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Abstract

The Counterflow Pipeline (CFP) organization may be a
good target for synthesis of application-specific micro-
processors for embedded systems because it has a regu-
lar and simple structure. This paper describes a design
environment for tailoring CFP’s to an embedded appli -
cation to improve performance. Our system allows
exploring the design space of all possible CFP’s for a
given embedded application to understand the impact of
different design decisions on performance. We have
used the environment to derive heuristics that help to
find the best CFP for an application. Preliminary results
using our heuristics indicate that speed-up for several
small graphs range from 1.3 to 2.0 over a general-pur-
pose CFP and that the heuristics find designs that are
within 10% of optimal.

1. Introduction

Application-specific microprocessor design is a good
way to improve the cost-performance ratio of an appli -
cation. This is especially useful for embedded systems
(e.g., automobile control systems, avionics, cellular
phones, etc.) where a small increase in performance and
decrease in cost can have a large impact on a product’s
viability. A new computer organization called the Coun-
terflow Pipeline (CFP), proposed by Sproull , Suther-
land, and Molnar [15], has several characteristics that
make it a possible target organization for the synthesis
of application-specific microprocessors. The CFP has a
simple and regular structure, local control, high degree
of modularity, asynchronous implementations, and
inherent handling of complex structures such as result
forwarding and speculative execution. 

Our research aims to use an application expressed
algorithmically in a high-level language (such as C) as a
specification for an embedded application-specific
microprocessor. The counterflow pipeline organization
is a good candidate for this type of fast, aggressive high-
level synthesis because of its extreme composabili ty and
simplicity. This substantially reduces the complexity of

synthesis because a CFP synthesis system does not have
to design control paths, determine complex bus and
bypass networks, etc. 

We have built a framework for exploring the design
space of application-specific counterflow pipelines. The
environment includes tools for program optimization,
synthesis experimentation, performance analysis, and
design simulation. 

Because a CFP design space is potentially very large,
we have developed heuristics that narrow the space to
pipeline configurations with good performance. Our
design framework has been instrumental in deriving
these heuristics and understanding the factors that are
important for good performance from CFP designs. 

This paper presents our initial design environment
and synthesis heuristics. The first section contains intro-
ductory material covering our synthesis strategy, related
work, and the counterflow pipeline organization. The
second section describes our design environment and
the third section discusses our synthesis heuristics. The
fourth section presents preliminary results for several
benchmarks using those heuristics, and the final section
concludes with future work.

1.1. Synthesis Strategy

Most high-performance embedded applications have
two parts: a control and a computation-intensive part.
The computation part is typically a kernel loop that
accounts for the majority of execution time. According
to Amdahl’s Law [9], increasing the performance of the
most frequently executed portion of an application
increases overall performance. Thus, synthesizing cus-
tom hardware for the computation-intensive portion
may be an effective technique to increase performance. 

The type of applications we are considering need
only a modest kernel speed-up to effectively improve
overall performance. For example, JPEG has a function
j_rev_dct() that accounts for 60.38% of total execu-
tion time. This function consists of applying a single
loop twice (to do the inverse discrete cosine transforma-
tion), so it is a good candidate for CFP synthesis. Figure
1 shows a plot of Amdahl’s Law for various speed-up
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values of j_rev_dct(). The figure shows that a small
speed-up of the kernel loop of 6 or 7 achieves most of
the overall speed-up.

Our synthesis system uses the data dependency graph
of an application’s kernel to determine processor func-
tionality and interconnection. Processor functionality is
determined from the type of operations in the graph and
processor topology is determined by exploring the
design space of all possible interconnection network.

The target system architecture for our synthesis tech-
nique has a single CFP processor that executes the con-
trol and computation portions of an application.
Synthesis customizes a general-purpose CFP for the
kernel computation to improve performance. This is
similar to software acceleration using a co-processor;
however, there is only one processor in this scheme and,
as a result, overall cost should be lower than with a co-
processor scheme while still improving performance. A
single CPU architecture has the advantage that it does
not need any support for synchronization with an
attached coprocessor (e.g., interface logic, handling of
live-in/out data, etc.).

1.2. Related Work

Recently there has been much interest in automated
design of application-specific integrated processors
(ASIPs) because of the increasing importance of high-
performance and quick turn-around in the embedded
systems market [6]. ASIP techniques typically address
two broad problems: instruction set and micro-architec-
ture synthesis. Instruction set synthesis attempts to dis-
cover micro-operations in a program (or set of
programs) that can be combined to create instructions
[10,11]. The synthesized instruction set is optimized to
meet design goals such as minimum program size and
execution latency. Micro-architecture synthesis derives
a microprocessor implementation from an application
(or set of applications). Many micro-architecture syn-
thesis systems use a co-processor strategy to synthesize
custom logic for a portion of an application and to inte-

grate the custom hardware with an embedded processor
core [4,8,13]. Another micro-architecture synthesis
approach tailors a single processor to the resource
requirements of the target application [3,5]. Although
instruction set and micro-architecture synthesis can be
treated independently, many co-design systems attempt
to unify them into a single framework [2,7].

Our current research focus is micro-architecture syn-
thesis. We do not presently synthesize an instruction set
for an embedded application. Instead, we customize a
counterflow pipeline micro-architecture to an applica-
tion using a standard RISC instruction set and informa-
tion about the data flow of the target application. Our
micro-architecture synthesis technique has the advan-
tage that the design space is well defined (although
potentially very large), making it easier to search for
pipeline configurations that meet design goals. 

1.3. Counterflow Pipeline

The counterflow pipeline has two elastic pipelines flow-
ing in opposite directions. One is the instruction pipe-
line. It carries instructions from an instruction fetch
stage to a register file stage. When an instruction issues,
an instruction bundle is formed that flows through the
pipeline. The instruction bundle has space for the
instruction opcode, operand names, and operand values.
The other is the results pipeline that conveys results
from the register file to the instruction fetch stage. The
instruction and results pipelines interact: instructions
copy values to and from the result pipe. 

Functional units (or sidings) are connected to the
pipeline through launch and return stages. Launch
stages issue instructions into functional units and return
stages extract results from functional units. Instructions
may execute in either pipeline stages or functional units. 

A memory unit connected to a CFP pipeline is shown
in Figure 2. Load instructions are fetched and issued
into the pipeline at the instr_fetch stage. A bundle
is created that holds the load’s memory address and des-
tination register operands. The bundle flows towards the
mem_launch stage where it is issued into the memory
subsystem. 

When the memory unit reads a value, it inserts the
value into the result pipeline at the mem_return stage.
In the load example, when the load reaches the
mem_return stage, it extracts its destination operand
value from the memory unit. This value is copied to the
destination register value in the load’s instruction bun-
dle and inserted into the result pipe. A result bundle is
created whenever a value is inserted into the result pipe-
line. A result bundle has space for the result’s name (i.e.,
register name) and value. Results from sidings or other
pipeline devices flow down the result pipe to the
instr_fetch stage. Whenever an instruction and a
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result bundle meet in the pipeline, a comparison is done
between the instruction operand names and the result
name. If a result name matches an operand name, its
value is copied to the corresponding operand value in
the instruction bundle. When instructions reach the
reg_file stage, their destination values are written
back to the register file and when results reach the
instr_fetch stage, they are discarded. In effect, the
register file stores results that have exited the pipe.

The interaction between instruction and result bun-
dles are governed by special pipeline and matching
rules that ensure sequential execution semantics. These
rules govern the execution and movement of instruc-
tions and results and how they interact.

Arbitration is required between stages so that instruc-
tion and result bundles do not pass each other without a
comparison made on their operand names. In Figure 2,
the blocks between stages depict arbitration logic. A
final mechanism controls purging the pipeline on an
exception. A poison pill is inserted in the result pipeline
whenever a fault is detected. The poison pill purges both
pipelines of all instruction and result bundles. This
purge mechanism can also be used for speculative exe-
cution when a branch target is mispredicted. 

As Figure 2 shows, stages and functional units are
connected in a very simple and regular way. The con-
nections correspond to bundled interfaces of micropipe-
lines. The behavior of a stage is dependent only on the
adjacent stage in the pipeline, which permits local con-
trol of stages and avoids the complexity of conventional
pipeline synchronization.

1.4. Execution Model

Our synthesis system models asynchronous counterflow

pipelines by varying computational latencies. Table 1
shows the latencies we use in our simulation models. 

The latencies in the table are expressed relative to
how long it takes an instruction or result to move
between adjacent pipeline stages. Using the base values
from Table 1, we derive other pipeline latencies. For
example, a simple instruction operation such as addition
takes 5 cycles. High latency operations are scaled rela-
tive to low latency ones, so an operation such as multi -
plication—assuming it is four times slower than
addition—takes 20 cycles. In the rest of this paper, we
refer to time units as “clock cycles” , although this
should not be confused with the notion of a clock cycle
in a synchronous processor. A clock cycle for the coun-
terflow pipeline is a very small time unit such as a few
gate delays.

The instruction set we use is a subset of the SPARC
V8 [14] instruction set architecture. The instruction sub-
set does not support register windows or tagged opera-
tions, but is representative of modern instruction sets for
embedded RISC cores.

2. Experimental Framework

Figure 3 depicts the synthesis framework. The system
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Figure 2: Example Counterflow Pipeline

Operation Latency

Stage copy 1

Garner, kill , update 3

Return, launch 3

Instruction operation 5

Table 1: Computational latencies

Figure 3: Synthesis framework
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accepts a C source file containing a loop that drives cus-
tomizing a CFP processor. The loop is compiled by the
optimizer vpo [1] into instructions for the SPARC archi-
tecture. During optimization, vpo builds the data depen-
dency graph for the kernel loop. The graph serves as an
input to the rest of the synthesis system, which consists
of modules for hardware allocation, processor topology
determination, instruction scheduling, simulation, and
performance analysis. 

2.1. Hardware Allocation

The first step of our synthesis system is hardware allo-
cation, which is done by the allocate module. Hardware
allocation determines processor functionality by assign-
ing computational elements to data dependency graph
nodes. After allocating hardware resources, allocate
emits a list of functional elements in the synthesized
processor and a mapping of graph nodes to those ele-
ments. 

allocate uses a design database to determine what
hardware devices to assign graph nodes. The database
has entries for pipeline stages and functional sidings.
Each entry has fields for a device name, a list of instruc-
tion opcodes, operation latency, siding depth and device
type. The device name is a string that uniquely identifies
the device in the database. The opcode list gives the
semantics of the device in terms of the instructions it
executes. The list is used by allocate to select what kind
of devices to allocate to graph nodes. In the current
implementation of allocate, an instruction opcode may
be listed in only one database entry (i.e., multiple
devices may not implement the same opcode). The oper-
ation latency field gives the latency of the device, and
the depth field, if the device is a siding, gives the length
of the siding’s pipeline. The final field is a device type
and may be one of three values: STAGE, LU, and RLU.
The STAGE type identifies the database entry as a pipe-
line stage, the LU type as a functional siding that does
not return a result (e.g., a unit for stores) and the RLU
type as a functional unit that does return a result. 

An example database with four entries is shown in
Figure 4. The first two entries are pipeline stages for
addition and branch resolution. The add  stage handles
two addition opcodes, one that generates a condition
code and one that does not. The branch  stage resolves
branch predictions for eight different branch opcodes.
The database in Figure 4 also has entries for two func-
tional sidings. The multiply  siding does either signed
or unsigned multiplication in 20 cycles and has a siding
depth of 4. The memory  siding has a pipeline depth of 3
and executes load and store instructions in 15 cycles.
This siding handles all types of load and store instruc-
tions, including variants for word, halfword, and byte
data types. 

The design database makes it easy to partition pro-
cessor functionality among pipeline stages and func-
tional sidings. A designer can use the database to
experiment with different partitions of functionality. In
our experiments, we use a database that consists of
unique devices for every opcode group in the SPARC
instruction set architecture. For example, there is a sin-
gle device in the database for unsigned and signed mul-
tiplication. We also partition functionality according to
operation latency: pipeline stages execute low latency
operations and functional sidings execute high latency
operations. 

Pipeline stages in the synthesized processor are
determined from the type of device a graph node is
assigned. allocate generates an unique pipeline stage of
an appropriate type for every graph node that is assigned
a STAGE device. If a node is assigned a functional sid-
ing, then allocate generates two pipeline stages for RLU
devices and one stage for LU devices. An RLU device
has two stages since it launches an instruction and
returns a result. An LU siding needs only a single stage
to launch instructions since it does not return results to
the main pipeline. Some pipeline stages are always
included in a CFP such as stages for instruction fetch, a
register cache, and a register file.

allocate may constrain the position of pipeline stages
in a given processor topology. For example, allocate
ensures that a siding’s return stage appears after the sid-
ing’s launch stage. It further ensures that the return stage
appears at least depth stages later than the launch stage,
where depth is the depth of the siding’s pipeline. allo-
cate also consults design heuristics to determine pipe-
line stage position constraints. These constraints limit

database “exam ple” {

entry “add” {

type=STAGE; la t ency=5; 

opcodes={add, addcc}; };

entry “branch”  {

type=STAGE; la t ency=5; 

opcodes={bne, be, bg, ble, 
bge, bl, bgu, bleu}; };

entry “multipl y” {

type=RLU; late ncy=20; 

depth=4;

opcodes={umul, smul};  };

entry “memory”  {

type=RLU; late ncy=15; 

depth=3;

opcodes={ldsb, ldsh,  ldsw,
stb, sth, stw} ; };

}

Figure 4: Example design database
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the number of pipeline topologies considered by the
synthesis system.

A hardware functionali ty description is emitted by
allocate that lists the types of functional elements a syn-
thesized processor should contain and their position
constraints. The description is a list of instantiated com-
putational elements from the device database and the
mapping of graph nodes to pipeline stages and sidings. 

2.2. Processor Topology

The permute module uses the specification from allo-
cate to derive CFP topologies that obey the position
constraints imposed by allocate. The topologies are
determined by permuting the order of pipeline stages,
which fully specifies a CFP because processor structural
elements are interconnected using pipeline stages. 

permute emits a processor design specification for
each topology it generates. The specification includes
the order of pipeline stages and the functional character-
istics of each device in the synthesized processor. The
specification has attributes for pipeline stages and sid-
ings that specify device latency, type, siding depth, and
semantics (as instruction opcodes). The attributes are
used by the CFP simulator to model device behavior and
pipeline resources.

Figure 5 shows an example processor specification.
The example has pipeline stages for instruction fetch,
multiply launch and return, addition, and register file
write-back, as well as a siding for multiplication. The

addition stage has a latency of 5 and executes add and
addcc instructions. The multiply launch and return
stages (mulL0 and mulR0) launch and return unsigned
and signed multiplication operations into and from the
multiplier siding. The multiplier siding has a latency of
20 and a pipeline depth of 4.

2.3. Instruction Scheduling

vpo emits optimized SPARC instructions that serve as
input to a schedule module that determines all l egal
instruction schedules. Branch and bound techniques can
be used during design evaluation to reduce the number
of schedules considered for each pipeline configuration.

2.4. Processor Simulation

The cfpsim module simulates a counterflow pipeline
design. A CFP simulation is specified by a pipeline con-
figuration, an instruction schedule, and a mapping of
instructions to pipeline devices. The pipeline specifica-
tion is emitted by permute, the mapping of graph nodes
to computational devices by allocate, and the instruction
schedule by schedule. The simulator generates an exe-
cution trace of a program indicating the state of pipeline
resources on every clock cycle. The trace is used by a
performance analysis tool to evaluate a design.

The CFP simulator models resource usage and
instruction and result flow; it does not model micro-
architectural devices. For this reason, the simulator is
very fast and cycle accurate. The simulator uses a “til ing
approach” to model hardware resources and processor
data flow. cfpsim tiles a time-resource diagram with the
resource usage and data flow of every dynamically exe-
cuted instruction.

The resource usage of an instruction is given by a
reservation table, called an instruction tile, that depicts
the resources the instruction uses for every clock cycle
starting at cycle 0. Results generated by an instruction
are modeled in the reservation table as the resource
usage of result pipeline registers. 

The instruction tile may be inferred from the pipeline
specification. The specification indicates what opera-
tions use which resources and for how long, and from
this information, the simulator is able to construct a tile
for every instruction in the ISA. 

Figure 6 shows an example tile for an addition
instruction using the CFP specification from Figure 5.
The tile shows how long and when the instruction uses
each pipeline resource. The add instruction uses the
fetch, mulL0, mulR0, and rf stages for one cycle
since they are needed only to convey the instruction to
the next stage. Because the add0 stage executes the add
instruction, it is used for 5 cycles. A result is produced
on the final execution cycle and conveyed down the
result pipeline using the result registers in stages add0,

pipeline “example” {

stage “fetch” {

type=instr_fetch; };

stage “mulL0” { 

latency=3; type=launch;

operations={smul, umul}; };

stage “add0” {

latency=5; 

operations={add, addcc}; };

stage “mulR0” {

latency=3; type=return;

operations={smul, umul}; };

stage “rf” {

type=reg_file; }; 

siding “mul” { 

latency=20; depth=4; type=RLU;

launch=“mulL0”; return=“mulR0”;

operations={smul, umul}; };

}

Figure 5: Example CFP specification
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mulL0, and fetch for one cycle each.

For every instruction in the execution trace, the simu-
lator places a tile in a time-resource diagram. The tile is
placed starting at the most recent cycle in which the
instruction fetch stage is empty. The tile is placed in the
diagram so that if a particular instruction pipeline stage
is not available at a needed cycle, the instruction is
delayed by a cycle in the previous stage until the
resource becomes available.

Whenever a result is encountered in a stage, the sim-
ulator models the interaction of the result and the
instruction (i.e., the comparison operation). This is done
by delaying the movement of both the instruction and
result until the comparison operation is finished.
Because the result has already been placed in the time-
resource diagram, its resource usage must be undone for
all cycles after the cycle when the comparison operation
began. After undoing the result’s resource usage, it can

be re-placed in the diagram beginning on the last cycle
of the comparison operation. It is possible to introduce
result register conflicts during the re-placement of a
result. Such conflicts are resolved by delaying the con-
flicting result one cycle in the previous stage (and,
hence, removing the resource conflict). This can be
done by recursively delaying each result that introduces
a conflict. 

Care must be taken when a result is delayed in a
pipeline stage that contains an instruction. In this case,
the instruction may need to be re-placed if delaying the
result also causes the instruction to be delayed. Our sim-
ulator handles this by backtracking the placement of
instructions to that point. We have found that backtrack-
ing is rarely required with most programs, so it does not
typically reduce simulation performance.

2.5. Performance Analysis

The cross-product of pipelines from permute and
instruction schedules from schedule defines a CFP
design space. This space is large. For example, the finite
impulse response filter data dependency graph (12
nodes) produces 2,580,480 pipelines and 42,735 sched-
ules.

A module evaluate traverses the design space to col-
lect performance statistics for every processor/schedule
combination. evaluate post-processes the execution
traces generated by cfpsim to gather statistics about
instruction and result flow, pipeline utilization and
throughput. These statistics are used to pick the best

Figure 6: Instruction tile
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pipeline/schedule combination and to emit a visual rep-
resentation of the design space. The visual representa-
tion shows the overall design space and simulation
details for each design point. 

Figure 7 shows the visual representation of a single
design point. The top half of the figure shows resource
usage for every instruction and result per cycle. The
boxes labeled with I indicate instructions as they flow
from the instruction fetch stage toward the register file.
The boxes labeled with R indicate results flowing from
the stage where they are produced to where they are
consumed. 

The time-resource diagram is useful for understand-
ing instruction and result flow. The tool allows any two
design points side-by-side, so we can, for example,
examine the best and worst designs to understand what
factors affect performance. The side-by-side compari-
son is also useful for studying the effect of different
instructions schedules on the same pipeline organization
(and vice-versa).

The bottom half of Figure 7 shows the stall density of
instructions. This graph shows how long an instruction
spends in each pipeline stage. The effect of pipeline
stalls can be readily identified from this diagram since
cumulative pipeline stalls appear as colored diagonal
bands. Whenever an instruction stalls in the pipeline, it
may eventually cause resource conflicts during later
cycles. An example of this can be seen in Figure 7 start-
ing with instruction I23 and ending with I27. The stall
density diagram is useful for identifying bottleneck
regions in the program execution trace. Once such a
region is identified, the time-resource diagram can be
used to view instruction and result data flow in that
region. The stall density diagram is a helpful abstraction
for identifying areas in the program instruction trace for
detailed study without having to examine the trace on a
cycle-by-cycle basis.

3. Synthesis Methodology

We are exploring techniques for customizing counter-
flow pipelines to embedded applications using the
design framework presented in the previous section. The
environment is helpful for understanding what factors
are important to get good performance from a CFP
design. 

The synthesis technique we use generates all proces-
sor topologies for a given set of functional units and
pipeline stages to pick the best one. The processor func-
tionality is determined from the data flow graph and
design database. Although it is not apparent how to
build the full design space for a traditional microproces-
sor organization, it is straightforward for the CFP since
pipeline stage order specifies processor topology. 

It is not practical to exhaustively search the entire
design space for most dependency graphs because the
space is not likely to be small when aggressive instruc-
tion-level parallelism transformations such as specula-
tive and predicated execution, software pipelining, if-
conversion, etc. are used. We are evaluating heuristics
that reduce the size of the space while finding pipeline/
schedule combinations with good performance. 

From preliminary work, we have identified several
factors that affect performance: the latency of conveying
source operands, overlapping movement of instructions
and results, avoiding resource conflicts due to the
unavailabilit y of instruction pipeline registers, concur-
rently executing operations from adjacent loop itera-
tions, and not over/under speculating instructions.

3.1. Performance Factors

The distance results flow between their production and
consumption affects a CFP’s performance because the
latency of executing instructions includes the amount of
time it takes to acquire source operands. This time is
affected by the result flow distance; the further a result
flows, the greater the latency of the instruction. For
example, widely separated producer and consumer
stages can cause the consumer instruction to stall wait-
ing for its source operands, which may also delay subse-
quent instructions. Although careful instruction
scheduling can mask a portion of result flow latency, it
is not likely to hide the entire latency. Thus, it is impor-
tant to find the pipeline structure and instruction sched-
ule that best hides result flow latency. 

The latency of conveying a result is also affected by
the number of instructions a result encounters as it flows
from its producer stage to its consumer stage. A result
flows more slowly through a stage containing an
instruction than it flows through an empty stage because
the result’s register names must be compared with the
instruction’s source and destination names. This sug-
gests producer and consumer instructions should be
placed close together in the instruction schedule (the
opposite of what traditional scheduling does) to mini-
mize flow latency. However, from our experience, it is
not always necessary for producer and consumer to be
immediately adjacent. They can be separated by up to a
few instructions because there is usually “enough time”
to overlap the movement of the consumer instruction
and its source operands, ensuring they meet before the
consumer reaches its execution stage.

From our studies, it appears that overlapping the
movement of results and instructions is very important
for good performance. The effect of adjusting both the
pipeline structure and instruction schedule is to balance
the pipeline using the program’s dynamic instruction
and result flow. A traditional synchronous pipeline is
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balanced a priori by a designer; however, this is not
possible with the counterflow pipeline because it has
dynamically varying latencies. 

The importance of pipeline balancing is demon-
strated by the effect of adding blank stages that do not
perform any operation to a CFP design. One way to bal-
ance the pipeline is to insert blank stages before pipeline
regions that have high resource contention. These areas
can be identified by looking for diagonal bands in the
stall density diagram. Inserting blanks allows an instruc-
tion contending for a busy pipeline stage to move up one
position, occupying a blank stage (or series of blanks).
By ensuring that instructions always make progress,
subsequent instructions are more likely to flow to stages
where they can begin executing. In this way, blank
stages serve as queues into heavily contended pipeline
regions. 

It may not be necessary to insert actual blank stages.
Instead, stages that are unused during a period of execu-
tion can be arranged to serve as pipeline queues. Such
stages have the dual purpose to execute instructions and
to act as place-holders. Using our design environment
we have found that stages executing off-critical path
instructions can effectively serve as queues and execute
instructions in the “delay” of the critical path. It is, how-
ever, diff icult to statically predict where placing these
stages is most effective. 

Another important performance issue is overlapping
the execution of adjacent loop iterations to expose
instruction-level parallelism. A CFP micro-architecture
can be arranged to achieve hardware loop unrolli ng by
ensuring that hardware resources needed by the follow-
ing loop iteration are available early in the pipeline. It is
best to place resources for operations which do not have
loop carried dependences (between the ith and ith + 1
iterations) near the beginning of the pipeline because
they are the least likely to stall while waiting for source
operands.

A question related to hardware loop unrolli ng is
where to resolve branches in the pipeline. If branches
are resolved near the instruction fetch stage, then very
litt le speculative execution is possible and an opportu-
nity to execute operations across loop iterations may be
lost. However, if branch resolution is done late in the
pipeline, then the misprediction penalty is very high.
The location of branch resolution is important because a
good CFP design should not over or under speculatively
execute instructions. The ideal location for branch reso-
lution can be found by trying the branch in all possible
places in the pipeline and picking the best one. 

3.2. Design Heuristics

Heuristics that use the factors mentioned above to guide
the exploration of a CFP design space may narrow the

space sufficiently and accurately so a good stage order
and schedule are found. Using our design framework,
we have been experimenting with such heuristics. These
heuristics are hosted in the hardware allocation module
to constrain the position of pipeline stages. Our present
heuristics do not consider the instruction schedule
because the data dependency graph constrains the num-
ber of schedules. In the future we will consider instruc-
tion scheduling as well.

In this paper, we discuss two pipeline layout heuris-
tics. The first confines the search space to designs that
have pipeline stages in order of the critical path:

Heuristic 1: For all nodes and edges
 on the critical

path, evaluate only designs that have the partial
order  wrt. pipeline
stages.

 The pipeline order is with respect to the instruction
fetch stage, so the root of the critical path is the closest
to instruction fetch. This order overlaps the execution of
instructions from different loop iterations (loop-carried
dependences may affect this, of course) while minimiz-
ing the distance results flow along the critical path. If
the pipeline is arranged in the reverse order so the root
of the critical path is placed near the register file, then
there is no overlap (in execution) between loop itera-
tions. In this case, an entire iteration flows into the pipe-
line with the last critical path instruction stalled at the
bottom of the pipeline. This keeps the next iteration
from entering the pipeline and beginning execution.

This heuristic lets stages that execute non-critical
path instructions occur any place in the pipeline (no
constraints are placed on the order). This ensures that
the synthesis system finds the position for each stage
that both executes instructions in the delay of the critical
path and serves as a place-holder to let instructions
move up the pipeline. 

Figure 8 shows an example data dependency graph

n1 n2 … nk, , ,{ }
n1 n2,( ) n2 n3,( ) … nk 1– nk,( ), , ,{ }

n1 n2« n2 n3« … nk 1– nk«, , ,{ }

op1

op4

op5

op6

op3op2

Figure 8: Example data dependency graph
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with the critical path highlighted. The partial order for
this example using heuristic 1 is: 

For example, op1 can appear any place, while op5
must appear after op4 and before op6. The hardware
allocation module imposes this partial order on stage
positions. Although this heuristic determines good pipe-
line layouts, in many cases synthesis must consider a
large number of design points.

A second heuristic considers many fewer pipeline
configurations by generating a more refined partial
order. The heuristic preserves critical path order using
the instruction dependency graph to define operation
partitions by drawing cuts across each level of the
graph. 

Heuristic 2: For the graph , divide N
into K partitions, where K is the maximum path
length in E. Use the partitions to impose a partial
order on pipeline stages such that 
and  then  is in the partial
order. Assign nodes to a partition according to
some assignment heuristic and the dependence
edges E. Evaluate only designs that have the partial
order wrt. pipeline stages.

The cuts determine a partial order that places opera-
tions from level n before operations from level n+1
(root is level 0) in a pipeline. Figure 9 shows an example
of assigning graph nodes to instruction partitions. 

In the figure, the “top-down” assignment of opera-
tions gives the partial order: 

In this example, op1, op2, and op3 all must occur

within the first three pipeline stages (in any order), op4
occurs in the fourth position, op5 in the fifth, and op6 in
the sixth position.

Nodes can be assigned to different instruction parti-
tions. There are two straightforward assignments: top-
down and bottom-up. Top-down conceptually may work
well since assigning nodes to early instruction cuts
ensures those operations begin executing as soon as pos-
sible. Bottom-up may also work since it can minimize
the distance results flow between their definition and
use. For example, Figure 9 shows top-down and bottom-
up assignments of operations to graph cuts. Bottom-up
works best for this graph since it minimizes the distance
results move between their production and consump-
tion. Indeed, we have found that bottom-up assignment
typically works well for most graphs. The pipeline stage
partial order for Figure 9 with bottom-up assignment is:

This partial order puts op2 in the first position of the
pipeline followed by op1 and op4 in the second or third
position The fourth and fifth positions have op3 or op5
and the sixth position has op6.

Heuristic 2 forms instruction groups that execute in
parallel in a way similar to forming instructions for very
long instruction word (VLIW) architectures. After form-
ing instruction partitions, there is a single path through
the dependency graph. Thus, the instruction groups are
arranged in the order of this path (like heuristic 1). The
order of operations is not constrained in an instruction
partition to let the synthesis system find the optimal
local arrangement of pipeline stages within a partition
while minimizing result flow distance between parti-
tions.

4. Results

Preliminary results for several small graphs are shown
in Figure 10. The speed-up in the figure is relative to a
general-purpose pipeline that has separate sidings for
memory, multiplication, and integer operations and a
pipeline stage for branch resolution. The figure shows
speed-up for three pipeline orders: optimal, heuristic 1,
and heuristic 2. In all cases, the partitioning of function-
ality is the same: every graph node is assigned an unique
pipeline stage or siding. The optimal pipeline had the
best performance from all pipeline stage permutations.
The heuristic 2 pipelines use late assignment to allocate
graph nodes to partitions. 

The benchmarks in Figure 10 are small data depen-
dency graphs that have less than 8 nodes. The graphs
contain mostly low latency integer operations, although
graph 10 has two memory references and a multiplica-

op2 op4 op4 op5 op5 op6«,«,«{ }

G N E,( )=

ni∀ partitionk∈
nj∀ partitionk 1+∈ ni nj«

Figure 9: Greedy assignment of graph cuts

op5

op6

op3

op4

op2op1

Ass ignments

Top-down
Bot tom-up

op1 op4 op2 op4« op3, op4 op4 op5
op5 op6«

,«,«,«{
}

op1 op5 op1 op3« op2, op4 op2 op1
op3 op6 op4 op5 op4 op3« op5 op6«, ,«,«

,«,«,«{
}



10

tion. We selected these initial benchmarks because they
were small enough to generate the full design space and
demonstrate the effectiveness of the search heuristics.
As we evaluate more realistic kernels with more instruc-
tion-level parallelism we expect that greater speedups
will be achieved. Furthermore, a CFP may be faster than
conventional processors due to the absence of global
signals and better implementation technology.

The figure shows that the search heuristics find pipe-
lines that are nearly as good as optimal. The perfor-
mance difference between the heuristically determined
pipelines and the optimal pipeline is generally less than
10%. This difference is partly influenced by start-up
cost: The optimal stage orders usually have a lower
start-up penalty because they order stages to favor
requesting source operands from the register file.

Both search heuristics work well . Heuristic 2 does
nearly as well as heuristic 1, while evaluating fewer
designs. Indeed, for graphs 3, 5, 7, and 10, heuristic 2
finds the same pipelines as heuristic 1.

Figure 11 shows a comparison of the number of
designs evaluation by each heuristic as a percentage of
the overall design space. Both heuristics reduce the
search space; however, the amount of the reduction is
dependent on the shape of the dependency graph.

Figure 10 and Figure 11 show that the heuristics con-
strain the search space to a small number of pipelines
and find designs that are nearly as good as optimal.
Although these initial experiments are small , we expect
the heuristics to also work for full applications. Future
work however, must include heuristics for instruction
scheduling as well pipeline layout.

5. Conclusion

This paper describes a design environment for studying
counterflow pipeline organizations. Our preliminary
experiments demonstrate that the CFP is a flexible target
for high-level synthesis of application-specific micro-
processors. The work also shows the importance of
exploring a large design space to further understanding
of a new computer organization. We are continuing to
research the performance potential of custom CFP’s,
including micro-architecture extensions that may greatly
improve performance without sacrificing ease of design. 
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