FLECS: A Tool for Rapid Prototyping of Mechanismsin
Success/Failure Based L anguages

Mark W. Bailey
Janalee O'Bagy

Computer Science Report No. CS-90-35
July 1990

FLECS: A Tool for Rapid Prototyping of M echanismsin
Success/Failure Based L anguages

Mark W. Bailey Janalee O’'Bagy
mark@viginia.edu

Department of Computer Science
University of Mrginia
Charlottesville, YA 22903

Abstract

Our goal is to provide a prototyping tool that facilitates the addition of new language
mechanisms in success/failure based languages. By this, we mean languages that have success and
failure of expressions, generators, and backtracking. hae designed an interpretealled
FLECS, for a subset of Icon, a language which exhibits the above features. FLECS is written in
Scheme using a technique called continuation-passing-style (CPS). This approach allows us to
extend, modify and experiment with new language mechanisms which range from datatyping
issues to general control structures.

In this report, we provide an overview of the base semantics that FLECS implements, fol-
lowed by a brief description of the CPS implementation technique. FIsE€pability is then
demonstrated by augmenting the base language with a general control abstraction that has been
shown to be powerful in the context of traditional procedural languages. In conclusion, the seman-
tics of this control abstraction in the presence of success and failure is discussed.

1 Introduction

Since the design of the Icon programming language in the earlys1@&Wer languages have incorporated a number

of language features that have become well established. These include, among others, first-class functions and a vari-
ety of scoping mechanisms. Therefore, we are interested in extending, or changing the Icon language [Gri82][GG83]
to reflect these innovations in language design.

Icon is distributed with a flexible interpreter and run-time system. This flexibility is seen most notably in the ease
with which one may to add new types and run-time operations [GG86] and change syntax [GW90]. Hsiveyer
the Icon system to experiment with language extensions that have pervasive semantic implications, such as scoping
or adding first-class procedures, requires extensive modifications to the run-time system. The Icon implementation is
large, consisting of over 40,000 lines@f Such modifications are therefore more easily accomplished in the context
of a very high-level implementation.

Our goal is to provide a high-level implementation that facilitates rapid prototyping of new language features. In
an efort to achieve this goal, we have designed an interpreter for a subset of Icon. An interpreter is a natural choice
since we would like the language implementation to be quickly modifiable. Unlike other interpreters for Icon [Gri82]
[OG87], oufs is written in a form called continuation-passing-style [Ste76]. This describes ¢pat-directed eval-
uation in terms of continuations, which in many ways is closer to its formal denotational description [Gud86]. Our

source language for the interpreter is Scheme, which provides many desirable features for our interpreter implemen-
tation such as ease of parsing, a built-in garbage collector and especially first class functions.

The implemented language is a subset of the lewsidh 8 distribution [Gri90]. Features not implemented in the
language include many of the types and most of the run-time routines. In addition, for ease of implementation, the syn-
tax of the language has been moderately altered. Appendix A provides the grammar for the syntax of the supported
features.

The purpose of this report is to describe the implementation of our inter@&téion 2 provides an overview of
the Icon language. Section 3 introduces continuations, which are used in the implementation. Section 4 presents the
implementation details of the interpret8ection 5 details the addition of a very general control abstraction as a dem-
onstration of the interpretarflexibility. While an overview of Icon has been provided, it is assumed that the reader
has a working knowledge of Scheme [Ree86].

2 An Overview of Icon

Icon is a general purpose expression-based programming language. Its pred8tE3B@L4, provided a back-
tracking mechanism during pattern matching for matching strings laoly has further incorporated goal-directed
evaluation into the entire language with the introduction of success and failure of expressions. This integrates the tra-
ditional view of control flowbased on sequencing and iteration, with a backtracking mechanism. The language also
supports usedefined generators as an extension of the usual procedural abstraction. In the next few sections, we will
present a brief overview of the language. For a more complete description, see [GG83].

2.1 Success/Failure
In Icon, the evaluation of an expression may or may not produce a value. An expression that does not produce a value
is said tdfail, while an expression that produces a value is saacteed. An example is
i<j
which will succeed or fail, based on the valueisaofdj. If the condition i(< j) is satisfied, the expression will evaluate
toj. Otherwise, the expression will fail. The keyw@aifdil is an expression that always fails.

The use of success and failure in Ilcon subsumes the role of boolean values in other languages [Gri82]. As such,
Icon does not support a built-in boolean type. Where boolean expressions are used to decide the direction of execution
in other languages, Icon uses success and failure. Thus, expressions that may succeed or fail arokddienas,
and expressions that always succeed produce a value arenwaitggbnic. We may use our previous example in the
context of a simplé expression:

if i < j then write(i) else write(j)
When evaluated, the lesser of the two values is written. In this caffesdghtol structure chooses which branch, the
then or the else, should be evaluated based on the success or failure of the control clause. This example illustrates why
it is said that success and failure “direct” the evaluation of expressions in Icon [Gri82].

Success and failure based evaluation is concise and expressive. For example, in other languages, exceptions are
frequently signalled by returning a special value outside the “semantic” range of the function. Common examples
occur with I/O where such conditions as end-of-file need to be signalled. For examgleshitwactewnalued func-
tionget char () returns 1 to indicate end-of-file. In this example, the “semantic” type of the funatiosi(gned
char) must be extended (& gned i nt) to provide the special value. In contrast, the Icon expression

read()

simply fails when end-of-file is encountered. Thus the success/failure scheme allows the programmer to detect an ex-
ception where no value has been computed and the control needs to be modified.

2.2 Generators

In addition to conditional and monogenic expressions, there are expressions that produce more than one result. Such
expressions are called generators. Generators produce their values one-at-a-time, when they are required to by the
surrounding context. An example generative expression is

find(expl, expz)

which attempts to find the position of the string exp, within the string exp,,. Since there may be multiple instances of
exp, within exp,, there may be multiple results for the expression. Upon evaluation of this expression, the first result
is produced and the generator is suspended (allowing it to pick up where it left off when it is resumed). The remaining
results are not produced until the surrounding context needs them. This need is created by the failure of a subsegquent
expression. Failure causes the last suspended generator to be resumed to produce its next value. Specifically, we
could have

if(5 < find("p", "peter piper picked")) then write("yes") else write("no")
The result of evaluating the find expression isthe value 1. This value is then used in the surrounding expression (the
comparison), which in turn fails. This failure resumes find to produce its next value (7). This second value is again
used in the surrounding expression; since (5 < 7) succeeds, the then clause is executed.
In adifferent context, it is possible for the find expression to run out of values, or fail. Such an exampleis

if(15 < find("p", "peter piper picked")) then write("yes") else write("no")
where the find expression is exhausted by producing the values 1, 7, 9, and 13. All of these cause the surrounding
expression to fail. In this case, the control clause fails and the else clause is chosen.

2.3 Procedures
Icon provides atypical procedural abstraction for the programmer. Arguments are passed by value, and values may be
returned to the calling procedure. Icon provides both non-generative and generative procedures.

Upon invocation, formal parameters are bound to actuals and eval uation begins at the top of the procedure defini-
tion. Evaluation continueswithin the procedure until it succeeds or fails. The procedure succeedsif avalueisexplicitly
produced for the caller, while failure occurs when no value is produced upon completion of the procedure body.

2.3.1 Non-generative Procedures
Non-generative procedures may produce zero or one vaue upon invocation. A return value isindicted with thereturn
keyword. An example procedure definition is:

procedure addndouble(x,y)

Z=X+y
return 2 * z
end

An example invocation of this procedureis:

write(addndouble(4,5))
A procedure will succeed upon evaluation of areturn expression that produces a value. A procedure may fail in
three different ways: upon evaluation of afail expression, upon reaching the end keyword for the current procedure, or
upon failure of areturn expression.

2.4 Generative Procedures
Icon only provides a few built-in generators. Therefore, a method for creatindaiied generators is available.
Generators are simply procedures that useudbkgend keyword rather than theturn keyword to return a value to
the caller However if the invocation of the generator is resumed by the calbatrol returns to the point where the
generator last suspended. The following example implements a generator that produces the result
sequenc®, 1,0, 1,
procedure flipflop()
while(1) do {

suspend 0
suspend 1

}

end
In this example, the procedure will return a value each time the invoking procedure resumes it. Hide/pessible
to create a generator that fails in the same way that a non-generative procedure fails. In the examiile pedoer
dure will fail if it is resumed enough times to completevthige loop.
procedure to(start, stop)
count ;= start
while (count <= stop) do {

suspend count
count :=count+ 1

}

end

2.5 Expression Evaluation
Order of expression evaluation in Icon is simple. Icon uses a default evaluation strategy in which the evaluation order
is deterministic, even in the presence of backtracking. This strategy is used when procedure invocation and simple
expressions are encountered. Icon also provides a number of special forms [Ree86][Dyb87] that may modify the
default strategyThese special forms includeandwhile and are listed in appendix A of this report.

In the absence of any special forms, expressions are evaluated left-to-right. Failure causes resumption of suspend-
ed generators in LIFO (right-to-left) orddihe last suspended generatagilable (see Section 2.5) is resumed upon
failure of its subsequent expression. An example is the evaluation of a funetijumhents

f(expl, exp,, ..., expn)
whereexp, will be evaluated first, followed bgxp, and so on. Upon failure of any of the expressions, the previous

expression is resumed and execution starts forward from that point. In the expression

f(pos := find("ells", "she sells sea shells"), 10, 15 <pos)

the two left-most ayjuments are evaluated, producth@nd10 respectively The third agument is then evaluated,
which fails. This causes the firsgament (containingind) to be resumed since the second is a constant, not a gener-
ator Now, the second and thirdgarments, in turn, are re-evaluated. This produces the vEluasd17 respectively
Finally, the function call is made with7, 10, and17 as its aguments. It should be noted that since everything is an
expression, the assignment operatar)(produces the variable as its value.

The resumption of generators upon failure, as described above, provides a backtracking mechanism for Icon. This
is what gives Icon its goal-directed evaluation: the goal is to succeed—produce a value—for every expression.

2.6 Generator Lifetime

During evaluation, generators compute values, suspend, and are available for future resumption. However, at points
during evaluation, generators become unavailable for resumption. In other words, generators have a limited lifetime
defined by the control structures that contain them. The limited lifetime of generators provides a bounding for the
backtracking mechanism. To understand the motivation for bounding, let us look at the evaluation of the if control
structure. An if expression has the usual form:

if exp, then exp, else exp,exp,

If exp, succeeds, exp, is selected, otherwise exp, is selected. However, once the exp, succeeds or fails, none of the
generators contained within exp, may be resumed. The motivation for bounding is to provide the “natural” semantics
of traditional control structures in the presence of generators. If exp, in the if expression were not bounded, failure of
exp,, could resume a generator contained in exp,, which in turn might fail, causing selection of exp,. This obviously
would not be the natural semantics of if.

Icon definesimplicit “barriers’ for backtracking that, once crossed, prevent the resumption of suspended genera-
torsthat were evaluated before the barrier. Each of Icon’s control structures defines these implicit barriers (or bounds)
for the expressions that they contain. The if control structure prevents the resumption of any generator in the control
clause (exp, above) from being resumed after the appropriate branch is chosen. Another exampleis

while exp, do exp,

whichis similar to atraditional while. exp, isonly evaluated if exp, produces aresult. However, once the decision of
whether to evaluate exp,, has been made, no generatorsin exp, may be resumed. Upon completion of exp,, exp, isre-
evaluated. Again, the bounding of exp, preserves the natural semantics of while.

In the case that there is no suspended generator to resume, an expression fails to its outer context. This, in many
cases, isacompound expression. A compound expression has the form:

{exp,; exp,; ... ;exp }
In Icon, the semicolons are optional provided each expression occupiesits own source line. In acompound expression,
both success and failure of the it expression causes the next expression in the sequence to be evaluated. In addition,
all but the final expression (exp,) are bounded, thus limiting the control backtracking to within a single expression.
Upon failure of a subsequent expression, the final expression may be resumed by the compound expression’s outer
context.

This control gives Icon the sequential nature of traditional languages. While function invocation follows the de-
fault evaluation strategy, control structures define backtracking boundaries, the order in which their subexpressions are
evaluated, and the resulting value of the control structure. These three characteristics are what define the flow of exe-
cution.

2.7 Generative Control Structures

Icon provides generative control structuresin addition to many of the standard control structures found in Algol-like
languages. A generative control structure attempts to provide some control specific to the multi-result nature of gen-
erators. For instance

every exp; do exp,

will always exhaust all the generators within exp, . Furthermore, each time exp, produces aresult, exp, is evaluated.
Another generative control structureis

exp, \ exp,

whichiscalled limitation. Thisisthe only Icon control structure where expressions are evaluated in right-to-left order.
exp, isevaluated first, which must produce anumeric value. Thisvalue limitsthe number of resultsthat exp, isalowed
to produce. Used in conjunction with every, limitation can be used to produce ho more than n results. Thisis particu-
larly useful when the generator is capable of producing an infinite number of results. For example:

every (fibonum := fib() \ 20) do write(fibnum)
will write no more than the first 20 values produced by the fib generator.

3 Implementation Technique

In an effort to make the implementation of our interpreter capable of modeling a variety of control mechanisms, we
have used a well-known implementation technique [AlI88][HF86][KHB89][Ste78] known as continuati on-passing-
style. This technique has been shown to be flexible enough to implement a large spectrum of mechanisms from sim-
pleif expressions to catch/throw and coroutine mechanisms. This style of programming builds functions during lan-
guage interpretation and so requires first-class functions in the interpreter source language. Before we see the
implementation, an overview of the technique is necessary.

3.1 Continuations

While evaluating a program, an interpreter must maintain the program’s execution state. Typically, this is accom-
plished with a program counter and program stack to store state information. This state includes control information
and is known as the control context. This context may be represented as a procedure that embodies the state of the
program at a given point. The procedure may subsequently be called to continue at the point previously saved. Thus
the control context is known as the computation’s continuation [Ste78].

Every expression has a continuation that represents the remaining computation of the program. A continuation
may be viewed as a function of one argument. The argument is required because the current expression’s value may
affect the control of the remaining computation. Further information on continuations may be found in [Ste76]
[Ste78][Dyb87][Hay87].

3.2 Continuation-passing Style
The interpreter described in this report is written in CPS—a style of programming in which continuations are given
explicitly to direct control flow. This implementation technique is known as the continuation-passing style (CPS)
[Ste76]. The use of CPS for this implementation is what will make the modeling of complex and varied control flow
simpler and thereby meet the goal of this work.

CPS is not specific to interpreters and can be demonstrated by transforming a simple function to CPS. Figure 1
shows atypical recursive definition of the factorial function in Scheme. In the basis case (n = 0) avalueis returned,

(define (fact n)
(if (eq? 0 n) 1
(* n(fact (- n1)))))

Figure 1: A standard factorial definition.

whilefor n> 1 avalueis computed by first calling fact with n - 1, completing the computation, and then returning
the value. Figure 2shows the fact function after conversion to CPS. Note that the basis case is no longer areturn,
but, instead a call to the function k, which represents the continuation for fact . Inthe non-basiscase, fact iscalled
recursively and a new continuation—one that incorporates the computation for this call to fact —augments the one
passed to fact . An interesting consequence of converting the definition of fact is that the new definition is tail-
recursive, even though the original definition was not. Thisistrue of all functionswritten in CPS[Ste76]. Further, the
only computation that isactually doneinfact isthe calculation of the new actualsfor therecursive call tofact . All
other computations are done in the newly constructed continuation after the basis case calls its continuation.

(define (fact n k)
(if (egq? 0 n) (k1)
(fact (- n 1) (lambda (v) (k (* v n))))))

Figure2: A CPSfactorial definition.

Any procedure or entire program can be converted to CPS. For example, typical meta-circular interpreters for
Scheme have a very simple format. The evaluation function looks for the syntactic constructs of the language being
implemented and dispatches the eval uation of them to hel per-functions. These functions, in turn, may call the evaluator
recursively. Such an interpreter can be converted to CPS in the same way that our factorial example has been. Figure
3 shows a portion of such an interpreter implementing Scheme presented in [Haynes86]. Note that the author named
the main evaluation function meaning rather than the usual eval .

(define meaning
(lambda (e r k); e = expression, r = environment, k = continuation
(if (symbol? e)
(k (deref (r identifier)))
(match e
[(quote literal) literal]
[(if predicate-exp then-exp else-exp)
(meaning predicate-exp r
(lambda (v) (if v
(meaning then-exp r k)
(meaning else-exp r k))))]

)))
Figure 3: A portion of a CPS-circular interpreter for Scheme.

4 Implementation Description

This section describes the implementation of our interpreter. As described above, this interpreter is a recursive CPS
interpreter based on the [HF86] interpreter for Scheme. The description incrementally improves the design of the
interpreter until the final version is reached. The complete implementation may be found in appendix B.

4.1 Success and Failure
The simplest expressionsin Icon are conditional and monogenic expressions. Examples of such include strings, num-
bers, and variables. For our interpreter, these expressions represent the basis case for its recursive definition. [HF86]

develops arecursive CPSinterpreter that uses a single continuation to represent the computation yet to be completed.
This reflects the underlying semantics of the language. Scheme expressions produce a single result, which is always
passed to the same context (continuation) no matter what the value is. Control decisions in Scheme are based on val-
ues of control expressions.

An interpreter for Icon, however, must provide a different semantics. Expressions may succeed and continue for-
ward in the computation, or fail and cause control to backtrack. Thus, an expression has two possible control paths:
one for success and one for failure. We choose to represent these two paths by two different continuati ons’. The choice
of which continuation to call is based on outcome (success or failure), not on values as with Scheme.

Upon success of an expression, the result is passed to the success continuation. Failure causes the failure contin-
uation to be called—with no parameter, since no value was produced. Below is the form of the interpreter that incor-
porates these continuations.

(define (eval exp env sk fk)
(cond ((nunber? exp) (sk exp))
((string? exp) (sk exp))
((&ail? exp) (fk))
((synbol ? exp) (sk (lookup exp env)))
((if? exp) (eval-if exp env sk fk))

))

Figure 4: Interpreter incorporating failure.

Strings and numbers evaluate to themselves, while variables require asimple lookup for their values. &fail simply calls
its failure continuation directly; note it passes no parameters.

Asour first example of how control is modelled in the interpreter, we present the implementation of if. To better
understand its implementation, let usfirst look at the definition of if for Scheme given in [Haynes86]:

(define neani ng

[("if predicate-exp then-exp el se-exp)
(rmeani ng predicate-exp r
(lanbda (v) (if v
(rmeani ng then-exp r k)
(rmeaning el se-exp r k))))]

))))
Figure5: Typical implementation of if.

1 For aformal description of Icon in terms of denotational semantics, see [Gud86].

Thisdefinition recursively callsnmeani ng to evaluate the control clause. The control clause’svalueisthen passed
to the newly constructed continuation, where the selection of the expression to be evaluated, the then or else, is made.
In contrast, acontrol structure in Icon will always provide both success and failure continuations. Figure 6 shows

(define (eval-if exp env sk fk)
(let ((condition (cadr exp))
(then-exp (caddr exp))
(el se-exp (cadddr exp)))
(eval condition env
(lambda (v) (eval then-exp env sk fk))
(lanbda () (eval else-exp env sk fk)))))

Figure 6: Our implementation of if.

our definition of Icon’sif.

Since the evaluation of the control clause may fail, the selection, based on the outcome of the control clause, must
be made by the evaluator itself. Therefore, the call to the evaluator must generate two continuations for the evaluator
to select after evaluation. As you will see, the use of success and failure continuations is universal throughout all of
the control structure evaluation functions.

4.2 Generators
Icon expressions can generate more than a single value. As with all values, the value produced by an expression is
passed to a continuation. A generative expression may be requested to produce other results upon failure of a subse-
guent expression. A generative expression must make available, in some way, a method by which such a request can
be made. In our interpreter, thisinformation is encapsulated by the expression in aresumption continuation. This con-
tinuation may be called to produce the next value of a generator when it is needed. It is passed along with the expres-
sion’s result to the surrounding context. Therefore, in the interpreter, every expression that produces a value
represents the value by a pair: the actual value, and the resumption continuation for the expression that produced the
value.

Figure 7 shows the interpreter that incorporates the resumption continuation. For integers, strings, and variables,
the resumption continuation is passed asapair with the value. Note that for numbers, strings, and variablesthe resump-

(define (eval exp env sk fk)
(cond ((nunber? exp) (sk (cons exp fk)))
((string? exp) (sk (cons exp fk)))
((&fail? exp) (fk))
((symbol ? exp) (sk (cons (|l ookup exp env) fk)))
((if? exp) (eval-if exp env sk fk))

))

Figure 7: Interpreter incorporating resumption continuations.

tion continuation issimply thefailure continuation for thisevaluation. Thisis because these expressions are monogenic
and can't produce other results later. In contrast, generators build a resumption continuation that truly will resume the

expression. However, if the generator isexhausted, it must supply thefailure continuation to allow further backtracking
to take place. The following code implements agenerator of two parametersthat produces the two parametersin order.
Thereturn success continuation (sk) ispassed thefirst parameter and a resumption continuation. . The resumption con-

(define (ret-args args sk k)
(let ((first (car args))
(second (cadr args))
(sk (cons first (lambda ()
(sk (cons second fk)))))))

Figure 8: A simple generator.

tinuation, if called, will pass the second parameter and the return failure continuation (fk) for the generator. Thus, if
athird result is needed, the generator will fail. Figure 9 shows the implementation of theto generator. Since theto gen-
erator produces avariable number of results based on itsarguments, the resumption continuationisrecursive. Thebasis
case (no more results) calls the generator’s return failure continuation.

(define (toby-builtin args sk fk)
(letrec ((lower (car args))
(upper (cadr args))
(by (if (null? (cddr args)) 1
(caddr args)))
(resume (lambda ()
(let ((tmp-lower lower))
(set! lower (+ lower by))
(if (< upper tmp-lower) (fk)
(sk “(;tmp-lower . ,resume)))))))
(resume)))

Figure 9: Implementation of the to generator.

4.3 Bounding of Expressions
Previously, we saw that the evaluation of an expression generated not only a value, but a continuation that could be
called to resume the eval uation. We have also seen that these resumption continuations are passed along and bound to
failure continuations for the evaluation of subsequent expressions. However, as described in Section 2.5, the back-
tracking mechanism is“bounded” by certain control structures. The bounding of expressionsis“passive” in theinter-
preter. That is, when a backtracking boundary is reached, the resumption continuation is simply not passed. The
implementation of if (see Figure 6) isagood example of this. The resumption continuation passed from the evaluation
of the control clause is not bound to either continuation in either recursive call to eval . Therefore, the continuation
islost and can never be called to resume the evaluation of the control clause.

As another example of bounding, the subexpressions of a compound expression are also bounded as described in
Section 2.5. Figure 10 shows the implementation of compound expressions:
For a given subexpression, we bind the success and failure continuations to the evaluation of the next subexpression
in the list. Therefore, upon success or failure, evaluation continues forward rather than resuming the previous subex-
pression.

So far, we have seen that control is represented in the interpreter by both success and failure continuations. To
support generators, a third continuation, called the resumption continuation, is used. The result of evaluating an ex-

-10-

(define (eval -begin exp env sk fk)
(if (null? (cdr exp)) (fk)
(letrec ((eval -1list-hel per
(1l anrbda (exp)
(if (null? (cdr exp)) (eval (car exp) env sk fk)
(let* ((fk (lanmbda ()
(eval -1ist-helper (cdr exp)))))
(eval (car exp) env (lanbda (v) (fk)) fk))))))
(eval -1ist-hel per (cdr exp)))))
Figure 10: Implementation of compound expression.
pression istherefore apair consisting of avalue and aresumption continuation. Furthermore, in the absence of bound-
ing, resumption continuations become the subsequent expression’s failure continuation. Bounding is accomplished by
substituting a continuation from the outer context for the resumption continuation. With thisin mind, we may introduce

the procedure call mechanics.

4.4 Procedure Calls

The procedure call isthe most complicated detail of the implementation. The call is composed of the evaluation of the
actual parameters, binding of the formals to the actuals, and the invocation of the procedure.

4.4.1 Parameter Evaluation

Now that we have some understanding about the way that values are represented and simple control constructs are
implemented, we are ready to examine argument evaluation. Thisis complicated by the introduction of generators as
actual parameters. We delay the discussion of generators until Section 4.3. Figure 11 shows the definition of eval -
act ual s which handles the evaluation of arguments. eval - act ual s calls the evaluator on the first expression

(define (eval -actuals exp env sk fk)
(eval (car exp) env
(lanmbda (parm
(if (null? (cdr exp))
(sk (cons (list (car parm) (cdr parm))
(eval -actual s (cdr exp) env
(1 anbda (parmlist)
(sk (cons (cons (car parm
(car parmlist))
(cdr parmlist))))

(cdr parm))) fk))

Figure 11: Evaluation of actual parameters.

(actual parameter) in the list passed to it and bundles a call to itself as the success continuation. Callsto eval and
eval - act ual s recursively alternate, allowing eval to be called on each actual, and eval - act ual s to build a

-11-

continuation chain® that will generate the parameter list upon completion of parameter evaluation. The parameter list
has the form:

((arg, arg, ... arg,) k)
where k represents the resumption continuation for the right-most parameter. This techniqueis also used by [HF86].

Therecursive call to eval - act ual s ismade by the success continuationto eval . eval passesalist (par m
containing the value of the evaluated parameter and its resumption continuation. During any particular invocation of
eval - act ual s, theinterpreter dispatchesthe evaluation of asingle parameter. Recall that if the evaluation fails, the
previous parameter must be resumed for another result. Thisis accomplished by passing the current resumption con-
tinuation from eval ((cdr par m) asthe failure continuation for the next eval - act ual s invocation. In fact,
whenever an expression is not bounded this binding of the of the last resumption continuation to the current failure
continuation occurs.

Upon success, the current success continuation is augmented by code that prepends the value of the current pa-
rameter to the result list (creating the continuation chain discussed above). Note that the order of invocation of the suc-
cess continuations passed to eval - act ual s is opposite of the order of their corresponding eval - act ual s
invocations. Therefore, the continuation chain is not called until the entire parameter list has been successfully evalu-
ated.

4.4.2 The Procedure Call

The entire procedure calling sequence is controlled by eval - app. The application of the function to the arguments
is done in the success continuation for the initial invocation of eval - act ual s. Thevalue that is passed to the con-
tinuationisapair that contains alist and a continuation, as described in Section 4.2. The first element in the parameter
list is the function to be applied, and the continuation is used to resume the evaluation of the function’s parameters. It
isinteresting to note that the actual binding of the formalsto the actuals and the resumption continuation to the failure
continuation of the function is done by the function itself. The definition of each function is prepended by the code
necessary to perform these bindings. This method is also used by [HF86].

(define (eval -app exp env sk fk)
(eval -actual s exp env
(1 anbda (val -1ist)
(let ((function (deref (caar val-list)))
(actuals (cdar val-list))
(back-k (cdr val-list)))
(function actual s sk back-k)))
fk))

Figure 12: Function application.

4.5 Return, Suspend and Fail

During the evaluation of an expression, the interpreter must choose where program execution (evaluation) will con-
tinue. These choices are restricted to evaluating a subexpression or choosing to call one of the continuations that the

1 A continuation chain is alist of continuations that are called in sequence that build a structure. Each continuation in the
chain contributes a value to the structure built by the chain. In this case, the structure is a parameter list.

-12 -

interpreter has been passed. So far, the only available continuations represent the rest of the computation based on
whether the current expression fails or produces avalue.
During evaluation of a subexpression, however, return, suspend, or fail may be encountered asin

procedure proc

e0
if e, then
return e,
eB
end

The compound expression has dictated that e, should be evaluated whether the if expression succeeds or fails. Howev-
er, return causes control to “break” from the current procedure, and continue back at the caller. Execution may continue
inthe caller upon one of two different paths: a success path if e, succeeds and afailure path if it fails. Since aswe have
seen the compound expression already binds the two continuations avail able to the evaluation of the next expression,
we require two more continuationsto represent the two return control paths. This brings usto the formulation for return
(Figure 13) and suspend (Figure 14). We have added two continuations, r - sk andr - f k, that represent control paths
for return success and return failure respectively. fail simply callsr-fk to return with failure.

(define (eval-return exp env sk fk r-sk r-fk)
(if (null? (cdr exp)) (r-sk (cons &null r-fk))
(let ((newsk (lambda (v) (r-sk (cons (car v) r-fk)))))
(eval (cadr exp) env new sk fk newsk fk))))

Figure 13: Implementation of return.

(define (eval -suspend exp env sk fk r-sk r-fk)
(eval (cadr exp) env r-sk fk r-sk fk))

Figure 14: Implementation of suspend.

The addition of these two continuations bringsthetotal to four. Thisaccurately modelsthe control flow for an Icon
program: during evaluation of an expression, the expression can succeed, fail, return avalue, or return failure. There-
fore, every helper-function must handle all four of these properly. Because control only returnsto the calling procedure
when areturn, suspend, fail or the end of a procedure definition is encountered, these are the only times that the return
continuations are called. For all other cases, these are ssimply passed on to the next evaluation.

Control structures that cause control to break out of normal order of evaluation, as return, suspend, and fail do,
require the addition of continuations as seen above.

4.6 Generative Control Structures

The implementation of generative control structures establishes the usefulness of this implementation technique.
Many of them were implemented quickly with ease. However, the complexity of several of the control structuresin
Icon is best illustrated by their implementation.

-13-

First, let uslook at the definition of every:

(define (eval -every exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(I anbda (e-val ue)
(let ((resume (cdr e-value)))
(if (null? (cddr exp)) (resune)
(eval (caddr exp) env (lanmbda (v) (resune)) resumne
r-sk r-fk))))
fk r-sk r-fk))
Recall that every evaluatesits do clause for each value produced by an expression until that expression is exhausted.
Thisisdone by simply binding the resumption continuation from the evaluation of the every clause to the failure con-
tinuation for the evaluation of the do clause. Notice that the success continuation for the resumption of the every clause
remains unchanged, while, after each value is produced, a new resumption continuation is generated and bound to the
failure continuation for the do expression.

Finally, Figure 15 shows the implementation for limitation. It israther involved due to the complexity of the con-
trol structure itself. Unlike other control structures in Icon, limitation does more than just dispatch evaluation of ex-
pressions based on success and failure. It must count the number of results produced by a generator and force failure
upon reaching the upper bound.

(define (eval-limt exp env sk fk r-sk r-fk)
(eval (caddr exp) env ; eval uate count expression
(I anmbda (val ue)
(let ((limt (car value)))

(if (<= (set! limt (- limt 1)) 0) ; if count <= 0

(fk) ; then, limt reached, fai
(eval (cadr exp) env ; else, evaluate

(1 ambda (val uel)
(sk (cons (car val uel)
(1 anbda ()

: check if limt reached

(if (> (set! linit (- limt 1)) 0)
((cdr valuel)); then resune

;. else limt reached, fail

(fk))))))
fk r-sk r-fk))))

fk r-sk r-fk))
Figure 15: limit implementation.

First, the second argument is evaluated to determine the maximum number of results that the first argument may
produce. If this number is greater than zero, the generator (first argument) is permitted to produce the first result, oth-
erwise, failureisforced. If aresult is produced, the control structure decrements the count each time the generator is

-14 -

resumed. Thisisaccomplished by augmenting the resumption continuation produced by the second eval. If the counter
reaches zero, failureisforced.

5 Addition of a New Control Structure

Now that the interpreter framework has been described and several of the control structure implementations have
been shown, let us turn to the addition of a new control structure. It is important that the control model be flexible
enough to facilitate the addition of control structures not currently available in Icon. Furthermore, it is interesting to
design a control structure that is generally not available in languages having goal-directed evaluation. Note that our
modified Icon syntax is used in example Icon programs in this section.

InaCPSinterpreter, we seethat control is managed by the creation and application of continuations. A given con-
trol structure uses continuations to implement its specific behavior. We can add a powerful control structure to such an
interpreter by allowing the programmer to access these (already built) continuations. Scheme provides a function,
called call-with-current-continuation (call/cc), that provides ageneral control abstraction to the programmer by giving
access to internal continuations. [HF86] succinctly describes the operation of call/cc in Scheme:

“The function [call/cc] must be passed a function of one argument. This argument isin turn passed
the current continuation, which is the continuation of the call/cc application, represented as a func-
tional object of one argument. Informally, this continuation represents the remainder of the compu-
tation from the call/cc application point. At any future time this continuation may be invoked with
any value, with the effect that this value is taken as the value of the call/cc application.”

An example use of Scheme’s call/cc is shown below. k isbound to call/cc’s continuation and isimmediately called
with 12 asits parameter. The effect is that the entire expression evaluates to 12 and the addition is never performed.

(call/cc (lanmbda (k) (+ 4 (k 12))))

[HF86][Hay87][HF87] describe a variety of control mechanisms, including coroutines and non-blind backtrack-
ing, that may beimplemented by the programmer using the call/cc mechanism. So, let’sintegrate Scheme’s call/cc with
our interpreter. First, we recognize that the call/cc argument must be a function of two parameters rather than one: a
success and a failure continuation. The choice of their bindings is obvious: the success and failure continuations for
call/cc. However, recall that success continuations expect a pair: the result and the resumption continuation. The re-
sumption continuation could be supplied by either the programmer or the interpreter; we have chosen the latter. What
then, should the interpreter supply as the resumption continuation for the expressionson lines5 and 11 in Figure 16
There are three plausible choices:

1) The failure continuation of the subsequent call to the success continuation.

2) The failure continuation for call/cc.

3) The continuation to resume invocation of call/cc's functional argument.

Figure 16 illustrates these points for choices 1 and 2. Choice three would cause phred to be resumed upon failure of
the call to sk or keep.

Choicethreeisnot avalid one since the resumption continuation is not created until phred returns or suspends. A
call to the success continuation within phred (as is the case) would never return, causing phred to never return, thus
the resumption continuation for call/cc would not be defined. Choice two violates the model—that continuations never
return (presumably even upon failure). Choice one is the definition we choose.

-15-

(global keep)
(procedure phred (sk k)
(begin
(:= keep sk)
(sk expr)*
)

© 0o ~NOO O~ WDNPF

(call/cc phred)?
(keep expr)*

e
= o

Figure 16: Form of call/cc use
Figures 17, 18, and 19 show the modifications to the interpreter. Note that unlike most control structures, the im-
plementation of call/cc must include modifications to application (see Figure 18) since part of its mechanism relies on
application. In addition a new datatype has been added—the continuation. Although the modifications may appear to
be significant for call/cc, eval-k and modifications to eval-app are only needed for the support of continuations
as a datatype.

(define (eval-call/cc exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(lambda (arg)
(let (new-fk (lambda () (sk “(,&null ,tk))))
(new-sk (lambda (v) (sk “(,v ,fk))))
(proc (deref (car arg))))
(proc “((&k sk ,fk) (&k ,fk)) new-sk new-fk))) fk r-sk r-fk))

Figure 17: Dispatch routine for call/cc.

(define (eval-app exp env sk fk r-sk r-fk)
(eval-actuals exp env
(lambda (val-list)
(if (starts-with? '&k (deref (caar val-list)))
(eval-k (deref (caar val-list)) exp env sk fk r-
sk r-fk)

)
Figure 18: Madificationsto eval-app for continuations.

(define (eval-k k exp env sk fk r-sk r-fk)
(if (null? (cddr k))
(if (= (length (cdr exp)) 0)
((cadr k)) (error "No arguments expected"))

(eval (cadr exp) env

(lambda (arg)

((cadr k) “(,(car arg) ,(caddr k))))
fk r-sk r-fk)))

Figure 19: Dispatch routine for continuation calls.

-16-

Figure 20 shows the formulation of arepeat loop using the call/cc construct. The loop body and condition are ar-
bitrary expressions. save-k savesthe entry point to the loop (line 8) asaprocedural object named loop (line4). A jump
to the top of the loop is accomplished by applying loop (line 10).

1 (global loop)

(procedure save-k (sk fk)
(begin
(:= loop fk)

a s~ ownN

)

(procedure main ()
(begin
(call/cc save-k)
loop body
(if condition (loop))

[EnY
P O O o0 ~NO®

[EnY

)
Figure 20: A repeat loop formulation using call/cc.

Although we have chosen this definition for the control of call/cc, it may not be the only appropriate choice. Such
adecision can only be made after experimentation with other designs. Since implementation of the control is rather
trivial once it has been designed (as shown above), thisinterpreter framework provides precisely the environment for
such experimentation.

6 Concluding Remarks

We have described an interpreter that implements alanguage based on success and failure of expressions, generators,
and backtracking. This interpreter provides the framework for implementing a variety of language mechanisms. It
also demonstrates the technique of CPS for a success/failure based language.

In addition to the implementation of a number of Icon control structures, a control abstraction not found in Icon
(call/cc) wasintegrated into the language. This illustrated the ease with which new non-trivial language features may
be implemented in the interpreter. Thus, during the language design process, less time may be spent implementing the
prototype interpreter and more time may be spent experimenting with the design and interaction of new language
mechanisms.

Other constructs that may be interesting within thisanguage domain include non-blind backtracking, coroutines,
and pattern matching over procedure arguments. The addition of these constructs would be straightforward.

-17 -

References

[All88]

[Dyb87]
[GG83]

[GG86]

[Grig2]

[Gri90]

[GWOO]

[Gud8e]

[Hay87]

[HF86]

[HF87]

[KH89]

[0G87]

[Rees6]

[Ste76]

[Ste78]

Lloyd Allison. Continuations Implement Generators and Stredrnashnical Report 88/112, De-
partment of Computer Science, Monash University, August 1988.

R. Kent Dybvig. The SCHEME Programming Languadpeentice-Hall, 1987.

Ralph E. Griswold and Madge T. Griswold. The Icon Programming Languagerentice-Hall,
1983.

Ralph E. Griswold and Madge T. Griswold. The Implementation of the Icon Programming Lan-
guage Princeton University Press, 1986.

Ralph E. Griswold. The evaluation of expressionsin Icon. ACM Transactions on Programming
Languages and Systerd$4): 563-584, October 1982.

Ralph E. Griswold. Version 8 of IconTechnical Report 90-1d, University of Arizona, January
1990.

Ralph E. Griswold, and Kenneth Walker. Building Variant Translators for Version 8 of Icon
Technical Report 90-4a, University of Arizona, January 1990.

David Gudeman, A Continuation Semantics For Icon Expressidreghnical Report 86-15, De-
partment of Computer Science, University of Arizona, April 1986.

Christopher T. Haynes. Logic continuations. The Journal of Logic Programming(2):157-176,
June 1987.

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining coroutines with con-
tinuations. Computer Language41(3/4):143-153, 1986.

Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects.
ACM Transactions on Programming Languages and Sys8#)$582-598, October 1987.

Richard Kelsey and Paul Hudak. Realistic compilation by program transformation. In Principles
of Programming Languagepages 281-292, 1989.

Janalee O’'Bagy and Ralph E. Griswold. A recursive interpreter for the icon programming lan-
guage. In SIGPLAN ‘87 Symposium on Interpreters and Interpretive Technipgges 138-149,
June 1987.

Jonathan A. Rees and William Clinger, eds. The revised3 report on the agorithmic language
scheme. SIGPLAN Notices 2112, December 1986.

Guy Lewis Steele Jr. LAMBDA: The Ultimate DeclarativéAl Memo 379, MIT Al Lab, Novem-
ber 1976.

Guy Lewis Steele Jr. RABBIT: a compiler for Schem&l Memo 452, MIT, January 1978.

-18-

Appendix A

The following grammar describes the language implemented by the interpreter.

program ::= decl-list

decl-list ::= decl | decl decl-list
decl ::= (global symbol expr)
decl ::= (procedur e symbol (symbol-list) expr)
expr-list = expr | expr expr-list
symbol-list ::= symbol | symbol-list
expr ::= number | symbol | string
expr = &fail

expr = (expr expr-list)

expr ::= gpecial-form
specia-form = (fail)

special-form 2= (while expr expr)
specia-form = (‘every expr expr)
specia-form .= (:=symbol expr)
special-form = (repalt expr)
specia-form = (return expr)
specia-form ::= ('suspend expr)
specia-form ::= (lambdafy (symbol-list) expr)
specia-form == (limit expr expr)
specia-form = (not expr)
specia-form = (i expr expr expr)
specia-form = (mut expr-list)
specia-form = (7 exprexpr)
special-form = (alt expr expr)
specia-form ::= (‘begin expr-list)

Global identifier declaration
Procedure declaration

Basic datatypes

Invocation

Procedure failure

While loop

Every loop

|dentifier assignment
Repeated alternation
Procedurereturn
Generator suspension
Anonymous procedure
Limit generator

Not expression
Conditional

Mutual expression evaluation
Sring scanning expression
Alternation expression
Compound expression

number, string, symbol correspond to the definitions used for the Scheme language.

-19-

OZ

Appendix B

This appendix continas a complete listing of the FLECS interpreter.

The diaect of Schemeis MIT version 7.0 beta release.

(display "Loading evaluator...")
(load "interp.scnl)
(display "done") (newine)

(display "Loading variable functions...")
(load "var.scnt)
(display "done") (newine)

(display "Loading utilities...")
(load "util.scnl)
(display "done") (newine)

(display "Loading type functions...")
(load "types.scnl')
(display "done") (newine)

(display "Loading control constructs...")
(load "ctrl-structs.scnt')
(display "done") (newine)

(display "Loading builtin functions...")
(load "built-ins.scnl)
(display "done") (newine)

(display "FLECS Loaded")

File: interp.scm

Sy INTERRSOM S

PR I A R R I R R A B R B R B R AR B R BN AR AR B R B R BN B R BN BN AR B R B R A R AR AR SR AR AR AR AR AR AR AR B SRR SRR AR AR AR B

; This is an interpreter for the Icon |anguage. It is inplenented in Schene
; using a continuation-passing style.

; Universally throughout this inplenentation, these abbreviations have the
; follow ng neaning:

; sk - success continuation (function of 1 paraneter)

; fk - failure continuation (function of no paraneters)

; r-sk - return-success continuation (function of 1 paraneter)

; r-fk - return-failure continuation (function of no paraneters)
; exp - expression being eval uated

; env - environnment to evaluate expression in

; eval is the actual interpreter. It dispatches functions based on the syntax
; of the current expression. This is every bit the sane as any other

; Schene-based interpreter.
(define current-eval -exp '())

(define (eval exp env sk fk r-sk r-fk)
(set! current-eval -exp exp)

(cond ((nunber? exp) (sk (cons exp fk))) ; succeed with value
((string? exp) (sk (cons exp fk))) ; success with val ue
((&fail? exp) (fk)) ; expression fails

; is a global or local variable or a function/procedure nane
((synmbol ? exp) (sk (cons (|l ookup exp env) fk)))

; if it isn't alist, we've run out of possibilities..

((not (pair? exp)) (icon-error "invalid |con expression" exp))
; fail keyword. procedure fails

((fail? exp) (r-fk))

((list? exp) (eval-list exp env sk fk r-sk r-fk))

((cset? exp) (sk (cons (string->cset (cadr exp)) fk)))

; must be a function/procedure invocation

(else (let ((e-func (find-cs exp)))

(if e-func (e-func exp env sk fk r-sk r-fk)
(eval -app exp env sk fk r-sk r-fk))))

; DETAI LS OF | NTERPRETER STARTUP

P I I I R I R R R B A B R R R B R R R B A A A B R B R B A BN B A AR AR AR B A B R A R A A B R B R SR AR AR SRR AR A AR R A A AR A SRR AR R AR AR SRR

; must define it so we can set! it later...

(define global-env '())

; &null needs a value, this is a useful value for the user.

(define &wull "lcon &ull™")

; define the "enpty" success and failure continuations. They sinply return
; "<< no value >>". The only difference between the two is that failure

; continuations have no paraneters.

(define (snull-k v) "<< no value >>")
(define (fnull-k) "<< no value >>")

; define the "error" success and failure continuations. They are used when
; a function requires a continuation, but the continuation should never
; be called.

; A good exanple of this is when the nmain procedure is initially interpreted.
; The "eval' function requires return continuations, but returnis invalid
; for the first invocation of main.

'[Z

; The use of 'limt' is to disanbiguate fromthe “\" operator (return val ue

(define (serror-k v) ; if not null), since control structures |ook |ike functions, procedures and

(error "Success continuation that shouldn't have been called" (car v))) ; operations.
(define (ferror-k) ;

(error "Failure continuation that shouldn't have been called")) ;o Syntax: (limt expl exp2)
; define the continuation that will be called last. That is, this continuation (define (eval-limt exp env sk fk r-sk r-fk)
; is passed to 'eval' as the failure continuation for the first invocation (eval (caddr exp) env
;o of main. (1l ambda (val ue)

(let ((limt (type-convert (deref (car value)) 'nunber
(define (termk) (newine) (display "lcon programtermnated.") (newine)) (lanmbda () (icon-error
"Expected integer for lim
; iconis the function that is actually called to invoke the interpreter. it"
; It initializes the global environnent, |oads the Icon functions (that (deref (car value)))))))
; are defined IN Schene Icon), and starts 'eval' on procedure nain. (if (<= (set! limt (- limt 1)) 0) (fk)
(eval (cadr exp) env

(define (icon filenane) (lanmbda (val uel)

(new i ne) (sk (cons (car val uel)

(set! gl obal -env (make- gl obal -env)) (lambda ()

(each-object "built-ins.sicn" (lanbda (object) (load-icon object global-env (if (> (set! limt (- limt 1)) 0)

#))) ((cdr valuel))

(each-object filenane (lanbda (object) (load-icon object global-env #t))) (fk))))))

(new i ne) fk r-sk r-fk))))

(display "Execution starting...") fk r-sk r-fk))

(new i ne)

(eval '(main) global-env (lanbda (v) (display "Value: ") (display (car v)) ; lanbdafy: This is a new control structure introduced by Schene Icon. It
(termk)) termk serror-k ferror-k)) ; sinply builds a new procedure fromthe supplied formals and body. Its val ue

; can then be invoked, or assigned to a variable by the enclosing body.
F||e Ctrl_structs_scm . Syntax: (lanbdafy formals el ... en)

(define (eval -procedure exp env sk fk r-sk r-fk)
(sk (cons (build-procedure (cdr exp) env) fk)))

... , suspend: evaluates the expression, and returns the value to the current
! procedure's caller. This is done by passing eval the current procedure' s
Ciaaaaaaaaaaaaassaaaaaisssss CIRL-STRUCTS.SCM 55isiiiissiaassasiaassisiass » P N) y P 9 : ; 4 :
... ; return-success continuation as the new success continuation. That way, if

; the expression produces a value, it is passed to the caller. Note that
; suspend fails if the expression fails.

; This section contains the functions that inplenent the Schene |con control
; structures. These are all autommjically dispatched by the eval function. ’
; Thus, each is required to accept the sanme argunents.

Syntax: (suspend expr)

(define (eval -suspend exp env sk fk r-sk r-fk)

; not: Swaps the success and failure continuations. Note that to do this, (eval (cadr exp) env r-sk fk r-sk fk))

; the old success continuation no |onger can take an argunent, and the .
; old failure continuation nust now take an argunent. For the old success, !
; we sinply throw away the argunent, for the old failure, we pass &null !

, as the argument. . Syntax: (return expr)

return: works |ike suspend, except that the procedure is restricted to
returning a single result.

; Syntax: (not exp) (define (eval-return exp env sk fk r-sk r-fk)

(if (null? (cdr exp)) (r-sk (cons &uull r-fk))
(let ((newsk (lanmbda (v) (r-sk (cons (car v) r-fk)))))
(eval (cadr exp) env newsk fk newsk fk))))

(define (eval -not exp env sk fk r-sk r-fk)
(eval (cadr exp) env (lanbda (value) (fk))
(lambda () (sk (cons &null fk))) r-sk r-fk))

. "\': Linmitation is the npst conplex of the control structures. First ; "|" (repeated alternation): Produce results by evaluating and resum ng

! . Lo N ; exp. If exp fails after the first evaluation, it is evaluated again. If
; exp2 is evaluated, if it is greater than 0, expl is evaluated, and returned. " exp fails on the first eval uation. repeated alternation fails

; If the outer environnent attenpts to resune the linitation, the val ue of ! p ! p !

; exp2 is decremented. Again if exp2 is greater than 0, expl is resuned. !
; This process of decrenent, conpare, resune is continued until no nore val ues !
; are requested, exp2 becones 0, or expl is exhausted of val ues.

Syntax: (repalt exp)

(define (eval-repalt exp env sk fk r-sk r-fk)
(eval (cadr exp) env (lanbda (v) (eval-repalt exp env sk fk r-sk r-fk))

ZZ

fk r-sk r-fk))

; ":=" (variable assignnent): evaluate exp and bind it to var-exp. The
; ‘variable' is returned. This allows the outer environnent to "get at
; the name of the variable if it wants. Thus, to find the value of the
; variable, it nust be dereferenced

Syntax: (:= var-exp exp)

(define (eval -assignnent exp env sk fk r-sk r-fk)
(eval (caddr exp) env
(lambda (r-val ue)
(eval (cadr exp) env (lanmbda (I-val ue)
(if (starts-with? '&ar (car |-value))
(begin
(bind-var (car |-val ue)
(deref (car r-value)))
(sk (cons (car |-value) (cdr r-value))))
(icon-error "Variabl e expected in assign-
nent "
(car 1|-value))))
fk r-sk r-fk))
fk r-sk r-fk))

; while: The expression list is executed repeatedly until cond fails.

; Syntax: (while cond exp)

(define (eval -while exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(1 anbda (condition)
(let ((eval-again (lanbda ()
(eval -while exp env sk fk r-sk r-fk))))
(if (null? (cddr exp)) (eval-again)
(eval (caddr exp) env (lanmbda (v) (eval-again))

eval -again r-sk r-fk))))

fk r-sk r-fk))

; every: The expression list is executed after every result generated by exp
; exp is repeatedly resuned until it fails

Syntax: (every exp exp)

(define (eval -every exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(I anbda (e-val ue)
(let ((resume (cdr e-value)))
(if (null? (cddr exp)) (resune)
(eval (caddr exp) env (lanbda (v) (resune)) resunme r-sk r-fk)

)))
fk r-sk r-fk))

; alternation: The first expression is evaluated. If the first ever fails, the
; second is then evaluated in its place.

Syntax: (alt exp exp)

(define (eval-alt exp env sk fk r-sk r-fk)
(eval (cadr exp) env sk
(lambda () (eval (caddr exp) env sk fk r-sk r-fk)) r-sk r-fk))

; string scanning: defines first expression as &subject. Executes
; second expression in that environnent.

;o Syntax: (? exp exp)

(define (eval -string-scan exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(1l anmbda (subject-val ue)
(bi nd-var (Il ookup ' &subject gl obal -env)
(type-convert (deref (car subject-value)) 'string
(lambda () (icon-error

"String expected for ?"
(deref (car subject-value))))))

(bi nd-var (1l ookup '&pos gl obal -env) 1)

(eval (caddr exp) env sk fk r-sk r-fk)) fk r-sk r-fk))

; if: cond is evaluated, if it generates a result, then-clause is evaluated
; otherw se, else-clause is eval uated

Syntax: (if cond then-clause el se-cl ause)

(define (eval-if exp env sk fk r-sk r-fk)
(let ((condition (cadr exp))
(then-exp (caddr exp))
(el se-exp (cadddr exp)))
(eval condition env
(lanbda (v)
(eval then-exp env sk fk r-sk r-fk))
(I anbda ()
(eval else-exp env sk fk r-sk r-fk))
r-sk r-fk)))

(define (eval -k k exp env sk fk r-sk r-fk)
(if (null? (cddr k))
(if (= (length (cdr exp)) 0)
((cadr k))
(icon-error "Failure continuation requires zero paraneters" exp))
(if (= (length (cdr exp)) 1)
(eval (cadr exp) env
(lambda (arg)
((cadr k) “(,(car arg) ,(caddr k))))
fk r-sk r-fk)
(icon-error "Success continuation requires one paraneter" exp))))

eval -app controls function application. The syntax for function application
is as follows:

; (func-exp actuall ... actualn)

(define (eval -app exp env sk fk r-sk r-fk)
(let ((&subject (lookup '&subject global-env))
(&pos (Il ookup ' &pos gl obal -env))
(saved- &ubj ect &null)
(saved- &pos 1))
(eval -actual s exp env
(lanmbda (val -1ist)
(if (starts-with? '& (deref (caar val-list))) (eval-k
(deref (caar val-list)) exp env sk fk r-sk r-fk)

(let ((function
(type-convert (deref (caar val-list)) 'procedure
(I anbda ()

SZ

(icon-error
"Procedure expected for invoca-
tion"
(deref (caar val-list))))))
(actual s (cdar val-list))
(back-k (cdr val-list)))
(set! saved- &subject (deref &subject))
(set! saved-&pos (deref &pos))
(function actual s
(lanbda (v)
(bi nd-var &subject saved- &subj ect)
(bi nd-var &pos saved- &os)
(sk v))
(lanbda ()
(bi nd-var &subject saved- &subject)
(bi nd-var &pos saved- &pos)

(back-k))))))
fk r-sk r-fk)))

eval -begin sinply eval uates each expression in a list. The success and
failure continutation for any but the |last expression are the sane: continue
eval uating the expressions. The success and failure continuations for the

| ast expressions are determned by the caller.

;o Syntax: (begin expr ... expr)

(define (eval -begin exp env sk fk r-sk r-fk)
(if (null? (cdr exp)) (fk)
(letrec ((eval -begin-hel per
(1 anbda (exp)
(if (null? (cdr exp)) (eval (car exp) env sk fk r-sk r-fk)
(let* ((fk (lanmbda () (eval-begin-hel per (cdr exp)))))
(eval (car exp) env (lanbda (v) (fk)) fk r-sk r-fk))))))
(eval - begi n-hel per (cdr exp)))))

; eval -actual s eval uates each actual paraneters, and gathers themin a |ist

(define (eval -actuals exp env sk fk r-sk r-fk)
(eval (car exp) env
(l anbda (parm
(if (null? (cdr exp))
(sk (cons (list (car parm) (cdr parm))
(eval -actual s (cdr exp) env
(lanbda (parmlist)
(sk (cons (cons (car parm (car parmlist))
(cdr parmlist))))
(cdr parm r-sk r-fk)))
fk r-sk r-fk))

; eval -list evaluates a sequence of expressions, passing the entire |ist
; of evaluated expressions to it's success continuation.

(define (eval-list exp env sk fk r-sk r-fk)
(eval -actual s (cdr exp) env
(lanbda (1ist)
(sk (cons (cons 'list (deref-list (car list))) fk)))
fk r-sk r-fk))

; mutual eval uation. Evaluates each, allow ng backtracking into any of
; the previous expressions.

(define (eval -nutual exp env sk fk r-sk r-fk)
(eval -actual s (cdr exp) env
(lanbda (1ist)
(sk (cons (list-tail (car list) (- (length (car list)) 1))
(cdr list))))
fk r-sk r-fk))

; call with current continuation

; Syntax: (call/cc procedure)

(define (eval-call/cc exp env sk fk r-sk r-fk)
(eval (cadr exp) env
(lambda (arg)
(let ((newfk (lanmbda () (sk “(,&wull ,fk))))
(new sk (lambda (v) (sk “(,v ,fk))))
(proc
(type-convert (deref (car arg)) 'procedure
(l'anbda ()
(icon-error "Procedure expected for call/cc"
(cadr exp))))))
(proc “((& ,sk ,fk) (& ,fk)) new sk newfk))) fk r-sk r-fk))

; ctrl-structs is used to find the nane of a function when dispatching on
; a control structure. Al so defines the nunber of expressions that is valid
; for a given control structure.

(define ctrl-structs
“((while . (,eval-while (1 2)))
(every . (,eval-every (1 2)))
(:=. (,eval-assignment 2))
(repalt . (,eval-repalt 2))

(return . (,eval-return 1))
(suspend . (,eval-suspend 1))
(lanmbdafy . (,eval -procedure 2))

(limt . (,eval-limt 2))
(mut . (,eval -nmutual any))
(not . (,eval-not 2))

(if . (,eval-if (2 3)))

(alt . (,eval-alt 2))
(call/cc . (,eval-call/cc 1))
(? . (,eval-string-scan 2))
(begin . (,eval-begin any))
)

; find-cs is the interface to ctrl-structs. ctrl-structs defines the
; function to evaluate a given control structure, and the nunber of expressions
; that the function expects.

(define (find-cs exp)
(let* ((numargs (length (cdr exp)))
(cs (assq (car exp) ctrl-structs)))
(if cs (cond ((nunber? (caddr cs))
(if (= (caddr cs) numargs) (cadr cs)
(icon-error "illegal expression (wong nunber of forms)"
exp)))
((pair? (caddr cs))
(if (reduce bool ean/or ()
(map (1 anbda (val ue)
(= numargs value)) (caddr cs)))
(cadr cs)
(icon-error "illegal expression (wong nunber of forms)"

VZ

exp)))
((equal ? (caddr cs) 'any) (cadr cs))

#t)))

File: types.scm

A A T R R R R R R R R R R R R R R R R R R R SRR
e N | (=S o I N

I I I R I R R A B A B R A R B R A A B A A A B R B A B A B R B R B R AR B R B A B R A R B A B A B R SR B A AR B A SR A SR R AR A AR A SRR AL A AR AR SRR

; Functions for maintaining type harnony.
; converts a string to a cset
; checks that the type and nunber of argunents nmatch

(define (prepare-args args types)
(if (= (length args) (length types))
(map (lanbda (arg newtype) (type-convert (deref arg) newtype)) args types)
(icon-error "Wong nunber of arguments" args)))

(define (string->cset set)
(let ((len (string-length set)))
(letrec ((cset-builder
(1 anbda (i ndex)
(if (= index len) '()
(let ((cset (cset-builder (+ index 1)))
(char (string-ref set index)))
(if (menmg char cset) cset (cons char cset)))))))
(cons 'cset (sort (cset-builder 0) char<?)))))

; converts a cset to a string

(define (cset->string set)
(list->string (cdr set)))

; type conversion routine. Eastablishes valid conversions fromany type
; to any type. Far from conplete

(define (type-convert value type-desired
(let* ((id (lanmbda (v) v))

error-func)

(type-map (cond ((char? value) “((char . ,id)
(string . ,(lambda (c) (list->string "(,c))))))
((nunber ? val ue) " ((nunber . ,id)
(string . ,nunber->string)))
((string? value) “((string . ,id)
(number , string->nunber)
(cset . ,string->cset)))
((procedure? value) "“((procedure . ,id)))
((starts-with? "list value) “((list . ,id)))
((starts-with? 'cset value) “((cset . ,id)
(string . ,cset->string)))

(else (icon-error "Not a valid type: " value))))
(converter (assq type-desired (cons “(any . ,id) type-map))))
(if converter ((cdr converter) val ue)

(if error-func ((car error-func))
(icon-error "lnconpatable type conversion"” value " to "
type- desired)
))))

File: util.scm

L e

bui | d- procedure receives the fornal paranmeters and the body of the
function. It returns a function that receives the actuals, dereferences
them binds their values to the fornals, and eval uates body. Note that
there is a cludge here: the addition of & ocal _top as variable in the
environnment. This is necessary becuase we nust know that the pointer to
the gl obal environnent points to a cell that is not the one pointed to

by the local environnent. Unfortunately, this should be changed. It really
shoul d be inplenented such that if & ocal _top is ever referenced that this
entry is skipped over, but that is for another tine.

Expects: (formals el ... en)

(define (build-procedure exp env)
(let* ((formals (car exp))
(body (cadr exp)))
(lanbda (actuals r-sk r-fk)
(eval body (let ((args (deref-list actuals)))
(cons (list '& ocal_top "lcon & ocal _top")
(bind-parms formals args env)))
(lambda (v) (r-fk)) r-fk r-sk r-fk))))

(define (load-icon exp env user-defined)
(cond ((icon-procedure? exp) (load-procedure exp env user-defined))
((gl obal ? exp) (load-global exp env user-defined))
(el se (icon-error "invalid Icon definition" exp))))

; an icon function takes a list of actuals values, a return success
; continuation, and a failure continuation.

; Syntax: (procedure p-nane (argl...argn) body)

(define (1 oad-procedure exp env ud)
(if (not (= (length exp) 4)) (icon-error "illegal procedure definition (incor-
rect nunber of forms)"))
(let* ((name (cadr exp))
(eval - body (build-procedure (cddr exp) env)))
(1 ookup- bi nd nane eval - body env)
(cond (ud (display "procedure ") (display nanme) (newine)))))

; Syntax: (global name val ue)

(define (load-global exp env ud)
(if (not (= (length exp) 4)) (icon-error "illegal global definition (incorrect
nunber of forms)"))
(eval (caddr exp) env
(I anbda (r-val ue)

92

(eval (cadr exp) env (lanmbda (I-val ue)
(bind-var (car |-value) (deref (car r-value)))
(cond (ud
(display "global ")
(display (cadar |-value)) (newine))))
fnull-k snull-k fnull-k))
fnull-k snull-k fnull-k))

; exhausts the input by reading each object in and executing function on it.

(define (read-object port function)
(let ((object (read port)))
(cond ((eof -object? object) port)
(el se (function object) (read-object port function)))))

; opens an input port, exectutes function on each object, and cl oses the port

(define (each-object filename function)
(cl ose-input-port (read-object (open-input-file filename) function)))

; checks if alist's first elenent is exp

(define (starts-with? string exp)
(if (not (pair? exp)) #f (eq? (car exp) string)))

; standard predi dates

(define (fail? exp) (starts-with? 'fail exp)) ; fail keyword?
(define (cset? exp) (starts-with? 'cset exp)) ; cset type
(define (list? exp) (starts-with? 'list exp)) ; list type
(define (& ail? exp) (eq? exp '&fail)) ; is it &fail?
(define (icon-procedure? exp) (starts-with? 'procedure exp))
(define (global? exp) (starts-w th? 'global exp))

; error displaying routine for Icon

(define (icon-error error-nmessage . forms)
(new i ne)
(display "lcon error: ")
(di splay error-nmessage)
(if (null? forms) (error "lcon stop"))
(display " [Found: ")
(map wite (reverse forms)) (display "]") (newine)
(error "lcon stop"))

File: vars.scm

P e A @ e

; dereferences a variable. variables have the followi ng form

; (&var vari abl e-nanme vari abl e- val ue)

; deref sinply returns the val ue

(define (deref exp)
(if (starts-with? '&ar exp) (caddr exp) exp))

; dereferences a list of variables (formals)

(define (deref-list args)
(map (lanmbda (value) (deref value)) args))

; bind-parms does just that. It takes a list of formals and actuals, binds
; their nanes and val ues, and prepends themto the environnent. This new
; environment is returned as the value of the function.

(define (bind-parnms formals actuals env)
(cond ((null? formals) env)
((null? actuals) (cons (list (car formals) &null)
(bind-parms (cdr formals) '() env)))
(el se (cons (list (car formals) (car actuals))
(bind-parnms (cdr formals) (cdr actuals) env)))))

; | ookup | ooks up names in the environment. If an associated value is found,
; the non-dereferenced (icky | know) variable is returned, enabling the

; nodification of its value at a later tine. If a value is not found, the

; variable is bound to &null.

(define (lookup name env)
(let ((binding (assoc nanme env)))
(cons ' &var
(i f binding binding
(let ((newbinding (list name &null)))
(set-cdr! env (cons new binding (cdr env)))
new bi nding)))))

; bind-var binds a single variable to a val ue.

(define (bind-var var val ue)
(set-cdr! (cdr var) (list value)))

; 1 ookup-bind does a | ookup of a variable, and then binds it to a new val ue.

(define (lookup-bind nanme val ue env)
(bi nd-var (1l ookup nanme env) val ue))

File: built-ins.scm

P I I R R I R R A B A B R B R BN B R BN A R AR BN B R BN B R BN BN AR B R A R B R AR AR AR AR AR AR AR AR AR AR A AR R SRR AR SR AR S AR

92

Pl ace Icon functions (built-in) in the global environment. This is actually
a function so that each invocation of the interpreter will have a brand
spankin' new environnent.

(define (make-gl obal -env)

I R I A R I I AR AR R R R A R N AN S R R AR AR SR AN AR AR AR SR SRR SRR SRR SRR AR SR SRR SRR AR SN SRR SRR AE R SRR SRR AN

“((wite ,wite-builtin)
(/ ,/-builtin)
(> ,>builtin)
(< ,<-builtin)
(<= ,<=-builtin)
(= ,=-builtin)
(\ ,\-builtin)
(+ ,+-builtin)
== ,==-builtin)
(! ,!-builtin)
(toby ,toby-builtin)
(deref ,deref-builtin)
(sizeof ,sizeof-builtin)
(convert ,convert-builtin)
(substring ,substring-builtin)
(&version ,"Scheme Icon Version 1.0")
(&subj ect , &null)
(&pos 1)
))

BUI LT- I N FUNCTI ONS

Listed below are all of the Icon functions that are inplenmented in Schene.
This does not include functions that are inplenented in Schene |con.
Functions are only witten in Schene when it is not possible, due to the
nature of Icon, to inplement themin Scheme Icon. Wite is a good exanpl e of
this, it nust be able to receive a variable nunber of argunents, a feature
not available in Schene |con.

It should be noted that these functions are a bit awkward. They act exactly
li ke user-defined functions. Because of this, they use the same "calling
convention." This requires that either the return-failure/success
continuation be called. If it is a success continuation, the value is
required to be a two elenment |ist, whose first value is the return val ue,
and whose second value is the continuation to call to resume the function.
For all of these functions the second value is always the return failure
continuation that was passed to the function. This is because none of these
functions are generators.

allows definition of Icon operators in terms of scheme operators
Exanpl e: + sinply uses schene's +.

(define (use-schenme-operator op . arg-types)

(define (use-schene-predicate pred .

(lambda (args r-sk r-fk)
(let ((args (prepare-args args arg-types)))
(r-sk (cons (apply op args) r-fk)))))

allows definition of Icon predicates in ternms of scheme predicates
Exanpl e: < sinply uses schenme's <.

arg-types)

(lanbda (args r-sk r-fk)
(let ((args (prepare-args args arg-types)))
(if (apply pred args) (r-sk (cons (cadr args) r-fk)) (r-fk)))))

; sone sinple operators and predicates.

(define +-builtin (use-schene-operator + 'nunber 'nunber))
(define --builtin (use-schenme-operator - 'nunber 'nunber))
(define <-builtin (use-schenme-predicate < 'nunber 'nunber))
(define <=-builtin (use-schene-predicate <= 'nunber 'nunber))
(define >-builtin (use-scheme-predicate > 'nunber 'nunber))
(define =-builtin (use-schenme-predicate = 'nunber 'nunber))

; type conversion function.

; Syntax: (convert value "newtype")

(define convert-builtin
(use- schene- oper at or
(lanmbda (val ue type)
(type-convert value (string->synbol type)))
‘any 'string))

; substring operation

; Syntax: (substring |ower upper)

(define substring-builtin
(use-schene- oper at or
(lambda (string start finish)
(substring string (- start 1) (- finish 1)))
'string 'nunmber 'nunber))

; variabl e dereference operation

; Syntax: (deref exp)

(define (deref-builtin args r-sk r-fk)
(r-sk (cons (deref (car args)) r-fk)))

; wite: wite the values of each paraneter to the standard output.
; Returns a list containing the val ues.

; Syntax: (write expl .. expn)

(define (wite-builtin args r-sk r-fk)
(let ((args (deref-list args)))
(map display (reverse args)) (newine)
(r-sk (cons (cons 'list args) r-fk))))

; bang operation -- hardly conplete

;o Syntax: (! exp)

(define (!-builtin args r-sk r-fk)
(let ((arg (car (prepare-args args '(any)))))
(cond ((string? arg)
(letrec ((gen-str
(lambda (i ndex)
(if (= (string-length arg) index)
(r-fk)
(r-sk (cons (string-ref arg index)
(lambda () (gen-str (+ index 1))))

LZ

)))))
(gen-str 0)))
((or (cset? arg) (list? arg))
(letrec ((gen-Ist
(lanbda (list)
(if (null? list)
(r-fk)
(r-sk (cons (car list)

)

(lambda () (gen-Ist (cdr list))))

)
(gen-Ist (cdr arg))))
)))

; Size operation
; Syntax: (sizeof exp)
(define (sizeof-builtin args r-sk r-fk)
(let ((arg (car (prepare-args args '(any)))))

(r-sk (cons (cond ((string? arg) (string-length arg))
(else (icon-error "lInvalid type for sizeof" arg)))

r-k))))
; string equival ence
; Syntax: (== exp exp)

(define (==-builtin args r-sk r-fk)

(let ((args (prepare-args args '(string string))))
(if (equal? (car args) (cadr args)) (r-sk (cons (car args)

R W if exp is NOT null, return exp

; Syntax: (\ exp)

(define (\-builtin args r-sk r-fk)
(let ((args (deref-list args))
(argc (length args)))
(if (> argc 1) (error "\: too nmany operands"))
(if (eqg? (car args) &null) (r-fk)
(r-sk (cons (car args) r-fk)))))

Y - if expis null, return null

;o Syntax: (/ exp)

(define (/-builtin args r-sk r-fk)
(let ((args (deref-list args))
(argc (length args)))
(if (> argc 1) (error "/: too many operands"))
(if

(eq? (car args) &ull) (r-sk (cons &null r-fk))

(r-fk))))
; toby:

; Syntax: (toby |ower upper [by])

(define (toby-builtin args r-sk r-fk)
(letrec ((lower (type-convert (deref (car args))

(upper (type-convert (deref (cadr args))

(by (if (null? (cddr args)) 1

(type-convert (deref (caddr args))

(resume (lanbda ()

r-fk)) (r-fk))))

(let ((tnp-lower |ower))
(set! lower (+ |ower by))
(if (< upper tnp-lower) (r-fk)
(r-sk “(,tnmp-lower . ,resune)))))))
(resune)))

File: built-ins.sicn

S N A R R R S R R R R R R R R R R R R A R R R R R R R SRR
I = N L e

P I I R I R R R B A B R A R B R B R A A A A AR B A I A BN A R AR AR B R B A B R A R B A B R B R SR AR AR SR R SR A AR R AR A SR A SRR RE A BB AR SRR

; Standard Icon toby function.

(procedure to (lower upper by)
(begin
(:= counter |ower)
(while (<= counter upper)
(begin
(suspend counter)
(:= counter (+ counter (if (\ by) by 1)))
))
))

; Standard lcon find function. Used for string scanning

(procedure find (s1 s2 i j)

(begin
(:=s1 (convert s1 "string"))
(if (\ s2) (begin (:=s2 (convert s2 "string")) (:=1 (if (\ i) (convert
"nunber") 1)))
(begin (:=s2 &subject) (:=i (if (\ i) (convert i "nunber") &pos)))
)
(:=17] (if (\j) (convert j "number") (+ (sizeof s2) 1)))
(while (<= (+ i (sizeof sl)) j)
(if (== (substring s2 i (+ i (sizeof sl1))) sl1) (begin (suspend i) (:=
(+I)l))) (=1 (+1 1))
))

; Standard lcon nove function. Used for string scanning

(procedure nove(i)
(begin
(:= ol dpos &pos)
(if (< (sizeof &subject) (+ i &pos))

(begin
(:= &pos ol dpos)
(fail)

(return (substring &subject (deref &pos) (:= &pos (+ &os i)))))
))

; Standard lcon tab function. Used for string scanning

82

(procedure tab(i)
(begin
(: = ol dpos &pos)
(if (< (sizeof &subject) i)

(begin
(:= &pos ol dpos)
(fail)

(return (substring &subject (deref &pos) (:= &pos i))))
))

; Standard lcon match function. Used for string scanning

(procedure match (s1 s2 i j)

(begin
(:=s1 (convert s1 "string"))
(if (\ s2)
(begin
(:= s2 (convert s2 "string"))
(:=1 (if (\ i) (convert i "number") 1))
)
(begin
(:= s2 &subject)
(:=1 (if (\ i) (convert i "nunber") &pos))

)
(:=7J (if (\j) (convert j "nunber") (+ (sizeof s2) 1)))
(if (== sl (substring s2 i (+ i (sizeof sl1))))
(suspend (+ i (sizeof s1))) (fail))
))

; Standard lcon upto function. Used for string scanning

(procedure upto (¢ s i j)

(begin
(:=c (convert c "cset"))
(if (\ s)
(begin
(:= s (convert s "string"))
(:=1 (if (\ i) (convert i "nunber") 1))
)
(begin
(:= s &subject)
(:=1i (if (\ i) (convert i "number") &pos))
))
(:=17] (if (\Vj) (convert j "nunmber") (+ (sizeof s2) 1)))
(:= index 0)
(every (:= chr (! (substring s i j)))
(begin

(:=index (+ index 1))
(every (== chr (! c))
(suspend index))

_—

