L. J. LaPadula. Secure

Computer Systems: Mathematical Foundations.
MITRE Corporation MTR-2547, Vol. 1. 1973.

[Bene02] M. Benedikt, J. Freire and P. Godefroid.
VeriWeb: Automatically Testing Dynamic Web
Sites. WWW 2002. May 2002.

[Biba77] K. J. Biba. Integrity Considerations for
Secure Computer Systems. USAF Electronic
Systems Division ESD-TR-76-372. April 1977.

[CERT00] CERT® Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web Requests.
February 2, 2000.
http://www.cert.org/advisories/CA-2000-02.html

[Dyck03] Timothy Dyck. Review: Appshield and
Review: Teros-100 APS 2.1.1. eWeek. May
2003. http://www.eweek.com/article2/
0,3959,1110435,00.asp

[Endler02] David Endler. The Evolution of Cross-Site
Scripting Attacks. iDEFENSE Labs. May 2002.
http://www.cgisecurity.com/lib/XSS.pdf

[Eva02] David Evans and David Larochelle.
Improving Security Using Extensible Lightweight
Static Analysis. IEEE Software. Jan/Feb 2002.

[Eye02] EyeonSecurity. Microsoft Passport Account
Hijack Attack: Hacking Hotmail and More.
Hacker’s Digest, Winter 2002.

[Fisk04] Harrison Fisk. Prepared Statement. 2004.
http://dev.mysql.com/tech-resources/articles/4.1/
prepared-statements.html

[Fuecks02] Harry Fuecks. Magic Quotes and Add
Slashes in PHP. 2002.
http://www.webmasterstop.com/tutorials/
magic-quotes.shtml

[Gentoo04] Gallery PHP Injection,
Gentoo Linux Security Advisory # 200402-04,

 13

Feb 2004. http://www.linuxsecurity.com/advisories/
gentoo_advisory-4015.html

[Grey04] GreyMagic Software. Remotely Exploitable
Cross-Site Scripting in Hotmail and Yahoo.
March 2004. http://www.greymagic.com/security/
advisories/gm005-mc/

[Hog2004] Greg Hoglund and Gary McGraw.
Exploiting Software: How to Break Code.
Addison-Wesley. 2004.

[Hua03] Yao-Wen Huang, S. K. Huang, T. P. Lin, C.
H. Tsai. Web Application Security Assessment
by Fault Injection and Behavior Monitoring.
WWW 2003. May 2003.

[Hua04] Yao-Wen Huang, Fang Yu, Christian Hang,
Chung-Hung Tsai, D. T. Lee and Sy-Yen Kuo.
Securing Web Application Code by Static
Analysis and Runtime Protection. WWW 2004.
May 2004.

[Ivgi04] Rafel Ivgi. Cross-Site-Scripting Vulnerability
in Microsoft.com. Full Disclosure mailing list. 4
October 2004.

[Jei04] JeiAr, PhpGedView PHP Injection, Jan 2004.
http://xforce.iss.net/xforce/xfdb/14205

[Kavado04] Kavado, Inc. InterDo Web Application
Firewall. 2004. http://www.kavado.com/products/
interdo.asp

[Kost04] Stephen Kost. An Introduction To SQL
Injection Attacks For Oracle Developers.
Integrigy Corporation White Paper. January
2004. http://www.net-security.org/dl/articles/
IntegrigyIntrotoSQLInjectionAttacks.pdf

[Ley04] Jim Ley. Simple Google Cross Site Scripting
Exploit. 17 October 2004.

[Litchfield03] David Litchfield. SQL Server Security.
McGraw-Hill Osborne Media. August 2003.

[Manip04] Manip. Centre 1.0 PHP Injection. July
2004. http://seclists.org/lists/fulldisclosure/2004/Jul/
0088.html

[Netcraft04] Netcraft Survey. November 2004.
http://news.netcraft.com/

[Net03] Nicholas Nethercote and Julian Seward.
Valgrind: a program supervision framework.
Workshop on Runtime Verification. July 2003.

[New05] James Newsome and Dawn Song. Dynamic
Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on
Commodity Software. To appear in NDSS 2005.
February 2005.

[PerlSec] Perl 5.6 Documentation: Perl Security.
http://www.perldoc.com/perl5.6/pod/perlsec.html

[PHP5] Improved MySQL Extensions.
http://www.php.net/manual/en/ref.mysqli.php

[PHPs] PHP Manual: String Functions.
http://www.php.net/manual/en/ref.strings.php

[PHPsec] PHP Manual: Security.
http://us2.php.net/manual/en/security.php

[Rai98] Rain.forest.puppy. NT Web Technology
Vulnerabilities. Phrack Magazine. Volume 8,
Issue 54. December 1998.

[Ricca01] F. Ricca, P. Tonella. Analysis and Testing
of Web Applications. IEEE International
Conference on Software Engineering. May
2001.

[Sab03] Andrei Sabelfeld and Andrew C. Myers.
Language-Based Information-Flow Security.
IEEE Journal on Selected Areas in
Communications. January 2003.

[Sco02] David Scott and Richard Sharp. Abstraction
Application-Level Web Security. WWW 2002.
May 2002.

[Shan01] Umesh Shankar, Kunal Talwar, Jeffrey
Foster and David Wagner. Detecting format-
string vulnerabilities with type qualifiers.
USENIX Security Symposium 2001.

[Simb04] Nasir Simbolon. PHPmyAdmin critical bug.
http://xforce.iss.net/xforce/xfdb/16542

[Spett02] Kevin Spett. SQL Injection: Are your web
applications vulnerable? SPI Labs White Paper.
2002. http://www.spidynamics.com/whitepapers/
WhitepaperSQLInjection.pdf

[Teros04] Teros, Inc. Teros-100 Application
Protection System. 2004.
http://www.teros.com/products/aps100/aps.shtml

[Tho04] Dave Thomas with Chad Fowler and Andy
Hunt. Programming Ruby: The Pragmatic
Programmer’s Guide, Second Edition.
Pragmatic Programmers. 2004.

[Val02] Janet Valade. PHP & MySQL for Dummies.
Wiley Publishing. 2002.

[Watch04] Watchfire Corporation. AppShield 4.5
Technical Overview. 2004. http://www.watchfire.
com/resources/appshield-overview.pdf

[Wei04] Nitzan Weidenfeld. Security hole found in
Gmail. Nana NetLife Magazine. 27 October
2004.
http://net.nana.co.il/Article/?ArticleID=155025&sid=10

[Więsek03] Karol Więsek, GOnicus System
Administrator PHP Injection. Feb
2003. http://lists.netsys.com/pipermail/full-disclosure/2
003-February/003932.html

