Finite Models of Cyclic Concurrent Programs

By

David R. O'Hallaron
Paul F. Reynolds, Jr.

Computer Science Report #f 85-02

March 22, 1985

Submitted to Journal of the ACM

Finite Models of Cyclic Concurrent Programs

DAVID R. OHALLARON
PAUL F. REYNOLDS, IR.

University of Virginia, Charlottesville, Virginia

Static deadiock detection methods such as R. C. Holt’s graph method and 8. D, Carson’s geometric method analyze
a finite collection of concurrency states derived from the program text. Yet concurrent programs with cyclic
' processes can generate an infinite number of concurrency states. For such programs we must determine 2 finite set
of concurrency states that is large encugh to allow us to accurately predict the runtime behavior of the program.
This problem is calied the finite modeling problem. We solve the finite modeling problem for s class of cyclic
consumable tesource PV programs called ST programs. We use a weak form of the deadlock predicate to estab-
lish necessary conditions for deadlock and we use the geometric method to establish a suficient condition. These
results are then wmsed to show that solving the finite modeling problem for SI programs requires time propor-
tional to the sum of the number of processes and the number of semaphores.

Categories and Subject Descriptors: D.1.3[Programming Techniquesk Concurrent Programming; D.2.4 [Software
Enginecring); Program Verification; D5 [Operating Systems} Process Management — dendlocks

General Terms: Languages, Theory, Verification

Additional Keywords and Phrases: Semaphore invariant method, static deadlock detection, deadlock predicate,
geometric model, message pessing

1. Introduction

Static deadlock detection methods such as R. C. Holt’s graph method [Hol72] and S. D.
Carson’s geometric method [Car84] analyze a finite collection of concurrency states derived
from the program text. Yet a concurrent program with cyclic processes can generate an
infinite number of concurrency states. For such a program, we must select a finite set of

concurrency states that is large enough to allow us to make accurate predictions about the

Authors’ present address: Department of Computer Science, University of Virginia, Chazlottesville, Virginia,
22901. .

runtime behavior of the program. We call this problem the finite modeling problem. Our
work solves the finite modeling problem for a class of cjrclic consumable resource PV
programs known as SI programs. S/ programs are sufliciently powerful to express syn—
chronous, asynchronous, and buffered message passing over statically defined and directly
named communication channels [AnS83]. While SI programs are of a fairly restricted
nature, they are able to model an important class of concurrent programs. First we dis—

cuss some helpful concepts, terminology, and notation.

The notion of a concurrency state varies with the static modeling technique. The
graph model defines a concurrency state as a node in a directed graph, where each node is a
directed bipartite graph modeling the resource requests and holdings at that state. The
semaphore invariant method [Hab72, Hab75] defines a concurrency state as a collection of
unique auxiliary variable values, while the geometric method defines a concurrency state
as a point in an N —dimensional space. We can identify a concurrency state in the model
of some N process program with a tuple ${s,,...,sy), where s; = k only if process { has
completed the execution of k statements. We say that S is the concurrency state, what—
ever the definition of concurrency state, that results from executing s; statements of each

process i.

We can associate three sets with any éonourrency state, S: the set D® of processes
that are blocked forever{deadiocked) at §, the set E® of processes that are not deadlocked
at § but which will eventually deadlock from §, and the set X% comprising those

processes not in the first two sets.

If IDSI > O, then § is a deadlock state. Let § be a deadlock state where IDS| > 0.
Then S is a total deadlock state if IDS| = N, a partial deadlock state if ID%| < N, a
stable deadlock state if 1E®| = 0, and an unstable deadlock state if 1E®| > 0. Notice that
total deadlock states are always stable, while partial deadlock states can be either stable or

unstable. Unstable deadlock states are uninteresting in that they always lead to stable

deadlock states. This notion of stable and unstable deadlock states is a way of distinguish—
ing interesting partial deadlock states from uninieresting partial deadlock states and will

help us derive necessary conditions for deadlock in ST programs in Section Three.

A deadlock state has two additional attributes. A state that violates the constraints
imposed by the underlying synchronization primitives is called infeasible. For example,
an infeasible state in a PV program is a concurrency state that violates one or more of the
semaphore invariants. If there is some sequence of feasible states from the initial state
that ends with a concurrency state §, then S is said to be reachable. Notice that all
infeasible states are unreachable, while not all feasible states are reachable. Throughout

this paper we will refer to a feasible and stable deadlock state as simply a deadlock state.

k E . .
Let Si%,...,S54" be the statements associated with deadlock state §, and let

k E . : , '
S:¥, ..., 85" be the statements associated with deadlock state §’. We say that § and §

are equivalent if and only if
Vietrm : Sz‘ki = Siki'
and the processes deadlocked at § are precisely the processes deadlocked at S'.

To perform static deadlock detection on a cyclifs concurrent program, we must
somehow represent the concurrency states that would result if the program were exe—
cuted. This collection of cpncurrency states is called a model. The size of a model can be
expressed in terms of the number of times that each process is expanded. A k—cycle model
is the set of concurrency states generated by expanding the first X cycles of each proce.ss.
If k is finite, then the model is called a finite model. Given a finite k~cycle model of a
program, we must determine some {-cycle subset of the k—cycle model on which to per—

form the deadlock analysis.

We say that a k—cycle model is accurate if and only if there exists some { < k such
that the {—cycle subset of the k~cycle model contains a reachable deadlock state if and

only if the co—cycle model contains a reachable deadlock state. We say that a k—cycle

model is complete if and only if it is accurate and the {—cycle subset contains all unique
deadlocks, where a unique deadlock is a particular set of processes deadlocked at a particu—
lar set of statements, Thus, for every deadlock state, the {—cycle subset of a complete

model contains an equivalent deadlock state.

We limit our discussion to static detection of deadloék.s in cyclic straight-line PV
programs, where a process is composed of a non—terminating outer loop, with no inner
loops or conditionals. These programs can be divided into three classes [Hol172): reusable
resource programs, consumable resource programs, and general resource programs. In a
reusable resource program, resources (semaphores for our purposes) are requested and
released symmetrically within the same process. In a consumable resource program,
resources are requested and released in different processes. General resource programs are

combinations of reusable and consumable reésource programs.

Regardless of the definition of concurrency state, there are some classes of cyclic con—
current programs that generate an infinite number of concurrency states (e.g. consumable
- resource programs). Although co-cycle models are reasonable in theory, methods such as
the gfaph method and thé geometric method require that the models be finite in practice.
This motivates the finite modeling problem: how to efficiently determine the size of accu~

rate and complete finite models of a cyclic general resource concurrent program.

Carson [Car84] has solved the finite modeling problem for total deadlocks in reusable
resource programs by showing that 2—cycle models are complete. He has also shown that
finding a solution to the finite modeling problem for total deadlocks in a particular gen—
eral resource program is no more difficult than solving the deadlock predicate for all com—
binations of statements that could potentially deadlock, a problem requiring time

exponential in the number of processes.

Our wotk solves the finite modeling problem for a class of consumable resource pro—

grams called $/ programs. We show how the size of accurate and complete models for

total and partial deadlocks in SJ programs can be determined without resorting to solving
the deadlock predicate. In particular, we use the semaphore invariant method and the
geometric method to show that 2-cycle models are accurate and (NM-2M +2)-cycle
models are complete, where N is the number of processes and M is the largest initial

semaphore value plus unity.

In Section Two we formally define SI programs. In Sections Three and Four we
derive necessary and sufficient conditions for deadlock in co—cycle models of SI programs.

In Section Five we use these results to derive the size of accurate and complete models.

2. SI Programs

SI programs are a class of cyclic consumable—resource PV programs. For our pur—

poses, 2 PV program is a collection of N cyclic processes

var L; cobegin P, // P,// *++ // Py end

where L is a list of § semaphores and where process P; has the form

P; :cycle §;4; 8% -+ ; S,r]c ! endcycle.

Bach SF is a statement of the form

wheno; > 0A - Aoy, >0doo oy —1;+ 50, « o, — 1

denoted in the program text by

P(CT],. ‘e ,O'k)
or of the form
when truedo oy« oy + L¢3 0, —op +1
denoted in the program text by
Vig,,...,00)

Let 0'£ be the number of times that semaphore o; is acquired during a single cycle of
process j and let o} be the number of times that semaphore o; is released during a single

cycle of process j. Then a PV program is an SI program if and only if:

P1: Vs 1Vj€§1...N} : U'i{i' +of €1,

N
P2: Ve Yof=1and
i=

N
P3: eru.s] : ZU';"}Y* 1
j=1

In other words, a semaphore appears at most once in any given process and in exactly one

P statement and one V statement in the entire program.

3. Necessary Conditions for Deadlock in SI Programs

In this section we use the semaphore invariant method [Hab72,Hab75] to derive a
number of necessary conditions for deadlock in SI programs. The semaphore invariant
method uses auxiliary variables to construct the deadlock predicate [OwG76], the
satisfiability of which is a necessary condition for deadlock. The deadlock predicate con-—
sists of auxiliary variables, ssmaphore invariants, preconditions of statements, and block—

ing predicates. We describe each of these in more detail.

Let o be a semaphore initialized to oy, let of and ¢ be semaphore auxiliary vari-
ables, initially zero, such that o/ is incremented when process i acquires ¢, and o is

incremented when process i releases . Then the semaphore invariant for o is

le=0o=00— l)ﬂfla;” + %ﬁo’ff.
The semaphore invariant for SI programs is simpler. From P2 and P3 we see that o is
acquired by exactly one process and released by exactly one process. From F1 we see that
o is acquired and released by different processes. Let o be acquired by process i and

released by process j. Then the semaphore invariant for SI programs reduces to

I, =0 =0,+0) -0/,
Associated with each process i is a set of auxiliary variables V;. Included in V; are a

repetition auxiliary variable [Car84], R;, initially zero, that is incremented when process i

completes a cycle, and a set of semaphore auxiliary variables, where of € V; if process i
requests o, and where oV € V, if process i releases o. The precondition of the jth state—
ment in the ith process, pre(S;), describes the relationships that exist among the auxiliary
variables in V; just before S7 is executed. In the most general case {Car84] these relation—
ships are of the form

Civit Ca= ¥ |
where v; is a semaphore or repetition auxiliary variable, c, is a positive constant, and ¢ is

a positive or negative constant.

For ST programs these relationships are simpler. From P1 and from the definition
of repetition auxiliary variables, we see that v is incremented exactly once per cycle,
thus ¢, = 1. Auxiliary variable v, is either incremented before v, or after v,, thus ¢, is
either unity or zero. Thus, relationships among auxiliary variables in the preconditions of
ST programs are limited to the form

Vi €=V,
where ¢, is a constant zero or unity.

Tile semaphore invariant method defines a concurrency state as a unique collection of
non—negative semaphore auxiliary variable values that are consistent with the constraints
imposed by the preconditions. If, in addition, these values are consistent with the con—

straints imposed by the semaphore invariants, then the state is feasible.

Associated with each statement S/ in an SI program is a blocking predicate, b/, that
describes the conditions under which S/ is blocked. If S/ is a V operation, then S never
blocks and by is simply the predicate {false). If S/ is a P operation, then S/ is blocked if
one or more of its semaphores is zero. Let B/ be the set of semaphores requested by §7.

Then b; is the predicate

UEBJ;:O'«%O.

Let S be the number of semaphores and let k; be the number of statements in process i.

Then the deadlock predicate is:

ki
V pre(S7) A b/

=1

N

D= A
i=1

5

AT

Notice that this definition differs from the traditional definition of the deadlock predicate
in two ways: First, we have introduced repetition auxiliary variables to‘ the
preconditions{Car84]. Second, we have extended the blocking predicate to accommodate
our definition of PV programs, where a P or V operation may operate on more than one

semaphore.

The semaphore invariant method is an attractive static deadlock detection method
because the deadlock predicate is simply and compactly generated. It has some significant
disadvantages, though. First, determining the satisfiability of the deadlock predicate is an
exponential problem. Second, because of the possibility of feasible and unreachable
deadlook states, satisfiability of the deadlock predicate is not a sufficient condition for
deadlock. E. M. Clarke has developed an iterative procedure to strengthen the deadlock
predicate so that satisfiability is a sufficient condition as well [C1a80). However a final
~ problem remains: the deadlock predicate does not allow for the possibility of partial

deadlocks.

We can allow for partial deadlocks by defining a weaker form of the deadlock
predicate called the weak deadlock predicate. Let P be the powerset of {1,...,N} less the
empty set. Let P? be the ith set in P, and let X be the complement of P?,'Then the weak

- deadlock predicate is

2V Ry Ej 5
= V | A |V BABREIA AN |V k ANTAT,
WD =V 49 kzlpre(S,) b¥ 4 kmpre(SJ) jSIIJ

This predicate is true for all concurrency states where processes are blocked, so

satisfiability of the weak deadlock predicate is a necessary condition for total or partial

deadlock. Satisfiability is not a sufficient condition because of the possibility of feasible
and unreachable deadlock states, and because the predicate is satisfied at those concurrency
states where processes are blocked but not deadlﬁcked. Nonetheless, the weak deadlock
predicate can help us reason about necessary conditions for deadlock in PV and SI pro-
grams. First we establish necessary conditions for stable deadlocks in PV programs and

851 programs.

Lemma 3-1: If § is a stable deadlock state in a PV program and process { € DS
is blocked on semaphore o, then for each process j that releases o, j € DS,

Proof: Since process { is blocked forever waiting for o to be released, process j is
either deadiocked at §, or will eventually deadlock before releasing o. If the
former is true, then j € DS. If the latter is true, then j € ES, which contrad-
icts the hypothesis of a stable deadlock state. Thus, j € DS.

|

Lemma 3-2: If S is a stable deadlock state in an S7 program and processes
i € D% and j € X° use a semaphore o, then process { requests o and process j
releases O, '

Proof: Suppose the contrary, that process j requests o and process { releases .
From P2 in the definition of S programs, process { is the only process that
releases o. Since process ¢ is deadlocked, process j must eventually deadlock on
o, which implies that j € ES, which contradicts the hypothesis that § is a
stable deadlock state.

O

We say that a deadlock state is a 1-cycle deadlock if at least one process is deadlocked on
its first cycle. We can use the weak deadlock predicate and Lemmas 3—1 and 3-2 to show
that the existence of a 1~cycle deadlock state in the co—cycle model is a necessary condi-

tion for deadlock in SI programs.

10

Lemma 3~3: The co—cycle model of an §7 program contains a deadlock state
only if it contains an equivalent 1-cycle deadlock state.

Proof: Suppose that S is a stable deadlock state in the co—cycle model of an S
program. Then there are N disjuncts, one from each process, that satisfy the weak
deadiock predicate. Let A and B be disjoint sets of auxiliary variables where A is
the set of auxiliary variables used in the preconditions of the deadlocked state—
ments, and B is the set of auxiliary variables used in the preconditions of the
statements that are not deadlocked. The smallest auxiliary variable in A is a re—
petition auxiliary variable, say R;. Since auxiliary variables in SI programs are '
related by constants, subtracting R; from each auxiliary variable in A gives a
new concurrency state, 8.

To show that S’ is feasible, we observe that the semaphore invariants for those
semaphores used exclusively by processes in DS and X% are still satisfied, Furth—
er, the semaphore invariant for a semaphore o shared by a process i € DS and a
process j € X5 is still satisfied because, from Lemma 3~2, we decreased o while
leaving o} unchanged.

To show that §' and S are equivalent, we observe that the relationships among
the auxiliary variables in A are the same for § and S’, as are the relationships
between auxiliary variables in B. Thus §' involves the same N statements as S,
and from Lemma 3-1, processes deadlocked at S are deadlocked at §', and from
Lemma 32, processes not deadlocked at S are not deadlocked at S’

Now, since R’ = 0, we see that §' is a feasible 1-cycle deadlock state equivalent
toS.

]

Lemma 33 says that the I-cycle deadlock states are the unique deadlock states. We use
“this result in Section Five to derive the size of accurate and complete models for §7 pro—
grams. We will also use this result to derive a sufficient condition for deadlock—freedom

in §1 programs.

We know from Lemma 3-3 that an S/ program deadlocks only if there exists a 1-
cycle deadlock state. This implies deadlock only if at least one process blocks during its

first cycle. The contrapositive says that if no process blocks during its first cycle, then the

11

program is deadlock—free. Now consider an §I program where all initial semaphore
values are non-zero. It is clear from the definition of SI programs that no process will
block during its first cycle. Thus the program is deadlock~free and we can say that the
absence of any initially zero—valued semaphores in an SI program is a sufficient condition

for deadlock—freedom.

We can also use the weak deadlock predicate to derive necessary conditions for the
relationships between the number of cycles completed by each deadlocked process at a
stable deadlock state. Suppose that § is a stable deadlock state in the co~cycle model of an
ST program, where

D¥=1{1,...,¢
is the set of processes deadlocked at §, and where

XS ={{+1,...,N}

is the set of processes not deadlocked at . Suppose also that the processes in D? are

deadiocked at statments

ST, S5
Associated with each Sz-k" for each i € DY is a digjunct from the weak deadlock predicate

of the form

pre(8/) A (o = 0).
Let o be requested by process { and released by process j. Since § is stable, we know from

Lemma 3-1 that j € DY, and from the definition of SI programs that i # j. If we sub—
stitute the repetition auxiliary variables R; and R; from pre(siki) and pre(S?’) into the
semaphore invariant for o, we get an equation of the form |
c=0=gp+o)—of
=0gtR; + ' — R ,i #
where ¢;' is a constant zero if o is released after Sff in the text of process j, and unity if

. ' k; , .
o is released before §,;7/. Rearranging terms gives

12

R =R;+¢,i=]
where ¢; = g + ¢.. This equation, called a cyclic dependency equation, describes the cyclic
relationship between deadiock process i and deadlocked process j at deadlock state S. If
we perform a similar substitution for all of the { processes in D%, we get a system of {

cyclic dependency equations in { unknowns of the form: 4

RlzRi +C1,i¢1€ {1,...,§}

Ry=R;+cp, jr2€lL,... .0

Rg=FRy +cg k={elt,....0

where 0 € ¢; € max(og) + 1. A consistent system of cyclic dependency equations associ—
ated with a stable deadlock state in the co—cycle model of an SI program has some simple
properties that allow us to derive an additional necessary condition for deadlock: at a
~ stable deadlock state at least two deadlocked processes are executing the same cycle such

that no other deadlocked processes are executing an earlier cycle.

Lemma 3-4: For a consistent system of cyclic dependency eguations associated
with a stable deadlock state § where D° =1,...,{, then ‘

Jisjetry: R = R; (3-D
where

Vké{l...{} (R S R (3-2)

Proof: To show that Equation 3-1 is true, suppose the contrary, such that
ViGEl...{] tg > 0.

This assumption leads, after some renumbering of subscripts, to an equation of
the form

leRz'*"Clﬂ.R?,'i'Cz: e “W“Rg“E'Cg._]:RT- +C§,iE{1.nxi}

which is a contradiction. To show that Equation 3-2 is true, partition the system
of equations into disjoint sets A and B with

13

Az{RllR,,"':RJ}

B={R IR =R;+¢},¢>0

and let R, = min(A). If B =@ we are done. If B = @, then consider some
Ry € B with Ry= R, + c.If R, € A then

R,> Ry 2 R,.
On the other hand, if R, € B then R, = R34 ¢ and
R{> R, > R,
Similarly, if R3 € B then R3 = R4+ ¢zand
Ri> R;> Ry > R,
Continuing in this fashion, we must encounter some R; € A such that
Ri>R;>R3>Ry> -+ >R 2R,

Thus R,, < min(B), which establishes the truth of Bquation 3-2.

D

A simple example will illustrate the concepts we have discussed in this section. Consider

the following SI program:

a,b,c,d,e = O: semaphore
cobegin
PL: cycle
Pla); V(b) —— deadlocks on the first cycle
endcycle
/7
P2: cycle
Vic); P(b); Via) ~ deadlocks on the first cycle
endcycle
4
P3: cycle
P(d); Plc) ~— deadlocks on the second cycle
endcycle
//
P4: cycle
vid); Vie) —— never deadlocks
endcycle
4

14

P5: cycle
Ple) — never deadlocks

endcycle
end

Consider the infinite set of stable deadlock states where processes 1, 2, and 3 are deadlocked
on semaphores a, b, and ¢, respectively, and where process 4 is ready to telease d and

where process 5 is teady to request e. The weak deadlock predicate for such states is

(d{’ =bYﬂR1)/\(a=0)/\
ey ~1=bl=al =RHIANB=0A

df —1=cf =RIA (=0 A

Suppose that § is one of these stable deadlock states such that

R,=2 af =2 af =2
R,=2 by =2 bi=2
Ry=3 ¢y =3 ¢f=3
R,=4 dj=4 di=4
Rs=0 ef =4 ef=0

We see that § is a deadlock state where processes 1 and 2 are deadlocked during the third
cycle, process 3 is deadlocked on its fourth cycle, process 4 is starting its fifth cycle, and

process 5 has yet to execute. While S is certainly a feasible deadlock state, inspection of

15

the text shows that it is not reachable. In the next section we will show that the only
reachable deadlock states in SI programs are the 1—cycle deadlock states. By subtracting
R, from the auxiliary variables in processes 1, 2, and 3, we get an associated l1-cycle

deadlock state, "

Ri=0 a¥y=0 af=0
R,=0 by =0 bi=0
Ry=1 c¢¥=1 ¢f=1
Ry=4 di=4 df=2
Rs=0 efj=4 ef=0

We showed in Lemma 3-3 that 1-cycle deadlock states such as §' are feasible deadlocks
involving the same set of statements. Inspection of the auxiliary variable values for S’

shows that this is true.

In Lemma 4-4 we established some properties of the cyclic dependency equations
associated with a stable deadlock state. The cyclic dependency equations for § and §' can
be easily generated by substituting the disjuncts for processes 1, 2, and 3 into the sema—

phore invariants for a, b, and ¢ to get

Ry= K,
Ry,= Ry
R3"-"5Rz‘+'1

These equations tell us that at deadlock states § and S, process 1 and process 2 are

deadlocked on the same cycle, and process 3 is deadlocked on the next cycle.

Let us review what we have accomplished in this section. We have introduced a
weak form of the deadlock predicate whose satisfiability is a necessary condition for total

and partial deadlock. We then used this predicate to show that the existence of a 1-cycle

16

deadlock state in the co-cycle model of an §/ program is a necessary condition for
deadlock. We then showed, for §I programs, how a system of cyclic dependency equa—
tions can be derived from a set of disjuncts that. satisfy the weak deadlock predicate.
Finally, we used properties of consistent systems of cyclic dependency equations to derive
necessary conditions on the number of cycles executed by the deadlocked processes of an
SI program. These results will help us der‘r‘ve accurate and complete models of SI pro—

grams in Section Five.

4. A Sufficient Condition for Deadlock in SI Programs

In this section we derive a sufficient condition for deadlock in SI programs. Our
proof uses results from Carson's recent work in geometric models of concurrent programs
{Car84]. We present a brief discussion of the geometric model. The reader is encouraged to

consult Carson’s paper for a formal and complete treatment.
pap P

The geometric model is a formalization of the familiar notion of progress graphs
[CoD73], where a concurrency state, or ordered set of process times, is modeled as a point
in a continuous N dimensional space. The ith time axis is labeled with synchronization
events(P and V operations) in the order in which they executed by process {. For con—
venience synchronization events are assigned integer times starting from unity. Thus, for
two processes, the point P(0,0) represents the initial concurrency state where neither pro-—
cess has completed a synchronization event and the point P (3,1 represents the state where
processes one and two have completed their third and first synchronization events respec—

tively.

Sets of concurrency states with like synchronization properties are modeled as N
dimensional rectangular regions bounded by 2N N -1 dimensional hyperplanes. The size
and location of an N dimensional region can be represented with two points: the vertex,

or point closest to the origin, and the extent, or point furthest from the origin. Regions of

17

interest for static deadlock detection include forbidden regions, nearness regions,

deadlock regions, and unsafe regions.

Forbidden regions model concurrency states that violate the constraints imposed by
the the underlying synchronization primitives. For PV programs, points within forbid~

den regions model concurrency states that violate the semaphore invariants.

Definition 4-1: forbidden region

A forbidden region is a triple (o,V ,E), where o is a semaphore associated with
the region, V is the vertex of the region, and E is the extent of the region.

]
Carson has developed a technique for generating the vertices of forbidden regions from

the source text of PV programs; the technique is based on the notion of deficits. Let S/ be

the jth statement executed by the ith process of a PV program.

Definition 4-2: deficit

The deficit for semaphore o at S/, denoted d (i,f,0), is defined inductively to be

di,00)=0

1 if 8/ requests o
dG,jo) = dE,j—1Lo) + {—1 if S/ releases o
0 otherwise

18

Definition 4~3: deficit at a point

The deficit at a point P for semaphore o with initial value oo, denoted D(P,0),
is defined to be

N
Do) =—oo+ Yd,p,0)

i=]

The deficit at a point P for a semaphore ¢ is simply minus the value of o at P. A point

P is feasible if and only if D{(P sigma) € O forall 0.

Let use[o] be the set of processes that either request or release semaphore o Let
stmt(p;) be the statement associated with the ith coordinate at point Plpy,...,px) Possi-

ble values for stmt(p;) are P{c), V(o), and I (initial statement at the origin).

Definition 4—4: vertex of a forbidden region

The vertex of a forbidden region for semaphore ¢ is a point V{(vy,...,vx) such
that
El,-gm[c,; : stmt(v;) = Plo), (4-1D
ViQuse[cr} Y= 0, and (4”‘3)
DV,o) =1 (4-4)

Nearness regions model concurrency states where the progress of a single process is

blocked by a hyperplane of a forbidden region.

19

Definition 4-5: nearness region

A nearness region is a triple (d,V ,E), where d is the direction in which the sys-

tem is blocked within the region, V is the vertex of the region, and E is the ex—
1

tent of the region.

[

Up to N nearness regions can be generated from a forbidden region.

Definition 4-6: vertex and extent of a nearness region

The jth nearness region, R/(d7,V/,E7), formed from forbidden region
R0 V,E) with vertex V'(v,...,vy) and extent E'e,,... .ex'), is a region
with

di=j
vertex V/(v{,...,v{) such that

o
vi=v—1

_ A7 wie 1. SV =V
and extent E7{e{, ..., ef) such that

ef=v,

Vk;ﬁje{l..w} tel = e

Nearness regions of degree { are the intersection of { distinct nearness regions. Points
‘within nearness regions of degree { model concurrency states where { processes are
blocked by the hyperplanes of { distinct forbidden regions. Nearness regions geﬁerated
directly from forbidden regions are called nearness regions of degree 1. Associated with a
nearness region of degree { is a blocked set B and an invariant set I such thati € B if and
only if processi is blocked within the region, and i € I if and only if extent coordinate

g = oo. Since geometric models in practice are finite, infinity is defined to be some finite

20

value such that the point P(oo,,. .. o0y} lies outside the model.

A deadlock region is a nearness region of degree { where points within the region

model concurrency states in which one or more processes are blocked forever.

Definition 4-7: deadlock region

A deadlock region is a tuple {ILB,V.E), where I is the invariant set, B ig the
blocked set, V is the vertex, E is the extent, such that

BUI=1...,N)

O

The definition of a deadlock region given above fails to capture certain unstable deadlock
states. In practice this is not a problem because unstable deadlock states always lead to

stable deadlock states.

The final region of interest is the unsafe region. Unsafe regions model concurrency

states that ultimately lead to deadlock.

Definition 4~8: unsafe region

An unsafe region is a triple (D,V,E), where D is a deadlock region, V is the ver-
tex, and E is the extent.

O

Carson has shown that the vertex of an unsafe region formed from a deadlock region D is

easily computed.

21

Definition 4-9: vertex of an unsafe region

Let the nearness regions of degree 1 whose intersection is the deadlock region D
be RI(d7,V7,E7). Let max(@) = 0. Then the vertex of the unsafe region formed
from deadiock region D is a point VUV (Y, ... ,v§) such that

Vieq.m 1 v¥ = maxvf, k €EBY Nk #=1i)

O

In Figure 4-1(a) we give an example of a reusable resource program that uses three sema—
i)hores. We assume a=1, b=1 and c=2 initially. Figure 4-2(a) is a l-cycle geometric
model of this program. Region R1, the vertically oriented solid rectangle, is a forbidden

region for semaphore b. Region R2, the horizontally oriented solid rectangle, is a forbid—

a,b =1; ¢ = 2: semaphore

cobegin :
A: cycle P(a); P(e); P(b); Vi) V(b); V(a) endcycle
/
B: cycle P(b); P(c); P(a); Vic); V(a); V(b) endcycle
end.
(a)
a,b,cdef = 0: semaphore
cobegin
A: eycle Via); P(b); Vic); P(d); Vie); P(f) endcycle
/7

B: cycle V(F); P(c); V(b); Ple); V(d); Pla) endcycle
end. :

(b)

Fig. 4~1: (a) Reusable Resource Program (b) SI Program

22

den region for semaphore a. Regions N1 and N 4 are nearness regions associated with for—
bidden region R1; similarly N2 and N3 for R2. Nearness regions N1 and N3 form
deadlock region, D. The unsafe region, U, can be computed given the other regions. If a
vector representing the progress of processes A and B were to contact a part of U then A
and B woﬁid inevitably deadlock. Deadlock is inevitable only if processes A and B seize
semaphores concurrently. This is reflected in the fact that vertex of the unsafe region is
not at the origin. In Figure 4-1(b) we give an example of an SI program that uses six
semaphores; Figure 4-2(b) is its 1-cycle geometric model. There are four forbidden regions
of interest here, R1— R4. The two deadlock regions in this example, DI and D2, are
formed from R1, R2 and R73, R4 respectively. Region D1 is reachable; region D2 is

unreachable. We shall see that if a region such as D2 exists, then there must be a some

B B
V(o) — Pla)
i Nt R1 R3
Viak-- ; v(d)
' R4
Vi) N2 ' R2 Ble)
' D2
Pla)j--- : Vib)
| D N3 R1
Plc) -—-~Ia- ----------- ——— Pc) .
U ' § D1{R2
P(b) IR S Vif) (I U
N4 u
A
P(a) Plc) P(b) Vic) V() Via) Via) P(b) V(c) P(d) Vie) P(£)
(a) (b)

Fig. 4-2: (a) Reusable Resource Program (b) SI Program

23

reachable deadlock region, D1. Furthermore, since the unsafe regions for both D1 and D2
have their vertices at the origin, this program will inevitably deadlock. We shall see that

this is a property shared by all §7 programs.

Regions generated from SJ programs have properties that allow us to derive a
sufficient condition for deadlock. One such property is that a forbidden region formed by
a semaphore request during the first cycle of some process has a vertex in the 1-cycle sub~

set of the co~gycle model with exactly one non—zero coordinate,

Lemma 4-1: Let S/ be a request of semaphore . If R is a forbidden region

formed by the first instance of statement S and V(vy,...,vy) is a point such
that
0<vy=j <eco (4-5)
and
Vst 1 v = 0. - (4-6)

then V is the vertex of R.

Proof: We show that point V satisfies the four conditions of a vertex point of a
forbidden region given in Definition 4~4. Condition 4-1 is true by the assump—
tion that S/ is a P operation. Condition 4-2 is true by the assumption the S/ is a
P operation and by Equation 4-6. Condition 4-3 is true by Equation 4-6. From
the definition of §I programs and Equation 4—6 we have

diyv, o) =1
and
Vewteqr.m : 4,00 = 0,
which imply that

DV, = 3 yeo) =1,

k=1

thereby satisfying Condition 44,

O

24

Another property of SI programs is that there is exactly one nearness region generated
from the forbidden regions described in Lemma 4~1 and the vertex of this nearness region

lies in the 1-cycle subset and contains exactly one non—zero coordinate.

Lemma 4-2: A forbidden region whose vertex lies in the 1-cycle subset of the
co-cycle model of an S/ program generates exactly one nearness region
R7(d7,V7 E7). The vertex of this nearness region is a point

Viv{,...,v{}
where

0 < v;f < oo
and

VkeejE{l...N} 1vf = 0.

Proof: From Lemma 4-1, there is exactly one non—zero coordinate in the vertex
of the forbidden region, hence only one nearness region can be formed from a
given forbidden region. The location of this nearness region follows directly
from Definition 4-6.

0

The next lemma will help us derive the vertex of the unsafe region associated with a

deadlock region formed from nearness regions whose vertices lie in the 1-cycle subset.

Lemma 4-3: Let D be a deadlock region formed from the intersection of { dis—
tinct nearness regions R7(d/,V/,E7), j = 1.[, whose vertices lie in the 1-cycle
subset. Then

Vs s 1.0yt V5 = 0.

Proof: The proof follows directly from Lemma 4~2 and from the fact that the
directions associated with { intersecting nearness regions are distinct.

O

25

Given these properties of the forbidden regioné and nearness regions generated in the 1-
cycle subsets of the co-cycle models of $I programs, we can show that the existence of a
(perhaps unreachable) deadlock state in the eo—cycle model is a sufficient condition for

- deadlock in SI programs.

Lemma 4-4: An SI program contains a deadlock state only if the program
deadlocks. L o

Proof: Consider a deadlock state in the eo—cycle model. From Lemma 3-3, there
is an associated 1-cycle deadlock state, ', where processes 1, ...,{ are deadlocked
in their first cycle. Then there is a deadlock state, S, in the 1—cycle subset where
processes 1,...,{ are deadlocked. Let S be contained in a deadlock region D
formed from the intersection of { distinct nearness regions, R/(d/,V7,E7),
j = L.{, where v/ is the ith vertex coordinate in V7. The ith vertex coordinate
in the vertex of the unsafe region U formed from D is defined to be

Ve vY = max(vf, k €B? Ak i)
From Lemma 4-3 it follows that
max(vF, k{1 .{} Ak = i) =0.

Hence, the vertex of U is at point VY (0, ... ,0). Since the origin is always reach—
able, deadlock is inevitable.

O

Lemma 4—4 says that the presence of a deadlock state § in the co—cycle model implies
that deadlock is inevitable. It is a powerful result because it makes no assumptions about
the reachability or feasibility of §. Lemma 4~4 also implies that the set X 5 consists of
processes that will never deadlock from § or from any concurrency state. Thus X 5 s
invariant over all concurrency states. These results will be useful when we derive accu—

rate and complete models for $/ programs in the next section.

26

5. Accurate and Complete Models of SI Programs

In this section we use the results from the previous two sections to derive the size of
accurate and complete models of SI programs. Our work so far has been concerned with
the properties of co—cycle models of SI programs. In practice though, static deadlock
detection methods such as the geometric method require finite models to analyze. The next
result establishes a relationship between deadlock states in finite and infinite models of

PV programs.

Lemma 5-1: § is a deadlock state in the k—cycle subset of the {(k +1)-cycle model
of a PV program if and only if § is a deadlock state in the k—cycle subset of the
oo—cycle model.

Proof:

If: Processes deadlocked at § are blocked at every concurrency state in the co-
cycle model reachable from §. The (k +1)—cycle model is a subset of the co~cycle
model. This implies that processes deadlocked at § are blocked at every con—
currency state in the (k +1)—cycle model reachable from §.

Only If: Carson has shown that a forbidden region ends in the current cycle of
each process, the next cycle of each process, or never at all [Car84]. This implies
that processes blocked in the k—cycle subset are released in the k—cycle subset,
the (k+1)-cycle subset, or never at all. Thus, processes deadlocked in the k-—cycle
subset of the (k+1)-cycle model are deadlocked in the k —cycle subset of the co~
cycle model,

O

Lemma 5-1 says that if we are somehow able to determine that the k—cycle subset of the
co—cycle model of a PV program is accurate or complete, then the k—cycle subset of the
{(k +1)-cycle model is also accurate or complete. In other words, we model k+1 cycles of

each process, but analyze only the concurrency states generated by the first k cycles.

Lemma 3—3 tells us that the unique deadlocks in S programs are the 1-cycle

deadlock states. Furthermore, Lemma 4-4 implies that 1-cycle deadlock states are the

27

only reachable deadlock states. From this it is easy to show that 2-cycle models of §7

programs are accurate.

Theorem $-1: Two~cycle models of SI programs are accurate.

Proof: The 1-cycle deadlock states are the only reachable deadlock states. Thus
we must show that the 1-cycle subset of the 2—cycle model contains a reachable
1-cycle deadlock state if and only if the co—cycle model contains a reachable 1—
cycle deadlock state.

If: Let a reachable stable 1~cycle deadlock state in co—cycle model be
S'(Sll,. ‘e ,,S‘g',SgM',. . ,SN')

where processes {1,...,€}, £ £ { € N, are deadlocked on the first cycle, and
where processes {£+1, . ..,{} are deadlocked at later cycles. From Lemma 4-4, we
know that processes {{+1,...,N} will never deadlock. Then we have a deadlock
state S in the 1-cycle subset at

S(SI',. .. ,Sg’,tg.{.l,. - ,t{,tg..;.l,. . rti‘\?')

where ¢; is the last statement in the first cycle of process {. Clearly, S is reach—
able, which from Lemma 5-1 implies that § is a reachable deadlock state in the
1-cycle subset of the 2—c¢ycle model.

Only If: See Lemma 5-1.

0

Theorem 5-1 says that in order to statically determine the deadlock potential of an S7
program, we need only analyze the 1-cycle subset of the 2-cycle model. If the 1-cycle
subset contains a deadlock state, then the program is guaranteed to deadlock. If the T-cycle
subset contains no deadlocks, then the program will never deadlock. Although 2-cycle
' models are accurate, they are not complete. Recall the example from Section Three where
two processes deadlock on the first cycle and a third process deadlocks on its second cycle.
In this case, the 1~cycle subset does not contain the partial deadlock state where all three

processes are deadlocked.

28

The following result will help us derive the size of complete models of §I pro—
grams. It uses properties of consistent cyclic dependency equations to bound the number of
cycles that a deadlocked process has completed at a 1-cycle deadlock state. Let max{cy) be

the largest initial semaphore value.

Lemma 5-2: If § is a i-cycle deadlock state in an SI program, then each
deadlocked process has completed at most (N —2)max{oy)+1) cycles.

Proof: Lemma 3—4 tells us that at a 1—cycle deadlock state at least two processes
have not compieted their first cycles and that all other processes are executing a
later cycle. Thus, the largest difference in the number of cycles completed at a
1~cycle deadlock state involving { € N processes is given by an equation of the
form:

R,= Ry + max{oy) + 1

Rz = .R3 + ?MX(U'Q) +1

Ryp = Rg_y + max(oy) + 1
Rewi = Ry

Ry = Ry
Since this is a I-cycle deadlock state, we have Ry = 0 and
Ry={ — Dmax(ocy + 1) € (N—2)max(oy) + 1.

Thus, in the worst case no deadlocked process has completed more than
(N ~2Xmax(oo) + 1) cycles.

|

We can now derive the size of complete models of SI programs. Let M = max(o) + 1.

Theorem 5-2: (NM —2M +2)—cycle models of SI programs are complete,

Proof: We have already shown in Theorem 5-1 that 2—cycle maodels are accurate.
Since the unique deadlocks are the l-cycle deadlock states and since I—cycle

29

deadlock states are the only reachable deadlock states, we must show that the
(NM —2M +1—cycle subset of the (NM ~2M +2)-cycle model contains a reach—
able 1-cycle deadlock state if and only if the co—cycle model contains a reachable
1—cycle deadlock state.

If: See Lemma 5-1.

Only If: Let S be a stable and reachable 1—cycle deadlock state
S'syhen o 8¢S gathe 5y

where DS' = {1,...,¢} is the set of deadlocked processes and X5' = {{+1,... N},
is the set of processes that, from Lemma 4-4, will never deadlock. Now consider
the 1-cycle deadlock state

S(S’I',. - ,Sg‘,tg.;_;,. ' ,tg,t€+1,. . ,tN)

where t; is the last statement in the {NM —2M +Dth cycle of process i. From
Lemma 5-2 we know that § is contained in the (NM—2M +1)-cycle subset of
the co—cycle model. Clearly S is reachable, which from lLemma $-1 implies that
S is a reachable 1~cycle deadlock state in the (NM —2M +1)-cycle subset of the
(NM —2M +2)-cycle model. :

a

Theorem 52 says that we can determine the size of a complete model for an $7 program
by simply counting the number of processes and determining the value of the largest ini-

tial semaphore.

Theorems S—1 and 5—2 suggest a strategy for efficient static detection of deadlocks in
an SI program. First we generate the 2-cycle model and analyze its 1-cycle subset for
deadlocks. If the 1-cycle subset contains no deadlock states, then by Theorem 5—1 the pro—
gram is deadlock free. If the 1-cycle subset contains a deadlock, then the program will
inevitably deadlock. To idéntify all of the unique deadlocks in the program, then by
Theorem 5-2 we generate the (NM —2M +2)—cycle model and analyze its (NM ~2M +1)-

- cycle subset for deadlock states.

30

6. Conclusions

We have solved the finite modeling problem for a class of cyelic consumable PV
programs known as S7 programs. We showed that determining the size of accurate and
complete models of ST programs requires time proportional to the sum of the number of
processes and the number of semaphores. In particular we showed that 2—-cycle models are
accurate for SI programs and that (NM —-2M +2)-cycle models are complete, where N is

the number of processes, and M is the largest initial semaphore value plus unity.

Along the way, we introduced the the notion of stable and unstable partial deadlock
states as a v?ay of distinguishing between interesting and uninteresting partial deadlock
states. We introduced a weak form of the deadlock predicate whose satisfiability is a
necessary condition for deadlock in PV programs. We then used this weak deadlock
predicate to derive a number of necessary conditions for deadlock in S/ programs. We
next used the geometric model of concurrent programs to show that the existence of a
(perhaps unreachable) deadlock state is a sufficient condition for deadlock in §I programs.
Finally, we used these results to derive the size of accurate and complete models. We are

currently studying the finite modeling problem for more general classes of PV programs.

3

References

[AnS83]
[Car84]
[C1a80]
[CoD73]
[Hab72]
[Hab75]
[Ho172]

[OwGT6]

(. R. Andrews and F. B. Schaeider, Concepts and Notations for Concurrent
Programming, Computing Surveys 15, 1 (March 1983), 3-43.

S. D. Carson, Geometric Models of Concurrent Programs, PhD Dissertation,
University of Virginia, 1984.

E. M. Clarke, Synthesis of Resource Invariants for Concurrent Programs, ACM
Transactions on Programming Languages and Systems 2, 3 (July 1980), 338—358.

E. G. Coffman and P.). Denning, Operating System Theory, Prentice—Hall,
Englewood Cliffs, New Jersey, 1973.

A. N. Habermann, Synchronization of Communicating Processes,
Communications of the ACM 15, 3 (March 1972), 171~176.

A. N. Habermann, Path Expressions, Technical Report, Department of Computer
Science, Carnegie—Mellon University, June 1975.

R. C. Holt, Some Deadlock Properties of Computer Systems, Computing Surveys
4, 3 (September 1972), .

S. Owicki and D. Gries, Verifying Properties of Parallel Programs: An
Axiomatic Approach, Communications of the ACM 19, 5 (May 1976), 279-284.

