
1

Post-deployment Based Key Distribution
Mechanism for Wireless Sensor Networks

Qiuhua Cao and John A. Stankovic
Department of Computer Science

University of Virginia
Charlottesville, VA, 22903

{qhua,stankovic}@cs.virginia.edu

Abstract— To secure the communications in wireless
sensor networks, sensor nodes have to obtain secret
keys. Many key management schemes, such as KDC and
asymmetric cryptography, are not suitable for wireless
sensor networks due to the strict resource constraints.
Most key pre-distribution algorithms require that each
node stores a set of keys before the deployment and
discovers the keys shared with the neighboring nodes after
the deployment. In this paper we present an efficient
key distribution algorithm based on the topology and the
secure communication requirements of the system. Our
algorithm assigns keys to each node after the deployment.
Thus, each node needs to store sufficient number of keys
only. By providing the mechanism to secure the key
distribution process, our algorithm enables the system to
recover from severe attacks by redistributing the keys.
Based on the simulation results and the analytic study
we demonstrate that our algorithm is efficient in memory,
bandwidth, and energy. At the same time, our algorithm is
able to provide 100% connectivity and stronger resilience
to node capture.

I. I NTRODUCTION

Wireless sensor networks have been widely studied
and applied to many applications in military as well as
civilian operations. Many applications are dependent on
secure operations, such as key management, to secure
the communication between sensor nodes in a network.
Otherwise, secret information can easily be accessed by
adversaries. For example, an intruder can violate security
of the system by interfering with system availability,
data integrity, or data confidentiality. In order to de-
fend against adversaries, node-to-node communication
in wireless sensor networks should be encrypted and
authenticated. However, encryption and authentication
require that the nodes in the system share secret keys,
which brings up one main question “how to set up secret
keys between communicating nodes?”.

There are three types of key management mechanisms
in the literature providing the answers to the question

above. The three types are key distribution center (KDC)
mechanisms, asymmetric cryptography mechanisms, and
key pre-distribution mechanisms. However, KDC [16]
and asymmetric cryptography [5] [18] are computation,
bandwidth and memory inefficient for the highly limited
devices found in wireless sensor networks.

Commonly, a key pre-distribution strategy such as the
algorithm proposed in [10] is composed of three steps:
(1) generating a pool of P random keys, (2) each node
randomly selecting a set ofk distinct keys from the
pool and storing the keys in memory before deployment,
and (3) discovering one shared node-to-node key after
deployment. The result is that the pre-distribution key
management schemes are not very efficient. For exam-
ple, the pre-deployed key scheme in [10] requiresk2

decryptions on the receiver side,k encryptions on the
sender side, and at leastk messages to be sent and
received for the key discovery procedure to find which
keys are actually shared even for the nodes in their
communication ranges. It is also memory inefficient to
storek distinct keys.

The first observation we have is that the inefficiency
of pre-distribution key algorithms is because no a priori
knowledge of deployment configuration of the system
is available at the time of assigning the keys. A node
is deployed randomly and it can not know beforehand
which nodes will be within its communication range after
the deployment. As a result, a node has to preload a
subset of sufficient keys before deployment to satisfy the
connectivity requirement of the system after deployment.
Even if a node is deployed by hand, it is also costly to
pre-determine the location of each node.

The second observation we have is that many key
pre-distribution and management algorithms do not take
the secure communication requirements of an application
to which the keying algorithms apply into account. For
example, some applications such as tracking require the
nodes in a neighborhood or a group to cooperate with
each other, while some applications such as environ-

2

mental monitoring only need the nodes in the network
to take a sample and send the data back to the base
station periodically. The first case requires a node to have
pairwise keys to share with nodes in a neighborhood
or a group to build secure communication among them.
The latter case only requires the secure communication
between a node with its communication partner (i.e., its
parent).

The third observation we have is that many key pre-
distribution and management algorithms ignore what if
the keys of the system are system-wide exposed after
severe attacks.

Driven by the three observations above, we propose an
efficient self-healing post-deployment based key distribu-
tion mechanism for wireless sensor networks. The basic
idea of our key distribution mechanism is to distribute
the keys based on post-deployment knowledge and on
the secure communication requirements of the system.
In this way, we eliminate the need for each individual
node to store a large subset of preloaded keys and we
also reduce the communication cost to discover keys.
At the same time, our algorithm gives the system the
flexibility to redistribute keys when necessary, such as
after severe attacks, to recover the system.

The contributions of our algorithm are:

• providing an efficient key distribution mecha-
nism for wireless sensor networks based on post-
deployment knowledge of the system,

• providing an efficient mechanism to heal the system
from attacks by rekeying the system, and

• providing flexible keying mechanisms based on
security communication requirements of the system.

We organize the rest of the paper as follows. We
discuss the related work in Section II. We give the
overview of our algorithm in Section III. In Section IV,
we present the trust model and attack models addressed
in this paper. We discuss the details of our algorithm in
Section V. The analyses of our algorithm with respect to
the attack models addressed in this paper are presented
in Section VI. In Section VII, through simulations we
demonstrate that our algorithm is efficient. We also
compare our algorithm with other works by analytic
analyses. We conclude our paper in Section VIII.

II. RELATED WORK

Recently, several other research groups [11] [15] [9]
[3] further investigated how to make public key cer-
tificates, such as algorithms based on Elliptic Curve
Cryptography (ECC), usable in wireless sensor networks.
Despite the communications and computational reduc-
tions provided by the ECC technology, interactive key

management protocols, even using faster and smaller
public key algorithms, incur significant bandwidth and
large latencies when used in wireless sensor networks.

Random pairwise key pre-distribution algorithms as-
sign a set of keys to a node based on probability or
random graph theories [10] [4] [17] or symmetric ma-
trices operations [1] [7] [6] or polynomial computations
[2] [13] before deployment. The random pairwise pre-
distribution algorithms reduce the memory requirements
to store the preloaded keys. However, the random subset
assignment algorithms need to use correct parameters to
guarantee that any two nodes can establish a pairwise
key, provided that the two nodes can communicate with
each other. At the same time, subsets of keys have to be
sufficiently disjoint from one another. Otherwise suffi-
cient enough node captures can result in the exposure
of all or a large fraction of the keys in the system.
These two requirements demand a large subset of keys
to be assigned to each node. And the size of a subset
of keys a node has to store dramatically increases when
the network size increases.

Several papers proposed ideas to reduce the memory
requirements of random pairwise pre-distribution algo-
rithms by exploiting the location/deployment information
of the nodes in static wireless sensor networks. [14]
integrated the location information with both a random
pairwise key pre-distribution scheme and a polynomial
based key predistribution scheme. [8] developed a key
pre-distribution scheme based on the model of the node
deployment knowledge. The spatial relation between
nodes derived prior to deployment are used to assign
the keys to a node. The authors of the paper modeled
the node deployment knowledge using a non-uniform
probability density function, normal distribution. Simi-
larly, [12] proposed a grid-group deployment scheme.
In [14] [8] [12], the location/deployment knowledge of
a node is an estimation of which area a node is to
be deployed. The results indicate that the location or
deployment knowledge is useful to avoid unnecessary
key assignments in pre-distribution algorithms. However,
the performance of the algorithms is highly influenced
by the difference between the prior location/deployment
knowledge of a node and the real location of the node.
And to guarantee the connectivity between the nodes in
the adjacent zones/groups/grids is difficult.

Different from the algorithms above, our key distri-
bution algorithm assigns keys to nodes after the deploy-
ment. In this way, the keys are assigned to nodes which
are really adjacent. Our algorithm further reduces the
memory requirement of a node to store the keys. At the
same time, our algorithm establishes sufficient keys for
any nodes which require communication.

3

III. OVERVIEW OF OUR ALGORITHM

An important underlying idea of our key distribution
algorithm which contributes to its efficiency is to dis-
tribute the keys to the nodes in the system after the
deployment. The algorithm operates in 4 phases. First,
the base station issues a topology discovery message.
Second, upon receiving the topology discovery request,
each node reports its topology (neighbor) information
to the base station. Third, the base station constructs
the system topology based on the reports from the net-
work. Fourth, the keys are generated by the base station
knowing the system topology and system communication
requirements. For example, the communication require-
ments might be that all nodes must communication with
neighbors, with the base station and perhaps there is also
group communication. In this case all pair-wise keys,
keys between nodes and the base station and group-
wise keys can all be generated by the base station and
disseminated properly. Our algorithm also enables the
base station to redistribute new keys to the nodes in the
system, whenever it is necessary, to enable the system to
recover from attacks. The redistribution of the keys can
be done by reassigning and distributing keys to the nodes
without rebuilding the topology, or it can be done from
rebuilding the topology of the system. Figure 1 shows
the steps of our algorithm. Topology discovery, topology
reporting and topology construction can be piggybacked
with typical system initialization schemes found in most
wireless sensor networks so the cost of our algorithm in
these three phases is minimum.

Fig. 1. Overview of Our Algorithm

As discussed in section I, our algorithm provides
an answer to the question “how to set up secret keys
between communicating nodes?”. Our algorithm also
provides the answer to the question“how to heal the
system from security attacks where keys are divulged” by
rekeying the system. In the remaining part of this section,
we discuss how our algorithm makes the key set-up pro-
cess secure (with respect to the attack models addressed
in this paper) in a general manner. The detailed algorithm
is discussed in Section V. In order to make sure that the
key set-up process is secure, each step of our algorithm

is protected. Our algorithm makes sure that each node
can correctly authenticate the topology discovery request
from the base station. In the topology reporting phase,
each node uses an unique key to encrypt the information
before sending it back to the base station and only
the base station can correctly decrypt the information.
The base station verifies the correctness of the reported
topology information and authenticates the source of the
reported information during the topology construction
step. During key distribution, the key information is
encrypted and only the receiver of the key information
can decrypt it.

IV. T RUST MODEL AND ATTACK MODELS

Before the discussion of the details of our algorithm,
we discuss the trust model and attack models addressed
in this paper.

A. Trust Model

We assume that a PC is the trusted center as the base
station. Before deployment, the base station generates
a sequence of authentication codesc(1), c(2), . . . , c(k),
. . . , c(n), wherec(k+1)=F (k). F function is a one-way
function which is computationally infeasible to compute
c(k− 1) in a limited time by knowingc(k) andF . Also
before deployment, we assume that each node stores (1)
an unique shared secret encryption keyKencr with the
base station, (2) an unique shared secret authentication
key Kmac with the base station, (3) the functionF , and
(4) the valuec(n) in its memory. We also assume that an
adversary has the same communication capability as the
wireless sensor devices in the system. At the same time,
we assume that only one adversary is in a neighborhood.

B. Attack Models

Eavesdropping: An adversary could easily gain access
to private unencrypted information by monitoring the
wireless transmissions between nodes. Therefore, when
a node reports the topology information back to the base
station, we use end-to-end encryption to defend against
the eavesdropping at this phase. When the base station
sends the key information to the nodes in the network,
we also use end-to-end encryption.

Spoofing, Altering, Replaying: An adversary can spoof
or alter or replay an overheard message being transmitted
between the nodes in the network if the message is not
encrypted properly. However, our algorithm utilizes the
implicit authentication properties of a message to confine
the effect of spoofing or altering or replaying. Thus, our

4

algorithm requires minimum number of predeployed en-
cryption keys. To defend against replaying, we maintain
the freshness of an authentication code.

DOS: Denial-of-Service(DOS) attacks aim to destroy
network availability. Attackers can send a series of mean-
ingless communications causing the targeted nodes to
exhaust their batteries while processing and forwarding
the messages. Proper authentication can prevent injected
messages from being accepted by the network. For
example, using signatures based on asymmetric cryp-
tography can provide message authentication. However,
this technique is highly computationally intensive. In
our approach only the base station is allowed to send
any flooding messages thus mitigating the DOS attack.
In addition, symmetric authentication is used to prevent
any injected flooding messages from being propagated
through the network.

V. OUR EFFICIENT KEY DISTRIBUTION ALGORITHM

In addition to the trust assumptions in Section IV-A,
we make one non-security related assumption, reliable
communication. Later in the analyses section VI, we
discuss the impact of this on our algorithm. Furthermore,
we show that the assumption can be relaxed.

Our algorithm is organized in 4 phases: topology
discovery, topology report, topology construction and
key distribution.

1) Topology Discovery:At the beginning of topology
discovery, the base station sends out a topology discovery
message (TDM) as tuples<sender, authcode> to all
the nodes in the system. The “sender” is the identity
of the node to send/relay the message. The “authcode”
is the authentication code generated by the base station
to be used for the receiver to authenticate if the message
is sent by the base station. The authentication code is
chosen from the sequencec(1), c(2), . . . , c(k), . . . ,
c(n−1). The first topology discovery message sent from
the base station selectsc(n − 1) as the “authcode”, the
second topology discovery message usesc(n − 2), the
kth discovery message choosesc(n−k), and so on. The
different rounds of the topology discovery messages are
used when the system needs to redistribute the keys for
self-healing purposes. Each node in the network receives
a topology discovery message to (1) authenticate if the
topology discovery message comes from the base station,
if not, the message gets dropped; (2) rebroadcast a
topology discovery message with the same authentication
codec(j) one time; and (3) build up its neighbor table by
overhearing the messages in its communication range.

Authenticate the Base Station: As described in the
assumptions, we only allow the base station to initiate the
topology discovery messages as flooding messages. An

adversary is able to pretend to be the base station because
the topology discovery messages are not encrypted at
all (no key for encryption available yet). If no proper
authentication mechanism is built in the system, a node
is not capable of deciding whether it should respond
to a received message or not. We use the one-way
functionF and the valuec(n) (note thatF andc(n) are
stored on each node before deployment) to authenticate
if a topology discovery message is sent by the base
station. The authentication process is as follows: when
a node in the network receives a topology discovery
message with “authcode”c(j), it computes the value
c(j′)=F (c(fresh)) while the c(fresh) is the most up-
to-date authentication code the node received from the
base station. Initially, thec(fresh) is set to bec(n).
And if the computedc(j′) equals thec(j) received,
the message is generated by the base station and is
authenticated. Otherwise, the message is dropped. The
authentication algorithm above guarantees that only a
new topology discovery message initiated by the base
station with a newer authentication code (newer than
c(fresh)) is accepted by the authentication algorithm.
Any old messages (messages with older authentication
codes, with respect toc(fresh)) can not get authenti-
cated.

Broadcast a Topology Discovery Message: Once a
topology discovery message is authenticated, a node
which receives/overhears the message (1) sets its most
up-to-date authentication code valuec(fresh) to bec(j),
(2) broadcasts a topology discovery message (only the
sender of the authenticated message changed to be the
identity of the node broadcasting this message) given that
it is its first time to receive the message with “authcode”
c(j). In this way, each node only broadcasts a topology
discovery message with the same “authcode” once.

Build Up the Neighbor Table: When a node re-
ceives/overhears a topology discovery message, if the
received message is authenticated as above, the node
records the sender of the authenticated message in its
neighbor table if the identity of the sender is not yet in
the table.

2) Topology Report:After the topology discovery
phase, each node has the most up-to-date authentication
code c(fresh) from the base station and a table of
neighbor identities. During the topology report phase,
each node reports its neighbor information back to the
base station. The topology report message (TRM) is a
4-tuple <source, dest, authcode, SECRET>. The “au-
thcode” is filled with the most up-to-date authentication
codec(fresh) a node received from the base station in
the topology discovery phase. the “SECRET”, as given
below in Equation (1), is the encrypted neighbor table

5

% Filter False Messages

For each TRMof all received TRMs

if(SECRET decryptable and authenticated)

add source→ NodeList; add nt → ntsource ;

elseif(SECRET not authenticated || not decryptable)

add source→ FalseNodeList; drop the message;

% Sanitize Neighbor Tables

For each ntj(j = 0, . . . , k)

for each Ni ∈ ntj

if Ni ∈ FalseNodeList {delete Ni from ntj ;}

Fig. 2. Neighbor Table Sanitizing Algorithm

(nt), source, and authentication code using the keyKencr

shared between a node and the base station, and the
message authentication code (MAC) generated using the
authentication keyKmac.

tpinfo = {source, authcode, nt}

SECRET = {tpinfo}Kencr
, MAC(Kmac, tpinfoKencr

)

When a node receives a topology report message
as the chosen receiver, the chosen receiver is decided
by the routing algorithm of the system, it relays the
message when (1) the “authcode” in the message is
legitimate (equals to the most up-to-date authentication
code), and (2) the “dest” of the message is the base
station. Otherwise, the message is dropped.

3) Topology Construction: From the discussions
above, we know that at the end of the topology report
phase, the base station received a list of neighbor ta-
bles encrypted as in Equation (1) from the nodes in
the network. In the section, we discuss the topology
construction algorithm.

Before the base station constructs the topology of the
network, it is vital that the neighbor tables to be used
to construct the topology are legitimate. We provide a
neighbor table sanitizing algorithm for the base station
to filter out malicious topology report messages, get
rid of adversaries in neighbor tables. In figure 2, we
present the pseudo algorithm for processing the neighbor
tables collected from the network. ThentNi

in figure 2
represents the neighbor table of nodeNi.

First, the neighbor table sanitizing algorithm builds
the legitimate neighbor tablesntNi

s and the source of
the legitimate messagesNodeList. And it filters out
the false messages (which are not decryptable or can
not pass the authentication because the adversary does
not have the correct shared keys) sent by the adversary.
The sources of the undecryptable or not authenticated
messages are added to the listFalseNodeList. Second,
the algorithm sanitizes the neighbor tablesntNi

s against
the false node list.

After the sanitizing of the neighbor tables, the base
station uses the legitimate neighbor tablesntNi

s and the
NodeList to construct the topology of the system, which
is to construct a graph G(V,E). All nodes inNodeList

are vertices (V). If a node is in a vertex’s neighbor table,
there is an edge (E) between the node and the vertex.

4) Key Distribution: Once the topology of the net-
work is constructed, the base station: (1) generates a
sufficiently large key pool using any of the key gen-
eration algorithms in the literature; (2) assigns proper
keys for the nodes which need to communicate with each
other based on the secure communication requirements
of the system; (3) disseminates the assigned keys to
the corresponding nodes in the network, the keys are
properly encrypted so that only the receiver of the keys
can obtain the keys. In the remaining part of this section,
we discuss the details of the key assignment algorithm
and the key dissemination algorithm.

The key assignment algorithm at step (2) gives the
base station the flexibility to assign different keys (i.e.
pairwise key, single key, group key, parent-child key) for
different purposes based on the secure communication
requirements and the topology of the system. In this
paper, we discuss two kinds of keying mechanisms,
namely spanning tree based and neighborhood based.
The spanning tree based keying mechanism provides the
keys for some applications (i.e. environmental monitor-
ing, agriculture, medicare), where nodes in the network
do not require cooperation among neighbors and use
static routes (i.e. spanning tree) to transmit messages.
Each node in the network needs to directly share its
own information with its parent, and a parent needs
to share its information with its children. The neigh-
borhood based keying mechanism provides the keys for
the applications (i.e. military tracking), where nodes in
a neighborhood are required to share information and
cooperate with each other to accomplish a task.

Spanning Tree Based Keys (STB−K): Each node has
a maximum of two keys (leaf nodes only have one key)
to be distributed, one key is used to communicate with its
parent, one key is used to communicate with its children.
The STB-K algorithm starts from the base station as
shown in Figure 3. First, the base station (BS) selects
an unique key to be shared between itself and its1-layer
children (nodeN1, nodeN2, nodeN3). Second, the base
station selects an unique key to be shared between each
of nodes in thei-layer and its children in thei+1-layer.
For example, nodeN2 in the 1-layer shares an unique
key with nodeN4, node N5, and nodeN6 in the 2-
layer. And third, the base station repeats the second step
until the bottom of the tree. In Figure 3, the same color
edges/links share the same unique key.

6

1N 2N 3N

10N9N8N7N

6N5N4N

Fig. 3. An Example of the STB-K Algorithm

i = 0; While(i < sizeof(V)) {

v = Vi; vsv = φ; vkv = φ; j = 0; i = i + 1

for eachx ∈ V ; if e(v, x) ∈ E {

x → vsv ; x → vkv ; deletee(v, x) from E };

While(j < sizeof(vsv − 1)) {

va = vsv [j]; vb = vsv [j + 1]; j = j + 1

if e(va, vb) ∈ E { deletee(va, vb) from E;

if va /∈ vkv { va → vkv ; }

if vb /∈ vkv { vb → vkv ; } } }

assign an unique key for all the vertices invkv ; }

Fig. 4. Pseudocode of the NBB-K Algorithm

Neighborhood Based Keys (NBB − K): Each node
hasK keys,K is defined by the difference betweenW

(number of neighbors) andQ (number of neighbors that
share the same neighbor with this node), plus one. The
NBB − K algorithm assigns keys based on the system
topologyG(V, E). The pseudocode of the NBB-K is as
shown in Figure 4.

For the key dissemination at step (3), the base sta-
tion can simply unicast the keys to individual nodes.
However, a more energy and bandwidth efficient way
to disseminate the keys is to piggyback the keys of
several nodes together, when the base station has the
static routing information of the system (i.e. spanning
tree). The keys are properly encrypted. Here, we use the
spanning tree as the exemplary static routing algorithm to
illustrate how to piggyback the encrypted keys of several
nodes together. The two dissemination mechanisms are:

Spanning Tree Based Dissemination (STB−D): The
encrypted keys of the nodes on the same sub-tree are
piggybacked together. In Figure 5, We use the subtree
BS → N2 → N4 → N7 as shown in Figure 3 as
the example to demonstrate how the STB-D algorithm
properly encrypts and disseminates the keys of the nodes
on one sub-tree. The key assignment algorithm in the
example is the STB-K.K(BS,Ni) in Figure 5 represents
the Kencr shared between the base station and node
Ni. The key dissemination message is composed of two
parts, separated by a special byte. The first part is the
encrypted node identities of the receivers of the keys,
the second part is the encrypted keys. As an example,
in Figure 5 the base station sends messageKDMN2

to

node N2. The encrypted node identities are generated
as follows: the identityN7 is first encrypted using key
K(BS,N7); then it combines with identityN4; finally
the identity N4 and the encryptedN7 are encrypted
using keyK(BS,N4). Pk and Ck represent the key for
a node to communicate with its parent and the key to
communicate with its children, respectively. The keys for
nodeNi are encrypted using keyK(BS,Ni). For the key
assignment algorithm NBB-K, we replace the encrypted
Pk and Ck with the properly encrypted neighborhood
based keys. Upon receiving key distribution information,
a node processes and relays the message to its next hop
using the algorithm shown in Figure 6.

Fig. 5. The Key Distribution Message Format for{STB −
K, STB − D}

Unicast Based Dissemination (UCB-D): The en-
crypted keys for each node are sent out individually by
the base station.

VI. A NALYSIS

We addressed three types of attack models in sec-
tion IV. In section V, we presented the details of our key
distribution algorithm. In this section, we first generate
a complete list of possible attacks at each phase of our
algorithm, then we demonstrate that our algorithm cor-
rectly defends against the attacks. Later, we analyze the
impact of the assumption on the reliable communication
on our algorithm in the connectivity analyses, and show
how the assumption can be relaxed.

A. Correctness demonstration of our algorithm against
the attack models

As stated in section V, our algorithm is composed of
4 phases. And the adversary is capable of eavesdropping
and spoofing/alerting/replaying the messages during the
4 phases if the messages are not encrypted properly.
A topology discovery message (TDM) in the topology
discovery phase is a 2-tuple<sender, authcode>. A
topology report message (TRM) in the topology report
phase is a 4-tuple<source, dest, authcode, SECRET>.
The topology construction phase is the computation done

7

% Upon Receiving a KDMsg

if(I am the dest) % receives a KDMsg

payload = KDMsg.payload; Index(SP) = payload[SP];

if(I am not the last hop) % relays a KDMsg

decrypt KDMsg.payload[SP + 1] using K(BS, ME);

save the decrypted keys;

send a KDM to the next hop;

else(I am the last hop of the KDMsg)

decrypt KDMsg.payload[SP + 1] using K(BS, ME);

save the decrypted keys;

else(I am not the dest) % routes a KDMsg

route the KDMsg to next hop;

Fig. 6. Pseudocode of the Algorithm to Receive, Relay, and Route
a KDMsg

on the base station. A key distribution message (KDM) in
the key distribution phase is encrypted properly as shown
in Figure 5, all the fields of the payload are end-to-end
encrypted using the shared secret keyKencr between the
base station and the receiver of the message. The result
is the only two phases an adversary can attack are the
topology discovery and the topology report phases.

Attacks in the Topology Discovery Phase: There are
four cases an adversary can attack the topology discovery
process after overhearing the legitimate messages. Case
(1), the adversary eavesdrops on a legitimate authcode
“c(j)”, then forges a TDM <adversary, c(j)>. Case
(2), the adversary forges a TDM<sender, spoofed
authcode>. Case (3), the adversary forges a TDM
<adversary, spoofed authcode>. Case (4), the adversary
replays an older authcode “c(k)” in a TDM<sender,
c(k)>, where c(k) is the legitimate authentication code
used in the previous round of the topology discovery
phase. In case (2), case (3) and case (4), the forged
TDM or replayed TDM gets dropped in one hop because
the spoofed or the older authentication code is not able
to pass the authentication algorithm as discussed in
section V-.1. In case (1), the identity of the adversary
is possibly recorded in the neighbor table of a legitimate
node when it builds its neighbor table. However, in the
topology construction phase in section V-.3, our neighbor
table sanitizing algorithm as shown in Figure 4 deletes
the adversary from the legitimate neighbor tables. So we
conclude that our algorithm defends against the attacks
in the topology discovery phase correctly.

Attacks in Topology Report Phase: After eavesdrop-
ping on the TRMs in the topology report phase, an
adversary is able to manipulate the 4 fields of a TRM.
However, the manipulation on the “dest” and/or the
“authcode” does not affect the correctness of the algo-
rithm. As discussed in section V-.2, one condition for

a receiver of a TRM to relay the message is that the
“dest” has to be the base station, because all the TRMs
are reported to the base station. A legitimate “authcode”
is another condition for a receiver to relay a TRM. The
possible attacks are as follows: Case (1), by faking the
“source”, an adversary issues a TRM<adversary, dest,
authcode, SECRET>; Case (2), an adversary forges a
TRM <sender, dest, authcode, forged SECRET> or a
TRM <adversary, dest, authcode, forged SECRET>. In
case (1), the forged TRM does not harm the correctness
of our algorithm because the SECRET are legitimate and
the topology construction algorithm builds the topology
of the system based only on the legitimate SECRET.
It is just that the base station receives two identical
SECRETs. In case (2), once the illegitimate TRM arrives
at the base station, the message gets dropped because
the SECRET is not decryptable or authenticated. To
conclude, our algorithm defends against the attacks in
the topology report phase.

Based on the discussion above, we conclude that our
algorithm correctly defends against the attacks as we
addressed in the section IV.

B. Connectivity Analysis

Connectivity is defined as the probability that any two
neighboring nodes share one key. To provide complete
connectivity the topology constructed by the base station
has to be complete (include all the nodes in the system)
and a node has to receive one of the KDMs destined to it.
As discussed in section V, our algorithm guarantees the
completeness of the constructed topology and each node
receives the keys destined to it under the assumption of
the reliable communication. In the following, we discuss
the impact of the message loss on the completeness of the
constructed topology and the message loss of KDMs on
the probability of a node to obtain the keys. The message
loss in the topology discovery and report phases impacts
the completeness of the constructed topology. We discuss
the message loss in each phase.

The Impact of Message Loss in the Topology Discov-
ery Phase: During the topology discovery phase, the
base station floods TDMs to the network. Each node
broadcasts TDMs and updates its neighbor table when
it receives a legitimate TDM. Hence, a node is isolated
from the rest of the network at this phase only under one
extreme condition when it is unable to communicate with
any of the neighbor nodes. We argue that the isolation of
a node is unlikely when all the nodes can communicate
with their neighbors. But it is possible that a node is in
some of the neighbor tables of it’s neighbors but not in
all of them.

8

The Impact of Message Loss in the Topology Report
Phase: A node sends its topology (neighbor) information
back to the base station during the topology report phase.
The number of the TRMs a node sends is defined by the
beacon rate and the period of the topology report phase.
As long as one of the TRMs sent by a node arrives at
the base station, the TRM contributes to the topology
construction on the base station. The only case where
the message loss may impact the completeness of the
constructed topology is when none of the TRMs sent by
a node reach the base station. Even if this is the case, it
may still be possible to construct the correct topology.
As shown in Figure 7(a), the message loss of all the
TRMs sent by nodeD does not affect the completeness
of the constructed topology becauseD is reported in the
TRMs of nodesA, B, and C. Alternatively, as shown
in Figure 7(b) the message loss of all the TRMs sent by
a node can impact the completeness of the constructed
topology when the neighbor tables of the neighbor nodes
are incomplete. For example, in the constructed topology,
nodeD is not the neighbor of nodeB.� �� ������� ����� ���� ��	�� � � �� ��	 �� �� �� ��	�� �� �� ��	���

(a) Case 1.

 ��
������ ����� �
��� � � �� � � � �
 �� ����
 �� ������
(b) Case 2.

Fig. 7. Impact of Message Loss at the Topology Report Phase.

A node does not obtain the keys assigned to it only
when all the KDMs destined to it are lost. To conclude,
the message loss only impacts our algorithm in special
cases, for example, when all the KDMs sent for a node
are lost. By increasing the number of the transmissions of
the TDMs, TRMs, and KDMs, the impact of the message
loss on our algorithm becomes insignificant.

VII. PERFORMANCEEVALUATION

We evaluate our post-deployment based key distri-
bution algorithm by simulation over different system
deployments. Guided by the performance data obtained
through simulations, we analytically compare our algo-
rithm with two representative pre-distribution algorithms
– Eschenauer-Gligor Scheme[10] andDu-Deng Scheme
[8].

A. Simulation Results

In our simulation studies, we demonstrate the per-
formance of our algorithm using the following metrics:

memory, bandwidth and energy. The memory require-
ment for the keys per node is calculated from the
number of keys multiplied by the number of bits per key.
Bandwidth is measured by the number of bytes of the key
distribution messages a node receives, relays, and routes.
The energy consumption is represented by the number
of messages a node processes. We study three system
deployments – Line, Grid, and Random. In the Line
deployment, we put all the nodes in a line, hop by hop.
In the Grid deployment, we partition the deployment
field into grids, the width of a grid equals the commu-
nication range. Each node is deployed at a grid point.
In the Random deployment, we uniformly distribute the
nodes in the deployment field. The purpose of the Line
deployment is to study the impact of the STB-D and
the UCB-D dissemination algorithms on bandwidth and
energy under the condition that the STB-K and the NBB-
K assigns the same number of keys to the nodes. The
purpose of the Grid deployment is to compare against
the Random deployment to understand the performance
of our algorithm when systems have the same number of
nodes, different deployment configurations, and yet the
same key assignment and distribution algorithms. For
both the Grid and the Random cases, the deployment
field is 100m by 100m. The radio range is 25m. The
number of nodes are 50. The length of a key is 56
bits. All the results are the mean over 10 runs. All the
simulation results are within 5% of the mean and the
confidence level is 95%.

Figure 8(a) demonstrates that the system topology and
the secure communication requirements of the system
define the number of keys per node. Each node is
assigned sufficient number of keys. For the same system
topology, the NBB-K results in more keys per node than
the STB-K when nodes have neighbors other than their
parent and children. The maximum number of keys per
node assigned by NBB-K are defined by theW andQ

as discussed in section V.
Figure 8(b) presents the mean number of KDMs a

node receives, relays, and routes. The definitions of the
three operations are as shown in Figure 6. In the rest
of the section we rename{STB-K, STB-D} with STB1,
{STB-K, UCB-D} with STB2, {NBB-K, STB-D} with
NBB1, and{NBB-K, UCB-D} with NBB2 for clarity.
Furthermore, we use a notation Topology:Algorithm to
simplify the discussion. For example, L:STB1 stands for
Line topology for STB1 algorithm.

The number of key distribution messages depends on
the number of keys per node, the topology of the system,
and the key distribution algorithm. This is illustrated by
the results in the Figure 8(b). For instance, STB1 shows
the best performance in the number of KDMs because

9

STB−K, STB−D
NBB−K, STB−D
STB−K, UCB−D
NBB−K, UCB−D

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

RandomGridLine

M
ea

n
N

um
be

r
of

 K
ey

s
P

er
 N

od
e

(a) Mean Number of Keys per Node.

STB−K, STB−D
NBB−K, STB−D
STB−K, UCB−D
NBB−K, UCB−D

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

RandomGridLine

M
ea

n
N

um
be

r
of

 K
D

M
s

P
er

 N
od

e

(b) Mean Number of Key Distribution Mes-
sages per Node Receives, Relays.

STB−K, STB−D
NBB−K, STB−D
STB−K, UCB−D
NBB−K, UCB−D

 0.0

 50.0

 100.0

 150.0

 200.0

 250.0

 300.0

RandomGridLine

M
ea

n
N

um
be

r
of

 B
yt

es
 P

er
 N

od
e

STB−K, STB−D
NBB−K, STB−D
STB−K, UCB−D
NBB−K, UCB−D

 0.0

 50.0

 100.0

 150.0

 200.0

 250.0

 300.0

RandomGridLine

M
ea

n
N

um
be

r
of

 B
yt

es
 P

er
 N

od
e

(c) Mean Number of Bytes for Key Distribu-
tion Messages per Node Receives, Relays, and
Routes.

Fig. 8. Mean number of Keys, Key Distribution Messages, and Bytes perNode

fewer keys are assigned per node and the dissemination
algorithm packs key information for more nodes per
message. The topology affects the number of KDMs.
For example, L:STB1 requires fewer number of KDMs
per node than G:STB1 because non leaf nodes route
more KDMs in the Grid deployment than in the Line
deployment. STB1 requires fewer KDMs per node than
NBB1 for the same topology becaue NBB1 piggybacks
key information for fewer nodes. The figure shows that
L:STB1 performs 50% better than L:NBB1, while both
experiments have the same topology and the key dissemi-
nation algorithm. The difference in performance is due to
the key assignment algorithm. L:NNB1 has more specific
information in KDMs including the node identities that
are paired with the keys resulting in longer chunks of
key information per node. Therefore, fewer chunks can
be piggybacked to each message due to the message
length constraint and a larger number of messages needs
to be sent. Changing the topology for NNB1 from Line
to Grid increases the number of KDMs, because in the
G:NNB1 case the key information per node is larger due
to more node neighbors. Therefore fewer chunks can be
piggybacked per message and more messages need to be
sent to distribute the key information. Since the topology
change has less effect on STB1, G:STB1 performs 130%
better than G:NBB1.

Figure 8(c) shows the mean number of bytes for
KDMs per node. The number of keys is the same for all
algorithms the case of Line topology, resulting in a com-
parable performance. However, for the Grid and Random
topologies the NNB1 performs much worse than STB1.
This is because the key information length per node is
larger due to more neighbors and the overhead is higher
for NNB1 in comparison to STB1.

Based on the discussion above, we conclude that the
number of keys assigned to a node is defined by the
secure communication requirements and the topology

of a system. The number of key distribution messages
processed by a node is defined by the secure communica-
tion requirements, the topology, and the key distribution
algorithm. The STB-D performs better when the key
information can be piggybacked together for more nodes.
For example, STB1 performs 150% better than STB2 in
the Line, 130% better in the Grid, and 90% better in the
Random deployment topologies.

B. Analytical Comparison

In this subsection, we compare our algorithm with the
Eschenauer-Gligor Schemeand theDu-Deng Scheme.
We focus on the number of keys a node has to store,
the connectivity, and the resistance to node captures.
Connectivity is defined as the probability that any two
neighboring nodes share one key. Resilience is defined
as a certain number of nodes that are captured by the
adversaries, which compromise a certain fraction of the
secure links.

Our algorithm assigns sufficient number of keys to
each node based on the system topology and the secure
communication requirements. Hence, the algorithm en-
sures that a shared key is provided for any two nodes that
request communication. The number of keys per node is
bounded by the number of its neighbors. A compromised
node only reveals the keys it shares with its neighbors
because no extra keys used by non-neighboring nodes
are stored contrary to the pre-distribution algorithms.

As described in theEschenauer-Gligor Scheme, if
the number of nodes in the system is 10,000, the
neighborhood size is 60 and when each node selects
τ = 200 keys from a key poolS, |S|= 100, 000, the
probability that any two neighboring nodes share at least
one key is 0.33. The exposure of one key leads to the
compromise of another link with the probability of 0.3.
As indicated in theDu-Deng Scheme, Equation 1 shows
the relationship between the memory usagem and the

10

TABLE I

COMPARISONS OF THE THREEALGORITHMS

m = 60 connectivity = 0.98%
connectivity resilient m resilient

Our Algorithm 100% n-1 60 n-1
Esch-G Scheme 2% 1 - -
Du-Deng Scheme 69% 19 80 19

number ofτ spaces each node carries.m is defined in
units of the key size, which is also the number of keys
in our algorithm.λ represents the resilience degree to
node captures. It means that as long as no more thanλ

nodes are compromised all the communication links of
noncompromised nodes remain secure.

τ = ⌊
m

λ + 1
⌋ (1)

To ensure the fairness of algorithm comparison, we
use the same network size (n) of 10,000 and neighbor-
hood size of 60. We set theλ = 19 in Equation 1. The
Du-Deng Schemealgorithm in Table I is the DDHV-D
as described in [8].

As shown in Table I, theDu-Deng Schemeincreases
the local connectivity and resilience to node captures
in comparison to theEschenauer-Gligor Scheme. To
achieve 98% connectivity theEschenauer-Gligor Scheme
requires that each node stores a much larger number of
keys than in our approach. However, our algorithm can
provide 100% connectivity with fewer keys and better
resilience to node captures.

VIII. C ONCLUSIONS

In this paper, we proposed a novel key distribution
mechanism based on a precise post-deployment knowl-
edge for wireless sensor networks. Our algorithm is
composed of four phases – topology discovery, topology
report, topology construction, and key distribution. It
allows to assign keys based on the secure communication
requirements of the system. A sufficient number of keys
is assigned to each node. We studied two key assignment
and two key distribution algorithms and the performance
of their combinations. Based on the simulation results
our approach is efficient in terms of memory, bandwidth
and energy because the keys are assigned based on
the system topology and communication requirements.
When compared withEschenauer-Gligor Schemeand
Du-Deng Schemeour approach shows better perfor-
mance in terms of connectivity and resilience to node
captures.

REFERENCES

[1] R. Blom. An optimal class of symmetric key generation
systems. InProceedings of EUROCRYPT84, Lecture Notes in
Computer Science, 1985.

[2] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung. Perfectly-secure key distribution for dynamic
conference. InIn Advances in Cryptology (CRYPTO’92), 1993.

[3] D.W. Carman, B.J. Matt, and G.H. Cirincione. Energy-efficient
and low-latency key management for sensor networks. InIn
Proceedings of 23rd Army Science Conference, 2002.

[4] H. Chan, A. Perrig, and D. Song. Random key predistribution
schemes for sensor networks. InIEEE Symposium on Research
in Security and Privacy, 2003.

[5] W. Diffie and M. E. Hellman. New directions in cryptography.
In IEEE Transactions on Information Theory, 1976.

[6] W. Du, J. Deng, Y. S. Han, P. Varshney, J. Katz, and A. Khalili.
A pairwise key pre-distribution scheme for wireless sensor
networks. InThe ACM Transactions on Information and System
Security (TISSEC), 2005.

[7] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A pairwise
key pre-distribution scheme for wireless sensor networks. In
In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS), 2003.

[8] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A key
predistribution scheme for sensor networks using depolyment
knowledge. InIEEE Transactions on Dependable and Secure
Computing, January-Mary 2006.

[9] W. Du, R. Wang, and P. Ning. An efficient scheme for
authenticating public keys in sensor networks. In6th ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), 2005.

[10] L. Eschenauer and V. D. Gligor. A key management scheme
for distributed sensor networks. InProceedings of the 9th ACM
conference on Computer and communications security 2002,
2002.

[11] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar. State of the
art in public-key cryptography for wireless sensor networks. In
Second IEEE International Workshop on Pervasive Computing
and Communication Security (PerSec 2005), 2005.

[12] D. Huang, M. Mehta, D. Medhi, and L. Harn. Location-aware
key management scheme for wireless sensor networks. InACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN
’04), 2004.

[13] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. InIn 10th ACM Conference on Computer and
Communications Security, 2003.

[14] D. Liu and P.Ning. Location-based pairwise key establishments
for relatively static sensor networks. InACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN’03), 2003.

[15] D. J. Malan, M. Welsh, and M. D. Smith. A public-key
infrastructure for key distribution in tinyos based on elliptic
curve cryptography. InFirst IEEE International Conference on
Sensor and Ad Hoc Communications and Networks SECON04,
2004.

[16] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authen-
tication service for computer networks. InIEEE Communica-
tions, vol. 32(9), 1994.

[17] R. D. Pietro, L. V. Mancini, and A. Mei. Random key
assignment for secure wireless sensor networks. InACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN
’03), 2003.

[18] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public key cryptosystems. In
Communications of the ACM, 1978.

