Fault-tolerant, Real-time Reconfigurable Prefix Adder

University of Virginia Technical Report CS-2009-09

Marisabel Guevara

Christopher Gregg

<mag3dn, chgbw>0virginia.edu

Abstract

In this paper, we assimilate and integrate two recent developments
in prefix adder design and theory to create a fault-tolerant, real-time
reconfigurable prefix adder. By exploiting the inherent redundancy
of a Kogge-Stone adder we are able to extract signals to detect and
correct from a single-fault. Our 16-bit design consumes less than
44% the hardware overhead of a comparable triple modular redun-
dancy (TMR) 16-bit Kogge-Stone adder, and has a delay overhead
of 33% to a standard Kogge-Stone adder. Higher bit-count adders
will incur smaller delay cost. When a single fault (either a hard or
soft error) is detected, the adder reconfigures itself to calculate the
correct output. In the case of a non-recurring soft error, the adder
will subsequently select the output of the Kogge-Stone adder, and in
the event of a hard error, the adder will continue to reconfigure itself
upon each successive addition to ensure proper output.

1 Introduction

Chip fabrication facilities have transitioned to 45nm and smaller
technologies, resulting in substantial increases in both the number
of hard errors, due mainly to variation, material defects, and physi-
cal failure during use, and the number of soft errors, due primarily to
alpha particles from normal radiation decay, from cosmic rays strik-
ing the chip, or simply from random noise [1, 2, 3]. Soft errors are
not considered to permanently break the circuit; on the other hand
a hard error will permanently prevent a circuit from behaving as it
was designed. It is therefore imperative that chip designers build
robust fault-tolerance into computational circuits, and that these de-
signs have the ability to detect and correct both hard and soft errors.

Traditionally, hardware based error correction has been used in crit-
ical applications such as space-based systems (i.e., satellites and
deep-space vehicles). Today, however, the scaling of CMOS man-
ufacturing technologies has raised the rate of soft and hard errors
and significantly increased the number of devices per unit area, thus
dually affecting the importance of fault tolerant design. Systems
that must provide high-reliability are in need of fault tolerant com-
ponents that present acceptable trade-offs in performance and cost.
Further, the top six candidate nanoscale devices that seek to become
the next building block for electronic design all have one common
challenge to overcome, which is their vulnerability to noise and er-
rors [4]. The most widely used scheme to overcome single faults
is Triple-Modular-Redundancy (TMR), which by its nature incurs a

Standard Triple
Circuit Modular
(fault vulnerable) Redundancy

Delay
Standard Triple
Circuit Modular
(fault vulnerable) Redundancy

Figure 1: Area and Delay Trade-off

three-times size overhead to any circuit [5]. While TMR provides
an upper limit on size for single-fault redundancy, the large size
overhead makes its use impractical for most applications. The goal,
therefore, is to create circuits that can perform reasonably well while
taking up less area on-chip than a TMR solution, as shown in Fig. 1.

Some computational circuits have built-in redundancy that lies la-
tent during normal use. Prefix-adders in general and Kogge-Stone
Adders [6] (KSAS) in particular contain enough inherent redundancy
in their design that can be exploited to detect faults and, in certain
cases, correct them [7, 4, 8]. Our research amalgamates prefix-adder
structures and the fundamentals of parity to design a novel real-time
error correction scheme with a reasonable delay overhead. In section
2, we detail the redundancy found in KSAs, the traditional approach
for applying parity to adders, and some of the pertinent ideas that
lead to our proposed solution and circuit design. In section 3, we
present our design and describe its ability to correct single faults.
In particular, we explore the priority-encoder circuit that performs
the fault-detection logic. In section 4, we present an analysis of the
circuit, and we compare it to traditional TMR in terms of speed and
overhead. Finally, in section 5 we conclude and offer ideas for future
research in this domain.

2 Background

Parallel prefix adders (PPAs) speedup addition through a trade-off
between three metrics: area, fan-out, and logic-depth [9]. The build-
ing blocks for PPAs are dot operators, (g,p) ® (¢',p) = (g +
pg’,pp’), shown in Fig. 3, a propagate signal, p; = A; ® B;, and a
generate signal, g; = A; B, at each bit position as in Fig. 2. Kogge-
Stone Adders (KSA) have a fan-out of 2, minimum logic-depths at

A
AQ
=
D 'f ;B o P co
BO
A
=
B) o o
Figure 2: Kogge-Stone Input Stage
GinPrev I————
Gin g
Pin
! A
B) - I cout
A
B = »

PinP
inFrev Pout

Figure 3: Kogge-Stone P/G Stage

O(log 2N), but a large penalty in area; Han-Carlson Adders (HCA)
reduce area by increasing the logic-depth. KSAs are commonly used
in Arithmetic Logic Units [10] due to their speed achieved by com-
puting the carry-signals in parallel. The paths of the carry-logic are
different for even and odd carry-bits, and this research exploits the
mutual exclusion of the carry signals to achieve an adder that can
produce a correct sum in the event of a hard or soft error.

Our adder is primarily based on an idea presented by Ndai, et. al
whereby an n-bit KSA is split into two distinct n-bit HCAs [11] by
utilizing the redundancy inherent in the KSA architecture[7]. This
configuration will, in fact, correct for up to 50% errors on the adder
if all the errors happen to occur in either the even- or odd-half of the
adder. Their method for error-correction, however, is not real-time.
They rely on a one-time, post-testing stage physical reconfiguration
that corrects for hard errors. While this is certainly useful, the down-
side is that it cannot correct soft errors. We utilize their idea to build
an additional HCA stage onto the end of a KS adder and then use
multiplexers to select the even or odd carry-bits of the HCA stage
in the event of an error in the opposite path. This research explores
error detection and correction schemes as an extension to the recon-
figurable adder design and hence provides the necessary reconfigu-
ration in real-time.

Parity checking counts the number of set bits in a signal to detect
an error [12]. The use of parity checking in memory or communi-
cation is common, but in the realm of logic circuitry the time and/or
area overhead is often deemed too expensive. The following parity-
checking comparison guarantees correctness in the event of a single-
error in an adder circuitry [13]:

?
Poum = Pinput A D Pir]bgutB @ Pcarry

where Pinput 4 — parity of input A, Pipnpw: p — parity of input B,

Pinput ¢ — parity of input C, and Psy,, — parity of the sum bits

Figure 4: An 8-bit Priority Encoder, utilizing only the Least Signifi-
cant Bit

The above equality will be broken by a single-fault, hence it may be
used for single soft error detection. The problem with this technique
is that an error in the carry circuitry will not be detected due to fault
aliasing, where k errors in the carry bits and k errors in the sum bits
make a total of 2k errors (always even and hence undetected)[13].
For this technique to guarantee single-fault detection, the adder must
produce a set of correct carry bits.

To guarantee a correct set of carry bits, independent hardware to cal-
culate a second set of carry signals is necessary. [14] includes a the-
oretical evaluation of the complexity of such an implementation. A
standard KSA has an approximate complexity of 514 2n log, n (3n
from the initial stage, 2n from the final sum, and 2n log, n for the
dot operators, where n is the number of bits). The redundant carry
can be generated either in between dot operators, with an additional
two XOR gates, or inside each dot operator, with the addition of a
single XOR gate. Two additional XOR gates are necessary for the
bit-by-bit parity comparison and the input bits. The resulting com-
plexity of the redundant carry is 2n 4 6n + 2n log, n, resulting in
more than 100% additional complexity than the original KS Adder.
This analysis motivates an alternative solution for fault detection as
this approach is clearly expensive; by comparison, our design has
only 6n + log, n + 1 complexity.

3 A Fault Tolerant Adder Circuit

The complete design of a 16-bit reconfigurable KSA is shown in Fig.
5. There are three separate components to the design: a Kogge-Stone
component, a Han-Carlson component, and the priority encoder and
NOR component which feed the Normal and Even signals. The char-
acteristic of a KSA that this research exploits is the fact that dot op-

erators on the same bit-path do not receive any data signals from
adjacent bits. This forms a redundant path for calculating carries, as
shown in [7].

Our design exploits the property of KSAs that adjacent bits are calcu-
lated using independent hardware, although in fact the first row of dot
operators receives its input signals from adjacent propagate/generate
stages. Thus, the proposed design can detect and recover from a sin-
gle fault that occurs on any of the dot operators, but assumes that the
outputs of the propagate/generate input stage are correct. Techniques
to overcome this assumption would rely on additional hardware, and
this paper does not explore this possibility.

The fault detection we implemented builds off the redundancy dis-
cussed above. The outputs of the original KSA provide a complete
set of carry bits, and the outputs of the additional HC Stage provide
a set of carry bits that are generated from hardware not shared by
immediate neighbors. A single fault will thus corrupt only one set of
carry bits, and the other is guaranteed to be correct. In the absence
of a single fault, XORing the two sets of carry bits one by one will
yield a vector of logic zeroes. In the case of a fault, the XOR will
generate one or more logic ones, the one located in the least signif-
icant bit position signaling which bit position was the victim of the
error. Hence, both the Normal and Even/Odd selection signals can
be generated from the above analysis.

Because a single error can propagate through higher-order bits in a
prefix-adder [15], we needed a circuit to determine whether the least
significant bit that resulted in a logic one is at an odd or even bit po-
sition. In other words, we needed to know if the first, third, fifth, etc.,
carry bit was the first to show the error, or whether it was the second,
fourth, sixth, etc bit. One circuit that accomplishes this is a priority
encoder, although only the last output bit of the encoder is necessary
to determine if the first set bit is even or odd thus reducing the over-
head that would be necessary for a complete priority encoder. See
Fig. 4 for a circuit diagram of a modified eight-bit priority encoder
circuit (note: only seven bits are necessary for the circuit).

The HC component of the adder produces carries that are XORed
with those produced by the KS component, but the HC carries are in-
dependent of the KS carries adjacent to them. The subsequent XOR
for each carry pair is utilized by the Normal OR gate and the priority
encoder to set the Normal and Even signals correctly. If there are no
errors, the NOR gate sets the Normal signal to a logic one, so that
the outputs of the multiplexers come from the KS component of the
adder. If, on the other hand, there is an error, Normal is set to a logic
zero, and the priority encoder sets the Even signal to produce output
from the non-faulty Han-Carlson adder.

4 Results

Using the Spectre SPICE simulator and 6pm technology, we com-
pared our reconfigurable design to that of a standard KSA in both
4-bit and 16-bit implementations. In both cases, we measured the
delay overhead of the additional dot operator and logic to generate
the normal and even/odd signals on the same additions. Fig. 6 shows

Kogge-Stone
Component

e (10 [0 [0 {6 {6 5[6515

Aﬂﬁﬂﬂﬂ@ﬂ@@ﬁ'

¢pigi (#Z

pi+1gi+1

Reconfiguration
Logic and Signals

—AiBi
pi=Ai® Bi, gi=ABi

Figure 5: 16-bit fault-tolerant, real-time reconfigurable adder

The inputs A15 B15, ..., A0 B0 feed into the propagate/generate in-
put stage at the top, where each square is implemented as shown in
Fig. 2. The large circles represent dot operators, and the circuit for
this logic is shown in Fig. 3. The small circles represent buffers to
bring the propagate/generate signals to the next stage.

the delay for a 4-bit addition during one transition from high to low
and from low to high during the add. Fig. 7 shows the delay for a
16-bit addition during a transition from high to low and from low to
high during the add.

The overhead from the additional dot operator and logic in terms of
time is 0.8 ns, as shown in Fig. 6 and Fig. 7. This can be deemed
a maximum since for KSAs with higher bit counts this overhead is
a smaller percentage of the total addition time. For our 4-bit imple-
mentation, the overhead represented an additional 39% in time. In
the 16-bit implementation, the percentage of this same overhead is
reduced to 33%. The delay of an addition in a standard KSA can be
approximated by t, = tpg + te X log N + txor where tpgis the
time for a single propagate/generate cell to compute, tois the prop-
agation delay of a dot operator stage, and ¢t xor is the delay of one
XOR gate. The additional HC stage for the reconfigurable imple-
mentation adds ¢edelay, the normal signal generation adds a propa-
gation delay of t xo r + tor, and the priority encoder to produce the
even/odd signal adds a delay of tpg, for a new propagation delay
from inputs to sum of tp = tpg + te X (log N + 1) + 2txor +
tor + tpe. This overhead is dependent on N only in the tpg term,
the propagation delay of an N-bit priority encoder, which according
to [16] is bound by O(log2N).

Extending this analysis of hardware overhead, a KSA has 49 dot op-
erator nodes, as seen in Fig. 5. The proposed reconfigurable adder
requires an additional 15 dot operator nodes, represented by the ad-
ditional HC Stage in Fig. 5, whereas a TMR single-fault tolerant

Fault-tolerant 16-bit adder extra num nodes/standard
num nodes
Reconfigurable KSA 15/49
TMR KSA 98/49

Table 1: Hardware Overhead Analysis

KSA requires an additional two fully independent KSAs, or 98 dot
operators as summarized in Table 1. This high-level view of the
hardware overhead provides a rough insight into the cost in area of
the proposed reconfigurable KSA versus a TMR implementation of
a fault tolerant KSA. Our proposed design requires less than 44%
more hardware than a standard KSA, as compared to 66% for a TMR
implementation.

5.005 =
) HE - == Standard Kogge-Stone
LT . ——Kogge-Stone Reconfigurable
5 ' LS =l
S 4993 : f e
0 xaazeort [eigmeo !
S 4.99 - Delay: 0.5ns
4.985 Delay: 0.8ns B
4.98
4.5
Time (s) i

x 10

Figure 6: Delay of 4-bit fault-tolerant adder compared to a Kogge-
Stone adder (sum bit 5)

5.1 —Kogge-Stone Reconfigurable |
H - --Standard Kogge-Stone
5 :
S x39 Delay: 0.7ns
0)
4.9
S Delay: 0.8ns
S
4.8
4.7 : | ‘ :
2.96 3.01 3.06 3.11 . 3.16 3.21 3.26 3.31 3.33
Time (s) x 10

Figure 7: Delay of 16-bit fault-tolerant adder compared to a Kogge-
Stone adder

5 Conclusion and Future Work

We have designed a real-time reconfigurable prefix adder with min-
imal delay overhead, and reduced area cost compared to a Triple-
Modular-Redundant circuit. The circuit will correct one hard or soft
error per calculation, and it will correct up to 50% errors if they all
occur on either the even- or odd-half of the adder. This research has
contributed to the advancement of fault tolerant adders, providing
computer architects and system designers another safeguard against
errors at the circuit level. Further, applications where reliability is of
highest importance also can benefit from an alternative single-fault
tolerant adder with different delay and area overhead costs than ex-
isting techniques. Finally, the field of nanoscale electronics also ben-
efits from a design that exploits the inherent redundancy of a com-
monly used logic structure to guarantee fault tolerance, especially at

a scale where additional devices are less expensive in terms of area
and monetary cost than in CMOS technology.

Because scaling of electronic components has resulted in an in-
creased number of hard and soft errors, more research is needed to
create hardware based error correction schemes for different types
of logic. Adders are circuits with much regularity, yet work still re-
mains to be done to extend fault tolerance to irregular logic blocks.
There has already been significant work on memory circuits (see
[17], for instance), but research on arithmetic logic has lagged be-
hind, or focused on critical systems that can make the sacrifices
(monetary, speed, size, etc.) necessary to ensure fault tolerant op-
eration [18]. Virtually all next-generation systems will exhibit high
soft and hard errors and hence more research needs to focus on mak-
ing all logic circuits fault-tolerant.

References

[1] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, pp. 243-247, Feb.

005.

[2] A.Johnston, G. Swift, and D. Shaw, “Impact of cmos scaling on single-
event hard errors in space systems,” Low Power Electronics, 1995.,
IEEE Symposium on, pp. 88-89, Oct 1995.

[3] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system
design with built-in soft-error resilience,” Computer, vol. 38, pp. 43—
52, Feb. 2005.

[4] W.Rao and A. Orailoglu, “Towards fault tolerant parallel prefix adders
in nanoelectronic systems,” Design, Automation and Test in Europe,
2008. DATE *08, pp. 360-365, March 2008.

[5] R.Lyons and W. Vanderkulk, “The use of triple-modular redundancy to

improve computer reliability,” IBM Journal of Research and Develop-

ment, vol. 6 (2), pp. 200-209, April 1962.

P. Kogge and H. Stone, “A parallel algorithm for the efficient solution

of a general class of recurrence equations,” IEEE Transactions on Com-

puters, vol. C-22, pp. 783-791, August 1973.

P. Ndai, S.-L. Lu, D. Somesekhar, and K. Roy, “Fine-grained redun-

dancy in adders,” Quality Electronic Design, 2007. ISQED ’07. 8th In-

ternational Symposium on, pp. 317-321, March 2007.

[8] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 6.5ghz
54mw 64-bit parity-checking adder for 65nm fault-tolerant micropro-
cessor execution cores,” VLSI Circuits, 2007 IEEE Symposium on,
pp- 4647, June 2007.

[9]1 M. Ziegler and M. Stan, “A unified design space for regular parallel

prefix adders,” Design, Automation and Test in Europe Conference and

Exhibition, 2004. Proceedings, vol. 2, pp. 1386—1387 Vol.2, Feb. 2004.

S. Ghosh, P. Ndai, and K. Roy, “A novel low overhead fault tolerant

kogge-stone adder using adaptive clocking,” Design, Automation and

Test in Europe, 2008. DATE 08, pp. 366-371, March 2008.

T.Han and D. Carlson, “Fast area-efficient vlsi adders,” Proc. 8th Symp.

Comput. Arithmetic, pp. 49-56, 1997.

P. K. Lala, ed., Self-checking and fault-tolerant digital design.

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

F. Sellers, L. Hsiao, and L. Bearnson, Error Detecting Logic for Digital

Computers. McGraw-Hill, 1968.

J. Biernat, “The complexity of fault-tolerant adder structures,” Depend-

ability of Computer Systems, 2008. DepCos-RELCOMEX ’08. Third

International Conference on, pp. 316323, June 2008.

“Priority ~ encoder (8:3 bits)” Avaliable: http://tams-

www.informatik .uni-hamburg.de/applets/hades/webdemos/10-

gates/45-priority/priority83.html, Nov 2008.

C. Kun, S. Quan, and A. Mason, “A power-optimized 64-bit priority

encoder utilizing parallel priority look-ahead,” Circuits and Systems,

2004. ISCAS ’04. Proceedings of the 2004 International Symposium

on,vol. 2, pp. II-753-6 Vol.2, May 2004.

M. Myjak, D. Blum, and J. Delgado-Frias, “Enhanced fault-tolerant

cmos memory elements,” Circuits and Systems, 2004. MWSCAS ’04.

The 2004 47th Midwest Symposium on, vol. 1, pp. I-453-6 vol.1, July

2004.
V. Nelson, “Fault-tolerant computing: fundamental concepts,” Com-

puter, vol. 23, pp. 19-25, Jul 1990.

[6

=

[7

—

[10]

[11]

[12] San

[13]
[14]

[15]

[16]

[17]

(18]

