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ABSTRACT

The selection problem asks for the k™ largest or smallest element in a set §. In general,
selection takes linear time, but if the set is constrained so that some relations between elements
are known, sublinear time selection is sometimes possible. Chazelle [5] described one
technique for selection when the set is constrained by geometry, This paper demonstrates a new
technique for geometric selection problems based on the idea of parametric search (6, 14, 16]
and applies it to show that given n points in RY, the £* largest L., interdistance can be selected
in O(d nlog? n) time. This is the first selection algorithm for muitidimensional interdistances to

run in O (n log®Y n) time.
KEYWORDS
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INFRODUCTION

Given a totally ordered set § of n items, the rank of element se§is p,=1v:v<s|. Forinputs § and s, the
ranking problem is to calculate p,, and for inputs § and £, the selection problem is to find an element s € S with
p, =k (the k* order statistic). This paper makes two contributions to the understanding of selection problems; first,
it describes a new, general method for selecting elements from a geometric set in o (]§|) time, and second, it applies
this technique to produce a O (d n log? n) time algorithm to select the k™ largest L .., interdistance determined by n
points in R?, This is the first selection algorithm for multidimensional interdistances with respect to any metric to

run in O (n log®® n) time.



It is well known that the k" largest or smallest element in any set S can be found in linear time [3]). However,
if there are constraints placed on set §, selection in sublinear time may be possible. The first result of this kind
seems to be that of Sham-os, Jefferson and Tarjan in [19] on selecting the median of a Cartesian sum; this result was
followed by a plethora of results, including {9-12,15]. In 5], Chazelle specifically examined the selection problem
for geometrically constrained sets S. He proposed an approach for designing sublinear selection algorithms and
applied this method to the problems of finding the £* Iongest bridge length between two polygons, finding the £
longest interdistance determined by » points along an analytic curve, finding the k' largest area triangle determined

by n points in the plane and finding the ™ longest Euclidean interdistance in %%,

Nevertheless, there are several interesting geometric problems that resist Chazelle’s method; that is, his
technique is not a substantial improvement over the trivial method of first enumerating the set and then using the
linear time selection algorithm. In particular, there is no truly efficient method to select Euclidean interdistances in
dimension d22, with the notable exception of finding the smallest interdistance. We show that there is a good
general selection algorithm for L., interdistances which uses a new technique for geometric selection problems
based on the idea of parametric search [6, 14, 16]. To put this result in perspective, the known results for selecting
median interdistances are given in Figure 1; the time bounds proved in this paper are marked with an asterisk. We
note that the parametric search technique for selection was developed by [7] to produce an optimal time algorithm

for the problem of selecting the k™ largest sloped line passing through 2 of n points in the plane.

PARAMETRIC SEARCH

We begin by briefly sketching Chazelle’s result. The papers of [9, 10} describe sublinear time selection
algorithms when the set § is given in the form of a structured matrix. In the former paper, this matrix has sorted
columns, and in the iattef paper, the matrix has both sorted rows and sorted columns. Chazelle noted that many
geometric relationships have an embedded ordering so that the relations can be mapped onto a small collection of
structured matrices in o({S|) time. His technique consists of a sublinear time transformation followed by an
established sublinear time selection algorithm. Although it is effective for many problems, it may not work for
other problems because of the difficulty in reorganizing the set of objects into a small collection of structured

matrices.



Interdistance Selection Results
norm | dim Bound Proven Reference
) (d) {median} Optimal?
- 1 Onlogn) Yes {9,19], %
1 2 O (n log® n) No *
1 d>2 o(n?) No [18]
2 | d22 | 07 1ogtt " n) No (5]
o | d22 Od nlog®n) No- *

Figure 1 - General Interdistance Selection Results

Our approach 0 selection algorithms is based on an ingenious technique of using parallel algorithms in the
design of efficient sequential algorithms [6, 16] which in turn is a refinement of the method of parametric search
presented in [14]. Given a search problem A, a parametric search algorithm is one that finds a particular item s*

contained in the search space §4 using another algorithm B to guide the search.

In fact, if problem A meets certain conditions and there is a good parallel algorithm for problem B, parametric
search may be accelerated. The first step to do this is to simulate the parallel algorithm in a sequential fashion; that
is, perform all the operations on the first level in any order, then the operations on the second level, and so on. The
impetus for this approach is the following. Suppose there are algorithms which use some basic operation to guide
the search for s™ & §,. Although each operation may be costly, it is often the case that operations are relatéd so that
after performing one operation expensively, many others can be resolved cheaply. It is precisely in this
circumstance that the independence of operations in a parallel algorithm is useful. On each level of the parallel
algorithm, choose the operation which affects the greatest number of the remaining ones, partition the set of

operations into those that are consequently resolved and those that are not, and then recurse on the the set of



operations that are not resolved. This has the effect of drastically reducing the number of expensive operations

performed,

How does parametric search relate to geometric selection problems? For several geometric problems, it is
easier to rank than to select. Let the set of geometric objects in problem A be the search space S, assume that any

element in S; can be ranked, and let s” €S, be an element with p,s =k. Our selection algorithm searches for

element s~ by ranking elements in §' ¢ §,. Problem B is chosen so that its operations are solved by ranking and it
implicitly ranks only a small subset of §, which must contain the £™ element. Since parametric search does not
subdivide the geometric set, it is well suited to solving certain geometric selection problems. These general remarks

will be made clearer when they are tied down to a specific example in the next section.

A NEW OPTIMAL ONE-DIMENSIONAL INTERDISTANCE SELECTION ALGORITHM

Given a set X = {xy,...,%, ], the set of one-dimensional interdistances is
S={|x—x|:i<j},
and the one-dimensional interdistance selection problem is to find the k™ largest or smallest element in §. To
facilitate the explanation, assume that the elements in § are distinct, though this restriction can be removed without
affecting the asymptotic time complexities of the algorithms. An optimal algorithm for this selection problem
resulls from a theorem of [9] on selecting Cartesian sums. The Cartesian sum of n vector Y and m vector Z is the set
Y+Z={y+z;:1<i<n, 1<jsm},
and a Cartesian sum is clearly a constrained set since m + n inpuis determine the mn elements in ¥ +Z. The
theorem of Frederickson and Johnson states that the £ largest or smallest element in Y +Z may be selected in time

O(m+plogk/p), p =min {k,m}, which is optimal in the comparison tree model of computation. Since the set S of

one-dimensional interdistances is the largest [g] elements in X +-X, the Cartesian sum algorithm can be used to

give a selection algorithm for one-dimensional interdistances with the same time complexity. Note that finding the
- smatlest interdistance requires €(n log n) time in the linear decision wee model [8] and that finding the median
interdistance requires (n log r) time in the comparison tree model [19]. (See [17] for more detail on the first lower

bound.)



In this section, the technique of parametric search is applied to produce a new optimal algorithm for one-
dimensional interdistances. It is optimal in the sense that for the worst possible £, it gives the best possible running

time, but it does not give the fastest algorithm for & in the neighborhood of k= [g] . This result will be used to

construct the algorithm for L., selection.

The main theorem of this section is;

Theorem 1: Given a set X of n poinis in R, let § be the set of one-dimensional
interdistances generated by X. Then the k™ one-dimensional interdistance in S can be selected
in O{n logn) time,
This theorem is proved in two parts. In the first part, we show how to rank an interdistance in linear time
after an initial O(nlogn) preprocessing cost. In the second part of the proof, this result is incorporated into a
parallel merging algorithm to find the k™ interdistance.

Theorem 2: Given a sorted set X of » numbers x; € R, distance  can be ranked among the

[g] interdistances in S in O(n) time.

Proof: By assumption, the input points {xi,..,x,] are sorted. Ranking interdistance r is equivalent to
counting the number of points within distance r of each x;, summing these counts and dividing by two, To do this,
we add the total number of points between (x;,x+7] to the total number of points between [x-r.x;) for each i,
Algorithm Right—Sum counts the number of points between the intervals (x;,x;+ 1, and a similar algorithm which is

not presented, Left—Sum, counts the number of points between the intervals [x;—r,x;) (see Figure 2).

Algorithm Right—Sum merges X with the set {x;+r:x;eX}. It sweeps from the leftmost point to the
rightmost point, keeping track of two parameters, rank and count. Rank is the subtotal of the input points within the
intervals determined so far, and count is the number of input points (i.e. centers of intervals) between x; and x, +r.
At each input point, count is increased by 1, since there is an additional center between x; and x; + r. At each right
endpoint, rank is incremented by the current value of count and then count is decreased by 1 because this right
endpoint matches some input point. It is easy to prove by induction that these parameters are correct and that they

accurately count the number of points between the intervals. [
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ALGORITHM RIGHT-SUM ({x;,....x,}, 1}
FOR i=1TORDO
Lili]ex;
tag (L {i]) « center
Lalile—x;+r
tag (Lo{iT) ¢ right
L(——Merge(Ll, Lz)
rank <0
count ¢ —1
ie1

REPEAT
WHILE tag(L[i]) = center DO
count - count + 1
ie-i+1
M LiYisright
rank « rank + count
count «—count — 1
fei+1
IF i > 2n RETURN (rank)
FOREVER

Figure 2 — ALGORITHM Right ~Sum

In the second part of the proof, a merging algorithm is used to guide the search for the k™ interdistance. To
see the tie with merging, define a one-dimensional ball, B (x;, r), with center x; and radius r to be a closed interval
of length 2r centered at x;. For any ball B (x;, r), there is a left side B/(x;, r) at x; ~ r and a right side B,(x;, r) at
x; +r. Given r, consider the sorted set Uy (Bi(X;, r)Ux;). When r is equal to the k™ largest interdistance, r",

S |B(xir"y X | =2k and there is an associated ordering of Uyge(Bi(xi, r'Yux). When r is any other
15i%n

interdistance, ¥ |B(x;,r) .\ X| #2k and the ordering of Wi, (Bi(x;, r)ux;) differs from the ordering for r'.
1Si%a

No two interdistances are associated with the same ordering.

We begin the pwcésg of determining this ordering of left endpoints and input points for r* by sorting the input
points. As a consequence, the set (B,(x;, r) : x;€ X} is also sorted for any r > 0. The guiding algorithm merges the
sorted list of {B,(x;, r") : x;e X} with the sorted inputs X for an unknown interdistance »* with rank k. Though r' is
not known, the outcome of comparison "Is B,(x;, r") less than x;?" for some x; > x; can be resolved by ranking

interdistance r; =[x, —x;|. If p, >k then ry>r" and x; <Bi(x, r"), and if p,, <k, then ry<r" and
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x; > By(x;, r*). Otherwise, r;;=r" sor,; is the k™ interdistance.

Lemma I: Any algorithm that merges by comparisons the set {B,(x;, r"): nieX},

r* =z - %;, with X must compare x; with x;.
Proof: In the ordering of the left endpoints and the input points with respect to »*, B,(x;, r*) and x; must be
adjacent since they coincide. Therefore, the result of every other comparison is the same regardless of whether
By(xin 1) < x5, By(xi, 1) =x; or Bi(x;, r*) > x;. If the merging algorithm does not compare B,(x;, r*) with x;, then

the sorted order of these two points is never determined, a contradiction. [

Proof of Theorem 1: As a result of Lemma 1, any algorithm that merges by comparison will eventually
compare the points determining the ™ interdistance. If each of these comparisons is done by a full ranking, this
parametrically guided selection algorithm takes O(n):O(n)+O(nlogn)=0((n?) time. However, many
comparisons need not be resolved by ranking, Each comparison C;; asks "Is By(x;, r*) Iess than x;7" for some
X; > x; and may be identified with an interdistance ry; if r; < " is discovered by ranking in linear time, then all
comparisons C,, for which r,, < r;; can be resolved in constant time each. If 7, ;> r", then all C,, for which r,, > Ty
can be resolved. It is said that the comparisons have an ordering property. As a result, comparisons are either

resolved by ranking (expensive) or by an appeal to transitivity (cheap).

To minimize the number of expensive rankings, a sequentialized version of the parallel merging algorithm of
{4,201 is used to find the desired »”. [20] showed that two lists of size n can be merged using O (loglog n) levels of
O(n) comparisons each, and these bounds also hold when overheads are counted [4]. In effect, the merging
algorithm can be run sequentially in O (n loglog n) time, and it ends once the O (n loglog n) comparisons are

resolved,

With respect to a level of the sequentialized paraile! algorithm, the comparisons may be performed in any
order. A reasonable strategy to reduce the number of expensive comparisons is to find the median comparison on a
given level and rank it in linear time. As a result, half of the comparisons on that level are resolved in constant time
each. The set of comparisons may be partitioned into those that are resolved and those that are not, and the latter set
is resolved recursively. On each level, only O (log n) comparisons have been ranked rather than O (z) comparisons,

and transitivity is used to resolve the remainder. The cost of this algorithm is



O (n loglog ny + O(n) O (log n) - O (loglog r}=0 (n log n loglog n).

a significant improvement over O (n#2). The first term in the sum accounts for the overheads and comparisons

resolved by transitivity, and the second term is the cost of ranked comparisons.

In fact, using the strategy of Cole {6] of weighting comparisons based on their level and then determining the
weighted median comparison over all levels, only O (log n) interdistances need to be ranked. To do this, let an
"active” comparison be an unresolved comparison whose inputs are known. Assign an active comparison at level j
weight 47/, starting with level 0. With respect to the set of active comparisons, resolve the weighted median, Cole
proves that there are no active comparisons on level j after 5(j + ¥ log n) resolutions, so our algorithm must finish
after O (loglog n +log n) interdistances are ranked. By Theorem 2, each ranking is done at a cost of O (n) time
after a single sorting step, so the total cost of selection is O (n log n). An argument similar to the proof of Lemma 1

and the ordering property of comparisons prove that the actual comparison corresponding to r* must be ranked. [J

A sequentialized version of the AKS sorting network [1] couid have been used to guide the search in the same

time boun, but the multiplicative factor is much larger than the one for the parallel merging algorithm.

L.. INTERDISTANCE SELECTION

The L. metric is a member of the family of L, distance functions. For p2>1 and d > 1, the L, distance

between points x; = (x; ,...,x; )and x; = (x; , ... ,x; ) is defined as

d
flxi = x;lp = (kzl %, ~x,, |Pyvie,

The limit of ||x; ~ x; |, as p - o= is the L. metric and may be shown to be

fx: ~ xj |l = max; g o §x;‘ ==X |.

When p = 2, || x; - x; || is the usual Euclidean distance between two points.

For the purpose of selection, we define "unit balls” corresponding to each L, metric. The unit ball for L,

centered at the origin, U (p.d), is defined as

Upd)=(x:||x]l,=1,xe R},
Geometrically, U (1,d) is a d-octahedron, U (2,d) is a hypersphere, and U (e0,d) is a d-cube, also denoted by H?.
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The remaining L, unit balls may be visualized by continuously deforming the d-octahedron to the hypersphere to the
hypercube H9, As these objects deform, U (p,d) is completely enclosed by U {p+¢,d), but the unit basis vectors

along with their mirror images remain fixed.

The known bounds on L., selection are: (1) The lower bounds for the one-dimensional problem also hold for
L.. since any one-dimensional problem can be embedded into an L.. problem of arbitrary dimension. (2) The
smallest L. interdistance can be computed in asymptotically optimal O (n log ) time using the divide and conquer
algorithm of [2]. (3) The largest interdistance can be found in O (dn) time by determining the maximum difference
between the points coordinatewise, and (4) no o(n*) time upper bounds for the general selection problem are
explicitly stated in the literature, but it is possible to extend Chazelle’s L, interdistance algorithm to select L.,

12

. . . W '
interdistances in O (n*?% " log n) time.

We now improve the upper bound on general L., selection. Let X = {x;,...,x,} be a set of » points in R?,
let $¢ be the set of L.. interdistances generated by X, and assume that the elements in §% are distinct. Removing this
assumption does not adversely affect the asymptotic complexity of the algorithm. Define H%(x;, 7) to be a d-cube
of side 2r centered at input point x;. If 7 is an interdistance, there is a d-cube, say H%(x;, r), which touches point X,
and another d-cube, H "(xj, r), which touches x;. This corresponds to the notion described in the previous section
where at an interdistance, one endpoint of a ball touched an input point. In the present case, there are 2d different
sides in R? rather than jost 2, leading 1o d projected subproblems to be solved by the merging strategy.

Theorem 3: Given a set X of » points in R?, the &* largest L.. interdistance in S can be
selected in O(d n log? n) time,

Again, there are two parts to the proof. The first part is to determine the complexity of ranking and the
second part is to organ_izve the parametric search, The principal building block in L.. interdistance ranking is the
observation that its unit ball is a hypercube, hence the points within a specified L., distance of x; € R are contained
in a hypercube centered at x;. The problem of counting the number of points within an arbitrary hyperrectangle is

known as the orthogonal range counting problem for which [21] and [13] independently devised the layered range

tree with optimal space and query time (see [17]):

Theorem 4: {13,21] Orthogonal range counting of » points in R%, d 2 2, can be effected

“9.



by an algorithm which uses O(nlog?™ n) preprocessing time, O (n log?™ n) space and
O (log?™* n) time queries.

To apply this result to ranking, we have

Lemma 2: Let X be a set of n points in R®. Distance » may be ranked in S¢ by »
orthogonal range counts.

Proof of Lemma 2: Suppose distance 7 (not necessarily an interdistance) is to be ranked; that is, given r, find
p,. For every x; e X, the poinis for which [|x; ~ x; || S 7, j #1, are inside the d-cube of side 2r centered at x;. The
rank of r is determined by summing the orthogonal range counts and then dividing the result by 2 to compensate for

double-counting, [

Along with Theorem 4, this proves

Theorem 5: Let X be a set of # points in R¥, d < 2. Distance r can be ranked in §¢ in time
O(n log?™ n).

Proof of Theorem 3: We are now in a position to prove Theorem 3, the main result of the paper. The
selection algorithm is parametrically driven by a collection of d one-dimensional merging problems. In the 5% such
problem, input points x; € X are projected onto the s coordinate axis by setting all but the 5™ coordinate, x; , to
zero; these projected points are then sorted, At interdistance r;j» the projection of the boundary of H%(x;, ry) is
precisely B (x; , r;;). The 5™ merging problem is to determine for some unknown interdistance r* the ordering of

left endpoints and input points in each of the projected one-dimensional problems, where py =k.

To be more specific, Cole’s technique is used in each of the d subproblems to choose a set of O dlogn) L.,
distances (not necessarily interdistances) to rank. The one-dimensional merging scheme is applied to this problem,
except that a comparison of an endpoint with an input point is resolved through the L., ranking of r, not the one-
dimensional ranking. In the s™ subproblem, a comparison of B,(x; , 7*) with X, Xj, < x;, asks "Is By(x;, r") less
than x, 7" and is resolved by ranking r;; = [x, - x; | inS%. Ifp, >k thenr,; >r*and By(x,, r") < x;.ifp, <k
then r; < r" and By(x;, r") > x;, and if Pr, =k, then r; =r". It is clear that any pair of comparisons can be
ordered by the distances they correspond to. Furthermore, in at least one of the projected subproblems, the &*
largest interdistance r” is realized in that By(x; , ") = x; corresponds to H%(x;, r*) touching x;. This interdistance

must be ranked due to the same reasons given in the proof of Lemma 1.

-10-



Since the ranking procedure takes O (1 log“™ #) time and each of 4 subproblems requires O (log #) rankings,
O(d n log® n) time is needed in total. ]

CONCLUSIONS AND OPEN PROBLEMS .

The selection technique presented in this paper is effective when there is some transformation from the
selection problem to merging or sorting. Good problems include distance functions whose unit balls are polytopes
as well as problems dealing with vertices in arrangements with respect to some direction[18]. A speed-up is

possible in the latter problem via approximate rankings.

The first interesting open problem is to speed-up L. selection. The difficulty here is that L, ranking is far
more complicated than approximating inversions. A second open problem is to select Euclidean interdistances in
O (n 1og°® n) time. As mentioned in the introduction, the best results for this problem are almost quadratic [5} and

are related to an ingenious method of [22] for constructing Euclidean minimum spanning trees in R®.
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