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Abstract

The Counterflow Pipeline (CFP) organization may be a
good target for synthesis of application-spedfic micro-
processors for embedded systems because it has a regu-
lar and simple structure. This paper describes a design
environment for tailoring CFP’s to an embedded appli-
cation to improve performance Our system allows
exploring the design space of all possble CFP’s for a
given embedded appli cation to understand the impact of
different design dedsions on performance We have
used the ewvironment to derive heuristics that help to
find the best CFP for an appli cation. Preliminary results
using our heuristics indicate that speed-up for seveal
small graphs range from 1.3 to 2.0 over a general-pur-
pose CFP and that the heurigtics find designs that are
within 10% of optimal.

1. Introduction

Application-spedfic microprocessor design is a good
way to improve the cst-performanceratio of an appli-
caion. This is espedally useful for embedded systems
(e.g., automohile ontrol systems, avionics, cdlular
phones, etc.) where asmall increase in performance ad
deaease in cost can have alarge impad on a product’s
viability. A new computer organization cdled the Coun-
terflow Pipeline (CFP), propased by Sproull, Suther-
land, and Molnar [15], has several charaderistics that
make it a possible target organization for the synthesis
of application-spedfic microprocessors. The CFP has a
simple and regular structure, locd control, high degree
of modularity, asynchronous implementations, and
inherent handiing of complex structures guch as result
forwarding and speaulative exeaution.

Our reseach aims to use an application expressed
algorithmicdly in ahigh-level language (such asC) asa
spedficaion for an embedded application-spedfic
microprocessor. The aunterflow pipeline organizaion
isagood candidate for thistype of fast, aggressve high-
level synthesis becaise of its extreme cmposabili ty and
simplicity. This substantially reduces the complexity of
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synthesis becaise aCFP synthesis system does not have
to design control paths, determine mmplex bus and
bypass networks, etc.

We have built a framework for exploring the design
spaceof application-spedfic counterflow pipelines. The
environment includes tools for program optimization,
synthesis experimentation, performance aaysis, and
design simulation.

Becaise aCFP design spaceis potentialy very large,
we have developed heuristics that narrow the spaceto
pipeline @nfigurations with good performance. Our
design framework has been instrumental in deriving
these heuristics and understanding the fadors that are
important for good performance from CFP designs.

This paper presents our initial design environment
and synthesis heuristics. The first sedion contains intro-
ductory materia covering aur synthesis strategy, related
work, and the counterflow pipeline organization. The
second sedion describes our design environment and
the third sedion discusses our synthesis heuristics. The
fourth sedion presents preliminary results for several
benchmarks using those heuristics, and the final sedion
concludes with future work.

1.1. Synthesis Strategy

Most high-performance embedded applicaions have
two parts: a control and a @mputation-intensive part.
The mmputation part is typicdly a kernel loop that
acounts for the majority of exeaution time. According
to Amdahl’s Law [9], increasing the performance of the
most frequently exeauted portion of an applicdion
increases overal performance Thus, synthesizing cus-
tom hardware for the computation-intensive portion
may be an effedive technique to increase performance.
The type of applicaions we ae nsidering need
only a modest kernel speed-up to effedively improve
overall performance For example, JPEG has a function
j _rev_dct () that acounts for 60.38% of total exeau-
tion time. This function consists of applying a single
loop twice (to do the inverse discrete @sine transforma-
tion), so it isagood candidate for CFP synthesis. Figure
1 shows a plot of Amdahl’s Law for various geed-up



values of j _rev_dct (). The figure shows that a small
speed-up of the kernel loop of 6 or 7 achieves most of
the overall speed-up.
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Figure 1: Overall speed-up for JPEG

Our synthesis system uses the data dependency graph
of an application’s kernel to determine processor func-
tionality and interconnection. Processor functionality is
determined from the type of operations in the graph and
processor topology is determined by exploring the
design space of al possible interconnection network.

The target system architecture for our synthesis tech-
nigue has a single CFP processor that executes the con-
trol and computation portions of an application.
Synthesis customizes a general-purpose CFP for the
kernel computation to improve performance. This is
similar to software acceleration using a co-processor;
however, there is only one processor in this scheme and,
as aresult, overall cost should be lower than with a co-
processor scheme while still improving performance. A
single CPU architecture has the advantage that it does
not need any support for synchronization with an
attached coprocessor (e.g., interface logic, handling of
live-in/out data, etc.).

1.2. Related Work

Recently there has been much interest in automated
design of application-specific integrated processors
(ASIPs) because of the increasing importance of high-
performance and quick turn-around in the embedded
systems market [6]. ASIP techniques typically address
two broad problems: instruction set and micro-architec-
ture synthesis. Instruction set synthesis attempts to dis-
cover micro-operations in a program (or set of
programs) that can be combined to create instructions
[10,11]. The synthesized instruction set is optimized to
meet design goals such as minimum program size and
execution latency. Micro-architecture synthesis derives
a microprocessor implementation from an application
(or set of applications). Many micro-architecture syn-
thesis systems use a co-processor strategy to synthesize
custom logic for a portion of an application and to inte-

grate the custom hardware with an embedded processor
core [4,8,13]. Another micro-architecture synthesis
approach tailors a single processor to the resource
requirements of the target application [3,5]. Although
instruction set and micro-architecture synthesis can be
treated independently, many co-design systems attempt
to unify them into asingle framework [2,7].

Our current research focus is micro-architecture syn-
thesis. We do not presently synthesize an instruction set
for an embedded application. Instead, we customize a
counterflow pipeline micro-architecture to an applica-
tion using a standard RISC instruction set and informa-
tion about the data flow of the target application. Our
micro-architecture synthesis technique has the advan-
tage that the design space is well defined (although
potentially very large), making it easier to search for
pipeline configurations that meet design goals.

1.3. Counterflow Pipeline

The counterflow pipeline has two elastic pipelines flow-
ing in opposite directions. One is the instruction pipe-
line. It carries instructions from an instruction fetch
stage to aregister file stage. When an instruction issues,
an instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand hames, and operand values.
The other is the results pipeline that conveys results
from the register file to the instruction fetch stage. The
instruction and results pipelines interact: instructions
copy values to and from the result pipe.

Functional units (or sidings) are connected to the
pipeline through launch and return stages. Launch
stages issue instructions into functional units and return
stages extract results from functional units. Instructions
may executein either pipeline stages or functional units.

A memory unit connected to a CFP pipelineis shown
in Figure 2. Load instructions are fetched and issued
into the pipeline at thei nst r _f et ch stage. A bundle
is created that holds the load’s memory address and des-
tination register operands. The bundle flows towards the
mem | aunch stage whereit isissued into the memory
subsystem.

When the memory unit reads a value, it inserts the
valueinto the result pipeline at the mem r et ur n stage.
In the load example, when the load reaches the
mem r et ur n stage, it extracts its destination operand
value from the memory unit. This value is copied to the
destination register value in the load's instruction bun-
dle and inserted into the result pipe. A result bundle is
created whenever avaueisinserted into the result pipe-
line. A result bundle has space for the result’s name (i.e.,
register name) and value. Results from sidings or other
pipeline devices flow down the result pipe to the
i nstr_fetch stage. Whenever an instruction and a



result bundle med in the pipeline, a mmparison is done
between the instruction operand names and the result
name. If a result name matches an operand name, its
value is copied to the crresponding operand value in
the instruction bundle. When instructions reach the
reg fil e stage their destination values are written
bad to the register file axd when results reat the
i nstr_fetch stage, they are discarded. In effeq, the
register file stores results that have exited the pipe.
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Figure 2: Example Counterflow Pipeline

The interadion between instruction and result bun-
dles are governed by specia pipeline and matching
rules that ensure sequential exeaution semantics. These
rules govern the exeaution and movement of instruc-
tions and results and how they interad.

Arbitration isrequired between stages © that instruc-
tion and result bundles do not pass eat ather without a
comparison made on their operand names. In Figure 2,
the blocks between stages depict arbitration logic. A
final mechanism controls purging the pipeline on an
exception. A poison pill isinserted in the result pipeline
whenever afault is deteded. The poison pill purges both
pipelines of al instruction and result bundles. This
purge mechanism can also be used for speaulative exe-
cution when a branch target is mispredicted.

As Figure 2 shows, stages and functional units are
conneded in a very smple and regular way. The on-
nedions correspond to bunded interfaces of micropipe-
lines. The behavior of a stage is dependent only on the
adjacent stage in the pipeline, which permits locd con-
trol of stages and avoids the complexity of conventional
pipeline synchronization.

1.4. Execution M ode€l

Our synthesis g/stem models asynchronous counterflow

pipelines by varying computational latencies. Table 1
shows the latencies we use in our simulation models.

Operation Latency
Stage wopy 1
Garner, kill , update 3
Return, launch 3
Instruction operation 5

Table 1. Computational latencies

The latencies in the table ae expressed relative to
how long it takes an instruction or result to move
between adjacent pipeline stages. Using the base values
from Table 1, we derive other pipeline latencies. For
example, asimple instruction operation such as addition
takes 5 cycles. High latency operations are scaled rela-
tive to low latency ones, so an operation such as multi-
plicdion—asaiming it is four times dower than
addition—takes 20 cycles. In the rest of this paper, we
refer to time units as “clock cycles’, athough this
should not be anfused with the notion of a dock cycle
in a synchronous processor. A clock cycle for the mun-
terflow pipeline is avery small time unit such as a few
gate delays.

The instruction set we use is a subset of the SPARC
V8 [14] instruction set architedure. The instruction sub-
set does not support register windows or tagged opera-
tions, but is representative of modern instruction sets for
embedded RISC cores.

2. Experimental Framework

Figure 3 depicts the synthesis framework. The system
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Figure 3: Synthesisframework



accepts a C source file containing aloop that drives cus-
tomizing a CFP processor. The loop is compiled by the
optimizer vpo [1] into instructions for the SPARC archi-
tecture. During optimization, vpo builds the data depen-
dency graph for the kernel loop. The graph serves as an
input to the rest of the synthesis system, which consists
of modules for hardware allocation, processor topology
determination, instruction scheduling, simulation, and
performance analysis.

2.1. Hardware Allocation

The first step of our synthesis system is hardware allo-
cation, which is done by the allocate module. Hardware
allocation determines processor functionality by assign-
ing computational elements to data dependency graph
nodes. After allocating hardware resources, allocate
emits a list of functional elements in the synthesized
processor and a mapping of graph nodes to those ele-
ments.

allocate uses a design database to determine what
hardware devices to assign graph nodes. The database
has entries for pipeline stages and functional sidings.
Each entry has fields for a device name, alist of instruc-
tion opcodes, operation latency, siding depth and device
type. The device nameis a string that uniquely identifies
the device in the database. The opcode list gives the
semantics of the device in terms of the instructions it
executes. The list is used by allocate to select what kind
of devices to allocate to graph nodes. In the current
implementation of allocate, an instruction opcode may
be listed in only one database entry (i.e., multiple
devices may not implement the same opcode). The oper-
ation latency field gives the latency of the device, and
the depth field, if the device is a siding, gives the length
of the siding’s pipeline. The fina field is a device type
and may be one of three values: STAGE, LU, and RLU.
The STAGE type identifies the database entry as a pipe-
line stage, the LU type as a functional siding that does
not return a result (e.g., a unit for stores) and the RLU
type as afunctiona unit that does return a result.

An example database with four entries is shown in
Figure 4. The first two entries are pipeline stages for
addition and branch resolution. The add stage handles
two addition opcodes, one that generates a condition
code and one that does not. The branch stage resolves
branch predictions for eight different branch opcodes.
The database in Figure 4 also has entries for two func-
tional sidings. Themultiply  siding does either signed
or unsigned multiplication in 20 cycles and has a siding
depth of 4. The memory siding has a pipeline depth of 3
and executes load and store instructions in 15 cycles.
This siding handles al types of load and store instruc-
tions, including variants for word, halfword, and byte
datatypes.

database “exam ple” {
entry “add” {

type=STAGE; la t ency=5;
opcodes={add, addcc}; };
entry “branch” {
type=STAGE; la tency=5;
opcodes={bne, be, bg, ble,
bge, bl, bgu, bleu}; };
entry “multipl y"{
type=RLU; late  ncy=20;
depth=4;
opcodes={umul, smul}; I
entry “memory” {
type=RLU; late  ncy=15;
depth=3;
opcodes={ldsb, Idsh, Idsw,
stb, sth, stw} i h

Figure 4: Example design database

The design database makes it easy to partition pro-
cessor functionality among pipeline stages and func-
tional sidings. A designer can use the database to
experiment with different partitions of functionality. In
our experiments, we use a database that consists of
unique devices for every opcode group in the SPARC
instruction set architecture. For example, there is a sin-
gle device in the database for unsigned and signed mul-
tiplication. We also partition functionality according to
operation latency: pipeline stages execute low latency
operations and functional sidings execute high latency
operations.

Pipeline stages in the synthesized processor are
determined from the type of device a graph node is
assigned. allocate generates an unique pipeline stage of
an appropriate type for every graph node that is assigned
a STAGE device. If anode is assigned a functional sid-
ing, then allocate generates two pipeline stages for RLU
devices and one stage for LU devices. An RLU device
has two stages since it launches an instruction and
returns aresult. An LU siding needs only a single stage
to launch instructions since it does not return results to
the main pipeline. Some pipeline stages are aways
included in a CFP such as stages for instruction fetch, a
register cache, and aregister file.

allocate may constrain the position of pipeline stages
in a given processor topology. For example, allocate
ensures that a siding’s return stage appears after the sid-
ing's launch stage. It further ensures that the return stage
appears at least depth stages later than the launch stage,
where depth is the depth of the siding's pipeline. allo-
cate also consults design heuristics to determine pipe-
line stage position constraints. These constraints limit



the number of pipeline topologies considered by the
synthesis g/stem.

A hardware functionality description is emitted by
allocate that lists the types of functional elements a syn-
thesized processor should contain and their position
congtraints. The description isalist of instantiated com-
putational elements from the device database and the
mapping of graph nodes to pipeline stages and sidings.

2.2. Processor Topology

The permute module uses the spedfication from allo-
cate to derive CFP topologies that obey the position
congtraints imposed by allocate. The topologies are
determined by permuting the order of pipeline stages,
which fully spedfies a CFP becaise processor structural
elements are interconneded using pipeline stages.

permute emits a processor design spedfication for
ead topology it generates. The spedficaion includes
the order of pipeline stages and the functional charader-
istics of eath device in the synthesized processor. The
spedfication has attributes for pipeline stages and sid-
ings that spedfy devicelatency, type, siding depth, and
semantics (as instruction gocodes). The atributes are
used by the CFPsimulator to model devicebehavior and
pipeline resources.

pi pel i ne “exanpl e” {
stage “fetch” {
type=instr_fetch; };
stage “mul LO” {
| at ency=3; type=l aunch;
operations={snul, unmul}; };
stage “add0” {
| at ency=5;
oper ati ons={add, addcc}; };
stage “mul RO” {
| atency=3; type=return;
operations={snul, unmul}; };
stage “rf” {
type=reg_file; };
siding “mul” {

| at ency=20; depth=4; type=RLU,
| aunch="rul LO”; return="“nul RO”";
operations={snul, unul}; };

Figure5: Example CFP specification

Figure 5 shows an example processor spedfication.
The example has pipeline stages for instruction fetch,
multiply launch and return, addition, and register file
write-badk, as well as a siding for multiplicaion. The

addition stage has a latency of 5 and exeautes add and
addcc instructions. The multiply launch and return
stages (mul LO and mul RO) launch and return unsigned
and signed muiltiplication operations into and from the
multiplier siding. The multiplier siding has a latency of
20 and a pipeline depth of 4.

2.3. Instruction Scheduling

vpo emits optimized SPARC instructions that serve &
input to a schedule module that determines al |egal
instruction schedules. Branch and bound techniques can
be used during design evaluation to reduce the number
of schedules considered for ead pipeline configuration.

2.4. Processor Simulation

The cfpsim module smulates a cunterflow pipeline
design. A CFPsimulation is gedfied by a pipeline con-
figuration, an instruction schedule, and a mapping o
instructions to pipeline devices. The pipeline spedfica
tion is emitted by permute, the mapping o graph nodes
to computational devices by allocate, and the instruction
schedule by schedule. The simulator generates an exe-
cution traceof a program indicaing the state of pipeline
resources on every clock cycle. The traceis used by a
performance analysistool to evaluate adesign.

The CFP simulator models resource usage and
instruction and result flow; it does not model micro-
architectural devices. For this reason, the simulator is
very fast and cycle acairate. The simulator uses a “tiling
approach” to model hardware resources and processor
data flow. cfpsim tiles a time-resource diagram with the
resource usage and data flow of every dynamicdly exe-
cuted instruction.

The resource usage of an instruction is given by a
reservation table, cdled an instruction tile, that depicts
the resources the instruction uses for every clock cycle
starting at cycle 0. Results generated by an instruction
are modeled in the reservation table & the resource
usage of result pipeline registers.

Theinstruction tile may be inferred from the pipeline
spedficaion. The spedficaion indicaes what opera-
tions use which resources and for how long, and from
this information, the simulator is able to construct atile
for every instruction in the ISA.

Figure 6 shows an example tile for an addition
instruction using the CFP spedfication from Figure 5.
The tile shows how long and when the instruction uses
eadt pipeline resource The ald instruction uses the
fetch, mul LO, mul RO, and r f stages for one gycle
since they are needed only to convey the instruction to
the next stage. Because the addO stage exeautesthe add
instruction, it is used for 5 cycles. A result is produced
on the final exeaution cycle and conveyed down the
result pipeline using the result registersin stages addo,



nmul LO, and f et ch for one cycle each.
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Figure 6: Instruction tile

For every instruction in the execution trace, the simu-
lator places atile in atime-resource diagram. Thetileis
placed starting at the most recent cycle in which the
instruction fetch stage is empty. Thetileis placed in the
diagram so that if a particular instruction pipeline stage
is not available at a needed cycle, the instruction is
delayed by a cycle in the previous stage until the
resource becomes available.

Whenever aresult is encountered in a stage, the sim-
ulator models the interaction of the result and the
instruction (i.e., the comparison operation). Thisis done
by delaying the movement of both the instruction and
result until the comparison operation is finished.
Because the result has already been placed in the time-
resource diagram, its resource usage must be undone for
all cycles after the cycle when the comparison operation
began. After undoing the result’s resource usage, it can

be re-placed in the diagram beginning on the last cycle
of the comparison operation. It is possible to introduce
result register conflicts during the re-placement of a
result. Such conflicts are resolved by delaying the con-
flicting result one cycle in the previous stage (and,
hence, removing the resource conflict). This can be
done by recursively delaying each result that introduces
aconflict.

Care must be taken when a result is delayed in a
pipeline stage that contains an instruction. In this case,
the instruction may need to be re-placed if delaying the
result also causes the instruction to be delayed. Our sim-
ulator handles this by backtracking the placement of
instructions to that point. We have found that backtrack-
ing is rarely required with most programs, so it does not
typically reduce simulation performance.

2.5. Performance Analysis

The cross-product of pipelines from permute and
instruction schedules from schedule defines a CFP
design space. This space islarge. For example, the finite
impulse response filter data dependency graph (12
nodes) produces 2,580,480 pipelines and 42,735 sched-
ules.

A module evaluate traverses the design space to col-
lect performance statistics for every processor/schedule
combination. evaluate post-processes the execution
traces generated by cfpsim to gather statistics about
instruction and result flow, pipeline utilization and
throughput. These statistics are used to pick the best
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pipeline/schedule cmbination and to emit a visual rep-
resentation of the design space The visual representa-
tion shows the overal design space ad simulation
detail s for ead design point.

Figure 7 shows the visual representation of a single
design point. The top half of the figure shows resource
usage for every instruction and result per cycle. The
boxes labeled with | indicae instructions as they flow
from the instruction fetch stage toward the register file.
The boxes labeled with R indicate results flowing from
the stage where they are produced to where they are
consumed.

The time-resource diagram is useful for understand-
ing instruction and result flow. The tod all ows any two
design points dde-by-side, so we ca, for example,
examine the best and worst designs to urderstand what
factors affed performance The side-by-side cmpari-
son is aso wseful for studying the dfed of different
instructions shedules on the same pipeline organizaion
(and vice-versa).

The bottom half of Figure 7 shows the stall density of
instructions. This graph shows how long an instruction
spends in ead pipeline stage. The dfed of pipeline
stalls can be redily identified from this diagram since
cumulative pipeline stalls appea as colored diagona
bands. Whenever an instruction stalls in the pipeline, it
may eventually cause resource onflicts during later
cycles. An example of this can be seen in Figure 7 start-
ing with instruction 123 and ending with 127. The stall
density diagram is useful for identifying bottlenedk
regions in the program exeaution trace Once such a
region is identified, the time-resource diagram can be
used to view instruction and result data flow in that
region. The stall density diagram is a helpful abstradion
for identifying areas in the program instruction tracefor
detail ed study without having to examine the traceon a
cycle-by-cycle basis.

3. Synthesis M ethodology

We ae exploring techniques for customizing counter-
flow pipelines to embedded applicaions using the
design framework presented in the previous £dion. The
environment is helpful for understanding what fadors
are important to get good performance from a CFP
design.

The synthesis technique we use generates al proces-
sor topologies for a given set of functional units and
pipeline stages to pick the best one. The processor func-
tionality is determined from the data flow graph and
design database. Although it is not apparent how to
build the full design spacefor atraditional microproces-
sor organizadion, it is graightforward for the CFP since
pipeline stage order spedfies processor topol ogy.

It is not pradicd to exhaustively seach the ettire
design spacefor most dependency graphs because the
spaceis not likely to be small when aggressve instruc-
tion-level parallelism transformations such as gealla
tive and predicated exeaution, software pipelining, if-
conversion, etc. are used. We ae evaluating heuristics
that reduce the size of the spacewhile finding ppeline/
schedule combinations with good performance.

From preliminary work, we have identified several
fadorsthat affed performance the latency of conveying
source operands, overlapping movement of instructions
and results, avoiding resource ®nflicts due to the
unavail ability of instruction pipeline registers, concur-
rently exeauting operations from adjacent loop itera
tions, and not over/under speaulating instructions.

3.1. Performance Factors

The distance results flow between their production and
consumption affeds a CFPs performance because the
latency of exeauting instructions includes the amount of
time it takes to acquire source operands. This time is
affeded by the result flow distance the further a result
flows, the greder the latency of the instruction. For
example, widely separated producer and consumer
stages can cause the ansumer instruction to stall wait-
ing for its urce operands, which may also delay subse-
quent instructions. Although careful instruction
scheduling can mask a portion of result flow latency, it
isnat likely to hide the entire latency. Thus, it isimpor-
tant to find the pipeline structure and instruction sched-
ule that best hides result flow latency.

The latency of conveying aresult is also affeded by
the number of instructions a result encounters asit flows
from its producer stage to its consumer stage. A result
flows more slowly through a stage wntaining an
instruction than it flows through an empty stage because
the result’s register names must be compared with the
instruction’s source and destination names. This ug-
gests producer and consumer instructions ould be
placal close together in the instruction schedule (the
opposite of what traditional scheduling does) to mini-
mize flow latency. However, from our experience it is
not always necessary for producer and consumer to be
immediately adjacent. They can be separated by up to a
few instructions because there is usualy “enough time”
to overlap the movement of the ansumer instruction
and its ource operands, ensuring they mee before the
consumer readies its exeaution stage.

From our studies, it appeas that overlapping the
movement of results and instructions is very important
for good performance The dfed of adjusting both the
pipeline structure and instruction schedule is to balance
the pipeline using the program’'s dynamic instruction
and result flow. A traditional synchronous pipeline is



balanced a priori by a designer; however, this is not
possible with the counterflow pipeline because it has
dynamicdly varying latencies.

The importance of pipeline balancing is demon-
strated by the dfed of adding blank stages that do na
perform any operation to a CFP design. One way to bal-
ancethe pipelineisto insert blank stages before pipeline
regions that have high resource @ntention. These aeas
can be identified by looking for diagonal bands in the
stall density diagram. Inserting blanks all ows an instruc-
tion contending for abusy pipeli ne stage to move up ane
position, occupying a blank stage (or series of blanks).
By ensuring that instructions always make progress,
subsequent instructions are more likely to flow to stages
where they can begin exeauting. In this way, blank
stages serve & queues into heavily contended pipeline
regions.

It may not be necessary to insert actual blank stages.
Instead, stages that are unused during a period of execu-
tion can be aranged to serve & pipeline queues. Such
stages have the dual purpase to exeaute instructions and
to ad as placehadders. Using our design environment
we have found that stages exeauting off-criticd path
instructions can effedively serve & queues and exeaute
instructions in the “delay” of the aiticd path. It is, how-
ever, difficult to staticdly predict where pladng these
stagesis most effedive.

Another important performance issue is overlapping
the exeaution of adjaceit loop iterations to expose
instruction-level paralelism. A CFP micro-architecure
can be aranged to achieve hardware loop unrolling by
ensuring that hardware resources needed by the foll ow-
ing loop iteration are available ealy in the pipeline. It is
best to placeresources for operations which do rot have
loop caried dependences (between the ith and ith + 1
iterations) nea the beginning of the pipeline because
they are the least likely to stall while waiting for source
operands.

A question related to hardware loop unrolling is
where to resolve branches in the pipeline. If branches
are resolved nea the instruction fetch stage, then very
little speaulative exeaution is possble and an opportu-
nity to exeaute operations aaoss loop iterations may be
lost. However, if branch resolution is done late in the
pipeline, then the misprediction penalty is very high.
The location of branch resolution isimportant because a
good CFP design should not over or under speaulatively
exeaute instructions. The ided locdion for branch reso-
[ution can be found by trying the branch in all possible
placesin the pipeline and picking the best one.

3.2. Design Heuristics

Heuristics that use the fadtors mentioned above to guide
the exploration of a CFP design space may narrow the

spacesufficiently and acarrately so a good stage order
and schedule ae found. Using aur design framework,
we have been experimenting with such heuristics. These
heuristics are hosted in the hardware &l ocation module
to constrain the position of pipeline stages. Our present
heuristics do not consider the instruction schedule
because the data dependency graph constrains the num-
ber of schedules. In the future we will consider instruc-
tion scheduling as well.

In this paper, we discuss two pipeline layout heuris-
tics. The first confines the seach spaceto designs that
have pipeline stages in order of the criticd path:

Heuristic 1: For all nodes {n, n,, ..., n,} and edges
{(ng, ny), (Ny, n3), ..., (n_1, )} on the critical
path, evaluate only designs that have the partial
order {n; «ny ny«ng ...,n_q«n} wrt. pipeline
stages.

The pipeline order is with resped to the instruction
fetch stage, so the roat of the aiticd path is the dosest
to instruction fetch. This order overlaps the exeaution of
instructions from different loop iterations (loop-caried
dependences may affed this, of course) while minimiz-
ing the distance results flow along the aiticd path. If
the pipeline is arranged in the reverse order so the root
of the aiticd path is placed rea the register file, then
there is no overlap (in exeaution) between loop itera-
tions. In this case, an entire iteration flows into the pipe-
line with the last criticd path instruction stalled at the
bottom of the pipeline. This keeps the next iteration
from entering the pipeline and beginning exeaution.

This heurigtic lets gages that exeaute non-criticd
path instructions occur any placein the pipeline (no
constraints are placeal on the order). This ensures that
the synthesis g/stem finds the position for ead stage
that both exeautesinstructionsin the delay of the aiticd
path and serves as a placehoder to let instructions
move up the pipeline.

Figure 8. Example data dependency graph
Figure 8 shows an example data dependency graph



with the aiticd path highlighted. The partial order for
this example using heuristic 1 is:

{op2 « op4, op4 «op5, op5 « op6}

For example, opl can appea any place while op5
must appea after op4 and before op6. The hardware
allocaion module imposes this partia order on stage
positions. Although this heuristic determines good pipe-
line layouts, in many cases g/nthesis must consider a
large number of design pants.

A seoond leuristic considers many fewer pipeline
configurations by generating a more refined partia
order. The heuristic preserves criticd path order using
the instruction dependency graph to define operation
partitions by drawing cuts aadoss eat level of the

graph.

Heuristic 2: For the graph G = (N, E), divide N
into K partitions, where K is the maximum path
length in E. Use the partitions to impose a partial
order on pipeline stages such that On; O partition,
and On; O partition,, ; then n; «n; isin the partial
order. Assign nodes to a partition according to
some assignment heuristic and the dependence
edges E. Evaluate only designs that have the partial
order wrt. pipeline stages.

The aits determine apartia order that places opera-
tions from level n before operations from level n+1
(roct islevel Q) in apipeline. Figure 9 shows an example
of assigning gaph nodesto instruction partitions.

Assignments

— — Top-down
----- Bottom-up

Figure 9: Greedy assignment of graph cuts

In the figure, the “top-down” assignment of opera-
tions gives the partial order:

{opl «op4, op2 « op4, op3 « op4, op4d « op>5,
op5 « op6}

In this example, opl, op2, and op3 al must occur

within the first three pipeline stages (in any order), op4
occursin the fourth position, op5 in the fifth, and op6 in
the sixth position.

Nodes can be asigned to different instruction parti-
tions. There ae two straightforward assignments: top-
down and bottom-up. Top-down conceptually may work
well since asgning nodes to ealy instruction cuts
ensures those operations begin exeauting as soon as pos-
sible. Bottom-up may also work since it can minimize
the distance results flow between their definition and
use. For example, Figure 9 shows top-down and bottom-
up assignments of operations to graph cuts. Bottom-up
works best for this graph sinceit minimizes the distance
results move between their production and consump-
tion. Indeed, we have found that bottom-up assignment
typicdly works well for most graphs. The pipeline stage
partial order for Figure 9 with bottom-up assgnment is:

{opl «op5, opl « 0p3, 0p2 « op4, op2 «opl,
op3 « 0p6, op4 « op5, op4 « op3, op5 « op6}

This partial order puts op2 in the first position of the
pipeline followed by opl and op4 in the second a third
position The fourth and fifth positions have op3 or op5
and the sixth pasition has op6.

Heuristic 2 forms instruction groups that exeaute in
parald in away similar to forming instructions for very
long instruction word (VLIW) architectures. After form-
ing instruction partitions, there is a single path through
the dependency graph. Thus, the instruction groups are
arranged in the order of this path (like heuristic 1). The
order of operations is not constrained in an instruction
partition to let the synthesis gystem find the optimal
locd arrangement of pipeline stages within a partition
while minimizing result flow distance between parti-
tions.

4. Reaults

Preliminary results for several small graphs are shown
in Figure 10. The spead-up in the figure is relative to a
general-purpose pipeline that has separate sidings for
memory, multiplicaion, and integer operations and a
pipeline stage for branch resolution. The figure shows
spead-up for three pipeline orders; optimal, heuristic 1,
and heuristic 2. In al cases, the partiti oning of function-
dity isthe same: every graph nodeis assgned an urique
pipeline stage or siding. The optimal pipeline had the
best performance from all pipeline stage permutations.
The heuristic 2 pipelines use late asignment to al ocae
graph nales to partitions.

The benchmarks in Figure 10 are small data depen-
dency graphs that have less than 8 nodes. The graphs
contain mostly low latency integer operations, although
graph 10has two memory references and a multiplica



tion. We seleded these initial benchmarks because they
were small enough to generate the full design space ad
demonstrate the dfediveness of the seach heuristics.
Aswe evaluate more redistic kernels with more instruc-
tion-level parallelism we exped that greaer speedups
will be adieved. Furthermore, a CFP may be faster than
conventional processors due to the asence of global
signals and better implementation technology.
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Figure 10: Speed-up for several small graphs

The figure shows that the search heuristics find pipe-
lines that are nealy as good as optimal. The perfor-
mance difference between the heuristicdly determined
pipelines and the optimal pipeline is generally less than
10%. This difference is partly influenced by start-up
cost: The optimal stage orders usualy have alower
start-up penalty because they order stages to favor
reguesting source operands from the register file.

Both seach heuristics work well. Heuristic 2 does
nealy as well as heuristic 1, while evaluating fewer
designs. Inded, for graphs 3, 5, 7, and 10, heuristic 2
finds the same pipelines as heuristic 1.
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Figure 11: Size of subspace

Figure 11 shows a cmmparison d the number of
designs evaluation by ead heuristic & a percentage of
the overall design space Both heuristics reduce the
seach space however, the anount of the reduction is
dependent on the shape of the dependency graph.

10

Figure 10 and Figure 11 show that the heuristics con-
strain the search spaceto a small number of pipelines
and find designs that are nealy as good as optimal.
Although these initial experiments are small, we exped
the heuristics to also work for full applications. Future
work however, must include heuristics for instruction
scheduling as well pipeline layout.

5. Conclusion

This paper describes a design environment for studying
counterflow pipeline organizations. Our preliminary
experiments demonstrate that the CFPis aflexible target
for high-level synthesis of application-spedfic micro-
processors. The work also shows the importance of
exploring a large design spaceto further understanding
of a new computer organizaion. We ae cntinuing to
reseach the performance potential of custom CFP's,
including micro-architecure extensions that may grealy
improve performancewithout saaificing ease of design.
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