Current State of Data Mining

Darren T. Drewry, Lin Gu, A. Benjamin Hocking, Kyoung-Don Kang,
Robert C. Schutt, III, Christopher M. Taylor, John L. Pfaltz
Dept. of Computer Science, Univ. of Virginia
{dtd3r,1gbe,hocking,kk7v,rcsby,cmtbn, jlp}@virginia.edu

CS-2002-15
9 May 2002

Abstract

This report is a compendium of results uncovered in CS 851, spring semester 2002.
Our goal is to provide direction to other graduate students who want to explore the
fascinating field of “data mining”.

Be aware that this represents the topics and the papers that we found most in-
teresting. We made no attempt to be either “fair” or to be “comprehensive” as in a
Computing Reviews article. Instead we tried to pick just one or two references in each
of our interest areas that were both relatively recent and, in our opinion, worth reading.
Their bibliographies can direct a reader to other sources.

1 Overview

The term “data mining” means many different things to different people. Originally, the
term was attached to blind, undirected search for probabilistic associations within large
data sets. Rakesh Agrawal, together with his co-authors [3, 35] are generally considered
to be the originators of “data mining”. Since then, the term has come to be attached to
“unsupervised machine learning”, and the derivation of almost any statistic from a data
set. For example, Dzeroski [10] says that

“The output of a data mining algorithm is typically a pattern or a set of patterns
that are valid in the given data. A pattern is defined as a statement (expression)
in a given language, that describes (relationships among) the facts in a subset
of the given data, and is in some sense simpler than the enumeration of all the
facts in the subset. Different classes of pattern languages are considered in data
mining: they depend on the data mining task at hand. Typical representations
are equations; classification and regression trees; and association, classification,
and regression rules. A given data mining algorithm will typically have a built-in
class of patterns that it considers: the particular language of patterns considered
will depend on the given data (the attributes and their values).

Many data mining algorithms come from the fields of machine learning and
statistics. A common view in machine learning is that machine learning al-
gorithms perform a search (typically heuristic) through a space of hypotheses
(patterns) that explain (are valid in) the data at hand. Similarly, we can view
data mining algorithms as searching, exhaustively or heuristically, a space of
patterns in order to find interesting patterns that are valid in the given data.”

In this report, we lean to the former definition. We seek associations of the form A = B
which can be interpreted “if an object has the set A of attributes then it will often/always
have those of B as well”. Our concentration will be on those methods that depend on the
apriort algorithm, or apriori-like algorithms to find such associations.

Moreover, we will assume that we are mining a binary relation such as Figure 1. In
this figure we have labeled the rows as O (for object) and the columns as A (for attribute).
But, there is no standard nomenclature for this. Applications arising from “market basket”
analysis usually label the rows as T' (for transaction, or tuple) and the columns as I (for
item) because the row denotes the items involved in that transaction.

Many relations of interest are not binary. Many are numeric. If one is mining medical
data, it is expected that many of the attributes will be numeric. Mechanisms for min-
ing numeric data are of great interest; but as we will see in Section 5 they are at best
rudimentary.

The main threads that we will be considering in this report are all related to discovering
the existence of associations, or implications, in a data table such as Figure 1. They are:

abcdef ghi

1 | X|X X

2 | XX XX

3 | XXX XX
O4>< X XXX

5 | X|X X X

6 | X| XXX X

7 X XXX

8 |X XX X

Figure 1: A binary relation, R, between two sets O and A.

Association Rule Mining: Finding rules, such as A = B, where A probably implies
B, is a fundamental goal of ”"data mining”. The apriori procedure is central to this
approach and is discussed in Section 2.

Categorization Rules: Often the consequent B of the implication A = B is a
categorical property such as “the patient survives at least 1 year” or “the mushroom
is poisonous”. When the consequent B is fixed to be a few distinguished attribute
combinations, special techniques such as those discussed in Section 2.5 can be used.

Neural Network Methods: Neural networks create relationships between inputs
that are not always easy to comprehend. Neural network methods investigate ways
to train neural networks on data sets as well as ways to understand what the neural
networks have learned. These methods are examined in Section 3.

Rough Set Theory: Rough set data analysis uses partitions and the corresponding
equivalence relations to describe the granularity of the data. It differs from most other
data analysis methods in that it provides a strict mathematical model and relies mostly
on the data itself to perform various data mining tasks. Section 4 discusses this topic.

Quantitative Rule Mining: The development of data mining algorithms that incor-
porate numeric data is extremely important as a large portion of real-world data sets
contain quantitative attributes. Section 5 presents two attempts to create association
rules composed entirely, or in part, of quantitative data.

Deterministic Implications: Deterministic data mining looks for rules that are
always true as opposed to associative rule mining which looks for rules A = B that
are often true. These techniques are discussed in Section 6.

2 Association Rule Mining

Association rule mining is a fundamental technique in data mining. In some real-life applica-
tions, e.g., market basket analysis in K-Mart, data sets can be too large for manual analysis,
and potentially valuable relations among attributes may not be evident at a glance. An
association rule mining algorithm can find frequent patterns (sets of database attributes)
in a given data set and generate association rules among database attributes. For exam-
ple, some items can be frequently sold together, e.g., milk and cereal. Such items can
be displayed together to improve the convenience of shopping. Association rule mining is
generally applicable to those applications in which the data set is large and it is useful to
find frequent patterns and their associations, e.g., market basket analysis, medical research,
and intrusion detection. In this section, we give an overview of association rule mining and
describe the well-known aprior: algorithm [1, 3] as follows.

2.1 Frequent Sets

It is the first step in (probabilistic) association rule mining to find all frequent sets. Let D
be a database, which consists of tuples or records, called (sales) transactions in data mining.
Let I be a set of all database attributes, often called items in data mining literature. A
set of items is called an itemset. Given a threshold, called min_sup (minimum support), an
itemset is called frequent if its frequency is equal to or greater than min_sup. Hence, the
main objective of this step is finding all frequent itemsets whose support, i.e., frequency,
is higher than the threshold, min_sup. For example, consider Figure 1. Assume that
min_sup = 0.375, that is, a frequent itemset should appear at least three times in the
database shown in Figure 1. In the given database, following itemsets are frequent: a
(count = 8), b (5), ¢ (5), d (4), f (3), g (4), h (3), ab (5), ac (5), ad (4), af (3), ag (4), ah
(3), by (3), cd (3), df (3), gh (3), abg (3), acd (3), adf (3), agh (3).

This step is computationally expensive, especially when min_sup is low. To find all
frequent itemsets, it might be necessary to consider all possible combinations of items.
Also, multiple database scans might be necessary. Therefore, the size of the problem space
is exponential in terms of the number of items. Multiple database scans and the exponential
explosion of search space can significantly affect the performance of data mining. The notion
of support is also debatable. More detailed discussions will be given after describing the
apriort algorithm.

2.2 Frequent Associations

Once all frequent sets are identified, association rules can be found. An association rule
A = B holds in a given database with a certain confidence v (0 < < 1) if:

sup(AUB)
“eup(d)) (1)

For example, in Figure 1 conf(abg) = sup(abg)/sup(b) = (3/8)/(4/8) = 0.75. Hence,
the association rule b = ag is confident with confidence 0.75 in the given data set. Note that
this step is only applied to frequent itemsets. Infrequent itemsets are generally considered
not important in probabilistic rule mining approaches. To filter out rules with low confidence
values, a threshold called min_conf, is used in probabilistic rule mining. A rule is called
confident if its confidence Eq. (1) is above min_conf. In this way, every rule with certain
probabilistic relation between the antecedent and consequent can be found.

2.3 Basic aprior: Search

The apriori algorithm consists of two main steps: (1) find all frequent itemsets and (2)
generate confident rules as discussed before. Given a frequent itemset I, find all rules
A= 1—-A (A CI) whose confidence is higher than min_conf.

The intuition behind the frequent set search is very simple: all (k—1)-itemsets (itemsets
of length &k — 1) in a k-itemset must be frequent for the corresponding k-itemset to be
frequent. Therefore, if an (k — 1)-itemset is infrequent, no k-itemset containing it can be
frequent, and need not be considered. A high level description of the frequent set search is
as follows.

1. Find F[1] = {Frequent l-itemsets}.
2. for (k=2; Flk-1] # O; k++)

(a) Generate length k candidates from F[k-1].
(b) Scan the database to count the frequency of candidates.

(c) Insert each candidate of length k into F[k], if its frequency > min_sup.

For example, F[1] = {a,b,¢,d, f,g,h} in Figure 1. From this, we can generate candidates
of length 2: C[2] = {ab, ac,ad, af,ag,ah,be,bd,bf,bg,bh,cd,cf,cg,ch,df,dg,dh, fg, fh,gh}.
Observe than no 2-itemset containing e could be frequent. From the database scanning, we
get F[2] = {ab,ac,ad,af,ag,ah,bg,cd,df,gh}. This iterates until there is no new frequent
itemset of a larger cardinality.

Note that this algorithm has several possible performance drawbacks. Multiple database
scanning can be very expensive in terms of response time. Also, too many infrequent

candidates can be generated. This can cost both storage and time to save candidates and
scan the database for counting purposes. (To alleviate the performance problem, a hash
tree is used to save the storage and time for counting [1]. However, this approach does not
directly handle the possible disadvantages discussed before.)

To address this problem, Han et al. [16] presented a novel approach, in which frequent
sets can be found without generating candidates. In their performance evaluation, they
showed a significant performance (i.e., response time) improvement compared to the apriori
algorithm.

2.4 Discussions

Probabilistic data mining approaches have several drawbacks. First, frequent itemsets may
not mean anything. For example, many transactions in a census database may share a
same gender, female or male. Given dense data sets such as a census database, it is highly
likely that apriori-like algorithm may suffer poor performance. More importantly, it might
generate many “frequent” but “unimportant” itemsets and rules. As a result, it may be
almost impossible for human operators to interpret the association rules. We have observed
that the apriori algorithm generates over three million rules for the MUSHROOM database
described in section 9.2, which is generally considered dense, when min_sup = 0.01 and
min_conf = 0.5. (Given min_sup = 0.2 and min_conf = 0.9, it generates over 340,000
rules.) Furthermore, it may not capture an important but infrequent rule. It was shown in
[27] that apriori algorithm misses some rules detecting poisonous mushrooms. See Section
9.2. In summary, probabilistic rule mining may not represent/capture causal relations
between antecedents and consequents. This limits the applicability of probabilistic rule
mining approaches to some data sets, e.g., MUSHROOM database and system call sequences
for the detection of malicious attacks. For this reason, many alternative approaches have
been considered recently. More detailed discussions are provided in the following sections.

2.5 Constraining Association Rules

Frequent set data mining techniques generate as their output a set of association rules
that represent probabilistic relationships between data items. When using frequent set
data mining for knowledge discovery, a problem that quickly arises is that the number of
association rules generated overwhelm the researcher. Ordonez et al. [20] present a case
study of using data mining to discover interesting association rules in medical data and
demonstrate how the basic aprior: algorithm can be extended to constrain the generated
association rules. In this study they use frequent set data mining to predict a patient’s risk
of heart disease.

When data mining is used in a knowledge discovery endeavor, the purpose is to identify
interesting relationships between data items. The problem with the typical support / con-

fidence technique for constraining the generated rules is that by setting very low support
and confidence thresholds many association rules are generated that are not significant.
Ordonez et al. present a technique for constraining association rules in the following ways:

e Support / Confidence: The standard statistical notion of support and confidence,
rules that do not meet the minimum support and confidence levels are not generated.

e Antecedent / Consequent: In many applications of data mining it is known which
items will be in either the antecedent or consequent of the association rule (where rules
are of the form antecedent(s) = consequent(s)). This is often true for medical data
mining where some of the items are a set of symptoms or diagnostic tests (antecedents)
and the researcher wants to determine how these symptoms relate to outcomes or
disease processes (consequents). By constraining the algorithm to only generate rules
that have well formed antecedent/consequent pairs the search space is greatly reduced
and fewer but more meaningful association rules are generated. For example, when
trying to discover rules that predict heart disease, rules that relate smoking to patient
weight are less relevant than rules that relate smoking to coronary artery blockage (a
measure of heart disease).

e Grouping: Attributes can be members of a group. Association rules are group
constrained by the following: the antecedent or consequent of an association rule can
have no more then 1 member of a group. In a shopping cart example if the following
are antecedent constrained items and are also members of a group “whiskeys”: rye
whiskey, scotch whiskey, and bourbon, possible generated rules include rye whiskey
= purchase > $100, bourbon = purchase > $100, and scotch whiskey = purchase >
$100. An example of a rule that will be disallowed by the group constraining criteria
is rye whiskey AND bourbon = purchase > $100 because rye whiskey and bourbon
are members of the same group and both contained in the antecedent.

Even with antecedent/consequent constraining and group constraining the number of
rules generated in the data mining process can be large. The following are the results
presented by Ordonez et al. [20]:

1. 25 possible attributes, 655 database transactions (patient records).

2. 4 of the attributes were consequent constrained, 21 were antecedent constrained.

3. 19 of the 21 antecedent constrained attributes were put into 3 different groups. Group
1 had 9 members, Group 2 had 5 members, and group 3 had 4 members.

The data mining produced 2987 rules using support of 0.2% and confidence of 70%.
Ordonez et al. claim that using only support/confidence frequent set data mining, the same
support and confidence generated over 1 million rules from the same data set. The 2987
rules were reduced to 850 by a domain expert identifying rules that are “counter-intuitive
to medical knowledge.” This aspect of the result is very interesting but unfortunately the

authors do not elaborate on these rules or present examples to illustrate why they are
arising. The 850 rules were divided into categories where similar antecedents implied similar
consequents and subsequently were sorted by support and confidence for analysis by a
domain expert.

From the results presented by Ordonez et al. it is clear that constraining association
rules is an important part of any data mining investigation. With basic support/confidence
frequent set data mining far too many rules are generated when low support/confidence
levels are desired. The drawback of association rule constraining is that the investigator
must be able to constrain their search prior to running the algorithm since all possible
results will not be enumerated.

3 Neural Network Methods

Several techniques use neural networks to mine associations from data sets. Two prominent
techniques include training multi-layer perceptrons on samples of the data and evolving
Kohonen feature maps on the data. As opposed to most other data mining techniques,
these neural network data mining techniques are not constrained to input attributes that
are categorized or even discrete. Removing this constraint means that neural networks can
be used on a variety of inputs including boolean, real, complex, or even graphical.

3.1 Multi-Layer Perceptrons

When using multi-layer perceptrons, there are typically two main steps required. The first
step is to train the multi-layer perceptron. Typically, a fraction of the database to be mined
is presented multiple times to the network with back-propagation used to adjust the weights
of the network. A crucial part of this step is deciding on the topology of the network to
be trained. If the network contains too many hidden neurons, then the neural network
will be over-fitted to the training data and have an insufficient ability to generalize. If the
network contains too few hidden neurons, then the neural network may be unable to learn
the problem. And although

“It is known that a feed-forward network with one hidden layer can approximate
any continuous function of the inputs, and a network with two hidden layers can
approximate any function at all.”

it is possible that “the number of units in each layer may grow exponentially with the
number of inputs” [31]. The choice of an appropriate topology will be influenced by the
nature of the inputs. In training a perceptron on the MUSHROOM database containing
only categorical inputs, no hidden neurons were required to learn a perfect classification of
poisonous or edible. Such a result implies the MUSHROOM database is linearly separable.
This should be expected given the high dimensionality of the input and the sparseness of
the database. Further results from our work with neural networks and the MUSHROOM
database are discussed later in this section.

The second step in using multi-layer perceptrons to mine association rules is to analyze
the trained neural network. This step is optional if one is only interested in predicting
the correct class of an object but is necessary if one wants to generate concrete association
rules. There are several methods for analyzing the neural network. One method is to
reverse engineer the network to determine exactly which combinations of inputs contribute
to the desired categorizations. Reverse engineering a neural network is intractable in the
worst-case scenario. However, we were able to reverse engineer a neural network trained on
the MUSHROOM database of Section 9.2 in a short amount of time. Another method that
we studied involves the use of genetic algorithms.

Genetic algorithms reduce the complex problem of finding the best association rules
into a simpler problem of finding good association rules. Two decisions involved when
using genetic algorithms is to determine the genome encoding and the fitness function. The
choice for fitness function might affect how you choose to encode the genome. The choice
for genome encoding will affect your choice of fitness function.

As an example of some of the challenges, in most applications to data mining one will
want the ability to represent a selection from a category as “don’t care”. This representation
will require a special encoding in the genome. If the possible values for a category are
represented by more than one gene in the genome, a possible mistake is to encode the
“don’t care” value identically to all other values in the category. This choice will cause some
values to be more likely to be transitioned to from the “don’t care” value than other values,
giving them a greater probability of existing in the population than would naturally arise
from their actual fitness. One possible solution is to add additional “don’t care” values to
the category such that every value has an equal probability of arising from a “don’t care”
value. Although this solution can alleviate this particular problem, a more complicated
problem arises when all the other possible transitions are considered. For example, if one
particular value in the category contributes significantly to the fitness of a genome, values
that have a greater probability of being transitioned to from the fit value will be represented
in the population disproportionally to their actual contribution to fitness. We did not find
a satisfactory solution to this problem.

Our experience with the MUSHROOM database led to several practical discoveries in
creating both the neural net and in determining the proper encoding and fitness function in
the genetic algorithm. When creating the neural net we discovered that no hidden neurons
are required to encode the MUSHROOM database. In general, we expect that most databases
will benefit from no more than 5 hidden neurons, but more work is required in this area
to be certain. Another discovery is that without sufficient redundancy in the network, the
output can be fully determined by a small subset of possible inputs when those inputs
perform exceptionally well at predicting the correct classification. This subset’s ability to
perfectly classify becomes problematic because it prevents the discovery of valid association
rules dealing with those values that have a smaller impact on correct classification.

The biggest problem we encountered with applying genetic algorithms to the MUSH-
ROOM database was identifying a proper choice of fitness function. With our initial choice
of a fitness function, every single rule that was generated had no matching items in the
database. This should be expected when one considers that there are approximately
1.22 x 10 possible combinations of the attributes in the MUSHROOM database, but only
8,124 entries. Since we’re encouraging “don’t care” values the actual probability will be
higher than the 6.7 x 107! suggested by these numbers, but the probability of reaching
attributes that are in the MUSHROOM database is still so small as to make the odds in-
distinguishable from zero, unless a more directed approach is taken. One possible directed
approach is to have the fitness function use the support as one of the criteria of fitness.

10

The best results we obtained were when we had the fitness function be a multiple of the
logarithm of the support, and took the additional step of removing all members of the
population that had zero support in the database.

3.2 Kohonen Maps

Another technique for mining association rules from databases is to use Kohonen (or self-
organizing) maps [7]. Kohonen maps are self-supervised neural networks that impose a dis-
tance metric on the neurons in the map. This metric can be embedded in any n-dimensional
space that is desired, although 2-dimensional spaces are the most frequently used because
of the ease with which they can be navigated. An advantage of Kohonen maps is that they
do not require any a priori knowledge of categorizations of input or classifications of output.
Unlike other types of self-supervised neural networks, the learning rule in Kohonen maps
is influenced not just by the inputs and outputs of the individual neurons, but also by the
outputs of the neurons nearest neighbors. This rule ensures that clusters of neurons form
that all tend to fire for similar inputs. These clusters therefore define the classifications that
are recognized by the maps, where the center of the cluster is said to define the prototype
of the classification. One technique for automatically identifying these clusters is given in
[7].

11

4 Rough Set Theory

Rough set theory provides a neat methodology to formalize and calculate the results for
data mining problems.

In the early 1980s Z. Pawlak, cooperating with other researchers, developed the rough
set data analysis (RSDA) [23]. As suggested by its main motto — “let the data speak for
themselves”, RSDA tries to discern internal characteristics of a data set, such as categoriza-
tion, dependency, and association rules, without invoking external metrics and judgment.

This approach has produced some useful results, but it also showed some drawbacks
or insufficiency when dealing with complex data mining problems. More specifically, it is
successful in the following respects:

1. it provides a clean mathematical model for data mining tasks; and
2. it provides a group of well-defined algorithms to solve the defined problems.
However, it is insufficient in the following aspects:
3. it lacks a systematic mechanism to incorporate domain specific knowledge
or human interaction into the model, algorithm and the solution; and
4. it does not reduce the computation complexity of the tasks.

The rest of this section is organized as follows. The subsection 4.1 introduces the
context of this methodology, some basic concepts, and some historic notes. Those three
topics are combined together because the ideas in the concepts can be better understood
when we know the context and history where they were developed. The subsection 4.2 deals
with the problem modeling and the corresponding algorithms for data mining tasks. The
subsection 4.3 analyzes the pros and cons of rough set theory in the context of data mining
and in comparison with other theoretical and practical approaches.

4.1 Problem context, basic concepts and history

In the data mining area, the applications of rough set theory include attribute reduction,
rule generation and prediction. With the motto “Let the data speak for themselves”, RSDA
distinguishes from other approaches with its “non-invasive” property. It uses only the
information from the data without other model assumptions.

In order to discern and extract information from the data, RSDA utilizes a special
partition relation of the data. Partitions are used to express properties and equivalence
relations, with different granularity achieved by different partitions.

If we denote the universal set as U, a partition is a family P of non-empty disjoint subsets
of U such that the union of all the subsets in P is exactly U. Observe that a partition can
be regarded as a subdivision of the data set into categories; hence this work can be related
to that of the preceding Section 2.5.

Given any subset X of U, with the concept of partition, rough set theory further defines
the lower approximation (positive region) X, upper approximation (possible region) X and

12

area of certainty /uncertainty. Consequently, U — X is the impossible region.

A rough subset is defined as a pair < X, X >. These simple concepts form the basis
of a theory that has demonstrated a variety of relations with other theoretical results.The
collection of all rough subsets of U is shown to form a regular double Stone algebra, which
serves as a model for three-valued Lukasiewicz logic [9]. In Shafer’s evidence theory, the
beliefs and plausibility can be expressed by lower approximation and upper approximation,
respectively [32, 33].

With those concepts defined and calculi formed, RSDA further provides a group of
definitions that are directly related with data mining problems. It defines an “information
system” as follows I =< U,Q,{V,},{fq} > ¢ € Q where U is a finite set of objects, 2 is
a finite set of attributes, {V;} is a class of set of attribute values, corresponding to each
attribute ¢ in €, and f; is a set of functions that map a value from U to a value in V,,
corresponding to each ¢ in 2.

This theoretical definition differs from practical application in that f; is a well-defined
function so that multiple values or missing values are not allowed. [21] presented an exten-
sion and generalization of the information system.

4.2 Modeling and algorithms

Both the data and the problems involved in data mining can be described in an information
system.

One of the most important and fruitful area of data mining is rule generation. Rough
sets can be used to reduce attributes and generate rules in a structural way.

By comparing equivalence relations, RSDA is able to reduce the number of attributes.
An equivalence relation with regard to a set @ C Q is defined as z 0¢g y iff Vo : fy(x) =
fq(y). Intuitively, 6¢ y if and only if x and y cannot be separated by observing their
values on Q.

With the equivalence relations thus defined for arbitrary ¢, RSDA describes the internal
structure of a data set with terms that characterize the relations between various subsets
in the data set. First of all, in a data set, a group of attributes, say, Q, may dominate the
values of another group of attributes, say, P. In this situation we say P is dependent on Q,
written as () = P. Formally, Q = P iff g C 0p

A set P C Q C Qis called a “reduct” of Q when p = 6g and P is the smallest set
that has this property. Reducts can be used to generate deterministic rules. The reducts
for a given Q may not be unique. So we have a family of reducts for any given Q. We
define the intersection of all those reducts in this family the “core” of Q. The core of a set
can be calculated by a matrix of discernibility, which also appears in other contexts that
involves equivalence related applications. All the elements in the core of QQ are said to be
“indispensable” for Q. On the other hand, if an attribute q does not belong to any reducts
in the family, that attribute is said to be “redundant” for Q.

13

To generate association rules, we just notice that a fine partition often preserve all the
information of a coarse partition if the latter, represented as a relation, includes most of
the elements of the former. Actually this is also the idea behind the notion of dependence
aforementioned.

Formally, and following the notation in [9], we can define the association rules as follows.

Denote 6g as {X1,X2,...,X,}, and 04 as {Y7,Ys,...,Y:} (d can be a single attribute
or a composite attribute which is a combination of a number of attributes). For each X; in
¢, we define a set M; = {Y;|X; UY; # 0}. Denote M; as {Yj,,...,Y;,.}. We know that

reX;=zeY,orrecY,orxecy;,
Supposing () has n attributes, denoted as gy, , . .., qx,,, each class X; corresponds to a feature
vector < a1,as,...,a, > where a; € Vg, (1 <1i < n). Similarly, each class Y},(1 <1 < m)
corresponds to an attribute value b;, € ifd. This information can be used to generate the
following rule

fo (@) =ar A A fo (2) = fa(z) =bj, V...V fa(z) = bj,
If m =1, the rule becomes deterministic. Otherwise, it is indeterministic.

Another contribution of RSDA is that it defined a strict metric for the power of a
classification system — approximation functions. An approximation function evaluates the
classification power for a given class X by calculating the ratio of objects which can be
correctly classified. In RSDA, partitions are used to describe, discern and classify the classes.
So its approximation function uses the partition based upper and lower approximation to
calculate the approximation functions. Formally, RSDA defines

760(X) = |X| + |=X/|U]
to express the percentage of elements in U that can be correctly classified by the relation
0, and defines

Yo(@) = [X]/|X|(X #0)
to express the portion of all the possible elements that could belong to X that 6 is able
to discern as being definitely in X. Here an underlying uniform distribution of primitive
elements is assumed. This is called the principle of indifference.

With the approximation function defined, RSDA gives formulae to calculate the quality
of association rules, the impact of an attribute ¢ on the power of a classification system, and
the significance of rules. Those all gracefully model the corresponding problems and interests
in the field of data mining. With those definition, and given the fact that all the notions are
based on partition, one can easily construct algorithms to solve those problems. However,
as described in subsection 4.3, the complexity of those algorithms could be formidable.

The evaluation metrics described above enables RSDA to evaluate a model for a given
application. Specifically, we can evaluate the equivalent, or almost nearly expressive, models
to find reducts of a model. With large data set, and algorithms that can often grow to be
intractable, the reduction of models have practical significance in data mining. However,
we need to be careful to trade off between the cost of model reduction and the performance
gain.

14

4.3 Discussion of rough sets

It is easy to see the models that rough set theory gives matches the tasks researchers are
dealing with in the area of data mining. However, an expressive model does not necessarily
imply efficient algorithms. It has been shown that finding a smallest reduct of an arbitrary
set Q is NP-hard [30]. Obviously, finding all reducts can have exponential time.

As we have seen RSDA has successfully modeled deterministic and indeterministic rules.
A usual interest on indeterministic rules is its confidence. Because rough set uses partitions
as a basic mechanism to describe problems and calculate the results, the underlying dis-
tribution (or measure) of the partitions can serve as a basis to calculate and estimate the
confidence of a rule.

There have been many extensions to RSDA. Among them, variable precision rough set
model(VPRS) [41], rough mereology [29], and similarity or indiscernibility based RSDA [17].

15

5 Quantitative Rule Mining

Numeric data comprises a significant proportion of real world databases. Despite this fact,
the majority of data mining approaches have focused solely on the extraction of categor-
ical association rules. The nature of the problem of mining quantitative association rules
presents challenges distinct from standard categorical rule mining, and the approaches de-
veloped for the categorical case do not directly apply to this problem. This section con-
centrates on presenting two major approaches to mining association rules from databases
containing numeric attributes. The approaches presented here provide differing viewpoints
on the structure and content of quantitative association rules, as well as the way in which
a rule is determined to be “interesting”. These distinct approaches provide insight into the
necessity of conceptualizing the properties of association rules that make them important
to retain. This allows for maximal rule pruning and the reduction of the final set of associ-
ation rules presented to an end-user, as well as the presentation of a set of rules that can be
easily understood and acted upon. Examples in this section will be based on the database
presented in Figure 2.

Age Marri ed| NunCars
23 No 1
25 Yes 1
29 No 0
34 Yes 2
38 Yes 2

Figure 2: A sample numeric database.

5.1 Partitioning

The first attempt at quantitative rule extraction was proposed by Srikant and Agrawal [35].
Their approach is an extension of previous work associated with categorical rule mining.
They advocate partitioning the entire range of values of each quantitative attribute into
a set of ranges, or intervals, which can then be mapped onto a set of integers, effectively
creating categories from the numeric data. These numeric categories are then treated in a
similar manner to standard categorical data. Association rules can be produced amongst
binary, categorical and categorized numeric attributes using algorithms developed solely for
binary and categorical data.

Srikant and Agrawal recognize two problems associated with the partitioning of quan-
titative data. The first problem is that as the number of intervals grows, or equivalently

16

the attribute is more finely partitioned, the support for any single interval may decrease.
This problem can lead to particular rules not being discovered with a fine partitioning be-
cause they lack the necessary support. A coarser partitioning of numeric data will act to
increase support for those intervals that grow in size. As an example, consider the rule
“(Age = 20..26) = (Married = No)” generated from the data displayed in Figure 2, where
the attribute ” Age” is partitioned into the intervals 20..26, 27..30, 30..35, and 36..40. With
this partitioning the above rule has a support of 40%. If, however, the partitioning is made
coarser so that the ”Age” data is aggregated into the two partitions 20..30 and 30..40, then
the above rule would be stated as “(Age = 20..30) = (Married = No)” with a support
of 60%. The aggregation of data into fewer intervals causes the support of these larger
intervals to rise.

The second problem is that as numeric data is partitioned into coarser intervals, infor-
mation is lost and minimum confidence levels may not be attained for certain rules. As an
example, consider the rule “(NumCars = 0) = (Married = No)”, which has 100% confi-
dence if ”NumCars” is partitioned such that each object in the database in Figure 2 is in its
own interval. If, however, the ”NumCars” attribute is partitioned into the two intervals 0..1
and 2..3, the above rule would be stated “(NumCars = 0..1) = (Married = No)” and would
have a confidence of 66%. Here the aggregation of numeric intervals decreases confidence
in a particular rule.

The two problems described above act against each other in such a way that as one is
ameliorated, the other is made worse. In recognizing this “catch-22” situation, Srikant and
Agrawal propose the consideration of all possible continuous ranges over the intervals into
which the numeric data has been partitioned. The partitioning is performed using a “partial
completeness” measure aimed at producing optimal intervals which reduce the amount of
information lost in the partitioning while aggregating enough to maintain support levels.
The authors also utilize a “maximum support parameter” that prevents adjacent intervals
from being combined when support goes beyond this value. This parameter acts to reduce
the exponential growth in redundant rules that could occur by combining intervals that
contain rules that already have the minimum necessary support.

5.2 A Statistical Theory

Aumann and Lindell [4] present an approach to numeric data mining that provides a unique
definition of quantitative association rules, as well as a statistically-based measure of “in-
terest” used in the generation of the rules. Their definition of quantitative association rules
is based on the demonstration of a significant statistical difference in an attribute or set of
attributes between a subset of the population and the remaining elements of that popula-
tion. An example of a rule generated by the method of Aumann and Lindell is: “(Married
= No) = (Age: mean = 26) (overall mean age = 29.8)”. This rule can be interpreted to
mean that the average age of all people in the database who are not married is 26 years,

17

as opposed to all of the people in the database (married and not married), who have an
average age of 29.8 years. (There is some degree of uncertainty as to whether Aumann and
Lindell intend for the ”overall mean age” to actually be the age of all those not contained
in the antecedent, which for this case would be the married population contained in the
database.) Rules of this type provide information regarding a statistical deviation of a
subset of the population represented in the database. It should be noted that while the
statistical measure used in this section will be the mean, any other measure of statistical
distribution can be used to create rules of this type. The measure of “interest” used in
the production and selection of these rules is one of statistically significant deviations in an
attribute(s) of a subgroup.

Algorithms are presented for the production of two distinct types of association rule:
Categorical = Quantitative and Quantitative = Quantitative. A detailed algorithm is
presented for the Quantitative = Quantitative case, which produces rules of the form:
“(NumCars [0, 1]) = (Age: mean = 25.67) (overall mean age = 29.8)”. In this type of
rule the antecedent is always a range of a numeric attribute representing a subgroup and
the consequent represents the statistically “interesting” behavior as a statistical measure
of another, single numeric attribute. The Categorical = Quantitative case produces rules
in which the antecedent is a set of categorical attributes and their particular values, and
the consequent contains the statistically “interesting” measures of one or more numeric
attributes. This algorithm is much less developed in the paper.

Advantages of this statistical approach include the ease with which rules of both types
mentioned above can be understood by an end-user. These rules seem to have a more
intuitive appeal than those produced by the interval approach of Srikant and Agrawal. Also,
this statistical approach apparently produces fewer rules than the interval approach, a major
advantage when the large number of rules produced by typical data mining techniques begs
the question of the utility of these methods.

18

6 Deterministic Implications

All of the preceding approaches to data mining are probabilistic in nature. They yield
statements of the nature “a transaction involving item a and b, often also involve items
c and d” or “any object with attributes a,b and ¢, most likely belongs to category d”.
Frequent sets are used to establish both the support and confidence for such statements.
Discrete, deterministic data mining (or DDDM) seeks deterministic logical implications
that are true independent of frequency. This approach can be applicable in certain kinds of
deterministic, causal environments where we are seeking “cause and effect” associations. It
is totally inappropriate for market basket analysis or other non-deterministic environments.

6.1 Closure Theory

A collection C of subsets of some universe U is a closure system, if for all 51,52 € C,
S1 N Sy # 0 implies S; NSy € C. That is C contains all its intersections. Alternatively,
one can define C by a closure operator ¢ which is monotone, inclusion preserving, and
idempotent. That is, VX, Y C U, X C X.p, X CY implies X.p C Y., and X.p.0o = X.¢.
The correspondence between these two ideas of closure is quite straight forward. Given the
collection C, X.¢ = Nxcy Y € C. And conversely, C consists just of those closed sets Z
where Z.p = Z.

The key aspect of closure theory for data mining lies in the concept of a minimal
generator of a closed set Z, denoted Z.y. This is a minimal set X (by inclusion) whose
closure will be Z. See [24, 26] for background here.

Frequent set analysis yields associations of the form

ab — abcde.
We have maximal information content when ab is minimal and abcde is maximal. This will
occur if the consequent abcde is closed and its antecedent ab is its generator. This is one
way that closure theory has entered into the mainstream of data mining.

6.2 Formal Concept Analysis

Concept lattices and formal concept analysis, as developed by Ganter and Wille in [11],
have gotten a lot more play in data mining than closure theory. For example, it is central in
papers by Godin, Missaoui, and Zaki [13, 14, 38]. Yet, it appears that much of the formal
machinery is quite unnecessary. A major reason for involving concept lattices is to reduce
the huge number of rules that apriori, frequent set data mining yields. For this, we suspect
the concept of closed sets and their generators is sufficient.

Nevertheless, formal concept analysis does provide a mechanism for generating closed
sets and their generators that can be interpreted as discrete logical implications. For exam-
ple, Figure 3 shows the concept lattice that would be generated by the relation of Figure 1.

19

But, as seen this figure, formal concept lattices by themselves do not indicate the generators

abcdefghi
\Oacghi
A abedf acde
abcdef ghi

1 [XX X

2 | X|X XX

3 [X[X[x X[agc
o 4 IX[Ix XX |x 36

5 | X|X X X

6 | X|X|X|X X

7 | X XXX

8 | X XX

12345678

(b)
Figure 3: The formal concept lattice £ generated by the relation of Figure 1

of their closed sets.

We have written code that finds all closed sets and their generators using an algorithm
similar to that in [12]. It is slow! A more powerful way is to use the faces of the closed sets
to determine the generators according to the following theorem found in [26].

Theorem 6.1 Let Z be closed and let Z.I' = {Z.y;} be its family of minimal generators.
Then Z covers X in L iff Z — X is a minimal blocker of Z.I'.

Using either method to determine the generators, we illustrate the generators of some
of the closed sets of Figure 3 in Figure 4.

6.3 The Taylor/Pfaltz Algorithm

A capability missing in almost all frequent set data mining algorithms is the ability to
continuously update R, that is treat R as a stream of tuples. Because apriori, and similar
algorithms, must make more than one sweep over R, it must be fixed.! But, as Godin and
Missaoui have shown, incremental creation and update of concept lattices is much faster
[13, 14]. The problem is that their approach to incremental update does not update the
generators as well. In [27] Theorem 6.1 is used to determine the generators of each closed
set based on the faces of (sets covered by) the set.

!A major problem is that as more data is read, attribute combinations that originally passed the
“min_sup” test may fail in the expanded data set — and vice versa. This creates non-trivial problems.

20

be bi dg dh di ef eg eh ei fg fh fi
\ \

_— =
bed bef Y o ® abcdefghi bc bch acgl achi aghi cghl
N N

N

™~ - -

| Y N
abed abcf ace ade cde
~ o /

bd bt abedf acde

™

abd cdf abf \
h / acd O\GS /
678 123

12345678

Figure 4: The concept lattice £ of Figure 3 with some generators indicated.

The basic approach treats the attributes of each new row, tuple, or observation, as a
closed set Y, which is either already in the lattice £ or not. If it is new, there is some
closed set Z that covers it in £. Y is then inserted under Z, thereby creating a new face
of Z and forcing the update of the generators of Z. This is embodied in a process called
UPDATE_GENERATORS, which given a “new” closed set new_c updates the generators of the
closed set cov_c immediately covering it in the lattice L.

But, because L is a lattice of closed sets, any non-empty intersection Y N X, X € L
must also be in the lattice. Each such non-empty intersection must then be recursively
entered into £. Consequently UPDATE_GENERATORS is actually a subprocess of the driver
routine INSERT_CLOSED_SET which given a new closed concept Y, inserts it in the lattice L,
updates the generators of the set Z that covers Y, then determines the closed sets that it
covers, that is its non-empty intersections with sibling sets (or concepts). Those non-empty
intersections which are not already in £ are recursively entered. Pseudo-code for both these
procedures is given in Appendix A.

Experiments with various data sets have shown (a) that updates are “local”, in the
sense that they are confined to a relatively small portion of the lattice [25, 28]; (b) that the
number of closed concepts is typically one to two orders of magnitude fewer than frequent
sets [39]; (c) that extraction of specific rules of interest is fairly straight forward [28]; and
(d) that the current implementation is relatively slow. Clearly, an improved implementation
of this process is needed.

21

6.4 Output from MUSHROOM Data Set

We exercised these procedures on the MUSHROOM data set (Section 9.2), because the prop-
erties of plant life tend to be deterministic. As described in that section, there were 3,773
deterministic rules generated. The most interesting rules tend to be those with only one or
two antecedent attributes, because they are the easiest to apply. Those rules with only a
single antecedent attribute are given in Figure 10.

Because of a natural desire to avoid poisonous mushrooms, we extracted in a categorical
search all those rules with pO in the consequent. This is categorical data mining like that
described in Section 2.5. Those with pO in the antecedent are clearly uninteresting, as are
those whose antecedents contained one of the unique generators of p0 as shown in Figure 10.
These are easily filtered out. Finally, in Figure 11 we illustrate only those rules consisting
of two attribute antecedents which denote poisonous mushrooms.

Similarly, in Figure 12, we display the same kind of rules that imply edible mushrooms.
Figures 10, 11 and 12 can be found in Section 9.2.

22

7 Key Papers and Players

There is an immense body of literature about data mining; but surprisingly few actually
describe data mining processes in sufficient detail to be able to replicate them and thus
evaluate their performance. Although it has some rather idiosyncratic notation to over
come, we have found that the book “Data Mining for Association Rules and Sequential
Patterns” [1] by Jean-Mark Adamo is well worth reading. It lays out is considerable detail
ordered search in an attribute space, followed by the aprior: algorithm and a few of its
variations.

To investigate in a quantitative way the key players and important publications in data
mining we used the web-based citation database system called ResearchIndex [18]. Re-
searchIndex was queried for the top 25 papers with “data mining” in the bibliography entry
and sorted by the number of times the publication had been cited by other publications.
This is by no means meant as the most correct or only measure of the importance of an
author or publication, but, it is however an easily obtainable quantitative measure of the
impact of a researcher’s work on the community. One limitation to this result is that al-
though the ResearchIndex database is large, is not complete and hence may be missing some
important work. With this in mind, it is the intention of this list is to provide a starting
point for a new researcher to learn about publications and authors that are frequently cited.

7.1 Important Players

The following Table 1 is a list of all authors that published more then one paper that was
listed in the top 25 by number of citations in ResearchIndex:

number of

Author | publications cited
Rakesh Agrawal 4

Usama Fayyad
Heikki Mannila
Jiawei Han
Gregory Piatetsky-Shapiro
Padhraic Smyth
Hannu Toivonen

Peter Cheeseman
Marcel Holsheimer
Manish Mehta
Inkeri Verkamo

N DN DN DNDWWWW s &~

Table 1: Most frequently cited authors and publications

23

7.2 Author Biographies
e Rakesh Agrawal

From author’s website: “Rakesh Agrawal is the Project Leader and Manager of the
Quest project on Data Mining and Decision Support Technologies at the IBM Al-
maden Research Center, San Jose, California. IBM is making the Quest technologies
commercially available through its data mining product, IBM Intelligent Miner.” [2]

e Usama Fayyad

From digiMine website: “Dr. Fayyad is a co-founder of digiMine and has served as
President and CEQO since the company’s inception in March 2000.

Prior to digiMine, Dr. Fayyad founded and led the Data Mining & Exploration
(DMX) Group at Microsoft Research from 1996 to 2000. His work there included
the invention and development of scalable algorithms for mining large databases and
customizing them for server products such as Microsoft SQL Server and OLAP Ser-
vices. These components shipped in Microsoft SQL Server 2000 as part of the new
industry standard in data mining, Microsoft’s OLE DB API, which Dr. Fayyad also
helped establish and promote. He also led the development of predictive data mining
components for Microsoft Site Server (Commerce Server 3.0 and 4.0).

From 1989 to 1995, Dr. Fayyad founded and headed the Machine Learning Systems
Group at the Jet Propulsion Laboratory (JPL), California Institute of Technology,
leading the development of data mining systems for the analysis of large scientific
databases. During that time he received the most distinguished excellence award
from Cal Tech/JPL and a U.S. Government Medal from NASA. He remains affiliated
with JPL as Distinguished Visiting Scientist after joining Microsoft.” 8]

e Jiawei Han

From author’s website: “Jiawei Han, Professor of the School of Computing Science
and Director of Database Systems Research Laboratory, Simon Fraser University,
Canada. He obtained his Ph.D. in Computer Sciences at the University of Wisconsin
- Madison in 1985. Prior to joining SFU, he was an assistant professor in Northwestern
University from 1986 to 1987. He has conducted research in the areas of data mining
(knowledge discovery in databases), data warehousing, spatial databases, multimedia
databases, deductive and object-oriented databases, and logic programming, with over
100 journal and conference publications. He is known for his work on data mining and
has been invited to give talks or tutorials in international conferences, universities, and
industry firms in many countries. His research has been supported by Natural Sciences
and Engineering Research Council (NSERC) of Canada (1988—present), Network of
Centres of Excellence of Canada (IRIS-3 Project Leader for the project “Building,

24

Querying, Analyzing, and Mining Data Warehouses on the Internet”, 1998-2002), IBM
Canada, HP Lab, B.C. Science Council, B.C. Advanced Systems Institute, Seagate
Software, and some other funding agencies.” [15]

Padhraic Smyth

Padhraic Smyth is an Associate Professor at University of California, Irvine. [34]

Hannu Toivonen

Hannu Toivonen is a PhD, Professor of Computer Science University of Helsinki and
a Principal Scientist Nokia Research Center, Helsinki. His research interests include
knowledge discovery, data mining, computational methods for data analysis, analy-
sis of scientific data, with applications in genetics, ecology, telecommunications, and
information systems.[36]

Peter Cheeseman

From author’s website: “Peter Cheeseman is a senior research scientist [at NASA Ames
Research Center|, whose specialization is in Artificial Intelligence, and Bayesian Infer-
ence Methods. He received his B.S. degree in Physics and Mathematics with honors
from Melbourne University (Australia) in 1971, his M.Phil. in Applied Mathematics
from Waikato University (New Zealand) in 1973, and his Ph.D. degree in Artificial
Intelligence from Monash University (Australia) in 1979. His Ph.D thesis title was “A
Problem Solving System with Learning”. Dr. Cheeseman was a lecturer in Computer
Science at the University of Technology, Sydney, Australia from 1978 to 1981. From
1981 to 1985, Peter performed research at SRI International in the areas of production
planning, probabilistic methods for combining information, induction of probabilistic
rules from data, development of a representation and procedure for spatial uncertainty
estimation, and development of an information theoretic version of Bayesian estima-
tion and its applications. In 1985 Peter began research at NASA Ames Research
Center in the Artificial Intelligence Research Branch. He now manages a small group
(4-6 people) who apply Bayesian inference methods to data analysis problems. This
research has concentrated on the development of a practical general purpose auto-
matic classification system, whose implementations are: AutoClass III; AutoClass X;
and AutoClass C.” [6]

Inkeri Verkamo

Inkeri Verkamo is a Ph.D., Docent, Senior Lecturer, Industry Professor (acting) at
University of Helsinki / Nokia Research Center. His research include “software per-
formance (including building metrics tools for software architectures in the MAISA
project), software engineering (including building interfaces between software devel-

25

opment environments in the VITAL project), data mining (including developing a
Knowledge Extraction System for Statistical Offices in the KESO project)” [37]

No biographies were readily available for the following: Heikki Mannila, Gregory Piatetsky-
Shapiro, Marcel Holsheimer (appears to be the founder of Data Distilleries but no further
information available) and Manish Mehta

7.3 Important Publications

The top 10 publications sorted by number of citations in ResearchIndex on May 01, 2002:

351 citations: U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.
Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge, MA,
1996.

253 citations: R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and I. Verkamo, “Fast
Discovery of Association Rules,” in Advances in Knowledge Discovery and Data Min-
ing, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAT/MIT
Press, 1995.

251 citations: J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In
Proc. of the 12th ICDE, pages 152-159, New Orleans, February 1996. IEEE.

184 citations: U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to
Knowledge Discovery: An Overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusuamy, editors, Advances in Knowlede Discovery and Data Mining,
chapter 1, pages 1-34, AAAT/MIT Press, Cambridge, MA, 1996.

173 citations: R.T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Proc. VLDB, pages 144-155, 1994.

115 citations: M. Ester, M.-P. Kriegel, J. Sander, and X. Xu (1996), “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, Proceed-

ings of the 2nd International Conference on Knowledge Discovery and Data Mining,
2-4 August, 1996, Portland, Oregon, 226-231.

108 citations: H. Mannila, H. Toivonen, A.I. Verkamo, “Discovering frequent episodes in
sequences,” Proc. KDD Conf., 1995.

103 citations: R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data for data mining application. Proc. ACM
SIGMOD, 1998.

26

97 citations: M. Mehta J. Shafer, R. Agrawal. Sprint: A scalable parallel classifier for
data mining. In Proceedings of the 22nd VLDB Conference, 1996.

92 citations: P. Cheeseman and J. Stutz. Bayesian classification (AUTOCLASS): Theory
and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining. 1995.

27

8 Performance Issues

The process of data mining can be a very expensive task. Indeed, the data we are mining
is usually orders of magnitude larger than anything which a human being can comprehend.
In such circumstances, even an algorithm with quadratic complexity can be too expensive.
Consequently, we usually seek algorithms with linear or log-linear complexity to perform
our data mining tasks. However, this is another area where the intention of the data miner
is crucial.

Information theory tells us that there is a certain limit to which a particular large body
of data can be condensed without incurring loss of information. This limit is the entropy or
information content of the data. Even if we could in practice reach this theoretical limit of
compression, more often than not the resulting size of the data would still be far too large
for a human being to examine. Hence, the effective mining of large data sets must permit
and live with loss of information. The particular way this choice is handled can have a large
impact on data mining performance.

The most commonly used approach to this issue is to set a frequency threshold and mine
only rules which have a frequency of occurrence above this threshold. Such an approach
arises out of the belief that if we must sacrifice some understanding of the domain, it would
be best to sacrifice understanding of the least frequently occurring aspects. Indeed, this is
the very approach that data mining was initially married to and is lovingly referred to as
statistical data mining.

Recently, however, there has been interest in mining some of the less frequent aspects of
a data set. Certain things, such as the threat of a terrorist attack or the existence of a rare
breed of poisonous mushroom, seem worthy of our attention even if they occur only once
and are buried inside of a large body of data. However, to mine such infrequent patterns
places a large burden on the performance of traditional statistical data mining techniques.
To address this issue, a number of data mining algorithms which are not statistical in nature
are needed. But this then begs the question of where and how do we permit the necessary
data loss to perform effective data mining if we want to mine the infrequent rules from a
data set.

One approach that shows some promise is the use of closed sets. But closed sets by
themselves do not afford such loss of information as is necessary and indeed on certain data
sets could actually cause an increase in size. The notion of closed sets have also been used
in tandem with the notion of frequent sets. This approach, pioneered by Pasquier, et al.
[22] and by Zaki [38] is based on concept lattices and formal concept analysis which we
discussed in Section 6.2.

28

8.1 Scalability

In light of the above discussion of the enormity of the data sets with which we work,
the scalability of an algorithm is essential to its successful application in the data mining
domain. There are two essential issues with regard to the ability of an algorithm to scale
well as the data size increases. The first regards the complexity of the algorithm used (e.g. is
it linear in the input, log-linear, quadratic, etc.). The second issue is whether the algorithm
can break up the data, process the smaller chunks more efficiently, then merge the results.
This issue essentially leads to the notion of parallelizing the processing of the chunks and
can lead to enormous gains in efficiency if the needed hardware is available.

As discussed in Section 6.2, through the use of concept lattice theory and the notion of
generators, we can extract all valid logical implications from a data set. Consequently, I
will use this theory as a vehicle for discussing the complexity of rule extraction.

First we note that the rule extraction problem has worst-case exponential complexity
(in the size of the given relation). Our relations are given by a set of rows and columns.
Each row is an observation or object and the columns represent attributes or properties.
The fact that the rule extraction problem has exponential complexity follows from the fact
that the number of rules present in a data set can be exponential in the size of the relation
for certain data sets. So if we are speaking of extracting all of the valid rules from a data
set, then any algorithm must necessarily perform an exponential amount of work on such
data sets because it must produce an exponential amount of output. This is a typical worst
case argument to show that a problem has exponential complexity, yet it does not mean
that an algorithm will always perform exponentially. It means simply that any algorithm
that solves this problem can have no better than exponential complexity because there are
some data sets for which an exponential amount of work is required.

This is best illustrated by an example. We will take as our example the simplest type of
relation available, a binary relation. Consider the relation shown in Figure 5. The presence

a b ¢ d
J X XX
2| X X | X
IIX|X X

4IX[X|X

Figure 5: A complete binary relation with the diagonal removed.

of an X in the figure indicates that the corresponding row has the corresponding attribute.
For example, row 1 has attributes b, ¢, and d. You will readily notice that the relation given

29

is simply the complete relation with the diagonal removed. This relation gives rise to the
maximal number of concepts possible when the concept lattice is generated. Every member
of the power set of A (the attribute set) is a closed set, and hence a concept. Indeed, it can
be shown that for any sets O and A there exists a binary relation R(O,A) that gives rise
to min(an’"d(O), 2°a’"d(A)) concepts. This produces a number of concepts exponential in the
size of the relation.

Now that we have come to terms with the fact that mining all of the valid rules from
a data set is an exponential problem, we can see why this presents such an issue for data
miners. If we are working with data sets so huge that even quadratic performance may be
unacceptable, then certainly exponential performance won’t do. So once again the issue
arises that we must sacrifice some understanding. We can not extract and present all of the
valid rules that a relation gives rise to so we must be more selective. This is the justification
for moving towards the area of heuristic methods. The complexity of a heuristic method
is almost entirely dependent on the heurism employed so we will not say more about such
complexity. But before we do leave the issue of complexity, it is worthwhile considering the
rate at which concepts are produced in an example. Though we have said that the number
of concepts produced from a relation can be exponential, in practice we may not encounter
such complexity.

In Figure 6 we have plotted the total number of concepts generated after adding each
row of the MUSHROOM relation (discussed in Section 9.2). In Figure 7 we have plotted the

120000

100000

60000

40000 /
20000

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmm

total concepts

row added

Figure 6: The total number of concepts for the MUSHROOM relation after adding each row.

30

number of concepts added for each row in the same relation. The plots in figures 6 and 7

800

800

00

600

S5
=
o

400

added concepts

300

200 "

100 - | ‘| || MI

peck T s e e o S ot

row added

9
27
2128
2241
2353
24E5
2677
2633
2801
2913
3025
337
3248
3361
373
3585
3897
3809
3921

Figure 7: The number of concepts added for the MUSHROOM relation after adding each row.

are given for the first 4000 rows of the mushroom relation in which 86 distinct attributes
are encountered. Figure 6 seems to indicate that the total number of concepts increases
linearly as we add rows to the relation.

In Figure 7 we can see that the number of concepts added for each row is quite erratic.
Most of the rows add under 100 concepts. However there are various spikes scattered
about, some reaching as high as 600 to 800 concepts added. We have noticed that a great
majority of these spikes correspond to a row in which we first encounter a new attribute.
For example, the highest spike of 776, encountered upon adding row 633, corresponds to

31

such a new attribute. That is, in row 633 there is an attribute which does not appear in
any of the preceding rows of the relation.

It is not difficult to explain why encountering a new attribute can lead to such an
explosion of concepts added. The algorithm presented in [27] for inserting a closed set into
the lattice recurses whenever the intersection of a sibling concept with the closed set is
non-empty. However, if this non-empty intersection is already in the lattice, no further
work will be done. The insertion of a closed set (row) which contains a previously unseen
attribute may exercise this recursion greatly. This is due to the fact that such a closed set
must necessarily be inserted at the top of the lattice (directly under the lattice supremum).
All of the concepts inserted as a result must reside below the new concept. This leaves the
entire lattice open to new insertions.

It is quite remarkable that such an erratic seeming process as pictured in Figure 7 can
somehow lead to such a smooth overall effect as seen in Figure 6. But this is what we have
observed and it seems that many data sets exhibit a more linear relationship between total
concepts and rows added. However, the worst-case exponential relationship should not be
forgotten. Indeed, Figure 8 shows the same relationship between total concepts and rows
added but for a randomly generated relation consisting of 40 distinct attributes. This figure

2000

1800

1600

1400

1200

1000

total concepts

800

600

400

200

mmmmmmmmmmmmmmmmmmmmmmmm

row added

Figure 8: The total number of concepts for a random relation after adding each row.

exhibits a much more exponential relationship than that of the MUSHROOM data.
This is not an accidental phenomenon it seems. In a sense, the growth of total concepts
as rows are added is reflective of the cohesion of the relation. Indeed, if we look at the

32

extremes we can get an intuitive idea for why this might be so. If the relation is entirely
uniform (i.e. all rows are the same) then there will be only one concept. This is the minimal
number of concepts that can be present in the lattice. On the other hand, if the relation
is perfectly uniformly random (i.e. every member of the power set of A is equally likely to
appear) then we would expect the concept lattice to approach a complete lattice quickly.
This remains to be seen.

The issue of complexity has been discussed for closed sets in order to gain some under-
standing of the complexity of data mining. The complexity with which the closed sets grow
as rows are added to the relation is a good approximation for the complexity with which the
number of rules generated grows. However, this only addresses rules of 100% confidence.
If we lower our confidence floor to consider rules which may not always be true but are
true often enough, then we will obviously get a superset of the rules we get with 100%
confidence. Hence the above discussion still applies as a lower bound on the complexity of
the rule mining problem.

33

9 Links to Resources

9.1 Data Sets

One of the most valuable resources is the UCI Data Repository [5] which is accessible at:
http://wwwl.ics.uci.edu/ "mlearn/MLRepository.html

This repository contains over 123 data sets of various sizes and compositions. It is the
source of the MUSHROOM data set which we used extensively in our exploration, and which
is described more fully below.

Several databases from the “Wisconsin Breast Cancer Database” are available at:

ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn
or linked from Olvi Mangasarian’s site at University of Wisconsin’s Department of Computer
Science:
http://www.cs.wisc.edu/"olvi

These datasets contain tumor characteristics, including benign or malignant, obtained from
fine needle aspirates. They been used in several pattern recognition and linear programming
studies.

In performance evaluation, a significant body of data mining literature used the C++
synthetic workload generator available from IBM:

http://www.almaden.ibm.com/cs/quest/DEMOS.html

It might deserve some review considering its popularity. However, note that synthetic
workloads may not capture all natures of real workloads. In [40], Zheng et al. compared
the performance of well known algorithms, i.e., apriori, Charm, F P-growth, Closet, and
MagnumOpus, using both synthetic and real workloads such as retail and e-commerce
transactions. For fair comparisons, they also acquired the corresponding software from the
original authors. Zheng et al. claim these retail and e-commerce data are available in the
public domain. Interested readers may contact the authors.

9.2 The Mushroom Database

Several sections refer to the MUSHROOM data set found in this UCI Data Repository. This
data set consists of 8,124 records describing various kinds of mushrooms as found in the
“The Audubon Society Field Guide to North American Mushrooms” [19] has been used in
many data mining studies.

Each record consists of 22 attributes, all of which have nominal values. Because each of
these attributes can have multiple values, the number of binary attributes is effectively over
100. Consequently, for many of our studies we used only the first 9 attributes which are
enumerated in Figure 9. These were converted to binary attributes by appending to letter
“values” on the right, the attribute number on the left. Thus, for example, a mushroom
with attributes g2 and p5 has a “grooved cap surface” and a “pungent odor”. A single
mushroom will exhibit precisely 9 of these 42 possible binary attributes. The first two rows

34

Attr-0 edibility: e=edible, p=poisonous

attr-1 cap shape: b=bell, c=conical, f=flat, k=knobed, s=sunken, x=convex

attr-2 cap surface: f=fibrous, g=grooved, s=smooth, y=scaly

attr-3 cap color: b=buff, c=cinnamon, e=red, g=gray, n=brown, p=pink, r=green,
u=pur ple, w=white, y=yellow

attr-4 bruises?: t=bruises, f=doesn’t bruise

attr-5 odor: a=almond, c=creosote, f=foul, |I=anise, m=musty, n=none,

p=pungent, s=spicy, y=fishy
attr-6 gill attachment: a=attached, d=descending, f=free, n=notched
attr-7 gill spacing: c=close, d=distant, w=crowded
attr-8 gill size: b=broad, n=narrow

Figure 9: The first 9 attributes of the MUSHROOM data set, with values.

of this reduced data set are
pO x1 s2 n3 t4 p5 £6 c7 n8
e0 x1 82 y3 t4 ab f6 c7 b8

Readily, the attributes e0 (edible) and pO (poisonous) are of considerable interest. Many
of the data mining experiments of the literature have treated this data set as categorical
data mining, that is discovering which of the other attributes can be used to assign a specific
mushroom to one of these two categories.

Frequent set data mining using apriori yields 25,210 rules when we set min_sup = 1%
and min_conf = 90%. The discrete data mining technique described in Section 6 yields
2,641 concepts. But since some concepts have several generators, this translates into 3,773
distinct rules. We observe the nearly 10-fold reduction described by Zaki [38].

To provide some sense of this data set we list in Figure 10 those rules A = B which have
a singleton attribute for A. We have added the concept number to the left to indicate where
this rule was uncovered in the discrete data mining process (Section 6) and its support to
indicate the min_sup necessary to consider it frequent (Section 2.1). If o = 1%, min_sup =
81.

The discrete data mining of Section 6 describes how other implications can be obtained
from this data set in Section 6.4. Figure 11 illustrates those non-trivial implications A = B
for which |A| = 2 and p0 € B. Again recall that if 0 = 1%, min_sup = 81, so only one of
these rules would have been discovered by frequent set analysis.

Figure 12 illustrates the same kind of non-trivial implication, but with e0 € B.

9.3 Open Source Code

An open source apriori implementation is available at:
http://fuzzy.cs.uni-magdeburg.de/ "borgelt/software.html
This a very efficient implementation using C, which was the fastest among several tested

35

CONCEPT | MPLI CATI ON SUPPORT

60 w3 -> f6 1040
105 t4 -> f6 3376
109 n8 -> f6 2512
117 a5 -> e0, t4, f6 400
144 15 -> e0, t4, f6 400
313 s1 -> e0, f2, f4, n5, f6, c7, n8 32
5566 f2 -> f6 2320
604 w7 -> f6 1312
668 c¢5 -> pO, x1, f4, f6, n8 192
720 y3 -> f6 1072
898 b3 -> t4, f6, c7, b8 168
924 f5 -> p0, f6, c7 2160
1007 p3 -> f6 144
1081 u3 -> e0, y2, f4, n5, f6, c7, n8 16
1401 g2 -> p0O, w3, t4, n5, f6, w7/, n8 4
1553 r3 -> €0, y2, f4, n5, f6, c7, n8 16
1597 s5 -> pO, f4, f6, c7, n8 576
1687 y5 -> poO, f4, f6, c7, n8 576
2019 a6 -> f4, c7, b8 210
2022 nb -> pO, y2, f4, c7, b8 36
2162 e3 -> c7 1500
2562 cl1 -> p0, n5 f6, w/, n8 4

Figure 10: All implications in MUSHROOM with a single antecedent.

implementations of apriori available in the public domain.
Open source code for analyzing the MUSHROOM database using neural networks and
genetic algorithms can be found at:
http://www.cs.virginia.edu/"abh2n/mushroom.html
This source code is implemented using Matlab, but is basic enough that it should not be
difficult to rewrite in C or LISP.

36

CONCEPT | MPLI CATI ON SUPPORT

666 p3, w7/ -> p0, x1, f4, c5, f6 32
667 p3, f4 -> p0, x1, c5, 6, n8 64
667 p3, n8 -> p0, x1, f4, c5, f6 64
696 f2, p3 -> pO, x1, f4, c5, f6, n8 32
1184 bli, n8 -> p0, n5 f6 12
1495 bl, b3 -> p0, t4, n5 {6, c7, b8 12
1567 bi, p3 -> p0, t4, n5 f6, c7, b8 12
2081 y3, n5 -> p0, f4, f6, n8 24
2177 e3, f4 -> p0, c7 876

2181 y2, a6 -> p0, f4, nb, c7, b8

2372 c3, a6 -> pO, y2, f4, nb, c7, b8
2470 e3, a6 -> p0O, y2, f4, nb, c7, b8
2561 cl, y3 -> pO0, y2, f4, n5, f6, w7/, n8
2561 cl, f4 -> pO, y2, y3, n5 f6, w/, n8
2563 cl, y2 -> p0, n5 f6, wr/, n8

'—\
WNNOOO O

Figure 11: Rules with two attribute antecedents that denote poisonous mushrooms.

CONCEPT | MPLI CATI ON SUPPORT

61 w7, b8 -> €0, f4, n5, f6 1056
119 y3, t4 -> e0, f6 400
131 s2, y3 -> e0, t4, 6 152
452 f2, t4 -> e0, 6 912
586 f2, e3 -> e0, t4, n5, f6, c7 288
1015 x1, r3 -> e0, y2, f4, n5 f6, c7, n8 8
1261 ki, b3 -> e0, t4, n5, f6, c7, b8 16
1347 f2, ¢c3 -> e0, f4, n5 f6, w/, n8 12
1944 bl, g3 -> e0, f4, n5 f6, w7, b8 48
1966 ki, g3 -> e0, f4, nb, f6, w7, b8 48
2342 s2, ¢c3 -> e0, t4, nb, f6, c7, b8 4
2343 c3, t4 -> e0, nb, f6, c7, b8 8

Figure 12: Rules with two attribute antecedents that denote edible mushrooms.

10 Open Problems

10.1 Negative Information

In a binary relation, it is customary to indicate those attributes which are present. But,
sometimes the absence of an attribute is itself an important characteristic. This is particu-
larly true in the kind of categorization process found in Section 2.5.

In theory, if the rules discovered by the data mining procedure are deterministic, as
in Section 6, then one should be able to involve the negation of attributes through logical
manipulation. But, the underlying rule based nature of data mining makes this difficult, at

37

best. Suppose we want to derive a rule such as —a — bc. This is easily transformed into
aVbe, oraV(bAc). But, now it is not clear how to transform either of these expression
back into an implicative rule involving a (not negated).

Readily this problem is compounded when the implication is only probabilistic.

So, the usual solution is to simply add another attribute, —a, to the base data relation R.
This can effectively double the number of attributes; and since most procedures appear to
be ezponential in the number of attributes, it is prohibitive. (Can we justify this assertion?)

10.2 Numeric Attributes

As observed in Section 1, many relations R are numeric, not binary. This is particularly true
of scientific relations which record measurements. Figure 2 in Section 5 is representative.
The two methods presented in Section 5 represent only the first steps in the development
of ideas for the efficient and productive mining of quantitative association rules.

10.3 Rule Reduction

As discussed in Section 2, the number of rules generated can frequently be prohibitive with
respect to human interpretation. Therefore, additional methods are required to reduce these
rules to a manageable level. Although work towards this goal was presented in Section 2.5,
it is our belief that a more objective technique can and should be developed. We feel that
this technique should use some form of information content as a criteria, perhaps using
maximal relative entropy reduction as a guideline.

38

References

[1]
[2]
(3]
[4]

(8]
[9]
[10]

[20]

Jean-Mark Adamo. Data Mining for Association Rules and Sequential Patterns. Springer Verlag, New
York, 2000.

Rakesh Agrawal. Rakesh Agrawals’s short biography. http://www.almaden.ibm.com/u/ragrawal /bio.html,
2002.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Association Rules between Sets of Items
in Large Databases . In Proc. 1993 ACM SIGMOD Conf., pages 207-216, Washington, DC, May 1993.

Yonaton Aumann and Yehuda Lindell. A Statistical Theory for Quantitative Association Rules. In 5th
ACM SIGKDD Conf. on Knowledge Discovery and Datamining, pages 261-270, San Diego, CA, Aug.
1999.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

Peter Cheeseman. Peter Cheeseman’s homepage. http://ic.arc.nasa.gov/ic/projects/bayes-
group/people/cheeseman/, 2002.

Jose’ Costa and Marcio Netto. Clustering of Complex Shaped Data Sets via Kohonen Maps and
Mathematical Morphology. In B. Dasarathy, editor, Proc. of the SPIE, Data Mining and Knowledge
Discovery: Theory, Tools, and Technology, volume 4384, 2001.

digiMine. About digiMine. http://www.digimine.com/about/fayyad.asp, 2002.
I. Duntsch. A logic for rough sets. Theoretical Computer Science, 179:427-436, 1997.

Saso Dzeroski. Data Mining in a Nutshell. In Saso Dzeroski and Nada Lavrac, editors, Relational Data
Mining. Springer Verlag, 2001.

Bernard Ganter and Rudolf Wille. Formal Concept Analysis - Mathematical Foundations. Springer
Verlag, Heidelberg, 1999.

Bernhard Ganter and Klaus Reuter. Finding All Closed Sets: A General Approach. Order, 8(3):283-290,
1991.

Robert Godin and Rokia Missaoui. An incremental concept formation approach for learning from
databases. In Theoretical Comp. Sci., volume 133, pages 387—419, 1994.

Robert Godin, Rokia Missaoui, and Hassan Alaoui. Incremental Concept Formation Algorithms Based
on Galois (Concept) Lattices. Computational Intelligence, 11(2):246-267, 1995.

Jiawei Han. Jiawei Han - current research. http://www.cs.sfu.ca/ han/research.html, 2002.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate Generation. In
W. Chen, J. Naughton, and P. Bernstein, editors, Proc. of 2000 SIGMOD Conf. on Management of
Data, volume 29, pages 1-12, Dallas, TX, June 2000.

X. Hu and N. Cercone. Rough Set Similarity Based Learning from Databases. In Proc. of The first
International Conference on Knowledge Discovery and Data Mining, pages 162-167, 1995.

Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and Autonomous Citation Indexing.
IEEE Computer, 32(6):67-71, 1999.

G. H. Lincoff. The Audubon Society Field Guide to North American Mushrooms. Alfred A. Knopf, New
York, 1981.

Carlos Ordonez, Edward Omiecinski, Levien de Braal, Cesar A. Santana, Norberto Ezquerra, Jose A.
Taboada, David Cooke, Elizabeth Krawczynska, and Ernst V. Garcia. Mining Constrained Association
Rules to Predict Heart Disease. In IEEFE International Conf. on Data Mining, ICDM, pages 433-440,
2001.

39

21]
[22]
23]
[24]
[25]
[26]

[27]

28]
[29]

(30]
(31]
32]
[33]

[34]

(35]

[36]
[37]
(38]

(39]

[40]

[41]

E. Orlowska and Z. Pawlak. Representation of nondeterministic information. Theoretical Comptuer
Science, 29:27-39, 1987.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lofti Lakhal. Discovering Frequent Closed Itemsets
for Association Rules. In Proc. 7th International Conf. on Database Theory (ICDT), pages 398-416,
Jan. 1999.

Z. Pawlak. Rough Sets. Internat. J. Comput. Inform. Sct., 1:341-356, 1982.
John L. Pfaltz. Closure Lattices. Discrete Mathematics, 154:217-236, 1996.

John L. Pfaltz. Transformations of Concept Graphs: An Approach to Empirical Induction . In 2nd
International Workshop on Graph Transformation and Visual Modeling Techniques, pages 320-326,
Crete, Greece, July 2001. Satellite Workshop of ICALP 2001.

John L. Pfaltz and Robert E. Jamison. Closure Systems and their Structure. Information Sciences,
139:275-286, 2001.

John L. Pfaltz and Christopher M. Taylor. Concept Lattices as a Scientific Knowledge Discovery
Technique. In 2nd SIAM International Conference on Data Mining, pages 65—74, Arlington, VA, Apr.
2002.

John L. Pfaltz and Christopher M. Taylor. Uncovering Logical Implications in Scientific Databases
through Empirical Induction. In ACM SIGMOD Conference, page (in review), Madison, WI, 2002.

L. Polkowski and A. Skowron. Rough mereology: a new paradigm for approximate reasoning. Interna-
tional Journal of Approxzimate Reasoning., 15:333-365, 1996.

C. Rauszer. Reducts in information systems. Foundamenta Informaticae, 15:1-12, 1991.
Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.
G. Shafer. A Mathematical Theory of Evidence. Princeton Univ. Press, 1976.

A. Skowron and J. W. Grzymala-Busse. From rough set theory to evidence theory. In Advances in the
Dempster-Shafer Theory of Evidence, pages 193-236. 1993.

Padhraic Smyth. Padhraic Smyth. http://www.ics.uci.edu/ smyth/, 2002.

Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Association Rules in Large Relational
Tables . In Proc. of 1996 SIGMOD Conference on Management of Data, pages 1-12, Montreal, Quebec,
June 1996.

Hannu Toivonen. Hannu T.T. Toivonen. http://www.cs.helsinki.fi/u/htoivone/, 2002.
Inkeri Verkamo. Inkeri Verkamo. http://www.cs.helsinki.fi/u/verkamo/, 2002.

Mohammed J. Zaki. Generating Non-Redundant Association Rules. In 6th ACM SIGKDD Intern’l
Conf. on Knowledge Discovery and Data Mining, pages 34-43, Boston, MA, Aug. 2000.

Mohammed J. Zaki and Ching-Jui Hsiao. CHARM: An Efficient Algorithm for Closed Association Rule
Mining. In Robert Grossman, editor, 2nd SIAM International Conf. on Data Mining, pages 457-473,
Arlington, VA, April 2002.

Zijian Zheng, Ron Kohavi, and Llew Mason. Real World Performance of Association Rule Algorithms.
In Foster Provost and Ramakrishnan Srikant, editors, Proceedings of the Seventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages 401-406, 2001.

W. Ziarko. Variable precision rough set model. Journal of Computer and System Science., 46, 1993.

40

A Pseudo Code

void update_generators(concept cov_c, concept new.c)
// "cov_c" will cover the new concept '"new._c"
// update cov_c.gens to reflect the face
// cov_c.atts - new.c.atts
{
element elem;
set face, gsup;
col new GEN, keep_GEN, diff GEN;
int keep;

face = cov.c.atts - new_c.atts;
new_GEN = EMPTY_COL;
for each gen_set in cov_c.gens
if ((gen_set INTERSECT face) != EMPTY_SET)
add_to_col(gen set, new GEN);

keep_GEN = new_GEN;
diff GEN = cov_c.gens - keep_GEN;
for each gen_set in diff GEN

{

for each elem in face

{

keep

1;
gsup = gen_set UNION {elem};
for each keep_set in keep_GEN
if (keep_set IS_SUBSET OF gsup)

{
keep = 0;
break;

}
if (keep)
add_to_col(gsup, new_GEN);

}

cov_c.gens = new_GEN;

}

41

insert_closed_set (SET Z, SET Y, LATTICE L)
// Insert the closed set Y into L so that
// it is covered by Z

{

SET Y[1;

update gen (Z, Y, L);
for_each Y[i] covered by Z do
{ // Y[i]l will be a sibling of Y
if (not empty(Y meet Y[i]))
{
update gen (Y, Y meet Y[i], L);
if (Y meet Y[i] in L)
continue;
X = new SET (Y meet Y[i]);
insert_closed_set (Y[il, X, L);

}

42

