Shaky Foundations? Using Formal Methods
to Reason about Architectural Standards

Kevin Sullivan
John Socha

Computer Science Report No, CS5-96-18
November 1996

Shaky Foundations? Using Formal Methods to Reason about
Architectural Standards

Kevin Sullivan and John Socha
University of Virginia Computer Science Department
Charlottesville, VA 22903
tel. (804) 982-2206 e-mail: sullivan @ virginia.edu
and Socha Computing, Inc., Kirkland, WA, (206) 822-9300 jsocha @socha.com

ABSTRACT

We present 3 case study in which we applied formal methods
in evaluating a novel architectural style that combined
mediators and Microsoft’s Component Object Model
{COM). To verify conformance with the COM specification,
we built a formal model of key aspects of COM. That led to
an effort to understand and validate key properties of COM.
We averted an architectural disaster by discovering that our
proposed architecture was illegal. The problem was in
architecturally important but previously overlooked
sublleties in the design of the COM standard. Such widely
used archifectural standards are critical infrasiructure
systems. Formal methods have a significant role to play in
practical validation and verification efforts.

Keywords
Software architecture, mediators, COM, formal methods

INTRODUCTION .

The critical architectural designs of a vast number of
important systems will depend on widely used architectural
standards such as Microseft's Component Object Model
(COM) [1] and the Object Management Group's Common
Object Request Broker [7]. Such standards should therefore

be treated as critical infrastructure systems. Standards that

provide a basis for application interoperation are especially
critical in that design errors based on improper or
unanticipated use of such standards may go unnoticed until
interactions among fully deployed applications finally reveal
“killer” design faults.

Any lack of clear guidance in the proper application of an
architectural standard puts users at risk of making errors in
the critical, early architectural design stage. To the extent
practicable, users should be relieved of the burden of having
to reason about subtle but important aspects of such
standards. Key standards therefore should be carefuily
validated and the results of validation efforis (e.g., tools or
thearems) should be made available to users. These kinds of
products of validation efforts can be especially important in

helping users to verify the legality of proposed uses of an
architectural standard.

This paper presents a case study in which formal methods
[8,12,16] played as key role in validating the specifications
of architectural standards, and in verifying conformance of
designs to such standards. We report on a modest application
of formal methods that averted a costly commitment to an
exciting but flawed architectural style based on mediators
[17,18,19] and the COM mechanism of aggregation. At
stake was the integrity of Socha Computing, Inc.s
multimedia authoring system (called Herman). Our initial
attermnpt to verify that our proposed style used COM legally
led us to formalize aspects of COM that we found relevant
but subtle and hard to reason about. Our resulis characterize
architecturally crucial but previously unexplained or
misunderstood properties of COM.

Section 2 summarizes COM and architectural style we
proposed. Section 3 summarizes our resuits. Section 4
formalizes key aspects of COM and proves our main
theorem. Because of length restrictions, our formal model in
Z [16] will be available separately. Section 5 presents our
resuits in detail. Section 6 evaluates this work. Section 7
discusses related work. Section 8 concludes.

A NOVEL ARCHITECTURAL STYLE

COM is the foundation of Microsoft’s component-based
software architecture. It is the lowest level of OLE [4], and a
foundation for systems of major importance to large
segments of industry, govermment and military, COM
defines the form of components and several composition
mechanisms. For our purposes, components have two key
features, First, each one can expose multiple interfaces, each
of which groups operations for some service, and each of
which is of a type indicated by a unique interface identifier
(IID), See Fig. 1, Components interact through pointers to
interfaces (arrows and circles in Fig. 1). Second, each
interface implements a Querylnterface operation that a client
with a pointer {0 one interface uses to get pointers to other
interfaces on the same object. Querylnterface takes an 11D
and returns a pointer to the desired kind of interface, or nuil
if there isn’t one.

COM’s composition mechanisms are mostly traditional:
exphcit and implicit invocation, containment, delegation.
The exception is aggregation. In aggregation, one or more
interfaces of a component are obtained from hidden,
contained components. See Fig. 2. Querylnterface

Client

Server

Component

Component

Fig. 1. Components expose multiple interfaces that are accessed through pointers.

O

O—

O

Fig. 2. The aggregarion approach to composition in COM

operations on outer objects can return pointers o interfaces
on inner objects. One advantage is to reduce the overhead
from chained calls (as in delegation). In Fig. 2, two of the
three interfaces exported by an outer component are actually
interfaces on a hidden, inner (aggregated) components,

We intended to combine COM components, mediators, and
aggregation to define a highly compositional architectural
style in which we would aggregate a subsystem whose basic
components were inteprated by separate mediator
components in order to build a new component that could
then be used as a basic component at the next level, Fig, 3
illustrates the idea. The mediator (round-cornered rectangle)
integrates the basic components (rectangles) into a
subsystem which is aggregated to make a larger component,
This approach was meant to support the abstraction of
subsystems by selectively hiding and exposing of aggregated
interfaces (circles). By also supporting the selection of
variant components and mediators, such an aggregate would
define a reference architecture [2,3] for a family of
muitimedia subsystems or applications—an interesting idea
that we can’t pursue further in this paper.

SUMMARY OF RESULTS

Qur concern for the legality of the proposed architectural
style led us to attempt a careful verification. We found it
hard to reason about some non-obvious aspects of COM. Our
need to understand the subtleties led us to use concepts from
discrete mathematics to build an abstract model of the key
stractures at issue.

To cut to the chase, our modest use of formal methods
showed that our architectural style violated the COM
standard, and, moreover, that many seemingly nafural
designs do, too. In particular, we disproved the putative
theorem that aggregation in COM supports abstraction
through selective hiding of interfaces on aggregated objects.

COM appears not to support such an abstraction
mechanism.

A corollary is that our architectural style does not work. In
Fig, 3, the absence of InterfaceB and nterfaceC interfaces
on the CFileDib component turns out to be illegal. A related
result is that an aggregated (inner) component generally
cannot be treated as a mormal component by another
aggregated component such as a mediator.

Our difficulties resulted from a subtle interaction of
Quervinterface and aggregation. The COM specification
acknowledges a complication here, and prescribes a
solution, Because calls to Quervinterface must return
pointers to interfaces om the same component,
Quervinterface operations of aggregated interfaces exposed
by the aggregator must oply return interfaces on the
aggregator. COM therefore prescribes that Querylnterface
operation of aggregated interfaces be delegated to
Quervinterface operations of the aggregator—which are
assumed to return pointers only to aggregator interfaces. On
the other hand, there seems to be nothing in the COM
standard or related authoritative documents even hinting at
our architecturally critical “thecrems of COM.”

FORMAL MODEL AND REASONING

In this section we present (an English translation of) a
formal model of the basic COM concepts of interface,
component, and aggregation using basic concepts from
discrete mathematics (set theory and first order predicate
logic). We then use this model to draw our conclusions
about COM.,

Interfaces

Each COM interfuce instance (or just inferface) belongs to
one component and satisfies an interface specification (or
just specification). Like a C++ abstract class, a specification

Selectively Exposed
Aggregated infetfaces

Selectively Hidden
Aggregated Interfaces

“nh

L]

‘ Unknown (E‘

. CFileDib

IPersistFile () 1 A 1D : d
{) CPersistDib : 5
} ; - <
Bk J ; Bhdipasun
‘: CP / :. (P
. ’ +
' ’I i
v ”, v
b OO CDib ooy O— CFile
HrhayTanedy Vrdmrtasels

Fig. 3. Subsystem of multimedia authoring tool using proposed architectural style

declares the operations on interfaces of that kind. Each
specification is identified by a unique interface identifier
called an IID. Components bind implementations to the
operations of their interfaces, and are accessed solely
through inferface pointers—pointers 1o their interfaces.

There is a special specification called IUnknown, with an IID
called HD_[Unknown. The first operation declared by
IUnknown is Querylnterface, taking an 1D as an in
parameter and returning an interface. Bach specification
inherits from and is polymorphic with IUnknown. Therefore
apointer to any interface has type pointer to [Unknown, and
Querylnterface is the first operation of every inierface.
QueryInterface implementations allow a client with one
interface pointer to ask for another on the same component.
Querylnterface retarns a null pointer i the component
doesn’t expose an interface with the given I1D.

© Qur model abstracts from all operations on an interface
except (Jueryinterface, We model the implementation of
each Queryinterface operation of cach interface on a given
component as a partial injection from /Ds to interface
pointers for interfaces on the same component. The COM
standard requires that an interface pointer of type
IID_IUnknown be available through every implementation
of Querylnterface. We model this requirement with the
predicate that D _IUnknowr is in the domain of every
Querylnterface mapping.

We model the association of an interface specification with a
unique /7D as a bijection. We model the polymorphism of
interfaces with IUnknown abstractly, with bimorphism in
place of polymorphism. (This abstraction models common
practice quite closely.) Specifically, we define
InterfaceSpecOf as a relation mapping interfaces to the
interface specifications that they satisfy; we add a predicate
stating that every interface maps to IUnknown and to at most
one other specification. More formally, restricting the range

of the relation to exclude IUnknown yields a partial
injection. We use relational composition to define a relation,
HDOfInterface, relating each inmterface to the IIDs of the
specifications it satisfies. A simple result is that
HDOfInterface maps each imterface at least to
D _IUnknown.

Components

For our purposes, & legal COM component is an object that
supports multipie interfaces, pointers to which are provided
to clients through Querylnterface operations (and possibly
by other means). All interfaces on any component must
provide legal Querylnterfuce implementations (mappings);
and every component must expose a distinguished interface
of type IID_IUnknown. This distinguished IUnknown
interface (as it is called) defines an object’s identity: Given
apy two interface pointers, calling Queryinterface with
HD_IUnknown on each, possibly at different times, returns
the same pointer values if and only if the interface pointers
referred to interfaces on the same object.

The subtle issue is the conditions for legal Queryinterface
implementations. COM requires Querylnferface operations
on a component to be reflexive, symmetric and transitive,
Coatrary to intuition (and to what we strongly believe to be
common understanding) these conditions say nothing about
being able to get from one inferface to another, but only
about getting from one fype of interface to another.

Moreover, that different interfaces can be reached given the
same JID is not represented as a key property, yei it is in
essential to the very consistency of the COM standard. The
COM specification explains only that, among other things,
the ability to return different interface pointers for the same
IID allows a smart component to manage memory assoclated
with its interfaces. This is a case where the formalization
revealed a major subtlety that is not explicit in the standard,
To understand the subtlety requires details. The details are in

English and pseudo-code in the COM specification. We
model them as predicates over the relations modeling the
implementations of Querylnterface operations.

Reflexivity means that if you have a pointer to an interface
of type ITD_Some, then calling QueryInterfuce trough that
pointer with the same JID must return a pointer to an
interface of that same type on the same object. It is not
required that the returned pointer be equal to the one through
which the call was made. In more formal terms, if IID_Some
i in the domain of the Queryinierface mapping for a given
interface and if p is the image of /ID_Some under that
mapping, then D Some must be in the range of
Queryinterface on the interface pointed to by p (although the
image of IID_Some under that mapping need not be p).

Symmetry means that if you have a pointer to an interface of
type IID_Some on an object, and if calling Querylnterface
with IID_QOther returns a non-null pointer, then calling
Quervinterface through that pointer with IID_Some must
also return a non-null pointer. Informally, if you can get
from “here to there,” you can get from “there to here.” The
subtlety, again, is that, in this context, “here” and “there”
refer only to interface fypes. The formal statement is similar
in form to the one described in the previous paragraph.

Finally, transitivity means, informally, that if Querylnterface
can get you from “here to there” and “there to somewhere
else,” it can get you “from somewhere else back here.” The
pseado-code and formal statements are similar to those in the
preceding paragraphs.

‘We can now state and prove (with modest rigor in this paper)
the following lemma: Querylnterface must be a total algebra
on the set of interface fypes exposed by a component.
Informally, you can get from anywhere to anywhere in one
QueryInterface step. This simplifying result follows from
reflexivity, symmetry and transitivity combined with the
reachability of HD_IUnknown from any interface. This
statement of the lemma is not new: Goswell asserts, “The set
of interface IDs accessible via QueryInterface is the same
for every interface.... [10]” However, rigorous justification
of Goswell’s paraphrase of the standard does appear to be
new. ‘

Aggregation

In this section, we wmodel and reason about COM
aggregation. We introduce component hierarchy and the idea
of delegating and non-delegating inner interfaces of type
HD_IUnknown. A key lemma shows that the availability of
an interface of an arbitrary type IID_ISome on an aggregated
{inner) component implies the presence of an interface of
that same type on the aggregator. To build confidence in the
lemma, we explain why it is that the common aggregation-
based design idiom does not violate the COM standard. The
bridge to our main theorem is the definition of abstraction as
the property of an inner aggregated objecting having an
interface of a type not present on the aggregator (i.e., not
visible to its clients). This definition is a completely natural
one based on the concept of information hiding [13]. The
proof of the central theorem, thai aggregation does not
support abstraction through the selective hiding of the types

of aggregated interfaces follows from the lemmsz by
contradiction,

First, we model an aggregate as a collection of components,
We impose a hierarchical relation that organizes them into a
tree, whose root is called the outer component, and aii of
whose other components are called inner components.

Next we model key COM rules governing the interfaces on
inner components and the implementations of their
Querylnterface operations. First, on each inmer object we
require a distinguished interface of type [ID_IUnknown, the
implementation of whose Querylnferface operation maps
Dy of interfaces on the inner object to interface pointers on
the inner object. The outer uses this interface to obtain
pointers to inner interfaces exposed to outer clients. Second,
for each inner object we restrict the implementations of
Queryinterface operations on all interfaces other than the
distinguished IUnknown to be equal to the Querylnterface
implementation on fthe outer object’s D _IUnknown
interface. These are the so-called delegating
implementations of the [Unknown operations—the
specification calls them “delegating IUnknowns.” That is
our simple, formal model of aggregation.

Next we consider the legality of what we understand to be
the common use of aggregation—what we call the “OLE
control and countainer” design idiom. In this idiom, an outer
object serves as a transparent wrapper for one or more
aggregated objects {({requently OLE controls). The outer
provides access to all of the interfaces of the inner objects
{except for their non-delegating IUnknowns) bul angments
those interfaces with additional information, e.g., by
exporting an additional interface. In the case of OLE
controls (such as menus or buttons), the outer wrapper
enables the inner object to be managed by a container object,
such as a Visual Basic form [21]. In this case, the oufer
wrapper object augments the inner with placement-on-form
information.

One might object that this use of apggregation is illegal
because, although there is a way to get from the non-
delegating inner IUnknown to another inmer interface, and
from there (via that interface’s delegating IUnknown) to an
interface on the outer object, there is no way to get from the
outer interface back to the non-delegating inner IUnknown.
The problem with this argument is that the rules don’t
govern reachability of interfaces via Queryinterface calls,
but only reachability of the fypes of interfaces. There is
nothing wrong with the scenario because Queryinterface
takes you from an interface of type ND_[Unknown to an
interface of some other type ISome, and from there back to
one of type JID_IUnknown.

We prove, however, that if inner is an inner component with
an interface of type IID_ISome reachable via Queryinterface
on the inner non-delegating IUnknown, then the outer
component must expose an interface of type IID_ISome. To
our knowledge, both the statement and proof of this
architecturally crucial “lemma of COM” are new. The proof
is by contradiction. Assume that the outer does not provide
an interface of type ID_ISome. By hypothesis we can get

from the mner IUnknown to the (inner) interface of type
HD_ISome. The Quervinterface implementation on that
interface is delegating (equal to the outer IUnknown'’s
Querylnterface mapping), Therefore, it is possible fo get
from that interface to the IUnknown interface on the outer
object, The symmetry rule requires that we be able to get
from there “back” to an interface of type JID_ISome. But
that contradicts the assumption that the outer object does not
export an interface of type IID_ISome. The assumption was
untenable and so the lemma is proved.

Thus, an onfer object must export an interface of each type
{({ID) obtainable through Querylnterface on a non-delegating
inner [Unknown interface. Given our definition of
abstraction, the proof of our theorem follows immediately:
COM does not support abstraction via selective hiding of the
kinds of interfaces on inner objects. As a corollary, our
proposed architeciural style is illegal, since it depends on
that kind of selective hiding.

RESULTS

We present a number of results. First, our proposed
architectural style appeared to be a novel, natural and
powerful new way to use COM. Although it does not work,
we are confident that something like it will. We are using the
machinery developed in this paper to facilitating our
exploration and evaluation of the designs of related
architectural styles.

Second, we showed that our proposed architectural styles
and others that depend on abstraction though information
hiding using aggregation are illegal. Third, through a careful
verification effort, we caught a serious architectural design
flaw in a particuiar commercial development project before
the cost really hurt the corporation. Fourth, we used formal
methods profitably in a commercial setting to verify the
legality of a proposed architectural design style based on the
standard. Fifth, we document a profitable application of
formal methods to the validation of important, non-obvicus
properties of a widely used architectural design standard.

Our conclusion and lemmas and theorem behind it were
unexpected outcomes of our initial work on the design of an
architectural style. The critical implications of what we now
see as major subileties in the COM standard were not
obvious to us.

Moreover, evidence suggests that these subtleties may not be

obvious even to COM experts. For example, in “The Rules
of the Component Object Model,” Charlie Kindel, Program
Manager for Windows NT, states that “Querylnterface
must be reflexive, symmetric, and transitive with respect to
the set of interfaces that are accessible [111.” Our use of
formal methods shows that this should say, Queryinferface
must be reflexive, symmetric, and transitive with respect to
the set of interface identifiers (11Ds) for which interfaces are
accessible. Indeed, if the rule were as Kindel put it, any use
of aggregation would violate the rules of COM: Specifically,
our explanation for why the common use is legal would not
work.

Thus, even the internal consistency of the COM standard
turns out to be subtle. COM “works” because it does not
require closure on the set of interfaces, a degree of freedom
is presented as merely an opportunity for low-level
optimization. “This, among other things, enables
sophisticated object implementors to free individual
interfaces on their objects when they are not being used,
recreating them on demand.... [6]”

Finally, and perhaps most importantly, we documented a
case that supports the claim that we should treat widely used
architectural standards as critical infrastructure systems. The
well-being of a small corporation was af risk in our case. The
wide and early use of such standards can easily put others at
similar, serious risk, It should be possible for adopters to use
standards (their specifications, design and implementation in
the case of runtime support) without an unduoe burden of risk.
QOur case focused on the need to make architecturally
important implications of subtleties explicit, but other
validation concerns will arise {e.g., ambiguity or
inconsistency).

Our concern for the integrity of key standards is not
unprecedented, of course. For example, Ardis et al. report
that ambiguities in the specification of a telecommunications
protocol make it “..possible to completely defeat the
protection switching protocol, causing the communication
link to fail, even though there was at least one working line
in each direction [1].” Ardis et al, then express the hope that
“future authors of standards will consider using formal
languages, so that ambiguity can be minimized [1].”" Our
claim that formal methods have an important role to play in
validating widely used architectural standards agrees with
the view of Ardis et al.

EVALUATION

We believe that we have characterized critical but previously
unrecognized architectural implications of subtleties in fhe
design of COM. We hope that our resulis will warn
designers away from a tempting but forbidden corner of the
design space. More generally, we believe that our results can
help ease the task of reasoning about COM. We believe the
machinery we have developed can help to answer a range of
important gquestions that we do not address explicitly. Issues
concerning object identity and the grouping of interfaces
come to mind. We expect that our work can help to
rationalize the investigation of COM-based design idioms,
such as Goswell’s [10].

An important question that we cannot yet answer adequately
is what degrees of coverage and rigor are most appropriate in
the validation of architectural standards and verifications of
their use, We used concepts and notations from discrete
mathematics, but not advanced tools, fully formal
specification languages or mechanized theorem provers or
checkers. Our application of formal methods was restricted
to early life cycle phases. Moreover, we formalized just a
few (but critical) elements of the standard. Finally our
method was ad hoc—guided by the demands of a particular
situation—mnot part of a systematic process. In terms of
Rushby’s taxonomy of approaches to the use of formal
methods [14] our levels of coverage and rigor were modest.

Ultimately, we present a single data point, so strong, broad
generalizations are unwarranted. Nevertheless, we are
confident that formal methods should be brought to bear on
the validation of widely used architectural standards. It is
critical to relieve users of the risky burden of reasoning
about subtleties in such standards. The message for
developers is that, until such time as key standards are
subjected to validation efforts commensurate with their role
as critical systems, it is in the developers’ .interest 1o take a
rigorous approach to verifying that their architectures
conform to possibly subtle requirements. Formal methods
can play an important, profitabie role in such verification
efforts, as well.

Finally, we want to comment on COM. The bottom line is
that while the discoveries that we made in this work came as
real surprises, nothing that we found has changed the
decision by Socha Computing, Inc. to use COM as the basis
for its Henman multimedia authoring tool. The design of
COM is elegant and innovative. Moreover it is very useful,
widely used, and the foundation for many applications in
extremely wide use. COM is clearly not fatally broken.
Users will however benefit by the results of careful
validation and characterization of COM based on the
judicious use of formal methods.

RELATED WORK

Related works falls in several categories: software
architecture, object models, formal methods. At the
intersection of architecture and formal methods are efforts
such as those of Garlan [9] and Luckham [12]. By contrast,
our focus is on widely used architectural standards. Both
Luckham and Garlan model dynamic computational
semantics at the architectural level (e.g., event ordering in
Rapide or fair scheduling in pipe and filter architectures).
We address only certain key structures. Unlike Shaw and
Garlan [9], we do not assume 4 general systems theory-based
entity/relation {component and connector) framework for
describing architecture,

The obvious related work in the area of object models is that
on OMG’s CORBA. Qur decision to focus on COM
followed from the choice of COM for use in Herman. A
common contrast is that CORBA supports implementation
inheritance while COM does not. We will not comment on
that debate in this paper. We are aware of but have not yet
studied carefully a published paper on the formal
specification of CORBA’s core object model [5]. It appears
that the primary impetus for the specification was the need
for a concrete focus for consensus-making among the
members of the committee designing the CORBA standard,
and not for validation to aid end-user verification efforts.

CONCLUSION

The few aspects of COM we have discussed-—multipie
interfaces, Queryvinterface, and (o a lesser extent)
aggregation—are foundations of the COM standard.
Brockenschmidt calls multiple interfaces, “one of OLE’s
strongest architectural features... [4],”7 while the COM
specification emphasizes that “.. [Tlhe powerful and
important Querylnterface mechanism ... for all intents and
purposes is the single most important aspect of true system

component software [6]. Aggregation is presented as one of
two basic component reuse mechanisms in COM.

Because COM and other such standards are widely used
foundations for vast numbers of important systems, the
critical implications of any major subtleties at the core of
such standards must be explicated with great clarity, Widely
used standards should be subjected to rigorous scrutiny
employing at least modest {and probably aggressive) use of
formalism. The care with which standards are designed,
specified and implemented must be commensurate with their
status as critical infrastructure systems

ACKNOWLEDGEMENTS

Sullivan’s interest in COM was bolstered by several
conversations, some with David Notkin, others with people
who may wish to remain anonymous, David Socha came up
with the idea of using aggregation as a mechanism 10
abstract mediator-based subsystems. John Kaight provided
useful pointers into the formal specification literature. This
work was supported by the National Science Foundation,

REFERENCES

1. Ardis, M.A.,J.A. Chaves, L.J. Jagadeesan, P. Mataga, C.
Puchol, M.g. Staskauskas and I. Von Onnhausen, “A
framework for evaluating specification methods for reac-
tive systems,” Transactions on Software Engineering,
vol 22, no. 6, June, 1996, pp. 378-389.

2. Batory, D. and 8. O’Malley, “The design and implemen-
tation of hierarchical software systems with revsable
components,” ACM Transactions on Software Engineer-
ing and Methodology 1.4, pp. 355-398, Oct. 1992,

3. Batory, D, L. Coglianese, M. Goodwin and S. Shafer,
“Creating reference architectures: an example from avi-
onics,” Proceedings of SSR’95, Software Engineering
Notes, April 28-30, 1995, pp. 27-37.

4. Brockschmidt, K., Inside OLE, Microsoft Press, 1996,

5. Bryaunt, T. and A. Evans, “Formalizing the object man-
agement group’s core object model,” Computer Stan-
dards and Interfaces, vol 17, no. 5-6, pp. 481-9,
September 30, 1995.

6. Common [sic] Object Model Specification, Microsoft
Developer Network Library, Microsoft Corporation,
1996 (especially sections 3.3.1 and 6.6.2).

7. Comumon Object Request Broker Architecture, Object
Management Group, Inc.

8. Craigen, D., 8. Gerhart and T. Ralston, “An infernational
survey of Industrial Applications of Formal Methods,
Volumes 1 and 2,7 NIST GCR 92/626, U.S. Department
of Commerce, Technology Administration, National
Institute of Standards and Technology, Computer Sys-
tems Laboratory, Gaithersburg, MD, March, 1993,

9. Garlan, D. and M. Shaw, “An introduction to software
architecture,” Advances in Software Engineering and
Knowledge Engineering, Vol. 1, World Scientific Pub-
lishing, 1993,

10. Goswell, C.,, “The COM Programmer’s Cookbook,”
Microsoft Office Product Unit, Spring 1993, revised Sep-
tember 13, 1995, Available on the World-Wide Web at

the time of submission of this paper through http://
www.microsoft.com.

11. Kindel, C., “The rules of the component object model,”
Microsoft Dieveloper Network Library, Technical Arti-
cles: Windows: OLE COM, Microsoft Corporation,
October 20, 1995.

12. Luckham, IEEE Transactions on Software Engineering,
1995,

13, Parnas, 1., “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM,
December, 1972, pp. 1053-1058.

14, Rushby, §., Formal Methods and Digital Systems Valida-
tion for Airborne Systems, NASA Contractor Report
4351, National Aeronautics and Space Administration,
Office of Management, Scientific and Technical Infor-
mation Program, 1993,

15. Shaw, M. and D. Garlan, Software Architecture: Per-
spectives on an Emerging Discipline, Prentice-Hall,
1996.

16. Spivey, The Z Specification Language, Prentice-Hall.

17. Sullivan, K.J., “Mediators: Easing the Design and Evolu-
tion of Integrated Systems,” Ph.D. Dissertation, Univer-
sity of Washington Department of Computer Science,
August, 1994,

18. Sullivan, K.J. and ID. Notkin, “Recoaciling Environment
Tntegration and Evolution,” ACM Transactions on Soft-
ware Engineering and Methodology vol. 1, no. 3, July,
1992,

19, Sullivan, K.J., L. Kalet and D, Notkin, “Mediators in a
Radiation Tréatment Planning System,” IEEE Transac-
tions on Software Engineering, to appeat.

20. Taylor, R.N., N Medvidovic, K.M. Anderson, E.J.
‘Whitehead Jr., J.E. Robbins, K.A. Nies, P. Orecizy and
DL. Dubrow, “A component- and message-based archi-
tectural style for GUI software,” IEEE Transactions on
Software Engineering 22,0, pp. 390-406, June, 1996.

21. Visual Basic 4 User’s Manual, Microsoft Corporation,
1996.

