
Design and Analysis of a Multimedia
Network Architecture

Robert W. Christie
University of Virginia

Computer Science Report No. TR-95-27
May 12, 1995

Abstract
A paradigm shift is underway in how computer networks are used. The new breed

of applications that incorporate multimedia add a new dimension of complexity to network
management because their service requirements are quite different from those of older
applications. The problem lies in the service discipline of the network, where routers
generally use a single queue which operates in a first-come-first-served manner. As traffic
through the router increases, packet delays become longer to the point where the router’s
internal queue overflows and packets are dropped. This project addresses the design of a
packet-switched network that can support soft real-time applications such as multimedia.
We focus on the communications protocol, the router design, and the resource reservation
and admission control policies that will allow the overall system to operate. We provide a
survey of related work on design issues concerning network service paradigms, traffic
policing mechanisms, resource administration mechanisms, and resource reservation
protocols. We then discuss the design and implementation of our router, end-systems, and
admission control policies. We show that with the proper choice of protocols, traffic
policing, and resource reservation within the router, a packet-switched network can support
guaranteed quality-of-service for multimedia communications.

Design and Analysis of a Multimedia Network
Architecture

Robert W. Christie

Department of Computer Science
University of Virginia

Charlottesville, VA
rwc9u@Virginia.edu

i

Acknowledgments

There are a number of people deserving appreciation for their help in bringing this

work to fruition. First, I would like to thank our sponsor, NRaD, for funding this research.

Second, I would like to acknowledge my colleagues in the Networks Lab. Specifically, I

want to thank Dallas Wrege and Bert Dempsey for many fruitful discussions; Fraser Street

and Matt Lucas for the use of their video distribution system; and James McNabb for his

invaluable assistance on this project. In particular, I would like to thank James for the use

of his implementation of XTP 4.0, his work on the initial packet-switch, and countless dis-

cussions. Thanks are especially due to my advisor, Alf Weaver, whose guidance and

straight talk helped to shape this project. I specifically appreciate the chance he took when

hiring me as an undergraduate. Above all I would like to thank my parents for their support;

and my wife, Jenny, whose support, love, and patience helped me more than she knows.

ii

Table of Contents

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background Information 2
1.3 Design Considerations 6

1.3.1 Latency Considerations 6
1.3.2 Network Access Considerations 8
1.3.3 Quality of Service Considerations 12
1.3.4 End System Considerations 14

1.4 Organization of Thesis 15

Chapter 2 Related Work 16
2.1 Overview 16
2.2 Admission Control and Traffic Policing Mechanisms 17

2.2.1 Admission Control Tests 19
2.2.2 Traffic Policing Mechanisms 19

2.3 Networking and Reservation Protocols 23
2.3.1 Resource Reservation Protocol (RSVP) 24
2.3.2 Experimental Internet Stream Protocol Version 2 (ST-II) 25

2.4 QOS Communication Architectures 26
2.4.1 Tenet Real-Time Protocol Suite 26
2.4.2 Capacity Based Session Reservation Protocol (CBSRP)

Using ARTS and FDDI 29
2.5 Summary 32

Chapter 3 Router Design 33
3.1 Router Architecture 34
3.2 Xpress Transport Protocol 4.0 36
3.3 Performance Measurements 37

3.3.1 Latency Measurements 38
3.3.2 Throughput Measurements 40

3.3.2.1 Single Traffic Type 41
3.3.2.2 Two Traffic Types, High and Low Priority 41

3.4 Summary 43

Chapter 4 Admission Control 44
4.1 Admission Control Design 44

4.1.1 Resource Administration Mechanisms 45
4.1.1.1 End System Resource Administration 46
4.1.1.2 Router Resource Administration 51

4.1.2 Resource Reservation Protocol 52
4.2 Media Access 55

iii

4.3 Performance Testing 56
4.3.1 Video Distribution System 56

4.3.1.1 Video Distribution Testbed 56
4.3.1.2 Video Application End-System Protocol 57
4.3.1.3 End-to-End Transport via XTP 58

4.3.2 Experiments 59
4.3.2.1 Experimental Results 62

Chapter 5 Conclusion 66
5.1 Summary and Conclusions 66
5.2 Future Work 70

References 73

iv

List of Figures

Chapter 1 Introduction 1
Figure 1 OSI Reference Model 4

Chapter 2 Related Work 16
Figure 2 Visual Depiction of Congestion in a Router 16
Figure 3 Upper Bound on Traffic For Leaky Bucket 20
Figure 4 Upper Bound on Traffic For Jumping Window 21
Figure 5 Upper Bound on Traffic For Moving Window 22

Chapter 3 Router Design 33
Figure 6 Router Architecture 34
Figure 7 Packet Size Vs. Round Trip Time 38
Figure 8 Throughput Vs. Packet Size For The IP Router 40
Figure 9 High Priority Traffic Throughput as a Function of Packet Size

and Background Traffic 42

Chapter 4 Admission Control 44
Figure 10 Worst Case Burst for the Jumping Window Policing

Mechanism 45
Figure 11 Leaky Bucket Traffic Policing in XTP 48
Figure 12 Jumping Window Traffic Policing in XTP 48
Figure 13 Leaky Bucket and Jumping Window Traffic Policing in XTP 49
Figure 14 Various Traffic Policing Methods Used by XTP 49
Figure 15 Typical Packet Exchange Using the Resource Reservation

Protocol 53
Figure 16 Video Distribution Testbed 56
Figure 17 Frequency Count of Video Buffer Sizes (Q = 60) 59
Figure 18 Frame Transmission Latencies Versus the Allocated Rate

for the Connection 62
Figure 19 Frame Transmission Latencies for a Ten Minute Video

Sequence 64

v

List of Tables

Chapter 4 44
Table 1 Percentage of Time that n Buffers Were Full in the

Receive Queue 63

1

Chapter 1

Introduction

1.1 Motivation

Historically, computer networks such as the Internet have been used primarily for file

transfer and electronic mail. These applications are characterized by a need for accuracy (that

is, the bits that are transmitted must arrive correctly), but they do not have any stringent

latency requirements (that is, the correctness of the data does not depend upon the time

required for its delivery). This is not true, however, of the new breed of applications that utilize

multimedia.

Multimedia streams add a new dimension of complexity because their delivery

requirements are quite different from those of file transfer. For multimedia, the emphasis is

more on timely delivery than on absolute accuracy. A single bit error in the data that defines a

video frame buffer is unlikely to be noticed at all, but the late delivery of video frames causes

the video image to alternately freeze and then jump ahead, a process which rapidly degrades

picture quality.

In a local area network environment, digitized and compressed multimedia streams

can be made to perform well by careful system design which ensures that:

(a) the transmitting CPU is not overloaded, so that the transmitted data stream is

emitted with low jitter,

(b) the receiving CPU is not overloaded, so that incoming data can be processed and

displayed as soon as it is received, and

(c) the aggregate requirements of all the network traffic are well below the capacity of

the network, again to minimize jitter in the transit time of the data.

However, when we switch from local area networks to wide area networks by

introducing network routers, the situation changes dramatically and the system designer loses

control. Most commercial Internet routers simply run the Internet Protocol (IP) in a first-

come-first-served fashion; that is, packets are routed in the order they are received, without

2

regard to their intrinsic importance to the overall system. A congested router drops data when

its internal queues are full, thereby causing gaps in the delivered data stream. This lost data

translates into incomplete frame buffers which in turn means that, depending on hardware

design decisions in the receiver, video frames are either displayed incorrectly or are simply

skipped.

The solution to transmitting high-quality multimedia streams in packet-switched

networks is four-fold:

(1) As stated above, the overall capacities of the transmitting CPU, receiving CPU,

and network must be properly sized by the system designer.

(2) The communications protocol must have some mechanism whereby it can mark

the relative importance of the network traffic it handles; for example, it may wish to mark

time-sensitive multimedia traffic as being inherently more important than non-time-sensitive

file transfer operations.

(3) The network routers must operate in a priority-sensitive manner, rather than just

FCFS, so that higher priority traffic is given preferential treatment.

(4) The end-systems and routers must operate as a unified system in which the end-

systems can reserve the resources of the router and the router can apply admission control to

the end-systems that wish to use its services.

Our goal, then, is to design a packet-switched network that can support soft real-time

applications such as multimedia. We assume that system capacities are intelligently allocated

by the system designer (point number one above), and thus we focus on the requirements of

the communications protocol, the design of a router that recognizes multiple priority traffic

streams and responds to them in accordance to their defined importance, and the resource

reservation mechanisms and admission control policies that make the overall system work.

1.2 Background Information

Before continuing with a discussion of the overall system design considerations, we

want to present a general communication model, and discuss relevant issues concerning

computer networking and communication protocols.

Acommunication network is a system that is used to transfer information between two

or more devices. A communication network usually consists of end nodes known ashosts, and

3

internal nodes, also known as network nodes. Communication occurs between two hosts over

a physical medium such as coaxial cable or fiber optical lines. In large computer networks

hosts may not be directly connected, so data is routed between two hosts via the internal

network nodes.

Communication networks are usually categorized by the way the nodes in the network

exchange information. Two categories of networks exist, switched networks and broadcast

networks. Switched communication networks transfer data from host to host via intermediate

nodes. The purpose of these intermediate nodes is to facilitate the moving of the data from the

source host to the destination. Broadcast communication networks do not use intermediate

nodes in the transfer of data. Each host contains a transmitter and receiver, and communicates

over a shared medium.

Switched communication networks are further subdivided into circuit-switched

networks and packet-switched networks. Circuit-switched networks are characterized by the

establishment of a dedicated link between two hosts where each link receives certain

resources. The typical example of a circuit-switched network is the telephone network.

Packet-switched networks send data in chunks, or packets, with each packet being routed from

node to node until the packet reaches its destination. In contrast to circuit-switching, each

packet is received, stored, and then routed to its next destination, a store-and-forward

approach. Computer networks primarily consist of packet-switched networks.

Packet-switched networks may be classified as either virtual circuit networks or

datagram networks depending on how the path between two hosts is selected. Virtual circuit

networks determine a route between two hosts during the setup of a communication. All

packets are then routed along that path resulting in-sequence delivery of all packets. Datagram

networks make routing decisions on a packet-by-packet basis, which could lead to out of

sequence packet delivery. The re-sequencing of the data must then be handled by the

destination.

Because the communication process is complex, it is useful to subdivide the process

into smaller tasks which act in conjunction to allow computers to communicate. These tasks

are known as protocols. A protocol is a set of rules and conventions that all systems use in

order to communicate. A structured set of protocols implements a communications

architecture which allows data to be passed between multiple computers. The

4

communications architecture is generally viewed as a layered hierarchy of services where

each layer, N, only uses the services of the lower layer, N-1, and only provides services to the

next layer above, N+1. This architecture is also referred to as the protocol stack, where peer

protocols on different hosts logically communicate, but the services the protocol provides are

only accessed and used by the adjacent protocols within the stack. A widely used model for

describing network communication architectures is the Open Systems Interconnect (OSI)

Reference Model [14]. Figure 1 shows an example data path in terms of the OSI model.

The OSI Reference Model defines a seven layer architecture for computer

communication. A brief summary of the seven layers follow:

• Theapplication layer provides access to the protocol stack for application pro-

cesses, while also structuring the lower level services to suit the needs of the appli-

cation process.

• Thepresentation layer ensures that information delivered to the application layer

is useful by resolving differences in syntax between heterogeneous host systems.

Encryption may also be performed in this layer.

• Thesession layer provides for the organization and synchronization of data

exchanges between applications. Establishment, management, and termination of

connections is done here.

• Thetransport layer provides a reliable transfer of data between two hosts. Seg-

Figure 1. OSI Reference Model
Figure 1 shows the interactions of the OSI Reference Model protocol stack. Two host nodes are shown which
are connected via a network node. Adjacent protocols in the stack communicate through specified service
access points. The logical communication between peer protocols is represented by dotted arrow lines.

Application Process

Application Layer

Session Layer

Transport Layer

Network Layer

Datalink Layer

Physical Layer

Presentation Layer

Physical Medium
Peer-to-peer Protocol Communication
Service Access Points Between Adjacent Protocols

Host
Router

Host

5

mentation and reassembly of higher layer messages is done at this level, and mech-

anisms for end-to-end flow and error control are also provided.

• Thenetwork layer provides the switching and routing functionality used to con-

nect systems, and also shields the upper layers from differences in the underlying

data transmission facilities. The layer is also responsible for establishing, maintain-

ing, and terminating connections between communicating end-systems.

• Thedatalink layer provides for the reliable transfer of data over a physical link.

This layer provides services such as framing of data, error detection and correction,

flow control, and error control.

• Thephysical layer provides access to the physical medium of transmission. This

layer encodes and decodes the bit stream to/from the signalling mechanism used

over the physical media.

The result of using the protocol stack is the availability of a group of services that

applications on heterogeneous systems may use in order to communicate. Data may be passed

from one application down through the protocol stack and then across the physical media,

through (possibly multiple) internal network nodes, and then on to the destination host where

it will be passed back through the destination host’s protocol stack before reaching the

application. If thedata path or flow of the information goes through any network nodes, then

the data will be passed up to the network layer of each node’s protocol stack so that a decision

may be made on where next to route the data. As seen in Figure 1, the outcome of following

this data path is the logical interconnection and communication of two applications.

While the OSI Reference Model gives a good overall view of computer

communications, actual applications tend to mesh multiple layers together. The lower four

layers of the OSI reference model represent the modern protocol stack found in most

computers. Typically, applications access the transport layer through a well defined interface

such as Berkeley Sockets, Streams, or some other interface. The application then supplies

what upper layer functionality it needs. Similarly, lower layer protocols do not always have

well-defined subdivisions. Often protocol optimizations for specific systems blur the barriers

between the protocols. For instance, it makes little sense to copy a data message each time one

passes the message to the next protocol in the stack, because the overhead incurred by these

multiple copies would slow the communications process.

The rest of chapter one will address certain considerations that affect the design of a

communications architecture that is suitable for multimedia traffic.

6

1.3 Design Considerations

During the design process of this multimedia system, certain considerations had to be

kept in mind because of their effect on overall system performance. Such issues as latency,

network access, quality of service, and end system design interact with each other and thus

affect overall system performance.

1.3.1 Latency Considerations

Multimedia applications differ from many other applications because of their soft

real-time requirements. Soft real-time refers to the system performance being time

sensitive, whereas a hard real-time system has performance that is time critical. Both

digital video and voice communication must have periodic updates of information,

otherwise the picture or sound quality will degrade. This behavior is markedly different

from an application such as a file transfer which has no latency restrictions, and only needs

to be delivered without error. In order to better understand the process involved in

delivering a high quality video image, it is instructive to step through the data path of a

typical video transfer application.

A video stream will typically begin as an NTSC (National Television Standards

Committee) signal from some video source such as a video-camera, VCR, television, or laser

disk player. An NTSC video produces 30 frames per second, with each frame consisting of

525 lines. The video signal is then changed from an analog to a digital representation via a

hardware analog-to-digital (A/D) converter. Each pixel in the image is represented by a

number of bits; today that number is typically 8, 16, or 24. Assuming a video display of

800x600 pixels with 8 bits/pixel, the resulting frame takes 480 kilobytes (kB) of memory. If

frames of this size were transferred between computers, then the bandwidth needed for

transmitting thirty of these frames per second is over 100 Mbits/sec. Therefore, most

multimedia systems use a compression algorithm to reduce the size of the frame buffer.

Various compression algorithms exist, with JPEG and MPEG being two of the more

widely used algorithms. The basis of all compression strategies is a fast algorithm that allows

for most of the information contained in an image to be encoded in a smaller format. For

example, JPEG (Joint Photographic Experts Group) uses a Discrete Cosine Transform to

change an 8x8 pixel tile into a frequency representation. This frequency representation of

7

the image is then passed through a filter which removes frequencies that will not be missed.

The frequencies are also quantized in order to save more space. The remaining frequency

values are then processed via a Huffman encoding algorithm which reduces redundancy in

the representation of the frequencies. Depending on the amount of quantization done, the

resulting compression generally decreases the size of the frame buffer by an order of

magnitude or more.

Once a frame has been digitized and compressed, the network protocol stack

receives that buffer so that it may be transmitted to the destination host. Once the buffer is

at the transport layer it is segmented into well-formed packets, then passed down through

the lower protocol layers, and finally transmitted on the physical medium. Depending on

the network setup, the packets might have to pass through several intermediate nodes

before reaching the final destination. Once at the destination host, the process just

discussed is followed in the reverse order, resulting in a frame being displayed on a video

device.

One factor of great importance that was not specifically mentioned in the

discussion of the multimedia datapath was the latency constraints that bound the entire

process. In order for video to appear normal each frame must be digitized, compressed,

transmitted, received, uncompressed, and then converted to the proper signal for the video

display device within 1/30 of a second. If network load is heavy and frames are lost, then

they either have to be retransmitted (and the destination buffers possibly reordered) to meet

the deadline for presenting the frame, or the process must proceed even with some data

missing. Depending on the equipment and compression algorithms being used, lost data

may only result in slight differences in color from the original image or a slight fuzziness

in previously sharp lines. However, the loss of data might have more severe consequences

such as the loss of a full frame. Thus, the delay of a frame buffer in its arrival at the receiver

can only have negative consequences.

8

1.3.2 Network Access Considerations

Another consideration that will affect the performance of the multimedia system is

the type of network that will be used. From an engineering viewpoint there are four main

possibilities from which to choose1:

• Ethernet

• Token Ring

• FDDI

• ATM

Ethernet is probably the most widely known type of local area network. The

network medium access control (MAC) uses a CSMA/CD (Carrier Sense Multiple Access

with Collision Detection) protocol for access on a 10 Mbit/sec coaxial cable. This type of

access control for the network means that each host may attempt to send a packet at

anytime. Also, the host will always be listening to the medium in order to detect any other

transmissions. If the host detects that another host is currently transmitting then it will wait

until the physical medium is no longer busy before transmitting. If two or more hosts

transmit and there is a collision of packets, then each host will detect the collision and

back-off for a certain amount of time, and then attempt to retransmit the packet. Due to the

nature of the network, the upper bound on the time it takes to detect a collision is twice the

round-trip delay (the time it takes the signal to travel from one end of the medium to the

other)[31].

Ethernet is widely used because the hardware is inexpensive, but reliable, and most

people’s current networking bandwidth requirements do not exceed Ethernet’s 10 Mbits/s

capacity. However, a multimedia application using JPEG compression and a Q factor (a

number representing the quantization level) of 60 needs approximately 5 Mbits/s.

Therefore, even a two video streams can saturate Ethernet’s bandwidth. Another shortfall

of Ethernet is that there is no support for guaranteed service inherent in the media access.

For instance, multiple packet collisions could cause long delays between the sending of

two packets from the same host.

There are currently two versions of token ring available, the first version

1. These choices would be equivalent to choosing a certain a datalink layer, physical layer, and phys-
ical medium in terms of the OSI Reference Model. There are other possibilities, but these are the
most widely used, and are readily available.

9

IEEE802.4, runs at 4 Mbits/s, and the second version, IEEE802.5, runs at 16 Mbits/s. The

token ring standards run over a number of mediums both copper and fiber based. The token

ring protocol uses a “token” packet to decide who has access to the ring. If no station

desires to transmit then the token is passed around the ring in a “free” state. If a station then

desires to transmit, it must wait until it sees the free token. Upon seeing the free token the

station changes it from “free” to “busy”. The station then releases the now busy token

followed immediately by its packet. No one else may transmit data at this point, because

the token is busy. The data packet and busy token will circle the ring, and will then be

removed by the sending station, which will then insert a free token onto the ring so long as

the following two criteria have been met:

• transmission of the packet has been completed by the station, and

• the transmitting station has received the busy token.

The previously transmitting station may now release a free token which will let

another station transmit. The Token Ring standard also supports a capacity allocation scheme

using different priority levels. Token Ring has eight priority levels which may be assigned to

outgoing packets. A reservation scheme allows a station with the highest priority packet to

reserve the next free token [32]. One problem with the reservation policy is that it can result

in starvation of ring access for stations trying to send lower priority packets. This situation

could occur if there is always another station that has a higher level packet to send.

However, if there are no requests to send higher priority traffic then the last station to send

packets at that priority level will lower the priority of the token to its previous level so that

lower priority packets may be sent.

The Fiber Distributed Data Interface (FDDI) uses an optical medium, and employs a

token ring protocol. Operating at 100 Mbits/s, an FDDI ring is faster than Ethernet (10 Mbit/

s) by an order of magnitude. Originally, FDDI was developed for use as a high speed link

between main frames and large storage devices (a back-end interface), as a LAN backbone,

and as a front-end for LANs which needed more performance than was available via

Ethernet [28].

FDDI uses a token ring algorithm based on the IEEE 802.5 standard. However, the

FDDI algorithm differs in some ways so that it may maximize its efficiency. FDDI stations

contend for ring access via the use of a small “token” packet that circulate the ring. When

10

there is no contention for the ring, then the token packet is labeled as free. If a host wishes to

transmit then it waits until it sees the token packet. Once the host receives the token packet it

may begin transmission of its frame. The host is limited in how long it may transmit by timers

within the FDDI media access control layer. When the host finishes its transmission it posts a

new free token immediately after its last frame. Once this occurs the next host downstream

from the sender will receive a free token giving it the opportunity to transmit data. By using

this notion of a free/busy token only one host will ever have control of the ring. FDDI also

supports multiple traffic priorities through the use of restricted and unrestricted control

tokens, and a capacity allocation mechanism that supports both synchronous and

asynchronous traffic [32].

Synchronous traffic uses certain mechanisms in FDDI to guarantee a bounded latency

between two receptions of a free token. Asynchronous traffic offers no such guarantees. The

guarantees of the synchronous mode result from the use of the Timed Token Rotation

protocol, and a set of timers and counters located in each host. During an intitialization phase

of the ring a bidding process occurs to decide the value of the target token rotation time

(TTRT), which is the lowest value bid from all stations. The TTRT is the desired latency for

the free token to rotate around the ring once. Each host must request a synchronous allocation

block via the station management protocol (SMT). If a host does not support synchronous

allocation (it is optional), then the host may only transmit in the asynchronous mode. In

synchronous mode, if a host has synchronous frames that are ready to be transmitted, then it

may capture the next available token, and transmit for a certain allocated amount of time. In

asynchronous mode the host may only capture a token if the time that has passed since the

last time it saw a token is less than the TTRT [29].

The benefit of using the timed token rotation (TTR) protocol is that a host can

negotiate bandwidth and latency guarantees for its synchronous traffic. The initialization

process of the ring accepts the lowest bid as the TTRT, thus ensuring that there is a low

guaranteed response time for synchronous traffic. The worst case will have the token

arriving no more than two times the TTRT after the last token arrived [29]. Typically, the

TTRT is set to 8 ms, because this value was found to provide good service and performance

for varying loads and system configurations [20].

A newer technology that has generated much interest in the last few years is

11

Asynchronous Transfer Mode (ATM). ATM offers a connection-oriented datalink service that

provides guarantees for bandwidth and delay. Unlike both Ethernet and FDDI which use a

datagram networking facility for routing packets through multiple internal nodes, ATM uses

virtual circuits. Thus, during a connection setup ATM negotiates a path between the two end

hosts, and then all packets for that connection are routed over that path, unless there is a failure

along that path which means the route must change. Because of the flexible nature of the ATM

specification, there are a variety of maximum bandwidths available depending on the type of

the physical medium, and the signalling architecture used. For instance, using optical fiber and

the OC-3 signalling architecture yields a maximum bandwidth of 155 Mbits/sec with ATM.

ATM was designed with the objective in mind of supporting a variety of different

traffic types. Its small, fixed packet size (53 bytes) minimizes the delay experienced by each

packet in transit from end host to end host, and the virtual circuit connection setup can set

certain service parameters so the connection has certain guarantees. A key feature of ATM is

the notion of the virtual circuit. In ATM, bandwidth reservation is flexible and dynamic. It

does not reserve specific positions for data in its stream, the way that a time division

multiplexed (TDM) system would. Instead, the virtual circuit reserves bandwidth over a

period of time without specifying any position in the stream. With these types of guarantees,

ATM seems to be the ideal mode of communication for traffic such as voice, video, and

distributed real-time control systems [1].

Each of the four networking access methods mentioned above have their positive and

negative sides. However, Ethernet offers no mechanisms to support either latency or

bandwidth guarantees, which are needed in a soft-real time communication system. This

leaves either ATM, Token Ring, or FDDI as the possible choices for network access. A

shortfall of FDDI and Token Ring is that they both use packet-switching for routing over

multiple subnets. Most current routers use the Internet Protocol (IP) for the routing of packets.

IP is a connectionless, best-effort protocol which allows for little (or no) QoS support within

the routers. So even though the FDDI standard supports deterministic latency guarantees on a

single subnet, this functionality is lost when one sends information across multiple subnets.

ATM, on the other hand, features a connection-oriented datalink that uses virtual circuit

switching and has mechanisms for guaranteeing bandwidth and prioritizing traffic between

two end hosts.

12

However, no matter how good ATM might be, there is still a vast amount of

communication equipment and software that is currently in use. These legacy LANs will not

be replaced overnight. Thus, a challenge for the ATM vendors and network planners is how to

integrate a connection-oriented service like ATM into the connectionless LANs that are in

use today [1].

In terms of trying to implement a multimedia communication system, ATM seems to

be better suited for the task then does a packet-switched datagram network. However, ATM is

still in its infancy. The standards are not completely set, so many of the products use

proprietary systems, and as a result are not fully interoperable. While the specification

supports rate control and prioritization, some implementations are only now supporting this

functionality. It appears that acceptance of ATM is growing, but it will be years before it

becomes ubiquitous. For instance, the U.S. Navy has spent the last ten years refining the

SAFENET architecture (MIL-STD-2204) which uses FDDI. Instead of changing directly to

ATM, they have taken a wait-and-see attitude. Token Ring is a viable access method for a

multimedia communication architecture, however; we did not have immediate access to

equipment, and FDDI offers almost the exact service with certain deterministic guarantees for

its synchronous traffic class. With regard to these considerations, our choice for network

access was FDDI, resulting in a system design focusing on delivering guarantees for services

in a packet-switched datagram network.

1.3.3 Quality of Service Considerations

Quality of Service is the guarantee of a certain level of performance in the network

system. In general, it is difficult to make guarantees in a network due to the problem of just

trying to answer the question of whether the network can provide the services requested by a

new connection without violating the current QoS guarantees made to existing connections

within the network. In order to answer the question the network must know if it can handle the

new request, and also what effect this new request will have on services provided to other

connections in the network [22]. This type of problem is known as one of performance

oriented admission control [40]. Once the network has decided to accept a connection there

must be certain underlying mechanisms that ensure that the service guarantees are met.

These mechanisms are usually implemented in the lower four layers of the OSI Reference

13

Model. In general, you must have a service guarantee at each of these layers in order for

any guarantee to be made at the next higher level.

Various mechanisms are used to ensure service guarantees such as prioritizing

certain connections, reserving resources along the data path between two end hosts, and

utilizing traffic control mechanisms like modifying the rate of flow through the network,

and between end nodes. Prioritizing certain connections in the communication architecture

will decrease the latency incurred in transfer for those connections when compared with

non-priority data as long as there are mechanisms throughout the communication

architecture that make prioritization possible. Resource reservation in a communication

architecture usually refers to the need to have buffer space and other protocol dependent

structures available for that connection at all times. Traffic control is the ability to modify

the shape and flow of traffic in the network system. Without this ability a host or node could

overrun a receiver with too much information.

Today’s packet-switched networks such as the Internet use the TCP/IP protocol

stack for most of their networking needs. IP has little in the way of QoS, because it is based

on a connectionless, best-effort type of service, and was developed years before QoS was

even an issue. TCP is a connection-oriented protocol, but also has very little QoS support.

However, there are many proposals for QoS protocols and architectures. Three such efforts

are noteworthy because they have progressed past paper designs.

ST-II is a connection-oriented internetwork protocol with several running

implementations, although certain parts of the protocol such as the FlowSpec (which

indicates resource requirements) and real-time admission control algorithms are still

undefined [36].

Another newer protocol, RSVP, which is to be used as a companion protocol for IP,

allows for the exchanging of resource reservation messages. This protocol is currently in

the implementation stage [42].

The Tenet Real-Time Protocol Suite is currently running and being ported to a

number of new testbeds. The Tenet protocols use admission control, connection-oriented

communication, and channel rate control to support real-time channels. However, one

simplification that was made for this suite of protocols was to provide only unicast real-

time channels. An implementation with support for multicast channels is currently

underway [2].

14

The general theme found throughout the related work is that if packet-switching is

used for communication between two end hosts, then it is necessary to reserve resources

for that communication connection if QoS is desired. In order to reserve the resources,

admission control to the network is needed.

1.3.4 End System Considerations

For simplicity in design, end systems were assumed to behave in a normal way, i.e.

they are not overloaded. However, a protocol stack with mechanisms to support QoS must

have an operating system with services that facilitate the use of the protocol’s mechanisms.

For instance, a protocol might have mechanisms for prioritization of data, or guarantees of

delay bounds, but if the operating system has no sense of real-time, then an application

might not realize any of these guarantees.

The original UNIX operating system has different processes that share the CPU in

a time-shared manner, where each process runs for a certain period of time and then the

kernel of the OS suspends that process, and schedules a new process to run for a certain

time period [3]. Many of today’s versions of UNIX still use some sort of time-sharing

scheduling. However, for an OS to support real time applications it must have a bounded

worst case delay for the servicing of the real-time processes. One way to get real-time

support is to design the operating system so that all processes are preemptible and have

scheduling done on the priority of each process. In this way the highest priority process

will always gain control of the system, and therefore bounds on latency can be determined

for this process. Without this support for a multimedia application, there is no guarantee

that a frame buffer that is received before its deadline will update a video output device by

its deadline. Thus, in a multimedia communication architecture there is a need for a real-

time operating system.

Current work at the University of Virginia involves the porting of an entire

communication protocol stack to a real-time OS. After an extensive study [30] of the

available real-time operating systems, LynxOS was chosen to be the operating system for

the port. Lynx already supports a modified version of the BSD Tahoe TCP/IP protocol

suite. The work at UVA involves porting the Xpress Transport Protocol (XTP) version 4.0

to the LynxOS environment. XTP is a next generation transport protocol with functionality

15

that is needed by real-time applications. XTP supports multiple priority traffic, multicast

connections, rate control, and various other policies that give the user rich functionality

from which to choose.

1.4 Organization of Thesis

In this chapter we reviewed background information on network communication

systems and multimedia system design considerations. Chapter 2 discusses related work in the

areas of multimedia system design and packet-switched network architectures with QoS. In

chapter 3 we describe the router design, and analyze its bottlenecks. We discuss the admission

control strategy used in the router in Chapter 4. Finally, we present our conclusions and future

work in Chapter 5.

16

Chapter 2

Related Work

2.1 Overview

Many efforts have been documented in the literature on multimedia systems, including

the incorporation of QoS into a communication architecture. The two topics tend to be

intertwined, because many multimedia applications are sensitive to the quality of service that

their packets receive from the underlying communication architecture. This chapter reviews

related work in multimedia system design, emphasizing the architects’ choices which relate to

the design considerations outlined in the first chapter of this thesis.

In the first section of the chapter we review the mechanisms which allow a network

to offer deterministic service guarantees. This section focuses on the admission control

tests and policing mechanisms which ensure the deterministic guarantees. In the second

section of the chapter we discuss the Internet Protocol (IP) and its shortcomings in offering

support for QoS. Then we discuss two internetworking reservation protocols that do offer

Internal queue is full, thus incoming
packets are dropped.

Figure 2. Visual Depiction of Congestion in a Router
Figure 2 depicts congestion in a router caused by two higher bandwidth links attempting to send traffic over
a link with less capacity.

Discarded frame is “dropped on the floor.”

Incoming
packets

Incoming
packets

Outgoing packets

17

support for QoS, the Internet Streams Protocol Version II (ST-II) and the Resource

Reservation Protocol (RSVP). The third section of this chapter describes previous designs

for multimedia communication architectures. The amount of literature on this topic is quite

large, so in order to facilitate a manageable discussion of the topics, we have tried to limit

the review to areas that have resulted in a working implementation of a system or protocol.

We describe two communication architectures which offer various levels of service for

multimedia data streams. These two architectures are the Tenet Real-Time Protocol Suite,

and the Capacity-Based Session Reservation Protocol (CBSRP) in conjunction with the

Advanced Real Time System (ARTS).

2.2 Admission Control and Traffic Policing Mechanisms

Once information leaves the confines of a packet-switching Local Area Network

(LAN), then there is a need for a special purpose piece of hardware or software called a

router for the transmission of information from one subnet to another. With the

introduction of this new hardware into the communication architecture one also introduces

the potential of having new bottlenecks in the system. One potential bottleneck is that the

router can become congested to the point where delays are extremely long, or packets are

getting dropped by the router due to lack of buffer space within the router. Figure 2 shows

a visual depiction of this congested state.

In [19] Jacobsen describes the “congestion collapses” that occurred on the Internet

in 1986 which caused throughput to drop from 32 Kb/s to 40 b/s. These collapses were

caused by misbehavior in the TCP implementations and by the inability of end system

protocols to detect a congested situation at a router. This resulted in end systems continuing

to transmit the same amount of information even though the router was congested and

dropping packets. Jacobsen proposed seven changes to TCP in order to allow it to deal with

the dynamic nature of the networks, and avoid congestion. The result of these changes was

that TCP could dynamically detect congestion and then adjust the window sizes and

retransmission times of its sender in order to throttle the amount of information being sent

over a link in order to avoid congestion. These reactive techniques were implemented

through the use of a number of new algorithms including slow-start, round-trip-time

variance estimation, dynamic window sizing as a result of congestion, and exponential

18

retransmission backoff.

While these techniques helped to avoid congestion in networks, they are not

completely efficient because they do not communicate directly with the point of the

bottleneck, but instead infer from round-trip estimations and time-outs of timers that the

network route is suffering from congestion. Other work such as Chiu and Jain’s research on

increase/decrease algorithms for congestion avoidance [9] and Floyd and Jacobsen’s work

on RED (Random Early Detection) gateways [13] suggest the use of direct feedback from

the routers to dynamically detect and avoid congestion. However, all of these methods are

still reactive, adjusting to the increase in network use and the onset of congestion by

throttling the sources in one manner or another. This dynamic change of flow and rate

might be fine if the application is retrieving a file from a remote host, because the result

would be a delay in retrieval time. However, if the application is a video teleconferencing

tool, then the delay will cause frames to miss their deadlines, resulting in a lower frame

rate. Thus, the application needs service guarantees from the network if lower quality or

large changes in quality are not acceptable. In the past, research on guaranteeing service in

a network has followed two paths, deterministic guarantees and stochastic guarantees. A

stochastic guarantee defines services that have a certain probability of being violated,

whereas deterministic guarantees are never violated. Typically, the reason for choosing a

stochastic guarantee is that higher network utilization can be achieved; however Knightly

et al. [21] demonstrate that a “considerably high network utilization is achievable by a

deterministic service.” For example, a guarantee on a delay bound for a specified

connection is a deterministic service. We have focused on deterministic guarantees because

of the soft-real time requirements of our system design.

In order to offer a deterministic guarantee, network resources need to be reserved

for use. Thus, there must be an entity which controls access to the network accepting

requests if resources are available, and either rejecting requests or negotiating with the user

if resources are not available. Admission control tests are the mechanism used to determine

if the network can allocate the needed resources for a request without violating the service

guarantees of any current connections. Once a connection is admitted, traffic policing

guarantees that a connection does not violate the parameters on which admission was

granted. The following two sections discuss past admission control tests and traffic

policing implementations.

19

2.2.1 Admission Control Tests

Admission to a network can be based on a number of factors such as the required

throughput, the needed buffer space, or the maximum delay that packets for a connection

need. The complexity of the admission control test will depend on the desired service, the

accuracy of the test, and the type of service discipline or packet scheduling used at the

internal network nodes. For instance, conventional networks use a First-Come-First-

Served (FCFS) discipline for servicing packets at a network router. The mechanism for

implementing this discipline is not complex, since it can be done with a FIFO queue.

However, the trade-off for using this discipline is that only one delay bound could be

guaranteed for the entire network. Also, in most conventional networks admission control

tests are not performed, so as mentioned previously congestion may develop in the

network. These deficiencies in the FCFS discipline have resulted in the design of a number

of new service disciplines such as Delay Earliest-Due-Date [12], Stop-and-Go [18],

Rotating Priority Queue [24], and Rate Controlled Static Priority Queue [44], each with

admission control tests.

2.2.2 Traffic Policing Mechanisms

A traffic policing mechanism ensures that connections admitted to the network do

not violate the parameters of service under which they are admitted. For instance, if a

network admits a multimedia stream then it must ensure that it can handle the bursty nature

of the traffic. A multimedia stream such as MPEG uses interframe encoding to compress

the video stream. Interframe encoding takes advantage of the similarities between

successive frames in a typical frame sequence. However, every few frames (the number is

dependent on parameter settings) a frame is sent using only intraframe encoding which

typically causes it to be much larger then the surrounding frames. If this frame is sent

through a network with little or no interpacket gap, then this burst of traffic could overflow

buffers within the network. Thus, the network must have prepared for this situation by

allocating for the worst case, and the network policing mechanisms must ensure that the

traffic is shaped to conform with the parameters of service that the user requested. Another

effect of the policing mechanism is that the closer it maps to the real traffic, then the higher

the network utilization may be using that mechanism. A number of traffic policing

20

mechanisms exist to enforce different admission control requirements. In this section we

show three: the leaky bucket, the jumping window, and the moving window.

The Leaky Bucket (LB) mechanism [37] uses a counter and a timer to control the

outgoing flow of traffic from a node. In the basic case the counter is incremented by one

each time a packet or cell is transmitted, and then the counter is decremented periodically

so long as the counter remains above or equal to 0. If the counter reaches a predefined

threshold, then it is not allowed to send anymore (the threshold being set via service

parameters or admission control requirements). The effect of the leaky bucket mechanism

can be described by a traffic constraint function [21]:

A*(t) is an upper bound on the amount of traffic seen during any time interval, t.

represents the maximum burst that the bucket will allow, and is the rate at which the

bucket is updated. Figure 3 shows the worst case scenario (i.e., the upper bound) for a leaky

bucket policing mechanism.

The Jumping Window mechanism [18] controls the maximum number of packets

or cells that may be sent within a given time interval. During a fixed interval (the window)

the transmitter may send up to N packets or bytes. A counter keeps track of the number of

packets sent, and stops transmission if the counter reaches 0. The counter is then reset at

the end of the interval (size of window). The trade-off between the jumping window and

A* t() σ ρt+=

σ

ρ

Time t

A*

Burst

Rate ρ

Figure 3. Upper Bound on Traffic for Leaky Bucket
Figure 3 shows the worst case (upper bound) burst and rate possible for a leaky bucket policing mechanism.

 σ

21

leaky bucket is that the leaky bucket requires smaller timer intervals for updates of the

counter whereas the jumping window can have a worst case burst of two times the

maximum burst per window interval. Figure 4 graphically shows the upper bound (worst

case) scenario for a jumping window policing mechanisms.

The equation below shows A* [41], an upper bound on the amount of traffic that

may be admitted into the network during a given time, t, when using a jumping window

policing mechanism. B is the maximum burst of packets that can be sent in one interval,

and T is the size of the window being used.

Another method of traffic policing is called the Moving Window mechanism. One

variant of the moving window mechanism is the Xmin,Xavg,I,Smax [12] policy. This policy

enforces an average rate (Xavg, the average packet interarrival time) over a fixed interval, I

for a maximum packet size, S. During any interval the maximum rate that may be sent is

bounded by Xmin (the minimum packet interarrival time). As with the other mechanism an

implementation typically uses a counter to keep track of the number of packets that have

been sent within the last interval. The policy also uses a circular queue to keep track of the

number of packets that have been sent in sub-intervals of I in order to ensure that Xmin is

not violated. The benefit of using Xmin,Xavg,I,Smax is that it is more flexible than the

A∗ t() 2B t
T
--- B+=

Time t

A* Rate

T T T

Figure 4. Upper Bound on Traffic For Jumping Window
Figure 4 shows the upper bound on traffic for a jumping window policing mechanism.

B

B

22

jumping window mechanism, because the maximum burst is more tightly bounded. The

disadvantage of using the moving window mechanism is that the timers may be of very

small granularity if the rate specified by Xmin is high. The other disadvantage of the

moving window mechanism is that it requires more overhead then the two previously

mentioned traffic policing mechanisms because of the need to update the circular queue

values.

The equation below shows A* [24], an upper bound on the amount of traffic that

may be admitted into the network during a given time, t, when using a moving window

policing mechanism. Xavg is the average rate per interval I that is acceptable, and Xmin is

the maximum rate that may occur in a given interval.

There are a number of tradeoffs that affect the choice of the policing mechanism

used in an admission control protocol. For instance, the closer the traffic constraint

function is to the generated traffic, the higher the efficiency will be for the system.

However, the more accurate traffic constraint functions also require more complex

mechanisms for their implementation, which could affect overall system performance. If

some of the bottlenecks of the communication architecture are within the router (as is

usually the case), then the result of using a less efficient policing mechanism is that router

A∗ t() t
I
-- I Xavg⋅() min t t

I
-- I–

 Xmin Xavg I,(,)+=

Time t

A*

I I I

Figure 5. Upper Bound on Traffic For Moving W indow
Figure 5 shows the upper bound (worst case) traffic model for a moving window policing mechanism.

Rate, Xavg

Rate, Xmin

23

resources are tied up in each connection, but are not on average being used.

2.3 Networking and Reservation Protocols

The Internet Protocol [26] was developed over twenty years ago by the Defense

Advanced Research Projects Agency (DARPA). The overriding goal of ARPA was to

develop an effective way to interconnect multiple networks, originally the ARPANET and

ARPA packet radio. Below this main goal were seven second-level goals with the three

most important being:

• Survivability— communication should be able to continue even with the loss of a

network or gateway.

• Types of Service—the architecture should be able to support a variety of services

at the transport level.

• Variety of Networks— the architecture should be able to support multiple types of

networks.

Of lesser importance were support for distributed management of resources, cost

effectiveness, minimizing the cost of attaching to the network, and accountability of the

resources [7]. The order of importance of the above goals had a profound effect on the

resulting TCP/IP protocol stack. IP provides a connectionless service which needs very

little state information to route from one host to another. The result is that the criteria of

survivability is met, because packets may be re-routed around a non-operative gateway.

However, during the past twenty years the maximum bandwidth available to the

desktop has increased by approximately two orders of magnitude, along with similar

increases in processor speed. These increases in computational power and network

bandwidth have facilitated the creation of new applications that use audio and video, and

which ideally require certain service guarantees when transported between two hosts on a

network. Although distributed management and accountability of resources were goals of

the original Internet architecture, they were low on the list of goals, and as a result, did not

receive that much attention. IP does have a type of service field which is supposed to offer

hints to the network nodes as to the precedence and delivery requirements of the packet,

however this field is usually ignored [33]. Thus, IP has no mechanisms for resource

reservation or its negotiation, guaranteeing delay bounds, or, until just recently, no

mechanism for multicast (RFC 1112).

24

These inadequacies have lead to the development of a number of new protocols called

reservation protocols. These protocols provide a means for negotiating the quality of service

parameters associated with network resources and are a means to establish and maintain state

within network nodes along the path between two hosts, as opposed to the administration of

the resources [10].

2.2.1 Resource Reservation Protocol (RSVP)

RSVP is a new protocol design that emerged in 1993 from researchers at Xerox

PARC and USC. Implementations of RSVP are currently in progress. Functionally, RSVP

acts as a companion protocol to IP or another network layer protocol, with RSVP

controlling the way in which IP sends packets. RSVP is known as a simplex protocol,

meaning that it reserves resources in only one direction. It is also considered to be receiver-

oriented, i.e., the receiver is responsible for initiating the resource reservation for the data

stream or flow. Another feature of RSVP is its scalable support for multicast, the

distribution of information from a single transmitter to multiple receivers. RSVP allows a

multicast group to be formed from heterogeneous receivers, each of which can utilize a

different amount of network resources; in addition, each receiver can participate in one or

more data streams sent to the same multicast address. Another result of these design goals

is that a multicast sender need not have knowledge of all receivers, because an internal

node in the network may have all the information about a stream to which a receiver wants

to connect. RSVP also allows the receiver to dynamically switch between different

streams. The routers within the network also maintain “soft state” which supports dynamic

membership changes and automatic adaptation to changes in routes [45].

RSVP interfaces to three other modules: the next higher layer in the protocol stack,

typically the application program or session layer; the network routing protocol; and the

network admission control, which decides whether a new flow may be accepted. The

requirements of a data stream or flow are represented by the flowspec,which is passed from

the application to RSVP, and is then used for determining admission control. RSVP leaves the

flowspec undefined [45].

As described in chapter one, latency, network access, quality of service, and end-

system design are four topics that must be considered in the design of a multimedia

25

communication architecture. RSVP fulfills some of the needs discussed under QoS. In order

to provide resource reservation in a network architecture, Delgrossi et al. [10] state that two

components are needed:

• an end-to-end resource reservation protocol, and

• a resource administration mechanism.

RSVP fulfills the first component mentioned above, and can support a best-effort QoS,

meaning that all resources that might ever be needed are reserved before the sending of data.

RSVP cannot give a more strict QoS guarantee because there is no direct relation between it

and the routing and data transmission protocol. Thus, it is possible for a route to change during

transmission of a stream, creating a new route which does not have all of the needed resources

available [10].

2.2.2 Experimental Internet Stream Protocol Version 2 (ST-II)

ST-II is the successor to the ST protocol [15] which was designed in the late 70’s.

ST-II was developed for the most part at BBN, and was released as RFC 1190 in 1990.

There are a number of implementations of ST-II currently working at various locations. ST-

II is a connection-oriented network layer protocol that supplies mechanisms for data

transfer as well as end-to-end system resource negotiation along simplex routes. ST-II uses

an integrated approach to resource reservation and data transfer as opposed to the more

modular approach used by RSVP. ST-II also uses a sender-oriented approach to resource

reservation, where the sender initiates a request for a certain stream specification, which

then passes through any intermediate nodes before reaching its destination. Both

intermediate nodes and the destination have the opportunity to modify the stream

specification before it is sent back to the initiating transmitter [36]. Multicast streams with

reserved resources are also permitted, although the sender must be aware of each receiver

which could create bottlenecks at the source for large receiver groups [10].

ST-II interfaces to both the transport layer and a higher layer interface which specifies

the flow or stream specification. The current stream specification (flowspec) has three

purposes. During the setup phase of a stream it specifies the minimum packet size and rate

required by the transmitter. This information is used by the protocol in order to reserve

resources in the network nodes. When the flowspec reaches the destination it also contains the

26

packet size and rate actually obtained from the network, and the average delay and delay

variance expected for a packet transmitted along that path. The receiver may then reduce its

resource demand if it still has that option, and if it accepts the connection, then it returns the

updated flowspec to the transmitter which then must decide if it still wants the connection

considering the updated flow specification. The RFC states that the flowspec is still under

development, and will no doubt change as a result of more experience with QoS networks and

multimedia applications [36].

Like RSVP, ST-II also fulfills some of the needs discussed in chapter one concerning

QoS. ST-II provides an end-to-end resource reservation protocol through which a guaranteed

level of QoS can be provided so long as an internal node along a stream route does not fail

[10]. Also with the current flowspec definition, the end nodes are given an idea of the

network delay they should expect to see.

2.3 QoS Communication Architectures

In this section we discuss two communication architectures which offer varying levels

of performance or qualities of service. Unlike the protocols in the previous section, these

communication architectures offer mechanisms for resource administration as well as for

resource negotiation. The discussion of each architecture will focus on how its services apply

to the transmission of multimedia traffic.

2.3.1 Tenet Real-Time Protocol Suite

The Tenet Real-Time Protocol Suite is an on-going research project of the Tenet

Group at the University of California at Berkeley. The protocol suite consists of a set of

communication protocols that can be used to transmit real-time data streams with a

guaranteed quality over packet-switching networks. The suite includes a network layer

protocol, the Real-Time Internetwork Protocol (RTIP), two transport layer protocols, the

Real-Time Message Transport Protocol (RMTP) and the Continuous Media Transport

Protocol (CMTP), and an administration protocol, the Real-Time Channel Administration

Protocol (RCAP) as discussed in [2].

The Tenet suite is based on earlier work (mathematical algorithms) by Ferrari, the

founder of the group. This work contains a set of mathematically provable algorithms for

27

offering network hosts a number of service guarantees based on idealized models of the

network components. The implementation approach taken by the group was to allow the suite

to coexist with the Internet protocols so that non real-time traffic may be sent via TCP or UDP.

The protocol suite is currently running on a number of platforms under different operating

systems, such as the HP9000/700 under HP/UX, SPARCstations under SunOS, SGIs under

IRIX, and 80x86’s under BSDI BSD/386 with the networking software derived from BSD

UNIX [2]. The Tenet report [2] mentions that timing behavior in the workstations is

complicated by factors such as process scheduling, interrupt handling, and CPU load. Thus,

testing was extremely important in order to accurately calculate admission control parameters.

In order to gain a better understanding of the suite it might be beneficial to walk through the

Tenet protocol stack.

The Tenet protocol suite is designed to run over any datalink layer that can provide

guaranteed performance services to the network layer. Currently it runs over FDDI, but will

soon be ported to an ATM network.

The Real-Time Channel Administration Protocol (RCAP) interfaces with the

datalink, network, and transport layers. It has functionality similar to the resource

administration protocols mentioned in section one, such as the establishment and

termination of the real-time channels, plus a facility for making status inquiries about the

established connections. RCAP is similar to ST-II in that the sender initiates a request for

channel establishment which then passes through internal networking nodes, which

perform admission control tests. If these tests succeed then the request will reach the

destination which also performs an admission test. If any test fails then that node sends a

message to the initiator notifying it of the failure. Otherwise, the destination would send a

message back through the same route on which the request was made so that any node may

relax the amount of reserved resources it had set aside for the connection in the event that

it had overallocated in the first place. Unlike ST-II and RSVP, RCAP has a defined set of

QoS and traffic parameters giving the service requirements for the connection. The

parameters are:

• upper bound on end-to-end message delay,

• lower bound on probability of timely delivery,

• an optional upper bound on delay jitter,

28

• lower bound on probability of no loss due to buffer overflow,

• minimum inter-message time,

• minimum average inter-message time,

• averaging interval, and

• maximum message size.

The use of these parameters provides an abstract interface to allow different

admission control tests to be performed on heterogeneous networks and end-systems.

RTIP is a connection-oriented unreliable network protocol. The RTIP protocol

performs rate control, jitter control, and scheduling based on the quality of service

associated with the connection. The RTIP protocol ensures that packets arriving at a node

do not violate any delay constraints on the amount of time the packet may spend in the

node, or any bounds on rate that may be set for the connection. RTIP also uses information

received from RCAP in order to allocate the needed buffer space for the connection, and to

police the inter-packet intervals.

RMTP is a light-weight transport protocol that gives applications a message-based

abstraction. Unlike TCP which provides a reliable service with mechanisms for

acknowledgments, retransmissions, or flow control, RTMP assumes that if these

mechanisms are needed then a higher layer protocol can provide these services. Thus,

RTMP relies on the services provided by RTIP such as rate-based flow control, and in-

order delivery due to the connection-oriented nature of the underlying protocol [2].

CMTP is another light-weight transport protocol that gives applications a different

paradigm for the sending and receiving of data. CMTP offers a periodic, time-driven

service for the sending and receiving of information. The designers envisioned this

protocol being used for multimedia traffic.

The Tenet protocol suite is a full protocol suite designed and implemented to

support real-time traffic. The Tenet suite meets all of the design considerations discussed

in chapter one, at least in theory. However, as mentioned in [2] the worst case analysis used

to make guarantees is based on idealized models of the network, whereas the actual

workstations and operating systems have timing behavior that is affected by the operating

system, interrupt handling, and CPU load. So, the area of real-time communications has

been explored by this group as well as others, however, there still remains a number of

questions concerning the interaction of “real-time communication architectures” in real

29

systems, as well as the feasibility of certain real-time admission control and policing

algorithms in real systems.

2.3.2 Capacity Based Session Reservation Protocol (CBSRP) Using ARTS and FDDI

The Capacity Based Session Reservation Protocol was developed at Carnegie

Mellon University in order to minimize the variance of delay for continuous media such as

video in a local area network. CBSRP provides resource negotiation, administration, and

admission control for hosts on a LAN. By reserving buffers, CPU cycles, and network

bandwidth, the protocol is able to offer bounded delays for end-to-end host

communications [34].

In [34] the authors relate their experiences with using CBSRP in conjunction with

ARTS [35], a distributed real-time system, and FDDI to deliver continuous media with

bounded delay guarantees over a LAN. By using FDDI, they took advantage of the

synchronous class of traffic which bounds the time between network accesses for a host to

2*TTRT (Timed Target Rotation Time), where the TTRT is set by the user. Under the

synchronous class of traffic each user must reserve synchronous allocation space in order

to transmit. The synchronous class delivery latency is then bounded as mentioned above,

resulting in deterministic delay bounds at the datalink layer. In order to meet delay bounds

at higher layers the operating system must also support deterministic guarantees. For this

project the ARTS system used a deadline monotonic policy for scheduling, which meant

that if it was possible to schedule the task then its deadline was guaranteed to be met.

Admission control tests to determine if a desired connection could be guaranteed service

were performed through the use of CBSRP.

CBSRP allows sessions to be requested by either the sender or the receiver. In order

to create a session, the application must make a request with a set of parameters specified

by the protocol that map to the needed resources for the connection. The parameters which

are listed below are based on the idea that audio and video have temporal and spatial

qualities which characterize the continuous media stream. The parameters are:

• minimum and maximum temporal resolution, which would correlate to frames/s

in video,

• minimum and maximum spatial resolution, which would correlate to the number

30

of bits/pixel that a video application would receive,

• an array of possible discrete temporal values the class of traffic might take on,

• an array of possible discrete spatial values the class of traffic might take on,

• importance,

• maximum end-to-end delay, and

• maximum packet loss rate.

With these parameters the session manager could possibly have a number of equally

admissable points in a two dimensional plane of temporal and spatial values for a given

connection. This flexibility allows the manager to dynamically reallocate resources during the

course of a connection so long as the reallocation does not cause the admission test of any

stream to fail. If the session manager is unable to meet a connection request’s criteria, then the

request is rejected. Criteria for admission to the network are shown below,

Given the following definitions:

• Ci,j: execution time needed to transmit all data of node i, session j

• Di,j: network deadline of node i, session j

• Li,j: worst case gap between the first and last packet issued from node i, session j

to the network

• SAi: synchronous allocation allotted for node i

• : transmission overhead (note that this definition of σ differs from section 2.2.2)

First, the sum of all synchronous allocations in the network must be less than TTRT

minus any transmission overhead. Expressed mathematically,

In addition, the minimum network deadline must be at least twice the value of TTRT.

If the deadline was less than twice the TTRT there is no way to guarantee that the data can be

sent because each network node is only guaranteed to see the token once in every 2*TTRT

period. So a second condition is

If the message must be fragmented, then the deadline must be greater than twice the

TTRT plus the time it takes to send the whole message. Otherwise, if the last packet has not

been sent by this time, then there is no way to guarantee that the full message will make it to

the network before its deadline, because the transmitter might not get control of the ring for

σ

SAi
i 1=

n

∑ TTRT σ–≤

Di j, 2 TTRT⋅≥

31

another 2*TTRT time units. This would mean that the last packet would arrive late.

 So

The final requirement is that the sending node must be able to transmit all packets

from all sessions originating at that node at least 2*TTRT before the earliest deadline of a

session. Again, if all packets are not transmitted before 2*TTRT there is the possibility that

some packets could arrive late to the network because the node might not receive access to

the ring for another 2*TTRT time units. This means that synchronous allocations must be

allocated based on Di,min, the earliest occurring deadline. Synchronous allocation is based

on Di,min because the host system uses a FIFO queue, which can only make a single delay

guarantee. This results in the following equation which assumes a worst case possibility

that all sessions send packets within TTRT.

If the previous criteria can be met then the session is granted. If the unused network

resources are not sufficient to grant the session, then the session manager will relax the

requirements of any sessions that are using more than their minimum requirements, and

have an importance level less than the requesting session. If this relaxation fails then the

session manager will reject the session. Before final acceptance of the session, the request

must also pass the schedulability requirements of the operating system which are also

explained in [2].

For transmission of multimedia streams, the system uses the UDP protocol. UDP

was chosen because it was believed that a lightweight protocol with high throughput was

needed, rather than a reliable protocol that provided retransmission.

The results of the CMU work were that their dynamic QoS control scheme enabled

the sending of continuous media over an FDDI LAN in a flexible and predictable manner.

However, the feasibility of scaling their approach to multiple FDDI networks across

routers is not clear, and would seem to be costly due to the dynamic reconfiguration of

synchronous allocation.

Di j, Li j, 2 TTRT⋅+≥

SAi

Ci j,
j 1=

n

∑
Di min, TTRT–() TTRT()⁄

---≥

32

2.4 Summary

With the advent of network multimedia communication, the need for different types

of service in an internetworking environment has become more apparent, and as a result

has been the focus of many researchers.

The general consensus is that in order to avoid bottlenecks in a communication

system it is necessary to reserve resources for each connection, and if deterministic

guarantees are desired then some sort of admission control to the system is necessary. In

the first section of this chapter we discussed admission control tests and the traffic policing

measures that enforce adherence to the parameters that were agreed on for entrance to the

network. The general trend for these algorithms is that the more efficient they are in

network utilization, then the more complex or costly the algorithm is to implement.

In the second section we discussed the shortcomings of a currently used

internetworking protocol (IP), and then discussed two new network reservation protocols

that have been proposed.

The two systems discussed in the third section show two differing approaches

towards researching the field of real-time communications. The Tenet group based their

protocol suite on mathematically derived algorithms which guarantee deterministic

bounds. The suite is designed to offer real-time service over heterogeneous internetworks;

however, the efficacy of these systems with differing support for the real-time

communication architecture is still being researched. On the other hand, CMU’s research

focused on giving service guarantees for multimedia traffic on a single FDDI subnet. Their

architecture uses a real-time operating system which supports the underlying guarantees

attainable in the communications stack; however, the solution is limited in scope because

of its single subnet nature. Our research focuses on the middle road between these two

systems. We sought to design and implement an admission control protocol and router that

had the capability to give deterministic guarantees to connections on different subnets.

However, our design also focuses on the need to manage certain limitations and

bottlenecks of our system.

33

Chapter 3

Router Design

In this section we describe the design of the router used in the multimedia

communication architecture. Typically, commercial routers such as the Cisco AGS use

hardware and firmware to increase the throughput and decrease the latency through the router.

Many of these routers have a “fast path” for regular IP packets which decreases the latency for

these packets, while IP packets with options set are passed to a slower path unless the router

is specifically configured otherwise [16]. The result is that most commercial routers when

configured properly, can offer the maximum throughput allowed by the medium when sending

the minimum packet size from certain hosts (who are configured to use the “fastest path”).

However, these routers still suffer from congestion when under heavy load, and because of the

limitations of FIFO queuing, they can only offer a single delay guarantee assuming no packets

are lost. In the ideal situation, we would have chosen to alter the source code of a commercial

router to support multimedia traffic. However, no commercial vendor of routers was willing to

allow us access to source code, so we have based our design on a personal computer

architecture. We do not expect this design to meet the same level of overall performance as a

firmware router in such aspects as throughput and latency, but with such added features as

static priority queues, admission control, and traffic policing, the router and the multimedia

architecture offer service guarantees which are not available in typical networks.

The following section first describes the router architecture and follows the datapath

of a packet through the router. The second section discusses the Xpress Transport Protocol

which is a next-generation transport protocol that offers new functionality to its users. The

main feature of XTP that the router uses is a priority field in the transport layer’s header which

allows the router to demultiplex the traffic into different priority queues. The third part of the

chapter presents performance measurements of the router, and then analyses the bottlenecks

of the current design. The admission control protocol and mechanisms will be introduced in

this chapter, but the main discussion will be postponed until the following chapter.

34

3.1 Router Architecture

The overall design considerations mentioned in chapter one were applied in making

decisions on the structure of the router. The result has a firm grip “when the rubber meets the

road.” When designing the router such issues as the number of data copies, the critical code

length, the servicing of interrupts, and load on the CPU were considered.

The router uses a 33 MHz Intel 486-based PC, with the Extended Industry Standard

Architecture (EISA) bus. The choice of a relatively slow PC allowed for the overall design

to be stressed more easily by end systems on multiple subnets. For instance, it takes less

traffic to congest the router when it is a 33 MHz PC as opposed to a 66 MHz PC. We use

single attached Network Peripheral (NP) EISA bus FDDI cards. The choice of the NP card

was based on its availability, and the availability of device driver source code for the card.

The choice of the EISA bus ensures that bus speed will not be the bottleneck on

performance for a router supporting a small number of Network Interface Units (NIUs). The

EISA bus provides a maximum transfer rate of 33 MBytes/s (or 264 Mbits/s) which is over

four times the transfer rate of an ISA bus (8 MBytes/s). The EISA bus is also wider at 32

bits, and supports up to fifteen slots; however, the PC we use only has eight slots. The

software router design will support any number of cards, and is currently limited by the

physical hardware (the number of available slots in the machine and the available

Figure 6. Router Architecture
Figure 6 shows the general router architecture. Route tables are statically set, and then IP destination address
routes are cached in the route cache for quick look-ups.

IP ICMP ARP
ARP

Cache
Route
Cache

Route
Table

Datalink Layer

Device
Driver

Device
Driver

Device
Driver

FDDI Card FDDI Card FDDI Card

35

interrupts that may be used by the network cards). There are a number of other backplanes

available such as VME and PCI. However, we had no access to any VME hardware, and

the PCI bus architecture was new, with no FDDI network adapters available for use at the

start of this project. Thus, the EISA bus architecture was used.

Figure 6 shows the router architecture. IP [26], ARP [25], and ICMP [27] each run

as separate prioritized threads within the router. All three protocols meet the specifications

found in their respective RFCs. Extensions to the IP protocol were made to allow for

multiple queues to handle prioritized traffic. In this way preferential treatment may be

given to certain streams of traffic. At this time the router demultiplexes traffic via the

priority field found in the header of an Xpress Transport Protocol (XTP) packet.

The software within the datalink layer is used to abstract the underlying FDDI

hardware and device drivers from the protocols used within the router. Thus, various network

adapter cards could be used in the router so long as device drivers were written that conformed

with the calls presented at the datalink layer.

 In designing the router such issues as the number of data copies, the critical code

length, the servicing of interrupts, and load on the CPU had to be considered. In order to

explain these issues in more depth it is instructive to follow the data flow through the router.

When a frame arrives at one of the network interface cards (NICs), the card interrupts

the CPU and switches to the FDDI device driver interrupt subroutine. Because of the hardware

architecture of the FDDI card’s DMA chip, it is necessary to copy the frame from the FDDI

board to the router’s buffer space. Thus, because of the FDDI card architecture the router must

do two DMA transfers when storing and forwarding packets. Switching to a new card at a later

date might enhance performance if the card would support a zero-copy architecture, i.e.,

frames are DMAed directly from one FDDI card to another. However, the drawback of a zero-

copy architecture is that the hardware queues limit the number of packets that can be stored on

a board, and the hardware queues must somehow facilitate the preemption of service on lower

priority packets until all higher priority packets have been served.

Once the packet has been copied into router buffer space it is enqueued in the proper

queue, and the device driver then returns control to the highest priority active thread. The

highest priority task is user-defined, but for testing purposes it was the IP routing engine. The

IP task processes all packets of the highest priority first, and then moves to progressively

36

lower priority packets. However, once a packet is dequeued it will be processed, so the time

between the arrival of a packet of the highest priority into an empty queue and its servicing is

bounded by the time it takes to service a currently dequeued packet. Assuming that the router

never reaches congestion in the highest priority queue, then the highest priority packets have

a bounded worst case delay through the router. The derivation of the worst case delay will be

discussed in the chapter on the admission control protocol.

In order to further reduce time in the critical path, both an ARP cache and a route

cache are used. Route tables are statically set, and are used to make routing decisions when an

IP frame with a previously unseen destination field arrives. Once the routing decision has been

made, the destination is placed in a route cache for quick lookup. The route cache also holds

the new destination’s MAC address which was either found in the ARP cache or resolved via

an ARP request. Thus, the next packet traveling between the same two end nodes will bypass

the routing tables and ARP cache, because all the needed information will be found in the

route cache.

The servicing of interrupts was also a design consideration for the router. A renegade

user can seriously degrade the performance of the router. For testing purposes it was assumed

that all users behaved in a bounded fashion. In practice, all users must adhere to a common

admission control policy discussed in the next chapter.

In order to simplify the design issues the router is currently the only task running on

the PC; however, the router could be ported into an operating system that supports such

functionality as prioritized threads and fine-grained timers.

3.2 Xpress Transport Protocol 4.0

The Xpress Transport Protocol 4.0 [39] offers a variety of service paradigms to the

user because of its design emphasis on separating policy or paradigm issues from

mechanism or implementation issues. Thus, a user may choose to use a service similar to

that of TCP (reliable and connection-oriented) or a service similar to UDP (unreliable and

best-effort). The choice depends on the setting of bits within the options field of the XTP

header.1 XTP also offers the ability to create other service paradigms through the use of

1. The actual bit settings were done through the application programming interface of the XTP ver-
sion used in our lab. We use a commercial version of XTP 4.0 from Network Xpress, Inc.

37

mechanisms such as:

• Rate and Burst Control,

• Multicast,

• Multicast Group Management,

• Priority,

• Selectable Error Control, and

• Selectable Flow Control.

The use of XTP at the end systems in our testbed allows the router to demultiplex

traffic via the XTP SORT (priority) field which may be set by the user. This results in an

end-to-end path that receives preferential treatment based on the value of the SORT field.

Other protocols could have been used; however this would have increased the complexity

at the end-systems because protocols such as TCP, UDP, and IP do not support multiple

priority levels in their defined form. It would have been necessary to alter the source code

of these protocols in order to take advantage of the availability of prioritized traffic. With

our design the router supports regular IP traffic by sending it at the lowest priority level.

Thus, TCP, UDP, and IP traffic may be sent in the same manner as before. XTP traffic may

also be sent at this base level, or it may be prioritized.

Our admission control protocol and traffic policing mechanisms also take

advantage of certain XTP features. We use XTP’s rate and burst mechanisms to help police

traffic entering the network. This policing mechanism will be described in the next chapter.

3.3 Performance Measurements

In this section we discuss the baseline performance measurements of the router. In

order to make service guarantees one must ensure that the guarantee can be met. Therefore,

the experimental testing of the basic router is extremely important because it must be

known what resources are bottlenecks in our design so that they may be managed via the

admission control protocol. The first part of this section discusses the latencies through the

router. The second section presents data on the throughput that the router may sustain with

varying levels of background traffic. In the third section we summarize the results of the

performance measurements. With the resulting information we then designed an admission

control protocol and traffic policing mechanism. These mechanisms allow end-systems

sending traffic through this router to have certain service guarantees on worst case delay

and throughput for their connections at the highest priority level.

38

3.3.1 Latency Measurements

The delay a packet incurs at the router as it passes from an end-system on one

subnet to an end-system on another is an important quantity because it is part of the overall

latency of a packet between end systems. Ideally, the best way to measure the one-way

latency through the router would be to record the time it enters the router, and then record

the exit time. However, due to the architecture of the PC, creating a timer function with the

granularity needed to measure the one way-latency of a packet is too costly in terms of

overhead for the router.

The 80x86 architecture uses a number of 8254 programmable interval timers (3

timers per chip) which may be set by the user to interrupt after a certain delay. With the use

of one of these timers, a timing system was developed for the router, which allows multiple

timer requests to be serviced from a single interval timer. Although there are a number of

interval timers in the PC, only one may be set by the user. Thus, the timer must be able to

Figure 7. Packet Size Vs. Round Trip Times
Figure 7 shows the effect of packets size on round trip times between two hosts on a single subnet, and then
between two hosts connected via the router. 10,000 packets were sent for each test with the result in the graph
representing the time average.

39

interrupt at the minimum granularity of the desired clock. Too small a granularity can

affect system performance because the timer interrupt calls code which checks to see if any

user-set timers have expired every time an interrupt occurs. Thus, the router latency was

not determined by timers within the router.

Some systems have equipment that supports a synchronized clock which allows

events on separate subnets to be timed. With this type of equipment the one-way latency

may be measured by finding the difference between the time the packet was seen on the

source subnet, and then on the destination subnet. Unfortunately, this equipment was not

available because of its prohibitive cost.

Because of the problems associated with the two previous methods of measuring

latency, we used a solution which would give us the latency indirectly. We measured the

time it took to send a packet from an end-system on one subnet through the router to an

end-system on another subnet, and then back to the original sender. This value is known as

the round trip time (RTT). Assuming the sender and receiver are matched, then the

following equation would yield an approximation of the one way latency:

Figure 7 shows the effects of varying packet size on the RTT. As packet size

increases the round trip times increase for both the single subnet test and the test through

the router. This increase is due mostly to the memory copies or Direct Memory Accesses

(DMA) that occur when a packet is received or when a packet is being sent. A DMA

transfers a large block of data from an external device (in this case an FDDI card) to the

computer’s main memory. This type of transfer frees the CPU to do other processes.

However, there is usually an initial setup time needed before using a DMA, and then a

variable cost is incurred depending on the amount of data being transferred. So in a round

trip between two nodes there are currently four DMA’s; each node does a DMA on the

send, and each node does a DMA on the receive. In a round trip between two nodes through

the router there are a total of eight DMA’s. This difference in the number of DMA’s is the

main reason for the differing slopes of the two lines.

The result of the latency test shows that an increase in packet size increases the time

of processing for a single packet within the router due to increased latency of each DMA

transfer.

Router Latencyone-way

RTTthrough router RTTbetween hosts on a single subnet–

2
---=

40

3.3.2 Throughput Measurements

In this section throughput measurements for the router are discussed, with

emphasis being placed on identifying some of the bottlenecks in the router. The first set of

throughput tests used non-prioritized IP traffic through the router. In this case, the router

was allowed to use all available internal buffers for this stream. The tests used a minimum

interpacket gap that did not cause the router’s packet queue to overflow. The second set of

tests sent two streams of traffic through the router, one at high priority and one at low

priority. The low priority stream consisted of constant length packets being sent at a rate

that would congest the router. The packet size of the high priority traffic was then varied,

with the maximum throughput being found for a given packet size that did not cause any

of the high priority packets to be dropped within the router. Discussion of each set of tests

follows.

Figure 8. Throughput Vs. Packet Size For The IP Router
Figure 8 shows the effect of packet size on the throughput the router can support without dropping packets.
The graph shows throughput in both Megabits/s and Packets/s.

41

3.3.2.1 Single Traffic Type

Figure 8 shows the results of the tests using a single stream of non-prioritized IP

traffic through the router. Peak throughput, when incurring no packet loss due to queue

overflow in the router, is approximately 50 Mbits/s. Testing showed that the first bottleneck

the router would encounter was due to the servicing of interrupts. If the interpacket gap was

too small, then the router would only have time to enqueue the packet before being

interrupted with notification that another packet had arrived. This bottleneck limited the

number of packets per second that the router could serve at the minimum packet size. As

packet size increased, the latency incurred due to the two memory copies (DMA transfers)

needed to store and forward the packets from the source subnet to the destination subnet

became more of a factor. The minimum interpacket gap had to be increased between

packets of larger size in order for the router to have time to service each packet. From the

results in Figure 8 it can be derived that the router needs approximately 700 µs to receive

a 4,500 byte packet, find the destination subnet, and then send the packet out on the

destination subnet. This measurement also assumes that the Route and ARP caches hold

the information needed to process the packet.

3.3.2.2 Two Traffic Types, High and Low Priority

Figure 9 shows the results of the throughput tests that sent two streams of traffic

through the router. One stream was sent as a low priority stream. The low priority stream

was sent at a rate such that it loaded the router to the point where some packets of the low

priority stream were being dropped even without the second high priority stream being sent

through the router. The packet length of the low priority traffic was held constant as

successive iterations of the throughput testing varied the packet size of the high priority

traffic. Then the low priority packet sizes were changed to a new constant value and the

testing was repeated. Figure 9 shows results from tests where the low priority traffic was

held at constant packet sizes of 128, 1,024, 2,048, and 4,500 bytes while the size of the high

priority traffic was varied. The legend associates a high priority stream with the constant

packet size low priority stream that was contending for router resources.

The results of Figure 9 show that as background traffic (low priority) packet size

increases it has less of an effect on the performance of the high priority traffic, i.e. the

42

router can sustain a higher throughput for the high priority traffic stream without dropping

any high priority packets, because it is receiving less interrupts during a given time interval

from the low priority packets. For instance, the router can only sustain 28 Mbits/s of high

priority traffic when sending 4,500 byte packets, and competing for CPU time with

receptions of 128 byte low priority packets (offering 5800 pkts/s or 5.5 Mbits/s). However,

the router can sustain approximately 40 Mbits/sec of high priority traffic sending 4,500

byte packets when competing with low priority packets of equal size (offering 1411 pkts/s

or 50.8 Mbits/s).

The difference in sustainable throughput occurs because the router must service

more interrupts for the smaller packets because more can arrive within a given time period.

Even though the router has separate buffers reserved for use with the two classes of traffic,

Figure 9. High Priority Traffic Throughput When the Router is Congested

with Low Priority Traffic
Figure 9 shows plots of sustained throughput (no losses) through the router for high priority traffic when com-
peting with an offered load of low priority traffic (not shown). The high priority traffic varies its packet size,
while the low priority traffic is kept at a fixed packet size for each round of testing. This results in a constant
level of background (low priority) traffic being presented to the router, along with the maximum amount of
high priority traffic that the router can sustain.

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h

ro
u

g
h

p
u

t
(M

b
it

s/
s)

Time (ms)

HP traffic when LP is 128-byte pkts
HP traffic when LP is 1024-byte pkts
HP traffic when LP is 2048-byte pkts
HP traffic when LP is 4500-byte pkts

43

the CPU is taken away from processing high priority packets in order to process the

interrupt of an incoming packet which could be a low priority packet.

The results of this set of tests show that the performance of traffic designated as

high priority may be adversely affected by the amount and size of packets sent at a lower

priority level. (For simplicity, we only used two priority levels for our testing).

3.4 Summary

In this chapter we discussed the design of the router, and the Xpress Transport

Protocol (the protocol used in conjunction with the router), and then presented

performance measurements of throughput and latency tests. With the given router design,

the performance measurements indicate that there is an upper bound on performance that

the router can support for high priority traffic that is less than the physical media speed of

FDDI (100 Mbit/s). The measurements also indicate that high priority traffic may be

adversely affected by lower priority traffic due to the increased number of interrupts that

must be served in order to receive and process the packet to the point where it is placed in

its appropriate priority queue. In general, the effect of increased background traffic is an

increased latency in the time it takes to service high priority traffic, which then decreases

the maximum throughput that may be sustained by the router for the highest priority traffic.

This means that in order to guarantee service for the highest priority level, one needs to

limit the amount of traffic that is admitted to the network. This topic will be discussed in

the next chapter.

44

Chapter 4

Admission Control

In this chapter we discuss the design of the admission control protocol and the

associated resource reservation used in our multimedia communication architecture. From

the results of the previous chapter it is apparent that our router, like many commercial

routers, can become a bottleneck depending on the traffic load. We can generalize the

results to the following:

• An increase in packet size increases processing time associated with that packet

within the router due to the increase in latency for each DMA.

• As the number of interrupts due to packet arrivals at the router increases, the perfor-

mance of the router decreases because it spends more processing time within its inter-

rupt subroutine.

• As router performance decreases the latency associated with the processing of a

packet will increase. This action can result in packets being dropped due to con-

sumption of the finite amount of buffer space within the router.

Thus, in order to ensure that the router does not become congested we must limit

the amount of traffic that can pass through the router. We discuss our network admission

control design in the first section of this chapter. The second section discusses how we

propose to ensure that once a host has been admitted to the network, it will be able to gain

access to the medium of the network. Then, in the final section we present results from the

testing of our communication architecture by the simultaneous transmission of video and

with background traffic.

4.1 Admission Control Design

In this section we discuss the mechanisms for resource administration used in our

communication architecture, followed by a discussion of the end-to-end resource

reservation protocol.

45

4.1.1 Resource Administration Mechanisms

As mentioned in the introduction of this chapter, the only way to ensure a certain

level of performance in the router is to bound the number of interrupts that the router must

process within a given interval. In order to bound the interrupts we decided to police the traffic

at the end-systems, thus limiting the amount of traffic that the router would handle. Once the

number of interrupts has been limited, the next factor affecting router performance is the size

of the packet which it must process.

In the previous chapter we described the data path through the router, with the

current implementation needing two DMA operations per packet, one to move the packet

from the FDDI card to router-controlled memory and one to move the packet from the router

memory to the FDDI card on which it is retransmitted. We showed via measurements of round

trip times through the router that as packet size increases the processing time within the router

also increases. Thus, we must either bound the packet size used by a connection, or assume

the worst case in which all packets sent are the maximum size (4,500 bytes for FDDI). We

currently assume the worst case of all packets being 4,500 bytes for all calculations.

Time t
T T T

B

B

2B

Figure 10. Worst Case Burst for the Jumping Window Policing Mechanism
Figure 10 shows the worst case burst that can occur when using the Jumping Window policing mechanism.
The worst case can occur when a burst of size B occurs at the end of one period T, and is immediately followed
by another burst, of size B, in the next period.

Bytes

B

46

4.1.1.1 End-System Resource Administration

Our system uses the Xpress Transport Protocol version 4.0 in the end-systems. As

part of XTP’s functionality, it offers rate and burst control for its data stream. However, the

XTP mechanism is not “strict enough” in its enforcement of traffic policing for our needs.

XTP uses the Jumping Window mechanism for its rate control. One of the limitations of

this mechanism is that the worst case burst one might see is twice the burst allocated for a

single interval as shown in Figure 10. Another limitation of the XTP rate control

mechanism is that it only polices data traffic, assuming that all control traffic is negligible.

Problems can also arise due to certain limitations of the router. The router’s

performance is affected first by the number of packet arrivals per interval, and then by the size

of the packets that have arrived. The XTP rate and burst mechanism is not specified in units of

packets, rather in bytes/s and bytes/burst. A burst of 8,000 data bytes on an FDDI network can

consist of two large 4,000-byte XTP packets, or it can be eight 1,000-byte XTP packets, or in

the worst case, it may be 8,000 one-byte packets. The performance of the router would vary

dramatically depending on how the burst was sent.

Thus, if we only use the XTP rate and burst mechanism for policing traffic entering

our network, then we must allocate buffer space for packets within the router based on a burst

of twice the amount specified by the XTP connection, plus some added constant (derived from

observations) to take into account any control packets that might be emitted during that

interval, plus some more to handle the case when packets are less than the maximum size (thus

requiring more of them to carry a fixed amount of data).

For example, the router has buffer space to hold 32 high priority packets at any time,

and from the results in chapter three, we know that the router can support a rate of

approximately 50 Mbits/s when the packets are 4,500 bytes in length. If we have four

connections through the router, each with an XTP-defined burst of six packets (27,000

bytes) and a maximum rate of 10 Mbits/s, then at any time the router should ideally have

no more than 24 packets in its queue and should be able to handle the requested rates.

However, if any of the connections send control packets or have two maximum bursts of

packets back-to-back, then the router’s queue can overflow. Thus, a more strict traffic policing

mechanism is needed in the end-systems.

Based on the availability of rather fine-grained timers offered by the Intel 8254

47

chips that are on each PC, we have decided to use a Leaky Bucket [37] mechanism for

policing connections that go through the router. The policing mechanism limits all traffic

entering the network to a specified maximum burst, and then periodically updates a credit

counter based on the specified rate. The rate and burst requests are specified in Mbits/s and

bytes respectively. The implementation assumes that all packets entering the network are

4,500 bytes, and makes its calculation for the credit counter update rate based on this value,

and the knowledge that the current version of the protocol stack has access to timers of 1

ms granularity, plus the value of the requested rate from the admission control protocol.

The result of this calculation is that the update period of the credit counter may

allow a larger throughput than the requested rate because the smallest timer granularity is

1 ms. The resource reservation component of the admission control protocol then uses this

re-factored rate (gained by using the update period) in its request to the router for

admission to the network. If the rate request results in an update period that is smaller than

1ms, then the request is currently denied by the end station at which the request originated.

Burst requests are also assumed to be in 4,500 byte packets, which results in a request to

the router being in units of packets/burst (this is a resource the router can manage). The

router manages its buffer space on a packet by packet basis, and has enough room to hold

up to 32 packets. We assume the worst case packet size of 4500 bytes when calculating our

burst parameter because the router performance is sensitive to packet size. Thus, by

assuming worst case size we know the router can handle a burst of smaller packets.

Assuming that the router accepts the request, the leaky bucket mechanism disables

the sending of packets for a connection whenever its credit count drops to zero. Figures 11-

14 show the result of traffic policing an XTP connection using the leaky bucket mechanism

with a requested rate of 10 Mbits/s (which translates into an allocated rate of 12 Mbits/s)

Update Period (s) 4,500 (bytes)
Requested Rate (Mbits/s) 8 (bits/byte)⁄
--=

Resultant Burst Requested Burst (bytes)
4,500 (bytes)

---=

48

0

50000

100000

150000

200000

250000

300000

60 80 100 120 140 160 180 200 220 240

Se
qu

en
ce

 S
pa

ce
 (

B
yt

es
)

Time (ms)

Ideal LB: 10 MBits/s, 22500 Bytes/Burst
XTP JW: 10 MBits/s, 22500 Bytes/Burst

Figure 11. Leaky Bucket Traffic Policing in XTP
Figure 11 shows the performance of leaky bucket traffic policing in XTP. The counter is being updated once
every 3 ms; and maximum burst is 5 packets. Due to timer granularity, a request for a rate of 10 Mbits/s had
to be increased to 12 Mbits/s.

Figure 12. Jumping Window Traffic Policing in XTP
Figure 12 shows the performance of XTP’s original rate and burst control, a jumping window mechanism.
The jumping window mechanism uses a larger granularity timer, and as a result the protocol may set the maxi-
mum rate to be 10 Mbits/s with a burst of 22,500 bytes.

0
40 60 80 100 120 140

S
eq

ue
nc

e
S

pa
ce

 (
B

yt
es

)

Time (ms)

XTP LB: 12 MBits/s, 22500 Byte Burst
Ideal LB: 12 MBits/s, 22500 Byte Burst

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

49

Figure 13. Leaky Bucket and Jumping Window Traffic Policing in XTP
Figure 13 shows the use of both the leaky bucket and the jumping window traffic policing mechanisms in XTP.
The leaky bucket has a maximum rate of 12 Mbits/s, and the jumping window has a maximum rate of 10
Mbits/s. Both have a maximum burst of 22,500. However, the leaky bucket polices traffic in terms of outgoing
packets, whereas the jumping window is looking strictly at data bytes.

Figure 14. Various Traffic Policing Methods used by XTP
Figure 14 shows the use of a leaky bucket mechanism with and without a jumping window mechanism for
the policing of traffic in XTP. In this case using both mechanisms kept the traffic constrained to less than 10
Mbits/s.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

100 200 300 400 500 600 700 800 900 1000

Se
qu

en
ce

 S
pa

ce
 (

B
yt

es
)

Time (ms)

XTP LB: 12 MBits/s, 22500 Byte Burst
XTP LB+JW: 12(10) MBits/s, 22500 Byte Burst
Ideal LB: 12 MBits/s, 22500 Byte Burst
Ideal LB: 10 MBits/s, 22500 Byte Burst

0

50000

100000

150000

200000

250000

60 80 100 120 140 160 180 200

S
eq

ue
nc

e
S

pa
ce

 (
B

yt
es

)

Time (ms)

XTP LB+JW: 12(10) MBits/s, 22500 Byte Burst
Ideal LB: 10 MBits/s, 22500 Byte Burst

50

and a burst of 22,500 bytes (5 packets/burst), compared with using XTP’s rate and burst

functionality for policing. The overall result is that both the leaky bucket mechanism and

jumping window mechanism do their job, and restrict the flow of packets entering the

network such that it never exceeds the requested rate and burst.

One design decision that had to be made was when to notify the protocol that credit

was available for sending more packets. The current implementation does not busy-wait until

credit becomes available; instead, the XTP implementation looks for other work to be done.

Therefore, the XTP connection may send a burst which exhausts its credit, but may not have

anything left to send, such that reactivating the XTP transmit engine when the counter is

updated only causes the system to waste time finding out that there is really no work to be

done. The other possibility is that there are packets to be transmitted each time a credit is

regained. If the XTP transmit engine is restarted each time a credit arrives, then this causes

thrashing of the XTP protocol and any other tasks that are currently active, with the XTP

transmit engine waking up and then sleeping each time a timer expires that updates the

connection’s credit counter. The other extreme is to explicitly restart the XTP transmit engine

when the credit counter is equal to its maximum amount. Packets can still be sent in the

interim if credit is available and the transmit engine is active for another connection or for

some other reason. However, this heuristic can lead to maximum credit bursts followed by

a silent period with a duration equal to the maximum burst times the credit update rate.

Instead, we have chosen to explicitly restart the XTP transmit engine whenever the credit

counter is updated. Our choice was based on initial tests with multimedia streams where

large bursts and low rates caused excessive delays between packet bursts if the XTP

transmit engine was not restarted each time its credit counter was updated.

Figure 11 shows the results of using our leaky bucket implementation with the XTP

transmit engine restart policy mentioned above. In this test case the admission control

request was for a rate of 10 Mbits/s and a burst of 22,500 bytes; however, due to the

granularity of the timer the protocol had to offer 12 Mbit/s.

Figure 12 shows the results of using XTP’s rate and burst options (a jumping window

mechanism for traffic control). In this test the upper bound on the rate was set at 10 Mbits/s

with a burst of 22,500 bytes. The rate of 10 Mbits/s can be enforced in this case because of the

differing implementation between leaky bucket and jumping window. The jumping window

51

mechanisms updates its byte counter to the requested amount every time interval of Burst/

Requested Rate. For a 22,500 byte burst and a rate of 10 Mbits/s the update interval for the

jumping window credit counter is 18 ms. The leaky bucket mechanism must have an update

interval of 3 ms for a rate of 12 Mbit/s.

Figure 13 shows the results of sending data with XTP when policing the traffic with

both the leaky bucket and jumping window mechanism. In this case the leaky bucket policed

at a rate of 12 Mbits/s and the jumping window at a rate of 10 Mbits/s with both having a burst

of 22,500 bytes. (Note: The jumping window mechanism polices traffic by counting the bytes

of data whereas the leaky bucket polices traffic by assuming a packet size of 4,500 bytes.) The

traffic is constrained in this case to be less than 10 Mbits/s; however, in the worst case the

traffic can have an average rate of 12 Mbits/s over two update intervals of the jumping window

mechanism. This worst case can occur if two back-to-back bursts of packets are sent (see

Figure 10). The jumping window mechanism would allow this to occur, and then the actual

number of packets sent would be constrained by the leaky bucket mechanism.

Figure 14 shows the results of an XTP transmission over a period of a second. The

results show that the leaky bucket mechanism does throttle the traffic to its requested rate

and burst (the policing of the burst is not visible from the graph, but is apparent in the raw

data output which is not shown).

4.1.1.2 Router Resource Administration

With traffic flow entering the network being limited at the end systems, the router

must ensure that, if it accepts a request for entrance, it has the resources available for the

request. The current version of the router supports a number of priority levels depending on

how many static priority queues are available within the router. However, for the resource

administration we have limited the number of priority levels to two. As the data in chapter

three indicates, the router performance for processing high priority traffic degrades as the

number of packets/s or interrupts/s increases. We assume that the number of packets/s

generated at the lower priority is bounded. With this knowledge, we know (from the test

results in chapter three) the upper bound on throughput that the router can support without

dropping any packets. Therefore, each time an end-system makes a request for a given rate and

burst we determine whether adding the new rate and burst would violate our upper

52

performance bound for the high priority traffic. For instance, if we assume that we will have

no more than 30 Mbits/s of traffic at the lower priority with a minimum packet size of 1,024

bytes, then we know from empirical results (see chapter three) that the router can handle 30

Mbit/s of traffic at high priority when packets are 4,500 bytes in length. Under these

conditions we can sum the currently allocated bursts and rates through the router and add the

new request. If the total sum for the burst is less than 32 (the number of packet buffers within

the router that are allocated for high priority traffic), and the rate is less than 30 Mbits/s then

the new high priority connection can be accepted. The admission test is:

The result of the request (admission or denial) is then passed to the resource

reservation protocol so that the end-systems may be notified.

4.1.2 Resource Reservation Protocol

Two resource reservation protocols were mentioned in chapter two, RSVP and ST-II.

Unfortunately, the RSVP specification was in its draft stages at the start of this project, and

ST-II takes the place of IP as the network protocol. While implementing one of these two

protocols would have been instructive, that was not the focus of this project. Instead, we

developed our own protocol to be used for admission control which satisfies the needs of our

system and allows for testing of the resource administration being done within our system.

Our reservation protocol is an extension to the extant Internet Control Message

Protocol (ICMP) [27]. ICMP is the basis for the ping program (PING_REQUEST and

PING_REPLY), and also allows hosts and routers to communicate messages such as a

destination being unreachable (DESTINATION_UNREACHABLE), or a request for a source

to slow its traffic output (SOURCE_QUENCH), plus others. We have added the following

messages:

σrequest σi
i

∑+ 32 packets 4 500bytes/packet,⋅<

ρrequestt ρit
i

∑+ 3 750 000bytes/s, ,() t⋅<

53

• REQUEST_ADMIT — The request admit message is passed to the router along

with the rate and burst requests. If the router accepts the connection, then the

request is forwarded to the destination, otherwise it notifies the initiating host that the

request has been denied. If the destination accepts the request, it sends a reply to the

original host. If it denies the request then a denial is returned to the router, allowing

any tentative resource allocations to be released, and then the packet is forwarded to

the initiating host.

• REQUEST_STATUS — The request status message allows an end-system to

query the router about its state.

• NOTIFY_CLOSE — The notify close message is issued when an end-station or

router wishes to tear down a connection.

• REQUEST_ACCEPT — The request accept message is sent by an end-system if

it accepts the associated request.

• REQUEST_DENIED — The request denied message is sent by an end-system if

Host A Router Host B

REQUEST_ADMIT
REQUEST_ADMIT

REQUEST_ACCEPT

REQUEST_ADMIT
REQUEST_ADMIT

REQUEST_ACCEPT

XTP Traffic

...

...

NOTIFY_CLOSE
NOTIFY_CLOSE

RECVD_CLOSE

NOTIFY_CLOSENOTIFY_CLOSE

RECVD_CLOSE

Time

Figure 15. Typical Packet Exchange Using the Resource Reservation Protocol
Figure 15 shows the typical packet exchange that occurs using the defined resource reservation protocol when
both the router and hosts accept the two requests. Lines that are broken at the router denote that the router receives
these packets, does any required resource administration, and then passes the information along to the required
host. Lines that do not break at the router indicate that the router processes these packets as regular IP packets
being sent to the required destination.

54

it does not accept the associated request.

• REPORT_STATUS — The report status message is generated by the router in

response to a request for status. It contains state information about the router and

current connections.

• RECVD_CLOSE — The received close message is sent by an end-station to the

initiating host upon reception of a “notify close” message.

The request for admittance along with its requested rate, burst, and host information

will allocate resources for a unidirectional channel between two hosts connected via the

router. If bidirectional communication is desired, then the destination host must also make

an admission request before communication can begin. Figure 15 shows the logical flow of

communication using the resource reservation protocol.

The resource reservation protocol was designed as a companion to the XTP protocol

stack used at the University of Virginia Computer Networks Laboratory. The procedure

prototypes used in the API for the reservation protocol are the following:

int32_t QOS_request_admit(uint32_t context, XTPadr_t *local,
XTPadr_t *remote,XTPadr_t *router, uint32_t *priority,
 uint32_t *rate, uint32_t *burst);

int32_t QOS_close(uint32_t context);
int32_t QOS_request_status(uint32_t context, QOS_t *qos_mib);

typedef struct {
uint32_t priority; // priority of the connection
uint32_t rate; // rate of the connection
uint32_t burst; // burst of the connection
uint32_t avg_idle_time; // avg idle time in the router

} QOS_t;

The context number that is used in all three calls is a number that the XTP protocol at

the local host associates with the given connection. All connections at a given host are

guaranteed to have different context numbers. This number is passed to the router and the

destination end-station in a “request for admittance” message. By using this number and the

initiating host’s IP address the router and end-stations can distinguish among different

requests or connections from the same initiating host. All API calls are blocking with

return codes defined for success and for a number of error conditions.

55

4.2 Media Access

In chapter one we presented four alternatives for media access: Ethernet, Token Ring,

FDDI, and ATM. We decided to use FDDI based on its availability, the amount of bandwidth

it offered, and because its synchronous allocation mechanism offered certain deterministic

guarantees.

In order to make any sort of deterministic delay guarantees it is necessary to have

service guarantees at all levels of the protocol stack. When a host uses FDDI’s synchronous

allocation mechanism it is guaranteed to have access to the ring at least once every 2*TTRT.

The value of the Target Token Rotation Timer (TTRT) is negotiated by all active hosts when

the ring becomes active. The minimum requested value for the TTRT becomes the new value

used by the ring. The length of time the host has access to the ring is determined by the size of

its allotted synchronous allocation block.

In order to maintain the timing properties of the FDDI ring the amount of synchronous

allocation is bounded by the TTRT minus the transmission overhead.

The process by which one makes a request for synchronous allocation is defined in the

FDDI SMT. However, the basic idea is that there exists one host who regulates the allocation,

ensuring that the timing properties of the ring are not violated.

In the initial admission protocol design the intent was to have the router act as the

manager of the synchronous allocation for all rings to which it was attached. Thus, when a

request for the admission to the network was made, the admission control resource manager

would also have to consider whether there were enough synchronous allocation units

available to give the requesting host on its ring, and enough units to allocate to the router

on the destination host’s ring.

Unfortunately, the Network Peripheral cards that are available for use do not support

the synchronous bandwidth class (it is optional in the FDDI specification). Therefore, our

current implementation cannot guarantee access to the ring. In our current testbed the effect of

not having guaranteed access is minimal due to the small number of hosts on the rings and the

small size of our testbed.

SAi
i 1=

n

∑ TTRT σ–≤

56

4.3 Performance Testing

In this section we describe the tests used to gauge our multimedia communication

architecture’s performance. The first part of this section describes the video distribution

system used in the testing. The second part discusses the testing and the results of sending

high priority video, high priority file transfers, and varying levels of low priority

background traffic through our network when using our admission control protocol and

modified version of XTP.

4.3.1 Video Distribution System

In this section we discuss the video distribution system used for testing the

effectiveness of the admission control protocol and the router. A description of the hardware

and software follows, then we discuss the video application end-system protocol. Finally, we

describe option settings used in XTP at the end-stations.

4.3.1.1 Video Distribution Testbed

The video distribution testbed consists of six Intel 486-based EISA bus PCs. The

machines vary in speed, with two running at 50 MHz, two at 33 MHz, and two at 66 MHz.

Terrapin, the router, currently maintains two rings. One subnet contains three computers,

while the other subnet contains two. Figure 16 shows the testbed setup.

Figure 16. Video Distribution Testbed
Figure 16 shows the video distribution testbed that is used for testing the router and admission control perfor-
mance. Terrapin, the router, connects two FDDI subnets.

Each machine contains either a single-attached or dual-attached Network Peripherals

FDDI card. The router contains two NP FDDI cards (version 3), and all other machines use

Terrapin

Lust Envy BlueSky

Gluttony Pride

57

NP version 2 cards. Each host machine also contains two extra hardware boards used for the

display and compression/decompression of the video. The video board is a Truevision

Bravado board, which uses eight bits-per-pixel color. The board also has an extra bus

connector which allows add-on boards to be connected. Our video system uses a RapidTech

JPEG [38] compression/decompression board in conjunction with the Bravado video board.

Video is captured by the Bravado board, with maximum size images being full screen

video with 640x480 resolution. The captured frame is passed to the JPEG compression board

where encoding of the frame occurs. The RapidTech board uses a Discrete Cosine Transform

(DCT) to change the representation of an 8x8 pixel block into a frequency distribution. The

board then filters this frequency distribution with regard to a user-defined quantization factor

(Q factor). Frequencies that will not be missed are filtered out, and the remaining frequencies

are represented in an efficient manner based on the Q factor (a larger Q factor indicates larger

quantization intervals, resulting in more compression, and a corresponding degradation in

picture quality). These frequency values are then encoded using the Huffman algorithm. The

resulting frame is then copied to an application-owned buffer. From this buffer space the

frame is passed to XTP for transmission to the destination host. Upon reception by the

destination host the frame is passed to the RapidTech board for decompression, and then to the

Bravado board for display.

4.3.1.2 Video Application End-System Protocol

The video distribution application was first developed as a multicast video distribution

system that used XTP’s reliable multicast and group management functionality to deliver a

reliable video stream to multiple receivers [11]. Making minor modifications to the

application allowed the video distribution to be run as a unicast connection between two end-

systems, along a path that included our XTP-aware IP router [6].

Once initialized, the video application waits for interrupts from the RapidTech

compression board signalling that a new frame is ready for transmission. The interrupt rate is

a function of frame rate. Thus, full frame rate (30 fps) yields interrupts every 33 ms. When an

interrupt occurs the application enqueues the frame in a queue of user-defined length. Both the

sending and receiving applications maintain frame buffer queues. These queues protect the

video stream from jitter due to latency incurred in the application and network. Video

58

playback begins by accumulating four video frames in the receiver to act as a “cushion”

against network jitter. If a frame is delayed or retransmitted enroute, this receiver-based buffer

allows approximately 133 ms of recovery time before the playback stream is visibly

interrupted. If the receiver’s frame buffer is ever exhausted, then it replays the last good frame

until a new one arrives.

The transmitter also maintains a buffer queue. Ideally, the transmitter should always

be processing the most recently compressed frame. However, the current version of the

application uses a blocking send call to XTP, so it is possible that a new frame may be

ready for transmission, but the transport protocol may still be in the process of sending a

previous frame buffer. In this case the new frame buffer will be queued for processing at a

later time. In the worst case, the transmitter’s queue will fill completely, which currently

results in the overwriting of the most recently enqueued frame.

In order to quantify the performance of the video stream we measured the

transmission time latencies for frames leaving the sender. We define the transmission time

latency to be the time it takes the user level XTP send call to execute and return control to

the application program. This time represents how long it took XTP to reliably deliver a

single video frame to the receiver. By measuring the performance between two end-

systems connected via the router we can characterize the router performance for a soft real-

time system.

4.3.1.3 End-to-End Transport via XTP

XTP offers a variety of service paradigms over which a video application may be

based [39]. Using XTP gives the application writer such choices as whether to use go-back-

n or selective retransmission; whether to create a reliable connection between two hosts;

and whether to prioritize the data stream. Plus, most of the functionality found in XTP is

completely orthogonal.

Many video applications use an unreliable transmission control protocol such as

UDP or RTP on top of UDP. If part of a video frame does not arrive, either the frame is

dropped or the decompression hardware can handle missing data which will result in

degradation of the picture quality. While XTP offers the user a choice of a reliable or an

unreliable service, transmission of the video frames uses the reliable delivery service

59

between end-systems, because the decompression hardware is too sensitive to missing

data. The current tests also use a go-back-n retransmission scheme.

4.3.2 Experiments

In order to quantify the router and admission control performance with the video

distribution system, a number of tests were done. For the experiments we established a

single unicast video connection between two machines on opposite sides of the router,

Terrapin. The video sequence was a ten minute clip from the movie, The Terminator. The

sequence had a number of varied scenes, including both action and “talking head”

scenes. Gluttony was used as transmitter for the video stream, and opened a connection

with the receiver, Lust.

The first set of tests varied the allocated rate used to send the video. Using our

knowledge of the frequency distribution of frame sizes (Figure 17), we derived the peak

rate for the video transmission assuming that a frame is transmitted every 33ms. Under

these conditions the peak rate is 21,680 bytes/33 ms * 8 bits/byte = 5.25 Mbits/s. The first

test requested and was allocated a rate of six Mbits/s, a burst of 27,000 bytes (six

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000 25000 30000

Fr
eq

ue
nc

y

Frame Size (Bytes)

Frequency Count

Figure 17. Frequency Count of Video Buffer Sizes (Q=60)
Figure 17 shows the frequency count of all frame buffers from the ten minute video sequence used in testing
the performance of the router and admission control protocol. Buffer size is affected by a number of factors
including both the quantization(Q) factor and the content of the video frame.

60

packets), and high priority status. The burst request was made large enough to handle the

sending of the largest frame size plus some extra overhead to cover control packets. The

test was then repeated three times with the same burst request and rate requests of 7.2

Mbits/s, 9 Mbits/s, and 12 Mbits/s.

The second set of tests sent varying levels of background traffic while still sending

the video stream. First, the connection between Gluttony and Lust requested and was

allocated the following services:

• high priority,

• a rate of 9 Mbits/s, and

• a burst of 27,000 bytes (6 packets).

The allocation choices for the video stream were based on the desire to deliver a

high quality video stream to the receiver. For our purposes we defined high quality video

as 640x480x8 resolution with a full frame rate of 30 frame/s. The JPEG compression used

by the video system hardware allows the user to set the Q factor, so tests were done with

the Q factor set at 60. The quality of the video that the destination host receives is a

function of a number of factors such as the frame rate, the amount of compression, and the

content of the frame. From the results of previous tests we determined that the throughput

needed to deliver full frame rate video with a Q factor of 60 had a peak rate of 5.25 Mbits/

s. We requested a rate of 9 Mbits/s for reasons that will be discussed in the next section.

During successive tests other traffic was added, which included a high priority file

transfer and varying levels of background traffic. The second test involved a video

connection, plus a file transfer with the following admission request and subsequent

allocation:

• high priority,

• a rate of 18 Mbits/s, and

• a burst of 9,000 bytes (2 packets).

The third test added a low priority stream of background traffic with a throughput

of 47 Mbits/s that was generated from sending packets of 4,377 bytes. With this level of

background traffic the results of chapter three show that the router should still be able to

support 35 Mbits/s of high priority traffic which was greater then the current high priority

rate allocations.

The fourth test changed the characteristics of the background traffic such that the

61

throughput was 7.2 Mbits/s, with a packet size of 128 bytes. With this level of background

traffic the results from chapter three indicate that the router is in violation of the amount of

background traffic that may be sent with the current allocation of 27 Mbits/s at the high

priority level (when sending 27 Mbits/s at the high priority level, the router can only

support 5.5 Mbits/s of 128-byte background traffic).

Using the previously mentioned tests our goal was to study the effectiveness of our

communication architecture under different traffic loads and look at a number of indicators

which could quantify the performance of the system.

First, in order to ensure that the admission control protocol and policing

mechanisms were working properly we kept track of the maximum queue depth within the

router in the high priority queue. Assuming that background traffic is bounded, the

maximum queue depth should never exceed the sum of the allocated bursts in the network

system.

Second, we were interested in the effect of the router performance on the delivery

of high quality video. In order to quantify the performance of the video we measured the

latency of the frame transmission. As mentioned previously, the current version of the

video distribution system uses a blocking send call that is supplied by the XTP application

interface. Each time a frame is sent this call blocks until the entire frame has been

successfully transferred to the receiver. In its current configuration, the XTP transmitter

segments the frame into n packets, n = frame size modulo 4,500, and then transmits each

packet when the traffic policing mechanisms permit. Then, in the XTP header of the final

packet a flag is set requesting that the receiver send its status back to the transmitter, which

causes the receiver to respond with a status report that includes where the receiver is in the

sequence space of the transmission. If the frame has successfully arrived at the receiver,

then the status packet contains this information, and the transmitter will return from its

blocking state after receiving the status update. If data is missing then the transmitter will

resend the missing information, and request another status update. Once the packet is

successfully received by the destination and the transmitter is notified, then the sending call

will return. However, if the connection is sending at high priority and is using the resource

reservation facilities of the system, then packets should never be lost, because the router

should never drop packets. The sender would only resend information if an internal timer

62

has expired, signifying a large delay since the last response from the receiver. Thus, the

latency of the send call represents the sum of the time it takes the transmitter to process a

frame, send it, have the router forward all packets to the destination, and receive a response

from the receiver.

4.3.2.1 Experimental Results

The transmission time latencies given a requested rate and burst allocation may be

seen in Figure 18. The figure shows that as the allocated rate increases the overall latencies

of the video transmissions decrease. The percentage of time that a receiver’s buffer queue

had n packets in it is shown in Table 1. This buffer queue, along with the transmitter’s

queue help to prevent a loss of synchronization between the source and destination due to

jitter. If the queue length is one, then that means the buffer queue has been drained, and the

receiver is replaying the most recent frame it has in its queue.

Figure 18. Frame Transmission Latencies Versus the Allocated Rate for the Connection
Figure 18 shows the frame transmission latencies for a ten minute video sequence when sent via a high priority
connection through the router to its destination. The figure shows the effect the allocated rate has on frame trans-
mission latencies.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30

Fr
eq

ue
nc

y

Frame Transmission Latencies(ms)

Rate: 9 MBits/s, Burst: 6 Packets
Rate: 7.2 MBits/s, Burst: 6 Packets

Rate: 6 MBits/s, Burst: 6 Packets

Rate: 12 MBits/s, Burst: 6 Packets

63

Even though all four test cases allocated more than the required peak rate for the video

stream, the higher rate allocations yielded better performance. The differing performances are

a result of the interaction of the buffering policy of the video distribution system, and the

update rate of credit for the XTP leaky bucket policing mechanism.

 As rate allocation increases the time period between packet updates for the leaky

bucket counter decreases. For a rate of 6 Mbits/s the credit counter is updated every 6 ms.

So, if the bucket is empty, an outgoing frame of 22,000 bytes (segmented by XTP into

packets of 4,500 bytes or less) at the transmitter will take at least 30 ms to transmit

completely (and this does not include the protocol processing time at the transmitting

workstation). It is easy to envision a case where a number of large frames fall together

during video playback. This sequence of frames could cause the receiver to lose its cushion

of jitter buffers. The sender at this point has a number of new frames ready to be sent.

However, because of the low update rate of its credit counter it is unable to send frames

quickly to the receiver even if it is requesting a new frame. Thus, the rate policing keeps

the receiver from refilling its jitter buffers. So, each time a frame misses its deadline at the

receiver, the receiver must replay the most recent frame it has received. In the test cases

where the rate was set higher, then the receiver has a chance to build back its jitter buffers

after they have been drained away. Due to this relationship between allocated rate and

performance of the video, we decided to overallocate our rate for the video in order to gain

the responsiveness that the higher rate provides. Thus, in the second set of tests the

allocated rate for the video stream is 9 Mbits/s, which is 3 Mbits/s more than the peak rate

for this video stream.

Table 1: Percentage of Time that n Buffers Were Full in the Receive Queue

n Rate: 6 MBits/s Rate: 7.2 MBits/s Rate: 9 MBits/s Rate: 12 MBits/s

1 37% 25% 9% 1%

2 61% 74% 35% 1%

3 < 0.1% < 0.1% 10% 75%

4 1% 1% 46% 23%

64

The results of the second set of tests showed that the admission control protocol and

policing mechanisms worked as expected as long as the background traffic was bounded. The

maximum queue depth for high priority traffic was never greater than the sum of the allocated

bursts, except in the fourth test case where the background traffic violated its upper bound

(given the service allocations made for the higher priority traffic). In this case the maximum

queue depth was thirteen for the high priority traffic, but the allocated burst for the two high

priority streams was only eight.

Figure 19 shows the results of measuring the video frame transmission latencies. The

results show very little difference between the latencies occurring when the video is sent alone

versus when the video and file transfer are sent together. The average delay for successful

transmission of a video frame was 10.1 ms for the first test and 10.8 ms for the second test,

with the worst delay being 22 ms for both the first and second test. The resulting video that

was displayed at the receiver appeared smooth with no noticeable signs of any frames missing

their deadline for the screen updates (a few, less than 10%, did miss their deadline which

results in the replay of one of the frames in the receiver’s queue.)

Figure 19. Frame Transmission Latencies for a Ten Minute Video Sequence
Figure 19 shows the frame transmission latencies for a ten minute video sequence when sent via a high pri-
ority connection through the router to its destination. The figure shows the effect of varying levels of high
priority traffic and background load on the latency of the video transmissions.

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

Fr
eq

ue
nc

y

Frame Transmission Latencies(ms)

HP Video
HP Video + HP File Transfer

HP Video + HP File Transfer, LP Traffic 1
HP Video + HP File Transfer, LP Traffic 2

65

In the third test when 47 Mbits/s of background traffic is introduced, the frame

transmission latencies increase. The average latency is now 12.9 ms with the maximum

latency being 22 ms. By examining the system one can develop a scenario in which this worst

case occurred given the following:

• With a rate of 9 Mbits/s, the transmitter is updating its leaky bucket credit counter

every 4 ms.

• With 47 Mbits/s of background traffic, the router can process approximately 39

Mbits/s of high priority traffic with 4,500 byte packet sizes (see chapter three). This

translates into 1083 packets/s, or a processing time of about 0.9 ms per packet.

If the transmitter of the video has no credits when it starts to send a 20,000 byte

frame, then it will take between 16 and 20 ms until the last packet of the frame enters the

network. In the worst case the router could have 8 packets (the sum of the high priority

burst allocations) in its high priority queue when this frame arrives. The entering packet

may then suffer a delay of up to 7.2 ms before exiting the router. Once the final packet of

the video frame is received by the destination host and processed, it must then send a reply

back to the transmitter. This control packet could also suffer a 7.2 ms delay on the return

path. Thus, without taking into account protocol processing in the end systems the worst

case delay due to the network and admission control method is 20 ms + 7.2 ms + 7.2 ms =

34.4 ms.

Qualitatively, the video presented at the receiver in the third test showed little

degradation in performance with the frame rate dropping to approximately 25 frames per

second (50 fields per second) due to frames missing deadlines.

In the fourth test the background traffic is changed to a rate of 7 Mbits/s, generated

by packets of 128 bytes in length. Due to the size and rate of the background traffic, the

router is put into a state where it can make no performance guarantees for the high priority

traffic. The effect of this change is seen in a large increase in the latencies of transmissions

for video frames. The average frame latency for a frame is approximately 26 ms with a

maximum latency of 33 ms. The effect of the loss in performance guarantees is also

qualitatively seen at the receiver where the frame rate has dropped to approximately 15

frames per second.

66

Chapter 5

Summary, Conclusions, and Future Work

In this chapter we summarize our work and discuss the conclusions that can be

drawn from the design, implementation, and tests of our communication architecture. The

section on future work describes possible extensions that can be made to the current

architecture.

5.1 Summary and Conclusions

A paradigm shift is underway in how computer networks are used. As computers

become faster multimedia applications are becoming more common. The result of this shift

is that latency control becomes more of an issue. Different types of networking paradigms

offer varying levels of service that can help control latency.While circuit-switched networks

can offer dedicated links with a certain level of service, they are both inefficient and costly

(in terms of the cost for the bandwidth needed for video distribution). This leaves packet-

switched networks with its two paradigms of virtual circuits (associated with ATM) and

datagram networks (Ethernet, FDDI). ATM offers a number of service guarantees that are

ideal for the transmission of multimedia traffic. For instance, the specification supports rate

control and prioritization. However, when this project started the ATM equipment that was

available did not offer all of these features. It appears that the acceptance of ATM is

growing, but it will be years before its use is widespread. For instance, the U.S. Navy has

spent the last ten years refining the SAFENET architecture which uses FDDI, and instead

of switching directly to ATM they have decided to wait until ATM becomes a more stable

product. For these reasons we chose a datagram networking paradigm over which we

would design our networking architecture to support multimedia traffic.

Thus, our goal for this project was to design a packet-switched network that can

support soft real-time applications such as multimedia. At the outset we made the

assumption that system capacities would be intelligently allocated, allowing our focus to

67

be on the communications protocol, the router design, and the resource reservation and

admission control policies that would allow the overall system to operate.

Our router design was based on a PC architecture. The advantage of using a PC-based

architecture was that source code was available for all parts of the protocol stack from the

network adapter drivers to the networking protocols. The access to the source code (written by

myself and others) allowed for more control over the entire system. The disadvantage of the

architecture is that it is vulnerable to excessive interrupts from the network adapters. This

vulnerability could be removed by changing the architecture, or by policing all traffic entering

the network

In spite of these limitations we developed a router with usable performance. The

router is able to support a peak rate of approximately 50 Mbits/s when sending 4,500-byte

packets, and a peak packet rate of approximately 1,450 packets/s when sending 48-byte

packets. Tests of latency and throughput showed the two main bottlenecks of the router to

be:

• a decrease in router performance as the inter-arrival time between packets

decreases (corresponding to an increase in the number of interrupts in a given time

unit), and

• a decrease in router performance as the packet size increases.

Because of the bottlenecks in the router and the potential for congestion, we developed

an admission control policy for our network. The admission control design has a number of

components:

• Service Paradigm — the way that routers and end-systems process traffic determines

the type of service guarantees that one can make for a connection.

• Traffic Policing Mechanism — the traffic entering the network must conform to

some characterization so that the admission control algorithm can make a decision

as to whether the network has resources to handle a new request without violating

any parameters of current requests.

• Resource Administration Mechanism — there must be a correspondence between

the parameters that are used to make requests for service from the network, and the

resources that are used by the network to fulfill the requests.

• Resource Reservation Protocol — there must be a method for passing requests for

service throughout the network.

Our network uses a multiple static priority queue service paradigm. By using this

68

service paradigm we could take advantage of the existing support for priority levels in the

Xpress Transport Protocol by altering the router to sort incoming packets based on XTP’s

priority field. Therefore, the router is XTP-aware. A benefit of having multiple queues is

that each queue has its own worst case delay bound as opposed to the regular FIFO queue

which offers a single delay bound. Our test results indicate that the multiple priority queue

approach is an effective mechanism for delivering various levels of service to different

traffic types.

We examined several methods of traffic policing before choosing a leaky bucket

mechanism. For instance, XTP offers a jumping window mechanism for rate and burst

control. However, this method of policing was not suitable for our system because the

worst case packet burst was twice the burst of a single interval. This results in over-

allocation of buffer space at the router to ensure that packets are not dropped. Instead, by

using the leaky bucket mechanism we could allocate for a specific rate and burst within the

router. Tests of our implementation of the leaky bucket mechanism within XTP showed

that the mechanism did police the traffic correctly and could be used in tandem with XTP’s

jumping window mechanism if desired.

By studying the performance tests of the router and identifying the bottlenecks we

were able to manage the scarce resources. In our system, the scarce resources were

processor time in the router followed by buffer space within the router. Processing time

was mapped to the rate of traffic allowed to enter the network, and buffer space was

mapped to the aggregate burst of packets allocated to all connections through the router.

The resource reservation protocol was developed as an extension to the existing ICMP

protocol. The use of this resource reservation protocol facilitated testing of the other aspects

of our system, but is by no means a full-fledged reservation protocol.

By testing the performance of the router under various traffic loads of high and low

priority we determined the analytic criteria that must be met in order to give guaranteed

throughput with a specified burst to a requesting connection.

Assuming that background traffic has a minimum packet size of 1,024 bytes, and

that its maximum rate never exceeds 30 Mbits/s, then we know that the router can handle

30 Mbits/s of traffic at high priority when packets are 4,500 bytes in length. Under these

conditions we can keep track of the aggregate rate and burst that is currently allocated

69

through the router, and use these values to determine if a new request may be accepted. The

admission test is:

The final part of the project involved testing our network architecture with a video

distribution system that uses XTP. We used this video distribution testbed to illustrate the

effectiveness of our network architecture. The results from the tests involving multimedia

traffic show that congestion within the router is eliminated so long as all data streams obey

their traffic characterizations (via policing or agreement). Under these conditions the worst

case delay through the system can be bounded (assuming full access to the network).

 The tests also show that there are a number of complex interactions between the

video distribution system, the transport protocol, and the traffic policing mechanisms. In most

traffic characterizations, control information is assumed to be out-of-band and is ignored. In

our system, the traffic policing mechanism polices all packets entering the network. This

method has the possibility of introducing delays into the protocol control mechanism which

were not there before, and as a result it could change the timing of the protocol. Second, the

video distribution system uses synchronous send calls on the transmitting side. These calls

simplify the operation of the sending side, but also serialize its operation, thereby slowing

down the sender. Changing the design of the video distribution system could improve its

performance, which would stop the need for the over-allocation of rate which occurred in the

testing for this project. The major benefit of testing our network architecture with the video

distribution system is that the tests involving the transmission of a multimedia data stream

offer proof-of-concept evidence in support of the project.

Thus, after implementing our design and performing experiments testing throughput,

latency, and the performance of multimedia traffic under various traffic loads we can draw

these of conclusions.

(1) By managing the limiting resources of the system, it is possible to guarantee requests

for rate, and implicitly give an upper bound on the worst case delay between two end-systems

σrequest σi
i

∑+ 32 packets 4 500bytes/packet,⋅<

ρrequest ρi
i

∑+ 3 750 000bytes/s, ,()<

70

due to the service discipline used within the router.

(2) Through the use of a leaky bucket traffic policing mechanism at the end-stations, and

a multiple static priority queuing discipline within the router, the admission control

mechanism can guarantee that a requested rate and burst of packets at the high priority level

will be delivered to the destination host.

(3) By using results from performance tests, it is possible to derive the worst case delay

bound for the high priority queue which can then be used to determine an end-to-end bound

on the worst-case delay.

5.2 Future Work

Certain design decisions made during the course of this project deserve further

attention.

Choice of Service Discipline for the Router — The router currently uses a multiple

static priority queue service discipline. Due to the bottlenecks in the router and the nature of

the multiple static priority queue, the efficiency of the system is not ideal. If time permitted,

implementing other service disciplines such as Rotating Priority Queue (RPQ)[24], Delay

Earliest Due Date (Delay-EDD) [12], or Stop and Go [18] along with their respective

admission control tests would allow for a quantitative analysis of the tradeoffs between

efficiency and the cost of complexity in implementation.

Bounding the Background Traffic — The test results from this project indicate that

as long as bottlenecks on system performance exist in the router, then all traffic entering the

network must be policed or bounded in some way. Off-the-shelf protocol stacks do not

offer the needed policing mechanisms, and even the use of FDDI synchronous class traffic

would not bound the number of packets per second that could be sent in a given interval as

regular FDDI traffic. This results in the possibility that a rogue or errant user sending low

priority traffic could cause violations of service guarantees for high priority traffic in the

current system design. A number of options are available in order to strengthen the

system’s defense against such users.

The processing of all high priority packets could be done at interrupt time in the

interrupt subroutine of the device driver. The benefit of such a move is that incoming low

priority packets would not delay the processing of the high priority packet. The trade-off of

71

such a solution is that the hardware receive queue might overflow because incoming

packets would wait there while a high priority packet was being processed. This problem

might be alleviated if the FDDI card supported two queues, one for the synchronous class

(higher priority) and one for the asynchronous class (lower priority).

Another option for guarding against excessive processing times of low priority

packet interrupts is to disable either the board or address which is being overloaded.

Interrupts for certain boards could be masked while processing high priority traffic, or one

could use multicast MAC addresses for regular traffic. If the second option was used then

whenever low priority traffic became a problem, the card could be configured to ignore

incoming packets for a period of time. The efficiency and feasibility of each of these

options is uncertain and deserves further study.

Single Router System versus a Multiple Router System — By having only one router

in our communication architecture we are able to ignore the problem of rate and burst

violations that could possibly occur at internal network nodes due to the work-conserving

nature of most routers (ours included). Adding multiple routers forces a linear increase in the

amount of buffer space that must be allocated along a multi-router path if one is using a non-

work conserving service discipline in the routers [44]. Depending on the rate and burst

requests for the network, and the number of internal hops, the current service paradigm of

multiple static priority queues might suffice. However, there are a number of non-work

conserving disciplines which either fully reconstruct traffic patterns between routers, or at

least partially reconstruct the traffic in order to police rate and burst violations between routers

[18],[44],[24],[43]. There exist many trade-offs between the offered service and the

implementation complexity of these service disciplines.

Traffic Policing within the End-Systems — XTP offers a jumping window traffic

policing mechanism, and our design incorporated a leaky bucket policing mechanism into

XTP as well. Studying the efficiency and performance of the protocol using multiple leaky

buckets would be of interest. Also, the current version of the leaky bucket mechanism is

interrupt driven. By changing the method of counter update one could take advantage of

using the fine grained timers available on a PC without having to interrupt the CPU at a

frequency equal to the minimum granularity of the clock. Instead of updating the credit

counter via an interrupt, the credit counter value can be calculated by reading the clock

72

before each attempted send. The difference between the two times plus the previous value

of the credit counter will allow determination of the credit counter’s new value.

Implementation issues such as detecting the timer wrap would have to be resolved. Testing

indicates that interrupts indicating a timer wrap are often missed by the PC.

Implementation Considerations for the Multimedia Distribution Application — The

current version of the multimedia distribution application uses a reliable service as well as a

blocking send call for each frame transmission. By altering the application to use an

asynchronous send, the application could work on other tasks instead of remaining idle until

a response returns from the receiver. This change would probably decrease the latency of

frame transmissions. Another change which would decrease the frame transmission latencies

is changing to an unreliable service paradigm. If the compression/decompression hardware

could be configured in such a way as to be more fault-tolerant of missing data, then send

latencies would be further reduced. The XTP transmitter would not have to wait for an

acknowledgment from the receiver before transmitting a new frame. Instead, the

transmitter would only be policed by the rate control mechanisms within XTP.

73

References

[1] A. Alles, “ATM in Private Networking,” Hughes LAN Systems, Tutorial,
1993.

[2] A. Banerjea et al., “The Tenet Real-Time Protocol Suite: Design,
Implementation, and Experiences,” Computer Science Technical Report
Number TR-94-059, University of California at Berkeley, November 1994.

[3] M. Bach, “The Design of the Unix Operating System,” Prentice Hall,
Englewood Cliffs, NJ, 1993.

[4] A. Cambell, G. Coulson, and D. Hutchinson, “A Quality of Service
Architecture,” Computer Communication Review, Vol. 24, No. 2, April
1994.

[5] A. Cambell, G. Coulson, F. Garcia, and D. Hutchinson, “A Continuous
Media Transport and Orchestration Service,” Proc. ACM SIGCOMM92,
Baltimore, MD, August 1992, pp. 99-110.

[6] R. Christie, and A. Weaver, “Supporting Multimedia Traffic Via an XTP-
Aware IP Router,” Draft, January 1995.

[7] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” ACM
1988.

[8] D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism,” Proc.
ACM SIGCOMM92, Baltimore, MD, August 1992, pp. 14-26.

[9] D. Chiu and R. Jain, “Analysis of Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks,” Computer Networks and
ISDN Systems, 1989, pp. 1-14.

[10] L. Delgrossi et al., “Reservation Protocols for Internetworks: A Comparison
for ST-II and RSVP,” Fourth International Workshop on Network and
Operating System Support for Digital Audio and Video, Lancaster, UK,
November 1993.

[11] B. Dempsey, M. Lucas, and A. Weaver. “Design and Implementation of a High

74

Quality Video Distribution System Using XTP Reliable Multicast”.
Proceedings of the International Workshop on Advanced Communications and
Applications for High Speed Networks, Heidelberg, Germany, September
1994.

[12] D. Ferrari, and D.C. Verma, “A Scheme for Real-Time Channel Establishment
in Wide-Area Networks,” IEEE Journal on Selected Areas in
Communications, April 1990, pp. 368-379.

[13] S. Floyd and V. Jacobsen, “Random Early Detection Gateways for Congestion
Avoidance,” IEEE/ACM Transactions on Networking, August 1993, pp. 397-
413.

[14] H. Folts, “A Tutorial On The Open Systems Interconnection Reference
Model,” Open Systems Data Transfer, June 1982, pp. 2-21.

[15] J. Forgie, “A Proposed Internet Stream Protocol”, IEN 119, 1979.

[16] J. Hawkinson, ed. “Cisco Networking Faq Version 1.0,” RFC 1153, November
1994.

[17] J. Hyman, A. Lazar, and G. Pacifici, “Joint Scheduling and Admission Control
for ATS-based Switching Nodes,”Proc. ACM SIGCOMM92, Baltimore, MD,
August 1992, pp. 223-234.

[18] J. Golestani, “Congestion-Free Communication in High-Speed Packet
Networks,” IEEE Transactions on Communications, December 1991, pp.
1802-1812.

[19] V. Jacobsen, “Congestion Avoidance and Control,” Computer
Communication Review, Vol. 18, No. 14, May 1988, pp. 314-329.

[20] R. Jain, “Performance Analysis of FDDI Token Ring Networks: Effect of
Parameters and Guidelines for Setting TTRT,” Proc. ACM SIGCOMM90,
Philadelphia, PA, 1990.

[21] E. W. Knightly, D. E. Wrege, J. Liebeherr, and H. Zhang, “Fundamental
Limits and Tradeoffs of Providing Deterministic Guarantees to VBR Video
Traffic,” To appear in ACM Sigmetrics, May 1995.

[22] J. Kurose, “Open Issues and Challenges in Providing Quality of Service
Guarantees in High-Speed Networks,” 3rd International Workshop on
Networking and Operating System Support for Digital Audio and Video, San
Diego, CA, November 12-13, 1992.

[23] S. J. Leffler, W. N. Joy, R. S. Fabry, and M. J. Karels, “Networking

75

Implementation Notes: 4.3 BSD Edition,” Unix System Manager’s Manual,
USENIX Association, 1986.

[24] J. Liebeherr and D. Wrege, “Design and Analysis of a High Performance
Packet Multiplexer for Multiservice Networks with Delay Guarantees,”
Technical Report CS-94-30, University of Virginia, July 1994.

[25] D. Plummer. “An Ethernet Address Resolution Protocol,” RFC 826,
November 1982.

[26] J. Postel, ed. “Internet Protocol,” RFC 791, September 1981.

[27] J. Postel, ed. “Internet Control Message Protocol,”RFC 792, September 1981.

[28] F. Ross, “An Overview of FDDI: The Fiber Distributed Data Interface,” IEEE
Journal on Selected Areas in Communications, Vol. 7, No. 7, September 1989.

[29] F. Ross, “FDDI— A Tutorial,” IEEE Communications, Vol. 24, No. 5, May
1986.

[30] R. Simoncic and A. Weaver, “Choosing The Right Real-Time Operating
System For The Navy,” NRaD Report, July 1994.

[31] W. Stallings, “Networking Standards: A Guide to OSI, ISDN, LAN, and
MAN Standards,” Addison-Wesley, Reading, MA, 1993.

[32] W. Stallings, “Data and Computer Communications,” Macmillan Publishing
Company, New York, NY, 1994.

[33] W. R. Stevens, “TCP/IP Illustrated Volume 1,” Addison-Wesley, Reading,
MA, 1994.

[34] H. Tokuda, Y. Tobe, S. Chou, and J. Moura, “Continuous Media
Communication with Dynamic QOS Control Using ARTS with an FDDI
Network,” Proc. ACM SIGCOMM92, Baltimore, MD, August 1992, pp. 88-
98.

[35] H. Tokuda, C. Mercer, and Y. Ishikawa, “ARTS: A Distributed Real-Time
Kernel,” ACM Operating Systems Review, July 1989.

[36] C. Topolcic, “Experimental Internet Stream Protocol, Version 2 (ST-II),”RFC
1190, October 1990.

[37] J. Turner, “New Directions in Communications (or Which Way to the
Information Age?), IEEE Communications Magazine, Vol. 24, No. 10,
October 1986.

76

[38] G. Wallace. “The JPEG Compression Standard”. Communications of the
ACM, 34(4):30-44, April 1991.

[39] A. Weaver, “What is the Xpress Transport Protocol?”, Transfer, XTP
Information, December 1994.

[40] G. Woodruff and R. Kositpaiboon, “Multimedia Traffic Management
Principles for Guaranteed ATM Network Performance,” IEEE Journal on
Selected Areas in Communications, Vol. 8, No. 3, April 1990.

[41] D. Wrege, Personal communications, 1995.

[42] L. Zhang, D. Estrin, S. Herzog, S. Jamin, and R. Braden,ed. “Resource
Reservation Protocol (RSVP) — Version 1 Functional Specification,” Internet
Draft, March 1995.

[43] H. Zhang, “Providing End-to-End Performance Guarantees Using Non-
Work-Conserving Disciplines,” to appear Computer Communications
Journal.

[44] H. Zhang and D. Ferrari, “Rate-Controlled Static Priority Queueing,”
Proceedings of IEEE INFOCOM’93, 1993.

[45] L. Zhang, S. Deering, D Estrin, S. Shenker, and D. Zappola, “RSVP: A New
Resource Reservation Protocol”, IEEE Network, September 1993, pp. 8-18.

77

