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Abstract

1 Introduction
Since the design of the Icon programming language in the early 1980’s, newer languages have incorporated a number

of language features that have become well established. These include, among others, first-class functions and a vari-

ety of scoping mechanisms. Therefore, we are interested in extending, or changing the Icon language [Gri82][GG83]

to reflect these innovations in language design.

Icon is distributed with a flexible interpreter and run-time system. This flexibility is seen most notably in the ease

with which one may to add new types and run-time operations [GG86] and change syntax [GW90]. However, using

the Icon system to experiment with language extensions that have pervasive semantic implications, such as scoping

or adding first-class procedures, requires extensive modifications to the run-time system. The Icon implementation is

large, consisting of over 40,000 lines ofC. Such modifications are therefore more easily accomplished in the context

of a very high-level implementation.

Our goal is to provide a high-level implementation that facilitates rapid prototyping of new language features. In

an effort to achieve this goal, we have designed an interpreter for a subset of Icon. An interpreter is a natural choice

since we would like the language implementation to be quickly modifiable. Unlike other interpreters for Icon [Gri82]

[OG87], our’s is written in a form called continuation-passing-style [Ste76]. This describes Icon’s goal-directed eval-

uation in terms of continuations, which in many ways is closer to its formal denotational description [Gud86]. Our
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source language for the interpreter is Scheme, which provides many desirable features for our interpreter implemen-

tation such as ease of parsing, a built-in garbage collector and especially first class functions.

The implemented language is a subset of the Icon Version 8 distribution [Gri90]. Features not implemented in the

language include many of the types and most of the run-time routines. In addition, for ease of implementation, the syn-

tax of the language has been moderately altered. Appendix A provides the grammar for the syntax of the supported

features.

The purpose of this report is to describe the implementation of our interpreter. Section 2 provides an overview of

the Icon language. Section 3 introduces continuations, which are used in the implementation. Section 4 presents the

implementation details of the interpreter. Section 5 details the addition of a very general control abstraction as a dem-

onstration of the interpreter’s flexibility. While an overview of Icon has been provided, it is assumed that the reader

has a working knowledge of Scheme [Ree86].

2 An Overview of Icon
Icon is a general purpose expression-based programming language. Its predecessor, SNOBOL4, provided a back-

tracking mechanism during pattern matching for matching strings only. Icon has further incorporated goal-directed

evaluation into the entire language with the introduction of success and failure of expressions. This integrates the tra-

ditional view of control flow, based on sequencing and iteration, with a backtracking mechanism. The language also

supports user-defined generators as an extension of the usual procedural abstraction. In the next few sections, we will

present a brief overview of the language. For a more complete description, see [GG83].

2.1 Success/Failure
In Icon, the evaluation of an expression may or may not produce a value. An expression that does not produce a value

is said tofail, while an expression that produces a value is said tosucceed. An example is

i < j

which will succeed or fail, based on the values ofi andj. If the condition (i < j) is satisfied, the expression will evaluate

to j. Otherwise, the expression will fail. The keyword&fail is an expression that always fails.

The use of success and failure in Icon subsumes the role of boolean values in other languages [Gri82]. As such,

Icon does not support a built-in boolean type. Where boolean expressions are used to decide the direction of execution

in other languages, Icon uses success and failure. Thus, expressions that may succeed or fail are known asconditionals,

and expressions that always succeed produce a value are calledmonogenic. We may use our previous example in the

context of a simpleif expression:

if i < j then write(i) else write(j)

When evaluated, the lesser of the two values is written. In this case, theif control structure chooses which branch, the

then or the else, should be evaluated based on the success or failure of the control clause. This example illustrates why

it is said that success and failure “direct” the evaluation of expressions in Icon [Gri82].

Success and failure based evaluation is concise and expressive. For example, in other languages, exceptions are

frequently signalled by returning a special value outside the “semantic” range of the function. Common examples

occur with I/O where such conditions as end-of-file need to be signalled. For example, theC character-valued func-

tiongetchar() returns-1 to indicate end-of-file. In this example, the “semantic” type of the function (unsigned

char) must be extended (tosigned int) to provide the special value. In contrast, the Icon expression

read()
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simply fails when end-of-file is encountered. Thus the success/failure scheme allows the programmer to detect an ex-

ception where no value has been computed and the control needs to be modified.

2.2 Generators
In addition to conditional and monogenic expressions, there are expressions that produce more than one result. Such

expressions are called generators. Generators produce their values one-at-a-time, when they are required to by the

surrounding context. An example generative expression is

find(exp
1
, exp

2
)

which attempts to find the position of the string exp
1
 within the string exp

2
. Since there may be multiple instances of

exp
1
 within exp

2
, there may be multiple results for the expression. Upon evaluation of this expression, the first result

is produced and the generator is suspended (allowing it to pick up where it left off when it is resumed). The remaining

results are not produced until the surrounding context needs them. This need is created by the failure of a subsequent

expression. Failure causes the last suspended generator to be resumed to produce its next value. Specifically, we

could have

if(5 < find("p", "peter piper picked")) then write("yes") else write("no")

The result of evaluating the find expression is the value 1. This value is then used in the surrounding expression (the

comparison), which in turn fails. This failure resumes find to produce its next value (7). This second value is again

used in the surrounding expression; since (5 < 7) succeeds, the then clause is executed.

In a different context, it is possible for the find expression to run out of values, or fail. Such an example is

if(15 < find("p", "peter piper picked")) then write("yes") else write("no")

where the find expression is exhausted by producing the values 1, 7, 9, and 13. All of these cause the surrounding

expression to fail. In this case, the control clause fails and the else clause is chosen.

2.3 Procedures
Icon provides a typical procedural abstraction for the programmer. Arguments are passed by value, and values may be

returned to the calling procedure. Icon provides both non-generative and generative procedures.

Upon invocation, formal parameters are bound to actuals and evaluation begins at the top of the procedure defini-

tion. Evaluation continues within the procedure until it succeeds or fails. The procedure succeeds if a value is explicitly

produced for the caller, while failure occurs when no value is produced upon completion of the procedure body.

2.3.1 Non-generative Procedures

Non-generative procedures may produce zero or one value upon invocation. A return value is indicted with the return

keyword. An example procedure definition is:

procedure addndouble(x,y)
    z := x + y
    return 2 * z
end

An example invocation of this procedure is:

write(addndouble(4,5))

A procedure will succeed upon evaluation of a return expression that produces a value. A procedure may fail in

three different ways: upon evaluation of a fail expression, upon reaching the end keyword for the current procedure, or

upon failure of a return expression.
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2.4 Generative Procedures
Icon only provides a few built-in generators. Therefore, a method for creating user-defined generators is available.

Generators are simply procedures that use thesuspend keyword rather than thereturn keyword to return a value to

the caller. However, if the invocation of the generator is resumed by the caller, control returns to the point where the

generator last suspended. The following example implements a generator that produces the result

sequence0, 1, 0, 1, ....

procedure flipflop()
    while(1) do {
        suspend 0
        suspend 1
    }
end

In this example, the procedure will return a value each time the invoking procedure resumes it. However, it is possible

to create a generator that fails in the same way that a non-generative procedure fails. In the example below, the proce-

dure will fail if it is resumed enough times to complete thewhile loop.

procedure to(start, stop)
    count := start
    while (count <= stop) do {
        suspend count
        count := count + 1
    }
end

2.5 Expression Evaluation
Order of expression evaluation in Icon is simple. Icon uses a default evaluation strategy in which the evaluation order

is deterministic, even in the presence of backtracking. This strategy is used when procedure invocation and simple

expressions are encountered. Icon also provides a number of special forms [Ree86][Dyb87] that may modify the

default strategy. These special forms includeif andwhile and are listed in appendix A of this report.

In the absence of any special forms, expressions are evaluated left-to-right. Failure causes resumption of suspend-

ed generators in LIFO (right-to-left) order. The last suspended generatoravailable (see Section 2.5) is resumed upon

failure of its subsequent expression. An example is the evaluation of a function’s arguments

f(exp
1
, exp

2
, ..., exp

n
)

whereexp
1
 will be evaluated first, followed byexp

2
 and so on. Upon failure of any of the expressions, the previous

expression is resumed and execution starts forward from that point. In the expression

f(pos := find("ells", "she sells sea shells"), 10, 15 <pos)

the two left-most arguments are evaluated, producing6 and10 respectively. The third argument is then evaluated,

which fails. This causes the first argument (containingfind) to be resumed since the second is a constant, not a gener-

ator. Now, the second and third arguments, in turn, are re-evaluated. This produces the values10 and17 respectively.

Finally, the function call is made with17, 10, and17 as its arguments. It should be noted that since everything is an

expression, the assignment operator (:=) produces the variable as its value.

The resumption of generators upon failure, as described above, provides a backtracking mechanism for Icon. This

is what gives Icon its goal-directed evaluation: the goal is to succeed—produce a value—for every expression.
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2.6 Generator Lifetime
During evaluation, generators compute values, suspend, and are available for future resumption. However, at points

during evaluation, generators become unavailable for resumption. In other words, generators have a limited lifetime

defined by the control structures that contain them. The limited lifetime of generators provides a bounding for the

backtracking mechanism. To understand the motivation for bounding, let us look at the evaluation of the if control

structure. An if expression has the usual form:

if exp
1
 then exp

2
else exp

3
exp

3

If exp
1
 succeeds, exp

2
 is selected, otherwise exp

3
 is selected. However, once the exp

1
 succeeds or fails, none of the

generators contained within exp
1
 may be resumed. The motivation for bounding is to provide the “natural” semantics

of traditional control structures in the presence of generators. If exp
1
 in the if expression were not bounded, failure of

exp
2
 could resume a generator contained in exp

1
, which in turn might fail, causing selection of exp

3
. This obviously

would not be the natural semantics of if.

Icon defines implicit “barriers” for backtracking that, once crossed, prevent the resumption of suspended genera-

tors that were evaluated before the barrier. Each of Icon’s control structures defines these implicit barriers (or bounds)

for the expressions that they contain. The if control structure prevents the resumption of any generator in the control

clause (exp
1
 above) from being resumed after the appropriate branch is chosen. Another example is

while exp
1
 do exp

2

which is similar to a traditional while. exp
2
 is only evaluated if exp

1
 produces a result. However, once the decision of

whether to evaluate exp
2
 has been made, no generators in exp

1
 may be resumed. Upon completion of exp

2
, exp

1
 is re-

evaluated. Again, the bounding of exp
1
 preserves the natural semantics of while.

In the case that there is no suspended generator to resume, an expression fails to its outer context. This, in many

cases, is a compound expression. A compound expression has the form:

{exp
1
; exp

2
; ... ; exp

n
}

In Icon, the semicolons are optional provided each expression occupies its own source line. In a compound expression,

both success and failure of the ith expression causes the next expression in the sequence to be evaluated. In addition,

all but the final expression (exp
n
) are bounded, thus limiting the control backtracking to within a single expression.

Upon failure of a subsequent expression, the final expression may be resumed by the compound expression’s outer

context.

This control gives Icon the sequential nature of traditional languages. While function invocation follows the de-

fault evaluation strategy, control structures define backtracking boundaries, the order in which their subexpressions are

evaluated, and the resulting value of the control structure. These three characteristics are what define the flow of exe-

cution.

2.7 Generative Control Structures
Icon provides generative control structures in addition to many of the standard control structures found in Algol-like

languages. A generative control structure attempts to provide some control specific to the multi-result nature of gen-

erators. For instance

every exp
1
 do exp

2
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will always exhaust all the generators within exp
1
. Furthermore, each time exp

1
 produces a result, exp

2
 is evaluated.

Another generative control structure is

exp
1
 \ exp

2

which is called limitation. This is the only Icon control structure where expressions are evaluated in right-to-left order.

exp
2
 is evaluated first, which must produce a numeric value. This value limits the number of results that exp

2
 is allowed

to produce. Used in conjunction with every, limitation can be used to produce no more than n results. This is particu-

larly useful when the generator is capable of producing an infinite number of results. For example:

every (fibnum := fib() \ 20) do write(fibnum)

will write no more than the first 20 values produced by the fib generator.

3 Implementation Technique
In an effort to make the implementation of our interpreter capable of modeling a variety of control mechanisms, we

have used a well-known implementation technique [All88][HF86][KH89][Ste78] known as continuation-passing-

style. This technique has been shown to be flexible enough to implement a large spectrum of mechanisms from sim-

ple if expressions to catch/throw and coroutine mechanisms. This style of programming builds functions during lan-

guage interpretation and so requires first-class functions in the interpreter source language. Before we see the

implementation, an overview of the technique is necessary.

3.1 Continuations
While evaluating a program, an interpreter must maintain the program’s execution state. Typically, this is accom-

plished with a program counter and program stack to store state information. This state includes control information

and is known as the control context. This context may be represented as a procedure that embodies the state of the

program at a given point. The procedure may subsequently be called to continue at the point previously saved. Thus

the control context is known as the computation’s continuation [Ste78].

Every expression has a continuation that represents the remaining computation of the program. A continuation

may be viewed as a function of one argument. The argument is required because the current expression’s value may

affect the control of the remaining computation. Further information on continuations may be found in [Ste76]

[Ste78][Dyb87][Hay87].

3.2 Continuation-passing Style
The interpreter described in this report is written in CPS—a style of programming in which continuations are given

explicitly to direct control flow. This implementation technique is known as the continuation-passing style (CPS)

[Ste76]. The use of CPS for this implementation is what will make the modeling of complex and varied control flow

simpler and thereby meet the goal of this work.

CPS is not specific to interpreters and can be demonstrated by transforming a simple function to CPS. Figure 1

shows a typical recursive definition of the factorial function in Scheme.  In the basis case (n = 0) a value is returned,

(define (fact n)
  (if (eq? 0 n) 1
      (* n (fact (- n 1))) ))

Figure 1: A standard factorial definition.
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while for n > 1 a value is computed by first calling fact  with n - 1, completing the computation, and then returning

the value. Figure 2shows the fact  function after conversion to CPS. Note that the basis case is no longer a return,

but, instead a call to the function k , which represents the continuation for fact . In the non-basis case, fact  is called

recursively and a new continuation—one that incorporates the computation for this call to fact —augments the one

passed to fact . An interesting consequence of converting the definition of fact  is that the new definition is tail-

recursive, even though the original definition was not. This is true of all functions written in CPS [Ste76]. Further, the

only computation that is actually done in fact  is the calculation of the new actuals for the recursive call to fact . All

other computations are done in the newly constructed continuation after the basis case calls its continuation.

Any procedure or entire program can be converted to CPS. For example, typical meta-circular interpreters for

Scheme have a very simple format. The evaluation function looks for the syntactic constructs of the language being

implemented and dispatches the evaluation of them to helper-functions. These functions, in turn, may call the evaluator

recursively. Such an interpreter can be converted to CPS in the same way that our factorial example has been. Figure

3 shows a portion of such an interpreter implementing Scheme presented in [Haynes86]. Note that the author named

the main evaluation function meaning  rather than the usual eval .

4 Implementation Description
This section describes the implementation of our interpreter. As described above, this interpreter is a recursive CPS

interpreter based on the [HF86] interpreter for Scheme. The description incrementally improves the design of the

interpreter until the final version is reached. The complete implementation may be found in appendix B.

4.1 Success and Failure
The simplest expressions in Icon are conditional and monogenic expressions. Examples of such include strings, num-

bers, and variables. For our interpreter, these expressions represent the basis case for its recursive definition. [HF86]

(define (fact n k)
  (if (eq? 0 n) (k 1)
      (fact (- n 1) (lambda (v) (k (* v n)))) ))

Figure 2: A CPS factorial definition.

(define meaning
  (lambda (e r k); e = expression, r = environment, k = continuation
    (if (symbol? e)
       (k (deref (r identifier)))
       (match e
         [('quote literal) literal]
         [('if predicate-exp then-exp else-exp)
            (meaning predicate-exp r
              (lambda (v) (if v
                              (meaning then-exp r k)
                              (meaning else-exp r k))))]
         .
         .
         .
       ))))

Figure 3: A portion of a CPS-circular interpreter for Scheme.
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develops a recursive CPS interpreter that uses a single continuation to represent the computation yet to be completed.

This reflects the underlying semantics of the language. Scheme expressions produce a single result, which is always

passed to the same context (continuation) no matter what the value is. Control decisions in Scheme are based on val-

ues of control expressions.

An interpreter for Icon, however, must provide a different semantics. Expressions may succeed and continue for-

ward in the computation, or fail and cause control to backtrack. Thus, an expression has two possible control paths:

one for success and one for failure. We choose to represent these two paths by two different continuations1. The choice

of which continuation to call is based on outcome (success or failure), not on values as with Scheme.

Upon success of an expression, the result is passed to the success continuation. Failure causes the failure contin-

uation to be called—with no parameter, since no value was produced. Below is the form of the interpreter that incor-

porates these continuations.

Strings and numbers evaluate to themselves, while variables require a simple lookup for their values. &fail simply calls

its failure continuation directly; note it passes no parameters.

As our first example of how control is modelled in the interpreter, we present the implementation of if. To better

understand its implementation, let us first look at the definition of if for Scheme given in [Haynes86]:

1  For a formal description of Icon in terms of denotational semantics, see [Gud86].

(define (eval exp env sk fk)
  (cond ((number? exp) (sk exp))
        ((string? exp) (sk exp))
        ((&fail? exp) (fk))
        ((symbol? exp) (sk (lookup exp env)))
        ((if? exp) (eval-if exp env sk fk))
     .
     .
     .
        ))

Figure 4: Interpreter incorporating failure.

(define meaning
         .
         .
         .
         [('if predicate-exp then-exp else-exp)
            (meaning predicate-exp r
              (lambda (v) (if v
                              (meaning then-exp r k)
                              (meaning else-exp r k))))]
         .
         .
         .
       ))))

Figure 5: Typical implementation of if.
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This definition recursively calls meaning to evaluate the control clause. The control clause’s value is then passed

to the newly constructed continuation, where the selection of the expression to be evaluated, the then or else, is made.

In contrast, a control structure in Icon will always provide both success and failure continuations. Figure 6 shows

our definition of Icon’s if.

Since the evaluation of the control clause may fail, the selection, based on the outcome of the control clause, must

be made by the evaluator itself. Therefore, the call to the evaluator must generate two continuations for the evaluator

to select after evaluation. As you will see, the use of success and failure continuations is universal throughout all of

the control structure evaluation functions.

4.2 Generators
Icon expressions can generate more than a single value. As with all values, the value produced by an expression is

passed to a continuation. A generative expression may be requested to produce other results upon failure of a subse-

quent expression. A generative expression must make available, in some way, a method by which such a request can

be made. In our interpreter, this information is encapsulated by the expression in a resumption continuation. This con-

tinuation may be called to produce the next value of a generator when it is needed. It is passed along with the expres-

sion’s result to the surrounding context. Therefore, in the interpreter, every expression that produces a value

represents the value by a pair: the actual value, and the resumption continuation for the expression that produced the

value.

Figure 7 shows the interpreter that incorporates the resumption continuation. For integers, strings, and variables,

the resumption continuation is passed as a pair with the value. Note that for numbers, strings, and variables the resump-

tion continuation is simply the failure continuation for this evaluation. This is because these expressions are monogenic

and can’t produce other results later. In contrast, generators build a resumption continuation that truly will resume the

(define (eval-if exp env sk fk)
  (let ((condition (cadr exp))
        (then-exp (caddr exp))
        (else-exp (cadddr exp)) )
    (eval condition env
          (lambda (v) (eval then-exp env sk fk))
          (lambda () (eval else-exp env sk fk)) )))

Figure 6: Our implementation of if.

(define (eval exp env sk fk)
  (cond ((number? exp) (sk (cons exp fk)))
        ((string? exp) (sk (cons exp fk)))
        ((&fail? exp) (fk))
        ((symbol? exp) (sk (cons (lookup exp env) fk)))
        ((if? exp) (eval-if exp env sk fk))
     .
     .
     .
        ))

Figure 7: Interpreter incorporating resumption continuations.
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expression. However, if the generator is exhausted, it must supply the failure continuation to allow further backtracking

to take place. The following code implements a generator of two parameters that produces the two parameters in order.

The return success continuation (sk ) is passed the first parameter and a resumption continuation. .The resumption con-

tinuation, if called, will pass the second parameter and the return failure continuation (fk ) for the generator. Thus, if

a third result is needed, the generator will fail. Figure 9 shows the implementation of the to generator. Since the to gen-

erator produces a variable number of results based on its arguments, the resumption continuation is recursive. The basis

case (no more results) calls the generator’s return failure continuation.

4.3 Bounding of Expressions
Previously, we saw that the evaluation of an expression generated not only a value, but a continuation that could be

called to resume the evaluation. We have also seen that these resumption continuations are passed along and bound to

failure continuations for the evaluation of subsequent expressions. However, as described in Section 2.5, the back-

tracking mechanism is “bounded” by certain control structures. The bounding of expressions is “passive” in the inter-

preter. That is, when a backtracking boundary is reached, the resumption continuation is simply not passed. The

implementation of if (see Figure 6) is a good example of this. The resumption continuation passed from the evaluation

of the control clause is not bound to either continuation in either recursive call to eval . Therefore, the continuation

is lost and can never be called to resume the evaluation of the control clause.

As another example of bounding, the subexpressions of a compound expression are also bounded as described in

Section 2.5. Figure 10 shows the implementation of compound expressions:

For a given subexpression, we bind the success and failure continuations to the evaluation of the next subexpression

in the list. Therefore, upon success or failure, evaluation continues forward rather than resuming the previous subex-

pression.

So far, we have seen that control is represented in the interpreter by both success and failure continuations. To

support generators, a third continuation, called the resumption continuation, is used. The result of evaluating an ex-

(define (ret-args args sk fk)
  (let ((first (car args))
        (second (cadr args))
    (sk (cons first (lambda ()
                        (sk (cons second fk)))))))

Figure 8: A simple generator.

(define (toby-builtin args sk fk)
  (letrec ((lower (car args))
           (upper (cadr args))
           (by (if (null? (cddr args)) 1
                   (caddr args)))
           (resume (lambda ()
                     (let ((tmp-lower lower))
                       (set! lower (+ lower by))
                       (if (< upper tmp-lower) (fk)
                           (sk `(,tmp-lower . ,resume)))))))
    (resume)))

Figure 9: Implementation of the to generator.
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pression is therefore a pair consisting of a value and a resumption continuation. Furthermore, in the absence of bound-

ing, resumption continuations become the subsequent expression’s failure continuation. Bounding is accomplished by

substituting a continuation from the outer context for the resumption continuation. With this in mind, we may introduce

the procedure call mechanics.

4.4 Procedure Calls
The procedure call is the most complicated detail of the implementation. The call is composed of the evaluation of the

actual parameters, binding of the formals to the actuals, and the invocation of the procedure.

4.4.1 Parameter Evaluation

Now that we have some understanding about the way that values are represented and simple control constructs are

implemented, we are ready to examine argument evaluation. This is complicated by the introduction of generators as

actual parameters. We delay the discussion of generators until Section 4.3. Figure 11 shows the definition of eval-

actuals which handles the evaluation of arguments. eval-actuals calls the evaluator on the first expression

(actual parameter) in the list passed to it and bundles a call to itself as the success continuation. Calls to eval and

eval-actuals recursively alternate, allowing eval to be called on each actual, and eval-actuals to build a

(define (eval-begin exp env sk fk)
  (if (null? (cdr exp)) (fk)
      (letrec ((eval-list-helper
                (lambda (exp)
                  (if (null? (cdr exp)) (eval (car exp) env sk fk)
                      (let* ((fk (lambda ()
                                   (eval-list-helper (cdr exp)))))
                        (eval (car exp) env (lambda (v) (fk)) fk))))))
        (eval-list-helper (cdr exp)))))

Figure 10: Implementation of compound expression.

(define (eval-actuals exp env sk fk)
  (eval (car exp) env
        (lambda (parm)
          (if (null? (cdr exp))
              (sk (cons (list (car parm)) (cdr parm)))
              (eval-actuals (cdr exp) env
                            (lambda (parm-list)
                              (sk (cons (cons (car parm)
                                              (car parm-list))
                                        (cdr parm-list))))
                            (cdr parm) ))) fk))

Figure 11: Evaluation of actual parameters.
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continuation chain1 that will generate the parameter list upon completion of parameter evaluation. The parameter list

has the form:

((arg1 arg2 ... argn) k)

where k represents the resumption continuation for the right-most parameter. This technique is also used by [HF86].

The recursive call to eval-actuals is made by the success continuation to eval. eval passes a list (parm)

containing the value of the evaluated parameter and its resumption continuation. During any particular invocation of

eval-actuals, the interpreter dispatches the evaluation of a single parameter. Recall that if the evaluation fails, the

previous parameter must be resumed for another result. This is accomplished by passing the current resumption con-

tinuation from eval ((cdr parm)) as the failure continuation for the next eval-actuals invocation. In fact,

whenever an expression is not bounded this binding of the of the last resumption continuation to the current failure

continuation occurs.

Upon success, the current success continuation is augmented by code that prepends the value of the current pa-

rameter to the result list (creating the continuation chain discussed above). Note that the order of invocation of the suc-

cess continuations passed to eval-actuals is opposite of the order of their corresponding eval-actuals

invocations. Therefore, the continuation chain is not called until the entire parameter list has been successfully evalu-

ated.

4.4.2 The Procedure Call

The entire procedure calling sequence is controlled by eval-app. The application of the function to the arguments

is done in the success continuation for the initial invocation of eval-actuals. The value that is passed to the con-

tinuation is a pair that contains a list and a continuation, as described in Section 4.2. The first element in the parameter

list is the function to be applied, and the continuation is used to resume the evaluation of the function’s parameters. It

is interesting to note that the actual binding of the formals to the actuals and the resumption continuation to the failure

continuation of the function is done by the function itself. The definition of each function is prepended by the code

necessary to perform these bindings. This method is also used by [HF86].

4.5 Return, Suspend and Fail
During the evaluation of an expression, the interpreter must choose where program execution (evaluation) will con-

tinue. These choices are restricted to evaluating a subexpression or choosing to call one of the continuations that the

1 A continuation chain is a list of continuations that are called in sequence that build a structure. Each continuation in the
chain contributes a value to the structure built by the chain. In this case, the structure is a parameter list.

(define (eval-app exp env sk fk)
  (eval-actuals exp env
                (lambda (val-list)
                  (let ((function (deref (caar val-list)))
                        (actuals (cdar val-list))
                        (back-k (cdr val-list)) )
                    (function actuals sk back-k)))
                fk ))

Figure 12: Function application.
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interpreter has been passed. So far, the only available continuations represent the rest of the computation based on

whether the current expression fails or produces a value.

During evaluation of a subexpression, however, return, suspend, or fail may be encountered as in

procedure proc
e0

        if e1 then
                return e2

e3

end

The compound expression has dictated that e3 should be evaluated whether the if expression succeeds or fails. Howev-

er, return causes control to “break” from the current procedure, and continue back at the caller. Execution may continue

in the caller upon one of two different paths: a success path if e2 succeeds and a failure path if it fails. Since as we have

seen the compound expression already binds the two continuations available to the evaluation of the next expression,

we require two more continuations to represent the two return control paths. This brings us to the formulation for return

(Figure 13) and suspend (Figure 14). We have added two continuations, r-sk and r-fk, that represent control paths

for return success and return failure respectively. fail simply calls r-fk to return with failure.

The addition of these two continuations brings the total to four. This accurately models the control flow for an Icon

program: during evaluation of an expression, the expression can succeed, fail, return a value, or return failure. There-

fore, every helper-function must handle all four of these properly. Because control only returns to the calling procedure

when a return, suspend, fail or the end of a procedure definition is encountered, these are the only times that the return

continuations are called. For all other cases, these are simply passed on to the next evaluation.

Control structures that cause control to break out of normal order of evaluation, as return, suspend, and fail do,

require the addition of continuations as seen above.

4.6 Generative Control Structures
The implementation of generative control structures establishes the usefulness of this implementation technique.

Many of them were implemented quickly with ease. However, the complexity of several of the control structures in

Icon is best illustrated by their implementation.

(define (eval-return exp env sk fk r-sk r-fk)
  (if (null? (cdr exp)) (r-sk (cons &null r-fk))
      (let ((new-sk (lambda (v) (r-sk (cons (car v) r-fk)))))
        (eval (cadr exp) env new-sk fk new-sk fk))))

Figure 13: Implementation of return.

(define (eval-suspend exp env sk fk r-sk r-fk)
  (eval (cadr exp) env r-sk fk r-sk fk))

Figure 14: Implementation of suspend.
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First, let us look at the definition of every:

(define (eval-every exp env sk fk r-sk r-fk)
  (eval (cadr exp) env
        (lambda (e-value)
          (let ((resume (cdr e-value)))
            (if (null? (cddr exp)) (resume)
                (eval (caddr exp) env (lambda (v) (resume)) resume
                      r-sk r-fk) )))
        fk r-sk r-fk))

Recall that every evaluates its do clause for each value produced by an expression until that expression is exhausted.

This is done by simply binding the resumption continuation from the evaluation of the every clause to the failure con-

tinuation for the evaluation of the do clause. Notice that the success continuation for the resumption of the every clause

remains unchanged, while, after each value is produced, a new resumption continuation is generated and bound to the

failure continuation for the do expression.

Finally, Figure 15 shows the implementation for limitation. It is rather involved due to the complexity of the con-

trol structure itself. Unlike other control structures in Icon, limitation does more than just dispatch evaluation of ex-

pressions based on success and failure. It must count the number of results produced by a generator and force failure

upon reaching the upper bound.

First, the second argument is evaluated to determine the maximum number of results that the first argument may

produce. If this number is greater than zero, the generator (first argument) is permitted to produce the first result, oth-

erwise, failure is forced. If a result is produced, the control structure decrements the count each time the generator is

(define (eval-limit exp env sk fk r-sk r-fk)
  (eval (caddr exp) env ; evaluate count expression
        (lambda (value)
          (let ((limit (car value)))
            (if (<= (set! limit (- limit 1)) 0) ; if count <= 0
                (fk)  ; then, limit reached, fail
                (eval (cadr exp) env ; else, evaluate
                      (lambda (value1)
                        (sk (cons (car value1)
                                       (lambda ()

; check if limit reached

                                         (if (> (set! limit (- limit 1)) 0)
                                          ((cdr value1)); then resume

; else limit reached, fail

                                          (fk))))))
                      fk r-sk r-fk))))
        fk r-sk r-fk))

Figure 15: limit implementation.
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resumed. This is accomplished by augmenting the resumption continuation produced by the second eval. If the counter

reaches zero, failure is forced.

5 Addition of a New Control Structure
Now that the interpreter framework has been described and several of the control structure implementations have

been shown, let us turn to the addition of a new control structure. It is important that the control model be flexible

enough to facilitate the addition of control structures not currently available in Icon. Furthermore, it is interesting to

design a control structure that is generally not available in languages having goal-directed evaluation. Note that our

modified Icon syntax is used in example Icon programs in this section.

In a CPS interpreter, we see that control is managed by the creation and application of continuations. A given con-

trol structure uses continuations to implement its specific behavior. We can add a powerful control structure to such an

interpreter by allowing the programmer to access these (already built) continuations. Scheme provides a function,

called call-with-current-continuation (call/cc), that provides a general control abstraction to the programmer by giving

access to internal continuations. [HF86] succinctly describes the operation of call/cc in Scheme:

“The function [call/cc] must be passed a function of one argument. This argument is in turn passed

the current continuation, which is the continuation of the call/cc application, represented as a func-

tional object of one argument. Informally, this continuation represents the remainder of the compu-

tation from the call/cc application point. At any future time this continuation may be invoked with

any value, with the effect that this value is taken as the value of the call/cc application.”

An example use of Scheme’s call/cc is shown below. k is bound to call/cc’s continuation and is immediately called

with 12 as its parameter. The effect is that the entire expression evaluates to 12 and the addition is never performed.

(call/cc (lambda (k) (+ 4 (k 12))))

[HF86][Hay87][HF87] describe a variety of control mechanisms, including coroutines and non-blind backtrack-

ing, that may be implemented by the programmer using the call/cc mechanism. So, let’s integrate Scheme’s call/cc with

our interpreter. First, we recognize that the call/cc argument must be a function of two parameters rather than one: a

success and a failure continuation. The choice of their bindings is obvious: the success and failure continuations for

call/cc. However, recall that success continuations expect a pair: the result and the resumption continuation. The re-

sumption continuation could be supplied by either the programmer or the interpreter; we have chosen the latter. What

then, should the interpreter supply as the resumption continuation for the expressions on lines 5 and 11 in Figure 16

There are three plausible choices:

1) The failure continuation of the subsequent call to the success continuation.

2) The failure continuation for call/cc.

3) The continuation to resume invocation of call/cc's functional argument.

Figure 16 illustrates these points for choices 1 and 2. Choice three would cause phred to be resumed upon failure of

the call to sk or keep.

Choice three is not a valid one since the resumption continuation is not created until phred returns or suspends. A

call to the success continuation within phred (as is the case) would never return, causing phred to never return, thus

the resumption continuation for call/cc would not be defined. Choice two violates the model—that continuations never

return (presumably even upon failure). Choice one is the definition we choose.
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Figures 17, 18, and 19 show the modifications to the interpreter. Note that unlike most control structures, the im-

plementation of call/cc must include modifications to application (see Figure 18) since part of its mechanism relies on

application. In addition a new datatype has been added—the continuation. Although the modifications may appear to

be significant for call/cc, eval-k  and modifications to eval-app  are only needed for the support of continuations

as a datatype.

1 (global keep)
2 (procedure phred (sk fk)
3         (begin
4                 (:= keep sk)
5                 (sk expr)1

6         ))
7                 .
8                 .
9                 .

10                 (call/cc phred)2

11                 (keep expr)1

Figure 16: Form of call/cc use

(define (eval-call/cc exp env sk fk r-sk r-fk)
  (eval (cadr exp) env
        (lambda (arg)
          (let ((new-fk (lambda () (sk `(,&null ,fk))))
                (new-sk (lambda (v) (sk `(,v ,fk))))
                (proc (deref (car arg))))
            (proc ̀ ((&k ,sk ,fk) (&k ,fk)) new-sk new-fk))) fk r-sk r-fk))

Figure 17: Dispatch routine for call/cc.

(define (eval-app exp env sk fk r-sk r-fk)
  (eval-actuals exp env
                (lambda (val-list)
                  (if (starts-with? '&k (deref (caar val-list)))
                      (eval-k (deref (caar val-list)) exp env sk fk r-
sk r-fk)
                      .
                      .
                      .
                  ))))

Figure 18: Modifications to eval-app for continuations.

(define (eval-k k exp env sk fk r-sk r-fk)
  (if (null? (cddr k))
      (if (= (length (cdr exp)) 0)
          ((cadr k)) (error "No arguments expected"))
      (eval (cadr exp) env
            (lambda (arg)
              ((cadr k) `(,(car arg) ,(caddr k))))
            fk r-sk r-fk)))

Figure 19: Dispatch routine for continuation calls.
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Figure 20 shows the formulation of a repeat loop using the call/cc construct. The loop body and condition are ar-

bitrary expressions. save-k saves the entry point to the loop (line 8) as a procedural object named loop (line 4). A jump

to the top of the loop is accomplished by applying loop (line 10).

Although we have chosen this definition for the control of call/cc, it may not be the only appropriate choice. Such

a decision can only be made after experimentation with other designs. Since implementation of the control is rather

trivial once it has been designed (as shown above), this interpreter framework provides precisely the environment for

such experimentation.

6 Concluding Remarks
We have described an interpreter that implements a language based on success and failure of expressions, generators,

and backtracking. This interpreter provides the framework for implementing a variety of language mechanisms. It

also demonstrates the technique of CPS for a success/failure based language.

In addition to the implementation of a number of Icon control structures, a control abstraction not found in Icon

(call/cc) was integrated into the language. This illustrated the ease with which new non-trivial language features may

be implemented in the interpreter. Thus, during the language design process, less time may be spent implementing the

prototype interpreter and more time may be spent experimenting with the design and interaction of new language

mechanisms.

Other constructs that may be interesting within this language domain include non-blind backtracking, coroutines,

and pattern matching over procedure arguments. The addition of these constructs would be straightforward.

1 (global loop)

2 (procedure save-k (sk fk)
3         (begin
4                 (:= loop fk)
5         ))

6 (procedure main ()
7         (begin
8                 (call/cc save-k)
9 loop body

10                 (if condition (loop))
11         ))

Figure 20: A repeat loop formulation using call/cc.
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Appendix A
The following grammar describes the language implemented by the interpreter.

program ::= decl-list

decl-list ::= decl | decl decl-list

decl ::= ( global symbol expr ) Global identifier declaration

decl ::= ( procedure symbol ( symbol-list ) expr ) Procedure declaration

expr-list ::= expr | expr expr-list

symbol-list ::= symbol | symbol-list

expr ::= number | symbol | string Basic datatypes

expr ::= &fail

expr ::= ( expr expr-list ) Invocation

expr ::= special-form

special-form ::= ( fail ) Procedure failure

special-form ::= ( while expr expr ) While loop

special-form ::= ( every expr expr ) Every loop

special-form ::= ( := symbol expr ) Identifier assignment

special-form ::= ( repalt expr ) Repeated alternation

special-form ::= ( return expr ) Procedure return

special-form ::= ( suspend expr ) Generator suspension

special-form ::= ( lambdafy ( symbol-list ) expr ) Anonymous procedure

special-form ::= ( limit expr expr ) Limit generator

special-form ::= ( not expr ) Not expression

special-form ::= ( if expr expr expr ) Conditional

special-form ::= ( mut expr-list ) Mutual expression evaluation

special-form ::= ( ? expr expr ) String scanning expression

special-form ::= ( alt expr expr ) Alternation expression

special-form ::= ( begin expr-list ) Compound expression

number, string, symbol correspond to the definitions used for the Scheme language.
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Appendix B

This appendix continas a complete listing of the FLECS interpreter.
The dialect of Scheme is MIT version 7.0 beta release.

(display "Loading evaluator...")
(load "interp.scm")
(display "done") (newline)

(display "Loading variable functions...")
(load "var.scm")
(display "done") (newline)

(display "Loading utilities...")
(load "util.scm")
(display "done") (newline)

(display "Loading type functions...")
(load "types.scm")
(display "done") (newline)

(display "Loading control constructs...")
(load "ctrl-structs.scm")
(display "done") (newline)

(display "Loading builtin functions...")
(load "built-ins.scm")
(display "done") (newline)

(display "FLECS Loaded")

File: interp.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  INTERP.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; This is an interpreter for the Icon language. It is implemented in Scheme
; using a continuation-passing style.

; Universally throughout this implementation, these abbreviations have the
; following meaning:
;
;       sk   - success continuation (function of 1 parameter)
;       fk   - failure continuation (function of no parameters)
;       r-sk - return-success continuation (function of 1 parameter)
;       r-fk - return-failure continuation (function of no parameters)
;       exp  - expression being evaluated
;       env  - environment to evaluate expression in

; eval is the actual interpreter. It dispatches functions based on the syntax
; of the current expression. This is every bit the same as any other

; Scheme-based interpreter.

(define current-eval-exp '())

(define (eval exp env sk fk r-sk r-fk)
  (set! current-eval-exp exp)
  (cond ((number? exp) (sk (cons exp fk)))      ; succeed with value
        ((string? exp) (sk (cons exp fk)))      ; success with value
        ((&fail? exp) (fk))                     ; expression fails

        ; is a global or local variable or a function/procedure name

        ((symbol? exp) (sk (cons (lookup exp env) fk)))

        ; if it isn't a list, we've run out of possibilities...

        ((not (pair? exp)) (icon-error "invalid Icon expression" exp))

        ; fail keyword. procedure fails

        ((fail? exp) (r-fk))

        ((list? exp) (eval-list exp env sk fk r-sk r-fk))

        ((cset? exp) (sk (cons (string->cset (cadr exp)) fk)))

        ; must be a function/procedure invocation

        (else (let ((e-func (find-cs exp)))
                (if e-func (e-func exp env sk fk r-sk r-fk)
                    (eval-app exp env sk fk r-sk r-fk))))
        ))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
;                       DETAILS OF INTERPRETER STARTUP
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; must define it so we can set! it later...

(define global-env '())

; &null needs a value, this is a useful value for the user.

(define &null "Icon &null")

; define the "empty" success and failure continuations. They simply return
; "<< no value >>". The only difference between the two is that failure
; continuations have no parameters.

(define (snull-k v) "<< no value >>")
(define (fnull-k) "<< no value >>")

; define the "error" success and failure continuations. They are used when
; a function requires a continuation, but the continuation should never
; be called.
;
; A good example of this is when the main procedure is initially interpreted.
; The 'eval' function requires return continuations, but return is invalid
; for the first invocation of main.
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(define (serror-k v)
  (error "Success continuation that shouldn't have been called" (car v)))
(define (ferror-k)
  (error "Failure continuation that shouldn't have been called"))

; define the continuation that will be called last. That is, this continuation
; is passed to 'eval' as the failure continuation for the first invocation
; of main.

(define (term-k) (newline) (display "Icon program terminated.") (newline))

; icon is the function that is actually called to invoke the interpreter.
; It initializes the global environment, loads the Icon functions (that
; are defined IN Scheme Icon), and starts 'eval' on procedure main.

(define (icon filename)
  (newline)
  (set! global-env (make-global-env))
  (each-object "built-ins.sicn" (lambda (object) (load-icon object global-env
                                                            #f)))
  (each-object filename (lambda (object) (load-icon object global-env #t)))
  (newline)
  (display "Execution starting...")
  (newline)
  (eval '(main) global-env (lambda (v) (display "Value: ") (display (car v))
(term-k)) term-k serror-k ferror-k))

File: ctrl-structs.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;  CTRL-STRUCTS.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;`;;;;;;;;;;;;;;;;;;;;;;;;;;;

; This section contains the functions that implement the Scheme Icon control
; structures. These are all automajically dispatched by the eval function.
; Thus, each is required to accept the same arguments.

; not:  Swaps the success and failure continuations. Note that to do this,
; the old success continuation no longer can take an argument, and the
; old failure continuation must now take an argument. For the old success,
; we simply throw away the argument, for the old failure, we pass &null
; as the argument.
;
; Syntax: (not exp)

(define (eval-not exp env sk fk r-sk r-fk)
  (eval (cadr exp) env (lambda (value) (fk))
        (lambda () (sk (cons &null fk))) r-sk r-fk))

; '\':  Limitation is the most complex of the control structures. First,
; exp2 is evaluated, if it is greater than 0, exp1 is evaluated, and returned.
; If the outer environment attempts to resume the limitation, the value of
; exp2 is decremented. Again if exp2 is greater than 0, exp1 is resumed.
; This process of decrement, compare, resume is continued until no more values
; are requested, exp2 becomes 0, or exp1 is exhausted of values.
;

; The use of 'limit' is to disambiguate from the `\` operator (return value
; if not null), since control structures look like functions, procedures and
; operations.
;
; Syntax: (limit exp1 exp2)

(define (eval-limit exp env sk fk r-sk r-fk)
  (eval (caddr exp) env
        (lambda (value)
          (let ((limit (type-convert (deref (car value)) 'number

     (lambda () (icon-error
 "Expected integer for lim-

it"
 (deref (car value)))))))

            (if (<= (set! limit (- limit 1)) 0) (fk)
                (eval (cadr exp) env
                      (lambda (value1)
                        (sk (cons (car value1)
                                       (lambda ()
                                         (if (> (set! limit (- limit 1)) 0)
                                             ((cdr value1))
                                             (fk))))))
                      fk r-sk r-fk))))
        fk r-sk r-fk))

; lambdafy: This is a new control structure introduced by Scheme Icon. It
; simply builds a new procedure from the supplied formals and body. Its value
; can then be invoked, or assigned to a variable by the enclosing body.
;
; Syntax: (lambdafy formals e1 ... en)

(define (eval-procedure exp env sk fk r-sk r-fk)
  (sk (cons (build-procedure (cdr exp) env) fk)))

; suspend: evaluates the expression, and returns the value to the current
; procedure's caller. This is done by passing eval the current procedure's
; return-success continuation as the new success continuation. That way, if
; the expression produces a value, it is passed to the caller. Note that
; suspend fails if the expression fails.
;
; Syntax: (suspend expr)

(define (eval-suspend exp env sk fk r-sk r-fk)
  (eval (cadr exp) env r-sk fk r-sk fk))

; return: works like suspend, except that the procedure is restricted to
; returning a single result.
;
; Syntax: (return expr)

(define (eval-return exp env sk fk r-sk r-fk)
  (if (null? (cdr exp)) (r-sk (cons &null r-fk))
      (let ((new-sk (lambda (v) (r-sk (cons (car v) r-fk)))))
        (eval (cadr exp) env new-sk fk new-sk fk))))

; '|' (repeated alternation): Produce results by evaluating and resuming
; exp. If exp fails after the first evaluation, it is evaluated again. If
; exp fails on the first evaluation, repeated alternation fails.
;
; Syntax: (repalt exp)

(define (eval-repalt exp env sk fk r-sk r-fk)
  (eval (cadr exp) env (lambda (v) (eval-repalt exp env sk fk r-sk r-fk))
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        fk r-sk r-fk))

; ':=' (variable assignment): evaluate exp and bind it to var-exp. The
; 'variable' is returned. This allows the outer environment to "get at"
; the name of the variable if it wants. Thus, to find the value of the
; variable, it must be dereferenced.
;
; Syntax: (:= var-exp exp)

(define (eval-assignment exp env sk fk r-sk r-fk)
  (eval (caddr exp) env
        (lambda (r-value)
          (eval (cadr exp) env (lambda (l-value)

 (if (starts-with? '&var (car l-value))
     (begin
       (bind-var (car l-value)

 (deref (car r-value)))
       (sk (cons (car l-value) (cdr r-value))))
     (icon-error "Variable expected in assign-

ment"
 (car l-value))))

                fk r-sk r-fk))
        fk r-sk r-fk))

; while: The expression list is executed repeatedly until cond fails.
;
; Syntax: (while cond exp)

(define (eval-while exp env sk fk r-sk r-fk)
  (eval (cadr exp) env
        (lambda (condition)
          (let ((eval-again (lambda ()
                           (eval-while exp env sk fk r-sk r-fk))))
            (if (null? (cddr exp)) (eval-again)
                (eval (caddr exp) env (lambda (v) (eval-again))
                      eval-again r-sk r-fk))))
        fk r-sk r-fk))

; every: The expression list is executed after every result generated by exp.
; exp is repeatedly resumed until it fails.
;
; Syntax: (every exp exp)

(define (eval-every exp env sk fk r-sk r-fk)
  (eval (cadr exp) env
        (lambda (e-value)
          (let ((resume (cdr e-value)))
            (if (null? (cddr exp)) (resume)
                (eval (caddr exp) env (lambda (v) (resume)) resume r-sk r-fk)
          )))
        fk r-sk r-fk))

; alternation: The first expression is evaluated. If the first ever fails, the
; second is then evaluated in its place.
;
; Syntax: (alt exp exp)

(define (eval-alt exp env sk fk r-sk r-fk)
  (eval (cadr exp) env sk
        (lambda () (eval (caddr exp) env sk fk r-sk r-fk)) r-sk r-fk))

; string scanning: defines first expression as &subject. Executes
; second expression in that environment.

;
; Syntax: (? exp exp)

(define (eval-string-scan exp env sk fk r-sk r-fk)
  (eval (cadr exp) env
        (lambda (subject-value)
          (bind-var (lookup '&subject global-env)

    (type-convert (deref (car subject-value)) 'string
  (lambda () (icon-error

      "String expected for ?"
      (deref (car subject-value))))))

          (bind-var (lookup '&pos global-env) 1)
          (eval (caddr exp) env sk fk r-sk r-fk)) fk r-sk r-fk))

; if: cond is evaluated, if it generates a result, then-clause is evaluated,
; otherwise, else-clause is evaluated.
;
; Syntax: (if cond then-clause else-clause)

(define (eval-if exp env sk fk r-sk r-fk)
  (let ((condition (cadr exp))
        (then-exp (caddr exp))
        (else-exp (cadddr exp)))
    (eval condition env
          (lambda (v)
            (eval then-exp env sk fk r-sk r-fk))
          (lambda ()
            (eval else-exp env sk fk r-sk r-fk))
          r-sk r-fk)))

(define (eval-k k exp env sk fk r-sk r-fk)
  (if (null? (cddr k))
      (if (= (length (cdr exp)) 0)

  ((cadr k))
  (icon-error "Failure continuation requires zero parameters" exp))

      (if (= (length (cdr exp)) 1)
  (eval (cadr exp) env

(lambda (arg)
  ((cadr k) `(,(car arg) ,(caddr k))))
fk r-sk r-fk)

  (icon-error "Success continuation requires one parameter" exp))))

; eval-app controls function application. The syntax for function application
; is as follows:
;
;       (func-exp actual1 ... actualn)
;
;
;

(define (eval-app exp env sk fk r-sk r-fk)
  (let ((&subject (lookup '&subject global-env))
        (&pos (lookup '&pos global-env))
        (saved-&subject &null)
        (saved-&pos 1))
    (eval-actuals exp env
                  (lambda (val-list)

    (if (starts-with? '&k (deref (caar val-list))) (eval-k
(deref (caar val-list)) exp env sk fk r-sk r-fk)

                    (let ((function
   (type-convert (deref (caar val-list)) 'procedure

 (lambda ()
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   (icon-error
    "Procedure expected for invoca-

tion"
    (deref (caar val-list))))))

                          (actuals (cdar val-list))
                          (back-k (cdr val-list)))
                      (set! saved-&subject (deref &subject))
                      (set! saved-&pos (deref &pos))
                      (function actuals
                                (lambda (v)
                                  (bind-var &subject saved-&subject)
                                  (bind-var &pos saved-&pos)
                                  (sk v))
                                (lambda ()
                                  (bind-var &subject saved-&subject)
                                  (bind-var &pos saved-&pos)

                                  (back-k))))))
                  fk r-sk r-fk)))

; eval-begin simply evaluates each expression in a list. The success and
; failure continutation for any but the last expression are the same: continue
; evaluating the expressions. The success and failure continuations for the
; last expressions are determined by the caller.

; Syntax: (begin expr ... expr)

(define (eval-begin exp env sk fk r-sk r-fk)
  (if (null? (cdr exp)) (fk)
      (letrec ((eval-begin-helper
                (lambda (exp)
                  (if (null? (cdr exp)) (eval (car exp) env sk fk r-sk r-fk)
                      (let* ((fk (lambda () (eval-begin-helper (cdr exp)))))
                        (eval (car exp) env (lambda (v) (fk)) fk r-sk r-fk))))))
        (eval-begin-helper (cdr exp)))))

; eval-actuals evaluates each actual parameters, and gathers them in a list
;

(define (eval-actuals exp env sk fk r-sk r-fk)
  (eval (car exp) env
        (lambda (parm)
          (if (null? (cdr exp))
              (sk (cons (list (car parm)) (cdr parm)))
              (eval-actuals (cdr exp) env
                            (lambda (parm-list)
                              (sk (cons (cons (car parm) (car parm-list))
                                        (cdr parm-list))))
                            (cdr parm) r-sk r-fk)))
        fk r-sk r-fk))

; eval-list evaluates a sequence of expressions, passing the entire list
; of evaluated expressions to it's success continuation.

(define (eval-list exp env sk fk r-sk r-fk)
  (eval-actuals (cdr exp) env
                (lambda (list)
                  (sk (cons (cons 'list (deref-list (car list))) fk)))
                fk r-sk r-fk))

; mutual evaluation. Evaluates each, allowing backtracking into any of
; the previous expressions.

(define (eval-mutual exp env sk fk r-sk r-fk)
  (eval-actuals (cdr exp) env
                (lambda (list)
                  (sk (cons (list-tail (car list) (- (length (car list)) 1))
                            (cdr list))))
                fk r-sk r-fk))

; call with current continuation
;
; Syntax: (call/cc procedure)

(define (eval-call/cc exp env sk fk r-sk r-fk)
  (eval (cadr exp) env

(lambda (arg)
  (let ((new-fk (lambda () (sk `(,&null ,fk))))

(new-sk (lambda (v) (sk `(,v ,fk))))
(proc
 (type-convert (deref (car arg)) 'procedure

       (lambda ()
 (icon-error "Procedure expected for call/cc"

     (cadr exp))))))
            (proc `((&k ,sk ,fk) (&k ,fk)) new-sk new-fk))) fk r-sk r-fk))

; ctrl-structs is used to find the name of a function when dispatching on
; a control structure. Also defines the number of expressions that is valid
; for a given control structure.
;

(define ctrl-structs
  `((while . (,eval-while (1 2)))
    (every . (,eval-every (1 2)))
    (:= . (,eval-assignment 2))
    (repalt . (,eval-repalt 2))
    (return . (,eval-return 1))
    (suspend . (,eval-suspend 1))
    (lambdafy . (,eval-procedure 2))
    (limit . (,eval-limit 2))
    (mut . (,eval-mutual any))
    (not . (,eval-not 2))
    (if . (,eval-if (2 3)))
    (alt . (,eval-alt 2))
    (call/cc . (,eval-call/cc 1))
    (? . (,eval-string-scan 2))
    (begin . (,eval-begin any))
    ))

; find-cs is the interface to ctrl-structs. ctrl-structs defines the
; function to evaluate a given control structure, and the number of expressions
; that the function expects.

(define (find-cs exp)
  (let* ((num-args (length (cdr exp)))
         (cs (assq (car exp) ctrl-structs)))
    (if cs (cond ((number? (caddr cs))
                  (if (= (caddr cs) num-args) (cadr cs)
                      (icon-error "illegal expression (wrong number of forms)"
                                  exp)))
                 ((pair? (caddr cs))
                  (if (reduce boolean/or ()
                              (map (lambda (value)
                                     (= num-args value)) (caddr cs)))
                      (cadr cs)
                      (icon-error "illegal expression (wrong number of forms)"
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                                  exp)))
                 ((equal? (caddr cs) 'any) (cadr cs))
                 )
        #f)))

File: types.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  TYPES.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Functions for maintaining type harmony.

; converts a string to a cset

; checks that the type and number of arguments match.

(define (prepare-args args types)
  (if (= (length args) (length types))
      (map (lambda (arg new-type) (type-convert (deref arg) new-type)) args types)
      (icon-error "Wrong number of arguments" args)))

(define (string->cset set)
  (let ((len (string-length set)))
    (letrec ((cset-builder
              (lambda (index)
                (if (= index len) '()
                    (let ((cset (cset-builder (+ index 1)))
                          (char (string-ref set index)))
                      (if (memq char cset) cset (cons char cset)))))))
      (cons 'cset (sort (cset-builder 0) char<?)))))

; converts a cset to a string

(define (cset->string set)
  (list->string (cdr set)))

; type conversion routine. Eastablishes valid conversions from any type
; to any type. Far from complete.

(define (type-convert value type-desired . error-func)
  (let* ((id (lambda (v) v))
         (type-map (cond ((char? value) `((char . ,id)
                                          (string . ,(lambda (c) (list->string ̀ (,c))))))
                         ((number? value) `((number . ,id)
                                            (string . ,number->string)))
                         ((string? value) `((string . ,id)
                                            (number . ,string->number)
                                            (cset . ,string->cset)))

 ((procedure? value) `((procedure . ,id)))
                         ((starts-with? 'list value) `((list . ,id)))
                         ((starts-with? 'cset value) `((cset . ,id)
                                                       (string . ,cset->string)))
                         (else (icon-error "Not a valid type: " value))))
         (converter (assq type-desired (cons `(any . ,id) type-map))))
    (if converter ((cdr converter) value)

        (if error-func ((car error-func))
    (icon-error "Incompatable type conversion" value " to "

type-desired)
    ))))

File: util.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  UTIL.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; build-procedure receives the formal parameters and the body of the
; function. It returns a function that receives the actuals, dereferences
; them, binds their values to the formals, and evaluates body. Note that
; there is a cludge here: the addition of &local_top as variable in the
; environment. This is necessary becuase we must know that the pointer to
; the global environment points to a cell that is not the one pointed to
; by the local environment. Unfortunately, this should be changed. It really
; should be implemented such that if &local_top is ever referenced that this
; entry is skipped over, but that is for another time.
;
; Expects: (formals e1 ... en)

(define (build-procedure exp env)
  (let* ((formals (car exp))
         (body (cadr exp)))
    (lambda (actuals r-sk r-fk)
      (eval body (let ((args (deref-list actuals)))
                   (cons (list '&local_top "Icon &local_top")
                         (bind-parms formals args env)))
                 (lambda (v) (r-fk)) r-fk r-sk r-fk))))

(define (load-icon exp env user-defined)
  (cond ((icon-procedure? exp) (load-procedure exp env user-defined))
        ((global? exp) (load-global exp env user-defined))
        (else (icon-error "invalid Icon definition" exp))))

; an icon function takes a list of actuals values, a return success
; continuation, and a failure continuation.

; Syntax: (procedure p-name (arg1...argn) body)

(define (load-procedure exp env ud)
  (if (not (= (length exp) 4)) (icon-error "illegal procedure definition (incor-
rect number of forms)"))
  (let* ((name (cadr exp))
         (eval-body (build-procedure (cddr exp) env)))
    (lookup-bind name eval-body env)
    (cond (ud (display "procedure ") (display name) (newline)))))

; Syntax: (global name value)

(define (load-global exp env ud)
  (if (not (= (length exp) 4)) (icon-error "illegal global definition (incorrect
number of forms)"))
  (eval (caddr exp) env
        (lambda (r-value)
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          (eval (cadr exp) env (lambda (l-value)
                                 (bind-var (car l-value) (deref (car r-value)))
                                 (cond (ud
                                        (display "global ")
                                        (display (cadar l-value)) (newline))))
                fnull-k snull-k fnull-k))
        fnull-k snull-k fnull-k))

; exhausts the input by reading each object in and executing function on it.

(define (read-object port function)
  (let ((object (read port)))
    (cond ((eof-object? object) port)
          (else (function object) (read-object port function)))))

; opens an input port, exectutes function on each object, and closes the port

(define (each-object filename function)
  (close-input-port (read-object (open-input-file filename) function)))

; checks if a list's first element is exp

(define (starts-with? string exp)
  (if (not (pair? exp)) #f (eq? (car exp) string)))

; standard predidates

(define (fail? exp) (starts-with? 'fail exp))   ; fail keyword?
(define (cset? exp) (starts-with? 'cset exp))   ; cset type
(define (list? exp) (starts-with? 'list exp))   ; list type
(define (&fail? exp) (eq? exp '&fail))          ; is it &fail?
(define (icon-procedure? exp) (starts-with? 'procedure exp))
(define (global? exp) (starts-with? 'global exp))

; error displaying routine for Icon

(define (icon-error error-message . forms)
  (newline)
  (display "Icon error: ")
  (display error-message)
  (if (null? forms) (error "Icon stop"))
  (display " [Found: ")
  (map write (reverse forms)) (display "]") (newline)
  (error "Icon stop"))

File: vars.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  VAR.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; dereferences a variable. variables have the following form:
;

;       (&var variable-name variable-value)
;
; deref simply returns the value

(define (deref exp)
  (if (starts-with? '&var exp) (caddr exp) exp))

; dereferences a list of variables (formals)

(define (deref-list args)
  (map (lambda (value) (deref value)) args))

; bind-parms does just that. It takes a list of formals and actuals, binds
; their names and values, and prepends them to the environment. This new
; environment is returned as the value of the function.
;

(define (bind-parms formals actuals env)
  (cond ((null? formals) env)
        ((null? actuals) (cons (list (car formals) &null)
                               (bind-parms (cdr formals) '() env)))
        (else (cons (list (car formals) (car actuals))
                    (bind-parms (cdr formals) (cdr actuals) env)))))

; lookup looks up names in the environment. If an associated value is found,
; the non-dereferenced (icky I know) variable is returned, enabling the
; modification of its value at a later time. If a value is not found, the
; variable is bound to &null.
;

(define (lookup name env)
  (let ((binding (assoc name env)))
    (cons '&var
     (if binding binding
         (let ((new-binding (list name &null)))
           (set-cdr! env (cons new-binding (cdr env)))
           new-binding)))))

; bind-var binds a single variable to a value.
;

(define (bind-var var value)
  (set-cdr! (cdr var) (list value)))

; lookup-bind does a lookup of a variable, and then binds it to a new value.

(define (lookup-bind name value env)
  (bind-var (lookup name env) value))

File: built-ins.scm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  BUILT-INS.SCM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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; Place Icon functions (built-in) in the global environment. This is actually
; a function so that each invocation of the interpreter will have a brand
; spankin' new environment.

(define (make-global-env)
  `((write ,write-builtin)
    (/ ,/-builtin)
    (> ,>-builtin)
    (< ,<-builtin)
    (<= ,<=-builtin)
    (= ,=-builtin)
    (\ ,\-builtin)
    (+ ,+-builtin)
    (== ,==-builtin)
    (! ,!-builtin)
    (toby ,toby-builtin)
    (deref ,deref-builtin)
    (sizeof ,sizeof-builtin)
    (convert ,convert-builtin)
    (substring ,substring-builtin)
    (&version ,"Scheme Icon Version 1.0")
    (&subject ,&null)
    (&pos 1)
    ))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
;                             BUILT-IN FUNCTIONS
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Listed below are all of the Icon functions that are implemented in Scheme.
; This does not include functions that are implemented in Scheme Icon.
; Functions are only written in Scheme when it is not possible, due to the
; nature of Icon, to implement them in Scheme Icon. Write is a good example of
; this, it must be able to receive a variable number of arguments, a feature
; not available in Scheme Icon.

; It should be noted that these functions are a bit awkward. They act exactly
; like user-defined functions. Because of this, they use the same "calling
; convention." This requires that either the return-failure/success
; continuation be called. If it is a success continuation, the value is
; required to be a two element list, whose first value is the return value,
; and whose second value is the continuation to call to resume the function.
; For all of these functions the second value is always the return failure
; continuation that was passed to the function. This is because none of these
; functions are generators.

; allows definition of Icon operators in terms of scheme operators
; Example: + simply uses scheme's +.

(define (use-scheme-operator op . arg-types)
  (lambda (args r-sk r-fk)
    (let ((args (prepare-args args arg-types)))
      (r-sk (cons (apply op args) r-fk)))))

; allows definition of Icon predicates in terms of scheme predicates
; Example: < simply uses scheme's <.

(define (use-scheme-predicate pred . arg-types)

  (lambda (args r-sk r-fk)
    (let ((args (prepare-args args arg-types)))
      (if (apply pred args) (r-sk (cons (cadr args) r-fk)) (r-fk)))))

; some simple operators and predicates.

(define +-builtin (use-scheme-operator + 'number 'number))
(define --builtin (use-scheme-operator - 'number 'number))
(define <-builtin (use-scheme-predicate < 'number 'number))
(define <=-builtin (use-scheme-predicate <= 'number 'number))
(define >-builtin (use-scheme-predicate > 'number 'number))
(define =-builtin (use-scheme-predicate = 'number 'number))

; type conversion function.
;
; Syntax: (convert value "new-type")

(define convert-builtin
  (use-scheme-operator
   (lambda (value type)
     (type-convert value (string->symbol type)))
   'any 'string))

; substring operation
;
; Syntax: (substring lower upper)

(define substring-builtin
  (use-scheme-operator
   (lambda (string start finish)
     (substring string (- start 1) (- finish 1)))
   'string 'number 'number))

; variable dereference operation
;
; Syntax: (deref exp)

(define (deref-builtin args r-sk r-fk)
  (r-sk (cons (deref (car args)) r-fk)))

; write:  write the values of each parameter to the standard output.
; Returns a list containing the values.
;
; Syntax: (write exp1 .. expn)

(define (write-builtin args r-sk r-fk)
  (let ((args (deref-list args)))
    (map display (reverse args)) (newline)
    (r-sk (cons (cons 'list args) r-fk))))

; bang operation -- hardly complete
;
; Syntax: (! exp)

(define (!-builtin args r-sk r-fk)
  (let ((arg (car (prepare-args args '(any)))))
    (cond ((string? arg)
           (letrec ((gen-str
                     (lambda (index)
                       (if (= (string-length arg) index)
                           (r-fk)
                           (r-sk (cons (string-ref arg index)
                                       (lambda () (gen-str (+ index 1))))
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                                 )))))
             (gen-str 0)))
          ((or (cset? arg) (list? arg))
           (letrec ((gen-lst
                     (lambda (list)
                       (if (null? list)
                           (r-fk)
                           (r-sk (cons (car list)
                                       (lambda () (gen-lst (cdr list))))
                                 )))))
             (gen-lst (cdr arg))))
          )))

; size operation
;
; Syntax: (sizeof exp)

(define (sizeof-builtin args r-sk r-fk)
  (let ((arg (car (prepare-args args '(any)))))
    (r-sk (cons (cond ((string? arg) (string-length arg))
                      (else (icon-error "Invalid type for sizeof" arg)))
                r-fk))))

; string equivalence
;
; Syntax: (== exp exp)

(define (==-builtin args r-sk r-fk)
  (let ((args (prepare-args args '(string string))))
    (if (equal? (car args) (cadr args)) (r-sk (cons (car args) r-fk)) (r-fk))))

; '\':    if exp is NOT null, return exp.
;
; Syntax: (\ exp)

(define (\-builtin args r-sk r-fk)
  (let ((args (deref-list args))
        (argc (length args)))
    (if (> argc 1) (error "\: too many operands"))
    (if (eq? (car args) &null) (r-fk)
        (r-sk (cons (car args) r-fk)))))

; '/':    if exp is null, return null.
;
; Syntax: (/ exp)

(define (/-builtin args r-sk r-fk)
  (let ((args (deref-list args))
        (argc (length args)))
    (if (> argc 1) (error "/: too many operands"))
    (if (eq? (car args) &null) (r-sk (cons &null r-fk))
        (r-fk))))

; toby:
;
; Syntax: (toby lower upper [by])

(define (toby-builtin args r-sk r-fk)
  (letrec ((lower (type-convert (deref (car args)) 'number))

   (upper (type-convert (deref (cadr args)) 'number))
   (by (if (null? (cddr args)) 1

   (type-convert (deref (caddr args)) 'number)))
   (resume (lambda ()

     (let ((tmp-lower lower))
       (set! lower (+ lower by))
       (if (< upper tmp-lower) (r-fk)

   (r-sk `(,tmp-lower . ,resume)))))))
    (resume)))

File: built-ins.sicn

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; BUILT-INS.SICN  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Standard Icon toby function.

(procedure to (lower upper by)
  (begin
    (:= counter lower)
    (while (<= counter upper)
      (begin
        (suspend counter)
        (:= counter (+ counter (if (\ by) by 1)))
      ))
  ))

; Standard Icon find function. Used for string scanning.

(procedure find (s1 s2 i j)
  (begin
    (:= s1 (convert s1 "string"))
    (if (\ s2) (begin (:= s2 (convert s2 "string")) (:= i (if (\ i) (convert i
"number") 1)))
               (begin (:= s2 &subject) (:= i (if (\ i) (convert i "number") &pos)))
      )
    (:= j (if (\ j) (convert j "number") (+ (sizeof s2) 1)))
    (while (<= (+ i (sizeof s1)) j)
        (if (== (substring s2 i (+ i (sizeof s1))) s1) (begin (suspend i) (:= i
(+ i 1))) (:= i (+ i 1)))
    )
  ))

; Standard Icon move function. Used for string scanning.

(procedure move(i)
  (begin
    (:= oldpos &pos)
    (if (< (sizeof &subject) (+ i &pos))
      (begin
        (:= &pos oldpos)
        (fail)
      )
        (return (substring &subject (deref &pos) (:= &pos (+ &pos i)))))
  ))

; Standard Icon tab function. Used for string scanning.
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(procedure tab(i)
  (begin
    (:= oldpos &pos)
    (if (< (sizeof &subject) i)
      (begin
        (:= &pos oldpos)
        (fail)
      )
        (return (substring &subject (deref &pos) (:= &pos i))))
  ))

; Standard Icon match function. Used for string scanning.

(procedure match (s1 s2 i j)
  (begin
    (:= s1 (convert s1 "string"))
    (if (\ s2)
      (begin
        (:= s2 (convert s2 "string"))
        (:= i (if (\ i) (convert i "number") 1))
      )
      (begin
        (:= s2 &subject)
        (:= i (if (\ i) (convert i "number") &pos))
      ))
    (:= j (if (\ j) (convert j "number") (+ (sizeof s2) 1)))
    (if (== s1 (substring s2 i (+ i (sizeof s1))))
      (suspend (+ i (sizeof s1))) (fail))
  ))

; Standard Icon upto function. Used for string scanning.

(procedure upto (c s i j)
  (begin
    (:= c (convert c "cset"))
    (if (\ s)
      (begin
        (:= s (convert s "string"))
        (:= i (if (\ i) (convert i "number") 1))
      )
      (begin
        (:= s &subject)
        (:= i (if (\ i) (convert i "number") &pos))
      ))
    (:= j (if (\ j) (convert j "number") (+ (sizeof s2) 1)))
    (:= index 0)
    (every (:= chr (! (substring s i j)))
      (begin
        (:= index (+ index 1))
        (every (== chr (! c))
          (suspend index))
      ))

  ))


