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Abstract

Software plays a crucial role in a large number of safety-critical systems. In spite of this,
many safety-critical systems exhibit residual software errors even after extensive implementation
and verification efforts. We describe a software architecture based on a safety kernel that facilitates
the implementation and verification of safety-critical software. Drawing many concepts from the
related notion of a security kernel, the safety kernel enforces safety policies independent of appli-
cation programs and permits verification of properties of a small kernel rather than large amounts
of application software.

Safety-critical software is typically custom-built for each application. This leads to consis-
tently high development costs and limited reuse of either designs or software modules. We believe
that the safety kernel architecture provides a framework for identification of generally applicable
classes of safety policies. The paper examines several classes of kernel-enforced policies. The pol-
icies have been identified using criteria that consider the criticality of a policy and the effects of
kernel enforcement on the simplicity and verifiability of both the application software and the
safety kernel. These general policies are parameterized to enable configuration of an instance of
the safety kernel. A mechanical translator is utilized to instantiate the safety kernel from the param-
eter information.

The concepts and design of the safety kernel architecture have been significantly influenced
by our research into the development of dependable software for an experimental neurosurgical
device. For example, having worked with this “real” system, we recognized that in general the
safety kernel would need to coexist with a large amount of potentially unreliable software. As a
result, we describe a system architecture wherein the safety kernel operates in the context of appli-
cation and system software that is unreliable or at least of unknown properties.

Index Terms — software safety, software architecture, verification, security kernel, safety kernel
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I  INTRODUCTION

Computing systems in which the consequences of failure are very serious are
termed safety-critical. Many such systems exist in application areas such as aerospace,
defense, transportation, power-generation, and medicine. Public exposure to these safety-
critical systems is increasing rapidly. Since the correct operation of these systems depends
on software, the possibility of serious damage resulting from a software defect is consider-
able and growing.

The software present in safety-critical systems is frequently very large and tremen-
dously complex. The large size and complexity can be attributed to the functionality
demanded by modern applications. Functionality requirements have increased because of
the many benefits of computer-based control and the availability of inexpensive yet pow-
erful computing hardware. Hardware performance limits that formerly restricted software
complexity are rarely reached because of the remarkable hardware performance now avail-
able.

Experience with safety-critical systems has shown that significant software defects
tend to remain in such systems after deployment despite extensive effort on the part of the
developers [4, 11]. Building these systems to perform as desired is very difficult for a num-
ber of reasons. Even the best software development processes cannot ensure that faults are
avoided completely during development. Similarly, fault detection techniques are imper-
fect. Research has shown, for example, that testing as an approach to verification cannot
demonstrate sufficient levels of dependability because of the sheer number of tests that are
required [3].

Building very small, simple software systems that achieve the extreme dependabil-
ity necessary with safety-critical applications has proven to be sufficiently challenging. The
complexity of large systems involving characteristics such as real-time operation and dis-
tributed processing is likely to preclude any significant assurance that the systems meet
desired dependability goals if traditional techniques are used in traditional ways. The pos-
sibility, for example, of being able to test in a meaningful way a system that is comprised
of upwards of 500,000 lines of source code, that executes on a network, that has sophisti-
cated graphical operator displays, and that performs some form of real-time control seems
remote at best. It is important when contemplating such an example, to keep in mind that
defects in compilers and system support tools are also an issue, and that the operating sys-
tem and network implementation must be viewed as part of the application. It does not mat-
ter which part is responsible when something breaks.

Although formal techniques have made substantial progress and have been applied
to real systems in a number of cases, their application to large, complex systems remains
elusive. It is certainly possible to demonstrate useful properties of large systems using for-
mal techniques. For example, by using careful system design and appropriate proof tech-
niques, it is possible to show that a concurrent system is free of deadlock. However,
although this is an extremely valuable property, deadlock is just one class of fault. There
are, of course, many others, and, to meet typical statistical dependability goals, all faults
must be eliminated or have suitably low probabilities of manifestation.
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The goal of the research described here is to try to deal with the situation outlined
above. The premise is that no techniques exist which can routinely show that a large, com-
plex software system is sufficiently dependable for use in a safety-critical application. We
restrict our attention to systems where safety is the overriding concern, i.e., systems in
which reduced service or no service is acceptable following a software error. Our approach
is to assume that faults remain in the application software and to try to deal with them at
execution time rather than attempting to eliminate all faults during development. The
mechanism that we describe to implement this approach is a software architecture termed
a safety kernel, a concept directly analogous to the security kernel used in security applica-
tions.

In this paper we describe a safety kernel architecture that is being designed as part
of a case study in which the software for an experimental, safety-critical system is being
developed. We discuss safety policy selection and enforcement, and describe the practical
application of the kernel. In the next section, we examine the general notion of a safety ker-
nel. This is followed by a discussion of research relevant to the safety kernel. Section IV
describes the safety-critical system of the case study. A description of the safety kernel
architecture is presented in section V. The concept of kernel-enforced safety policies is
introduced in section VI along with a discussion of the safety policies that are enforced by
the safety kernel. Section VII examines implementation issues of the safety kernel and
looks in detail at the mechanisms that enforce selected classes of policies. We conclude
with a summary and conclusions in section VIII.

II  KERNELS FOR SECURITY AND SAFETY

The notion of a safety kernel derives from the concept of a security kernel —a tech-
nique developed extensively by the security community. Informally, the goal of a security
kernel is to provide assurance that a set of required fundamental properties of a computer
system hold at all times during execution [1]. These properties are specified as security pol-
icies and are enforced by the security kernel independent of the application program. In
other words, verification of the security kernel is sufficient to ensure enforcement of those
policies encapsulated within the security kernel. The application program need not enforce
the security policies, and it can, in fact, undertake actions that would normally lead to vio-
lation of the security policies with no danger of actual violations taking place. The result is
that adherence to critical security policies can be assured by analysis of the relatively sim-
ple kernel rather than from analysis of a complex application program. This has the addi-
tional benefit of simplifying application programs by freeing them from responsibility for
implementation and verification of policies that are enforced by a kernel. The general con-
cept of a security kernel is shown in Fig. 1.

The similarity between security concerns and safety concerns is considerable [2]. A
security kernel (sometimes referred to as a reference monitor) is in a position to enforce
security policies because it controls all access to secure information and it can therefore
monitor all references to that information. A safety kernel will exercise similar control over
the devices in a safety-critical system and will enforce a set of safety policies by monitoring
requests to devices, device actions, device status, application software status, and so on.
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The safety policies for a given application are derived from the software safety specifica-
tion. Using a kernel architecture to ensure compliance with safety policies is attractive
largely because of the complexity of modern safety-critical applications alluded to above.
As with a security kernel, the hope is that compliance with safety policies can be assured
mostly by analysis of a relatively simple safety kernel rather than a large and complex
application program.

Although the primary objective of a safety kernel is to facilitate verification of
safety-critical software, an additional concern is that safety-critical software tends to be
custom built for each application. This ad hoc development practice increases the cost of
software and precludes innovative concepts in one system from being exploited in others.
The situation is partially attributable to the unique safety concerns of each application.
However, it is also very difficult to abstract out the features that might be applicable to a
range of systems without an appropriate architecture.

We believe the safety kernel concept provides the framework that is needed to iden-
tify classes of safety policies that have general utility and thereby it will facilitate reuse of
software artifacts. It is obvious that some policies will be very application specific and
unlikely candidates for kernel enforcement while other policies will have some general
applicability. The selection of policies for enforcement in a general-purpose safety kernel
architecture is based on criteria that consider both the criticality of a policy and the effects
of kernel enforcement on the simplicity and verifiability of both the application software
and the safety kernel.

Although the safety kernel architecture that we are developing is quite general, an
instance of the kernel will have to be configured for a given application. A major issue in
the development of the architecture is how best to parameterize it for use with a range of
applications. In our design, constant and code fragment parameters are read by a mechani-
cal translator that produces an instance of the safety kernel.

Application
Software

Security Kernel

Device
Actions

Classified

Operator

Security Policies
Information

Fig. 1. Security Kernel Concept.
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Fig. 2 illustrates the safety kernel concept. The kernel is situated between the appli-
cation software and the application devices. From this position, it is able to mediate all
exchanges between the software and the devices and has the following benefits to a safety-
critical system:

1. Ensured enforcement of safety policies
The kernel structure enforces a critical set of safety policies regardless of
the implementation, modification, or verification of the application soft-
ware.

2. Simplicity and verifiability of the safety kernel structure
The kernel is a relatively small structure and as a result facilitates the
implementation and verification of safety policies that it enforces.

3. Simplification of the application software
Kernel enforcement of selected safety policies frees the application soft-
ware from responsibility for implementation and verification of these pol-
icies.

4. Kernel control of devices
Acting as a reference monitor, the kernel is ideally situated to enforce
device control policies. Its access to devices also permits the kernel to
monitor device activities for consistency with software commands.

5. Reuse of general functionality
The kernel architecture provides a set of general mechanisms and a frame-
work for the abstraction of general classes of safety policies.

One concern with the safety kernel concept is that it might not be feasible to develop
a kernel with significant general applicability. Although this is not consistent with at least
some of the experience to date with security kernels nor with our initial results, this would
not invalidate the first four benefits and would only partially negate the benefit related to
reuse of the safety kernel. In this case, the level of reuse would shift from the level of safety

Application
Software

Safety Kernel

Device
Actions

Application

Operator

Safety Policies
Device
Status

Fig. 2. Safety Kernel Concept.
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kernel modules and mechanisms to the level of a design and process for instantiation of a
safety kernel. This is precisely the level of reuse that occurs with security kernels. A secu-
rity kernel is tailored for the processor it executes on, for the devices it must control, and
for the means by which security will be ensured in a given situation. Certainly, the notion
of an access matrix is quite general; however, interfacing with devices, providing facilities
for administration of the system, and dealing with other security issues (e.g., covert chan-
nels) are general problems that would have solutions configured for each unique instance.
In spite of this application dependence, security kernels are utilized for precisely the rea-
sons shown above.

III  BACKGROUND

The security community has historically faced many of the same problems pres-
ently being encountered within the field of safety. Early security systems were ad hoc,
unique systems that had no formal approach to ensuring security. The result was that the
systems were very difficult to build and, once built, were almost impossible to verify. Over
time, however, the security kernel and other concepts have been developed that have made
the development of secure systems more general, repeatable, and more amenable to verifi-
cation [1].

Several authors have used the term “safety kernel” for systems or concepts that had
the goal of supporting safe operation of application software. Others have suggested meth-
ods that have some of the features of a safety kernel. In particular all utilize a relatively
small, critical component to provide support for software safety.

Leveson, et al. [6] first used the term “safety kernel” to identify a concept based on
a centralized location for a set of safety mechanisms. The mechanisms are used to effect
error detection and recovery policies established for a given system. This safety kernel is
more like an operating system kernel than a security kernel. It is a collection of potentially
useful routines that are either invoked by the application or by watchdog timers. There is
no notion of enforcing policies, and, because the role of the kernel is that of a monitor, it is
not in a position to ensure that policies will be met. Thus the term kernel, as used in that
work, was not directly analogous to its use in the security context.

A report by the NATO ad hoc Working Group on Munition Related Safety Critical
Computing Systems [8] mentions a safety kernel that it defines as follows:

An independent computer program that monitors the state of the system to
determine when potentially unsafe system states occur or when transitions
to potentially unsafe system states may occur. The Safety Kernel is designed
to prevent the system from entering the unsafe state and return it to a known
safe state.

This safety kernel concept is similar in function to the one proposed by Leveson, et al, serv-
ing as a monitor with no clear means of actually enforcing safety policies for a system.

Neumann [7] considers the idea of a safety-trusted computing base as a part of his
examination of whether the hierarchical design familiar in secure systems could be gener-
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alized to other critical applications. In describing a hierarchical design approach, Neumann
introduces the notion of associating degrees of criticality with the design levels. Degrees of
criticality are applied in secure systems with the most critical component, the security ker-
nel, occupying the lowest level. A safety hierarchy could also incorporate criticality with
the most critical properties enforced at the lowest levels.

Rushby has made the strongest theoretical argument for the development of a safety
kernel [9]. In the process, he has more clearly defined the role of a safety kernel. Rushby
considers whether the concept of a small component that guarantees the enforcement of
some system policy (typically security) could be applied to safety-critical software sys-
tems. He observes that kernel structures are potentially applicable for the enforcement of
properties where the following two conditions hold:

1. the properties of interest at the system level must be present at the kernel
level, and

2. those properties must be expressed by a second-order assertion of the
form

This second-order assertion states that for any combination of operations, α, in the
set op* where op is the set of all functions provided by the kernel (i.e., the first condition),
the predicate P over the input/output behavior of that set will hold. For a security kernel, P
might be “no read up.” This is a “for all” policy that ultimately depends on kernel opera-
tions and is therefore enforced by a security kernel. Second-order assertions define condi-
tions that should always hold and are particularly well suited to describing actions that
should never occur (negative properties). Rushby contends that kernels can exert control
over the occurrence of “bad behaviors” via the functions that they provide. Enforcement of
positive behaviors is much more doubtful because it is difficult to ensure the proper use of
functions that are provided. Rushby proposes a design for a safety kernel based on a sepa-
ration kernel that restricts and monitors communication between modules to enforce poli-
cies such as those specifying valid sequences of operations. The design also includes
resource managers that are responsible for the safe operation of devices.

Each of the safety kernels described in this section emphasizes the use of a rela-
tively small software component to enforce safety properties or provide services required
by safety-critical software. This type of structure is utilized because of the implementation
and verification benefits. Rushby has identified the essence of the role of a safety kernel as
an enforcer of safety policies. The logical progression from this abstract, theoretical
description of a safety kernel is to evaluate the merits of a safety kernel through the devel-
opment of the concepts introduced here and the instantiation of the safety kernel with a real
safety-critical system. This evaluation is the subject of the remainder of this paper.

IV  A SAFETY-CRITICAL APPLICATION

The safety kernel is being developed in the context of a case study with the The
Magnetic Stereotaxis System (MSS). This is an investigational device for performing

α∀ op∗∈ :P α( )
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human neurosurgery being developed in a joint effort between the Department of Physics
at the University of Virginia and the Department of Neurosurgery at the University of
Iowa [10]. As a real, safety-critical application, the MSS forces complex, practical issues
of software safety to be considered. In addition, it also serves as a target for implementation
of a prototype of the safety kernel.

The MSS operates by manipulating a small permanent magnet (known as a “seed”)
within the brain using an externally applied magnetic field. By varying the magnitude and
gradient of the external field, the seed can be moved along a non-linear path and positioned
at a site requiring therapy, e.g., a tumor. The device can be used for hyperthermia by radio-
frequency heating of the seed from an external source or for chemotherapy by using the
seed to deliver drugs to a site within the brain. The MSS concept promises to be far less
traumatic to the patient than present invasive approaches to such treatments. The state of
the MSS is that the concept is fully defined, the majority of the basic research in physics is
complete, and a fully functional prototype is nearing completion for demonstration and
evaluation. A program of preliminary animal trials using the prototype is expected to begin
in the near future.

Fig. 3 shows the hardware used by the MSS to effect and monitor movement of the
magnetic seed within the patient’s brain. The patient is positioned at the center of six super-
conducting electromagnets. Under the direction of the computer, power supplies and cur-
rent controllers regulate the electric current in the electromagnets, thereby producing the
magnetic field that acts on the seed. Along each axis perpendicular to the patient’s body, an

X ray
source

Phosphor screen

Fig. 3. View Of The MSS From Above Patient’s Head.

Patient’s head

Camera

Coil



A Safety Kernel Architecture

Page 8

X-Ray source and camera produce fluoroscopic images for tracking the seed.

During an operation with the MSS, a neurosurgeon directs the movement of the
seed from a console that displays preoperative Magnetic Resonance (MR) images. The
computer takes movement requests and computes the electromagnet currents required to
produce the desired seed movement. During seed movement, a computer vision system
analyzes the images from the fluoroscopes to locate the seed and markers affixed to the
patient’s skull. Visible on both the MR and X-Ray images, the markers enable the position
of the seed to be transformed into the MR frame of reference and subsequently superim-
posed on the MR images.

When the MSS is in operation, there are a large number of events that could lead to
patient injury. The complete set is determined by a hazard analysis including the use of
techniques such as system fault-tree analysis. Some examples of events that could lead to
patient injury include:

• Failure of electromagnets or current controllers.
• Incorrect calculation of currents required to provide a requested movement.
• Misrepresentation of the position of the seed on the MR images.
• Inappropriate control of currents by the computer.
• Erroneous movement commands by the human operator.
• Failure to respond promptly to an increase in seed velocity.
• Incorrect response to the failure of an electromagnet or current controller.
• X-Ray overdose.

Each of these could be the result of numerous different faults, and, in fact, the soft-
ware could either initiate or prevent many of these failures. Our safety kernel architecture
is being prototyped with the MSS and will attempt to address all causes of patient injury.
Throughout the rest of this paper, examples from the MSS will be used for illustration.

V  SAFETY KERNEL ARCHITECTURE

The first problem that has to be addressed in the design of a safety kernel is to deter-
mine exactly how it will interact with a large amount of what is, by definition, “untrusted”
software. As our understanding of this interaction has evolved, so has the role of the safety
kernel in the overall system architecture. Our initial concept was, upon reflection, impossi-
bly naive. We expect that the third (current) concept will satisfy the diverse goals. This sec-
tion describes the three system architectures that have been considered.

Minimal System Architecture

Initially, we took the position that the kernel had to execute directly on the bare
hardware. It seemed obvious that this would be essential in order to achieve the necessary
control. Similarly, in order to limit complexity, we also took the position that a single pro-
cessor architecture would be required. The complexity introduced by the concurrent oper-
ation and communication of a distributed or otherwise parallel system would obviously be
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unacceptable. Our original concept was of an application organized as a single program
executing on a platform provided by a simple safety kernel executing on bare hardware.
Fig. 4 shows the simple initial architecture that we assumed.

In practice, such an organization is neither practical nor necessary. We discovered
that the approach was not practical when we began the design of a kernel that was bound
by our initial assumptions. The kernel was to be used by the MSS and the functional
requirements of the application dictated that the restricted design could not support the
application. Like many systems of its type, the MSS has computing resource requirements
that cannot easily be met by a single computer. These requirements derive mainly from the
need to generate elaborate bit-mapped displays that depend on extensive computation both
to produce the necessary data and to manage the display hardware. We were forced to con-
sider a distributed implementation as a result.

Partitioned System Architecture

The replacement for the minimal system architecture that we hypothesized initially
was the partitioned system architecture shown in Fig. 5. This is a distributed architecture in
which the application software is partitioned so that the application control software is exe-
cuted on top of the safety kernel and the rest of the application is executed on other com-
puters. This arrangement provides flexibility in the configuration of the hardware for a
system. It also enables much of the complicated application software and support software
to be executed on hosts other than the safety kernel host. As a result, the safety kernel can
still be a relatively simple structure that is implemented on the bare hardware. The one
architectural feature added to the safety kernel for this configuration is the remote safety
kernel elements that deal with issues of liveness and communication (see Fig. 5).

The primary concerns with this architecture are the essential operating system func-
tionality that even a simple safety kernel would need to provide. In particular, memory
management, processor control, file system services and network communication are
needed. Although this would not be prohibitive for some systems, it is a significant under-
taking and most importantly, there is some question as to whether it is really necessary.

Safety Kernel

Minimal, Verified Library

Verified Application Software

Fig. 4. Minimal System Architecture.

Application Devices

Computer Hardware
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Even in systems where extensive effort could be given to the implementation and verifica-
tion of the essential operating functionality as part of a safety kernel, the complexity would
be such that the original goal of localizing the verification effort in a small simple kernel
would be lost. It is very unlikely that the implementation of such services could ever be ver-
ified satisfactorily.

Revised Partitioned System Architecture

The third and final architecture is similar to the partitioned architecture except that
the safety kernel now operates on top of an existing operating system (see Fig. 6). It is
assumed that this operating system might fail and so the safety kernel must be able to deal
with such failures. In addition, the safety kernel must interact via an unreliable network
with system and application hardware of an unknown nature. Provided the safety kernel can
be designed to respond successfully to support software failures, this architecture has the
benefit of a simple safety kernel that does not need to provide system functionality and is
much less hardware dependent than in the previous architectures.

Satisfactory operation of the safety kernel on top of the system software relies on
the assumption that there will be no malicious attempts to compromise safety, e.g., by
bypassing the kernel. A security kernel could not be implemented in this manner because
it could be easily circumvented. A plausible design for the safety kernel would be to have
it run as a user-level server process. Such a design would isolate the safety kernel from
application software failures and permit it to monitor the application devices indepen-
dently. This arrangement would be transparent to the application software in that the inter-
face to the kernel would be identical (except for initially establishing communication) to
what it would be if the safety kernel were implemented directly on the bare hardware.

It appears initially that the architecture shown in Fig. 6 is unable to provide the kind
of protection that is sought from a safety kernel. Since there is a significant piece of

Network

Graphics Hardware

Application Application

Computer Hardware

System Software

Application

Computer Hardware

Safety Kernel

Control SoftwareSoftware Software

Graphics Library

Application Devices

Remote Safety
Kernel Elements

Fig. 5. Partitioned System Architecture.
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untrusted software beneath the kernel, surely it is possible for that software to fail and pro-
hibit the kernel from enforcing safety policies. This is indeed plausible but only under quite
limited circumstances. Most failures of the software beneath the kernel can be dealt with
using techniques such as coding to detect data corruption, liveness checks and time-out
mechanisms to ensure timely direction of devices, and independent sensors for closed loop
control of devices. The issue of dealing with untrusted support software is discussed further
in section VII.

The one architectural feature added to this system is the safety kernel monitor run-
ning on a minimal separate hardware unit. The safety kernel monitor possesses the mini-
mum functionality required to restore the system to a safe state. Its operating mode is to
execute this functionality automatically unless it receives timely safety kernel “heartbeats”
to indicate that the safety kernel has not been deactivated by a failure of the system soft-
ware.

For some safety-critical systems it might be essential to utilize a design where the
safety kernel is constructed on the bare hardware (see Fig. 5). This could be true for systems
where system software needed to be highly reliable or where the safety kernel monitor
might be sufficiently complex that it is more cost effective to incorporate that functionality
into the lowest level of a system kernel. However, even if this approach were taken, the
architectural configuration of a safety kernel monitoring the activities of custom built sys-
tem software is still applicable because of the complexity required to do processor and
memory management and to provide file system and network services. In this case the
safety kernel monitor would be within the kernel, but it would still serve to ensure the live-
ness of the safety kernel on top of the rest of the system software.

Network

Graphics Hardware

Application Application

Computer Hardware

System Software

Application

Computer Hardware

Safety Kernel

Control SoftwareSoftware Software

Graphics Library

Application Devices

Remote Safety
Kernel Elements

Fig. 6. Revised Partitioned Aystem Architecture.
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VI  SAFETY POLICIES

What form should useful safety policies take and how are they determined? We
examine that issue in this section and give examples showing how the specific policies were
selected for our particular kernel design and how they are applied to our case study appli-
cation. An overall taxonomy of safety policies breaks them down into areas based on
enforceability, generality characteristics, and functionality. We examine these three areas
in turn.

Safety Policy Enforceability

Safety policies fall into two classes. Informally, the distinction between the two
classes derives from the fact that certain policies can be enforced by the kernel without
interaction with the application and others cannot. The first class, referred to as kernel-
enforced policies, consists of those policies that meet the following two conditions identi-
fied by Rushby:

1. The policy of interest at the system level must ultimately depend on
operations at the kernel level precluding the application from circum-
venting policy enforcement.

2. The policy must be a “for all” policy that holds for any combination of
kernel operations.

As Rushby noted, the safety kernel enforces policies in the first class by regulating the oper-
ations that it provides to an application. These kernel-enforced policies are ensured by the
safety kernel independent of the implementation of the application software. This is analo-
gous to a security kernel where, in principle, verification of the security kernel ensures the
security of the system. Examples of this type of policy are the following:

An interlock policy:
Device A and device B should never be on at the same time.

A cumulative device activity policy:
Over some time period T, the fraction of time that device C is on
must not exceed K.

These are policies that ultimately depend only on kernel operations, i.e., the kernel can
enforce this with no regard to application circumstances, and that are “for all” policies, i.e.,
they are applied irrespective of the order and type of kernel operations invoked by the appli-
cation. Thus they satisfy the two necessary conditions.

The second class, referred to as application-enforced policies, is made up of those
policies that do not meet one or both of these conditions. These policies are supported rather
than enforced by the kernel. To achieve enforcement of the policy, it is necessary to ensure
by some form of verification that the application is using the kernel facilities correctly. This
differs significantly from the security kernel analogy because the role of the kernel in this
case is to support an application in achieving its goal in a non-malicious environment.
Examples of this type of policy are the following:
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An arithmetic calculation policy:
The result of an application-specific algorithm must never yield a
result greater than X.

A highly application specific policy:
A particular flight control system must set engine thrust based on
parameters such as air speed, altitude, and fuel efficiency.

The first of these two examples can be described by a second-order assertion. However, the
policy cannot be readily enforced by the safety kernel because kernel operations are not
essential for the implementation of the policy. The policy says essentially that some part of
the application’s internal computation has to satisfy some assertion. Even if the safety ker-
nel provided an operation to perform the calculation, it could not guarantee that the opera-
tion would be neither replaced nor used improperly. This is because the kernel is not
required to act with this internal operation as it would be if the policy was enforcing some
constraint on an output over which the kernel had absolute control. Extensive verification
would be necessary to demonstrate exclusive and correct usage of the operation. Alterna-
tively, the safety kernel could provide a check on the result, but once again it would need
to be shown that the check was invoked for each iteration of the calculation.

The policy in the second example would be expressed as a first-order assertion.
However, although the safety kernel could ensure that the thrust requested of the engine
would satisfy some reasonableness check, it would not be able to check the correctness of
any reasonable value without its own version of the software to perform either a reversal
check or replicate the calculation.

Safety Policy Characteristics

A safety policy is neither inherently kernel-enforced nor inherently application-
enforced. To see why this is so, suppose that all of an application were moved into and
became part of the safety kernel, and that the one command was “start”. In that case, all of
the policies would be kernel-enforced because there would be nothing but the kernel. This
would certainly be counterproductive, however.

The determination of which policies will be enforced by the safety kernel and which
will be enforced by the application is based on maximizing the benefits (as described in sec-
tion II) of a kernel architecture. For example, enforcing a particular policy might provide
support for software safety, but result in undue loss of generality and increased complexity
of verification. Definition of the set of safety policies provided by the kernel described in
this paper was based on the following considerations:

• Is it important to enforce this policy independent of the application?

• Is the policy applicable to a range of safety-critical systems?

• How would kernel enforcement of this policy impact the simplicity and verifi-
ability of the safety kernel?

• How would kernel enforcement of this policy impact the simplicity and verifi-
ability of the application?
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Safety Policy Functionality

Safety policies are intended to enforce safety. Necessary policy functionality, there-
fore, depends to a large extent on the kinds of things that have to be done to make a system
safe. To the extent possible, the selection of policies for a general, reusable kernel should
be based on a comprehensive precise notion of safety that satisfies a wide range of system
needs.

Returning briefly to the analogy with security, we note that overall system-level
security goals derive from some functional requirement that the system’s developer has.
For example, it is common for a system to grant different access rights to different classes
of users. Achieving the desired access restrictions is sufficiently important that extensive
verification of the kernel is undertaken along with a proof that the desired security require-
ment holds.

There is no formal notion of safety that has the same degree of rigor as that found
in the statement of security. This precludes a comprehensive mathematical attack on the
problem of safety in the same manner that is undertaken with security. Nevertheless, it is
possible to develop elements of overall system-level safety that can be analyzed in much
the same way as is done with security. This amounts to showing that a system has certain
desirable properties which one would like to see in a safety-critical system but prevents the
development of any kind of proof of total “safety”.

To permit a systematic analysis of the functionality of safety policies, we have
divided the required functionality up into four areas. These four areas are:

1. Control of peripheral devices.

2. Application software activity.

3. Device failure detection.

4. Response to failure.

The first two areas are policies that regulate actions of the application and are
invoked when the application software makes a request to the safety kernel. The third class
of policy relates to the role of the safety kernel as a monitor of devices. The fourth class of
policy is required to respond to the failure of either the application software, support soft-
ware, or a device.

Peripheral Device Control

The first set of the safety policies dictate the manner in which devices may be oper-
ated by the application. Below we list general categories within this area of functionality.
We note also that all policies within these categories are kernel-enforceable. Each category
is accompanied by an example of a policy instantiated for the MSS (for the sake of brevity,
we have omitted the general statement of the policies that the kernel would provide):

• State-command restrictions.
When a request is made for a device action, it is possible that the safety of the
system will depend on the present state of the device. Therefore, it is important
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to be able to specify policies that dictate when an action may be executed as a
function of the command state of the device.

MSS example: Before a coil can be charged, the load current command
must be successfully executed.

• State-command timing requirements.
For a given device state there can be requirements concerning the minimum and
maximum times that the device can safely be in that state. The timing might also
depend on the command that is being requested. For example, for a device in
the off state, it would be reasonable to require a minimum time in the state when
the requested command is on. The safety kernel will provide support for real-
time systems by ensuring that either the application devices are controlled in
accordance with timing deadlines or that actions are taken to respond to missed
deadlines.

MSS example: An X-Ray device must be in the “off” state for 0.2 s
before the invocation of an “on” command.

• Multiple-device, state-command restrictions (i.e., interlocks).
The safety of a device action can depend on the states of other devices. Some
policies will specify combinations of device states where actions are precluded
or permitted.

MSS example: The two X-Ray sources must not be active simulta-
neously.

• Parameter checks.
The parameters for a command must satisfy checks that are determined by the
particular command, device state, and possibly the states of other devices.

MSS example: The current requested of the electromagnet power sup-
plies must be less than 100 Amps.

• Operational state conditions.
For a given command and device command state, there may be restrictions that
depend on the operational state of the device. For example, a device in an ini-
tialization phase might not be able to be operated until it had achieved its oper-
ational temperature.

MSS example: The current in a coil must be less than 15 Amps when a
request is made to change the polarity of the coil.

• Total duration/dose restrictions.
The safety of some systems will depend on a device not exceeding its total
active time or some function thereof.

MSS example: The total X-Ray dose during an operation must be less
than 100 millirem.

• Device control requirements.
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Some higher-level, device control properties can be ensured by kernel control
of devices (e.g., duration control for a device).

MSS example: The X-Ray sources will always be activated for a period
of 0.05s.

Application Software Activity

The basic model of the safety kernel is that it enforces policies that ultimately
depend on calls to safety kernel operations. In certain cases it is desirable to extend this
interface up into the application to enforce policies relating to actions of the application.
For example, the calculation of output values for a device might have associated with it an
effective reversal check. A safety policy might be that the output values should never be
sent to the device without the reversal check being applied.

Much like the device control policies described above, application software activity
policies will specify required sequences of actions, timing constraints on those actions, or
particular checks or activities to be performed when an action occurs. For example, a policy
might dictate that actions A and B must be performed prior to the execution of kernel activ-
ity X. If A and B are provided by the kernel, then this policy would be kernel-enforced. If
A and B are application software operations then the safety kernel could require that it be
notified of their invocation, but it could not actually guarantee that they had been executed.
The problem is that the safety kernel can require notification, but there is no way for it to
enforce that requirement. For example, the application software could easily notify the ker-
nel that an operation had been performed without actually completing the action. This type
of policy would require verification of the application software to ensure that notification
occurred once and only once for a given action. A policy that required the loading of con-
figuration data prior to operation of application devices, is an example of a potentially use-
ful property requiring some verification of the application software.

In the example above, if actions A, B, and X could all be performed in one action,
then the policy could be a device control policy enforced as part of a single kernel opera-
tion. This has the advantage of obviating the need for ensuring notification, since the
actions would be performed each time X was invoked.

MSS example: Prior to charging of the electromagnets, a reversal check
must be executed to ensure that the requested currents
provide the desired force.

MSS example: A seed movement must have been requested each time
the coils are charged.

Device Failure Detection

A critical role of the safety kernel is dealing with actual and apparent failures of
application devices. An actual failure occurs when a device has been commanded correctly,
but fails to execute the command as specified. An apparent failure occurs when a device
operates correctly, but the application software neglects to perform an essential operation.
Both types of failures are detected through an inconsistency in the observed and predicted
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state of the device. Therefore, there is a component of the safety kernel that has the exclu-
sive task of periodically sensing the state of the devices and comparing this state to the
expected state for the device. Two classes of device failure detection policies are enforced.

• State consistency:
The operational state and the expected state for a software-controlled device
should be consistent. The means of evaluating consistency and determining the
expected state are defined for each particular device and for each device state.

MSS example: The state of the X-Ray must match the most recent state
commanded by the software.

MSS example: While the coils are charged, the X-Ray sources must be
activated at least once every 2.0 s.

• Observed state consistency
To obtain statistical confidence in the operational state information for a device,
there will likely be two or more sources of operational state information for a
device. Since failure of these sources could lead to problems in evaluating state
consistency, the safety kernel must implement policies that document unaccept-
able discrepancies between sources.

MSS example: The current values reported by the current controllers
and the independent sensor must differ by less than 5.0
Amps.

Response To Failure

Detection of an error in the operation of application software, support software or
system devices, requires a response that can ensure that the system remains in or is returned
to a safe state. Typically a continuum of recovery procedures will be available. For exam-
ple, in a system where recovery was achieved by shutting devices off, a severe recovery
policy might call for disconnection of power to all devices, whereas a less severe policy
would be more sophisticated and would effect a more orderly shutdown of the system. For
a given error, the appropriate response will be selected based on the present system state
(i.e., the state of the application devices). The response will be specified in safety policies
that dictate the action to be taken for a particular failure and system state.

MSS example: If an X-Ray fails so that it cannot be activated and the
coils are in a discharged state, then the X-Ray sources
and the coils must be deactivated.

MSS example: If the X-Ray sources are on when they are expected to
be off, then the power to the X-Rays must be interrupted
and the coils discharged.

MSS example: If a coil fails while charged, then all of the coils must be
quenched and the X-Ray sources deactivated.
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VII  IMPLEMENTATION ISSUES

From the previous section, we conclude that, although many particular safety poli-
cies exist, in general they fall into two classes, kernel enforced and application enforced,
that they have to be considered carefully with respect to their generality and applicability,
and that their functionality lies within a small number of areas. Given this, the next issue to
consider is techniques for implementation. In this section, we look at the following four
issues concerning implementation:

1. How will an instance of the safety kernel be instantiated for a particular
application?

2. How will kernel-enforced safety policies be specified and implemented?

3. How will the safety kernel support verification of safety policies?

4. How will the safety kernel deal with unreliable support software?

Instantiation of the Safety Kernel

The kernel concept and a substantial amount of the design and implementation are
intended to be generally applicable to a wide range of safety-critical systems. To permit
enforcement of safety policies that are tailored to specific applications, many aspects of the
kernel will be parameterized. The parameter information will be incorporated into the ker-
nel to produce an instance for a particular application.

Fig. 7 depicts the process we are developing for instantiating the safety kernel we
are building. First, a set of safety policies are derived from the software safety specification.
The process of derivation for our kernel is presently informal but the prospect of extracting
them from a formal specification clearly exists. The safety policies are specified in the ker-
nel configuration data using constant information, such as an acceptable state transition or
a maximum value for a parameter, and code fragments to parameterize the general mecha-

Parameter
Reuse Library

Software Safety
Specification

Kernel
Configuration
Specification

Translator SAFETY
KERNEL

Fig. 7. Instantiation Of Safety Kernel.



A Safety Kernel Architecture

Page 19

nisms provided. To facilitate reuse of the code fragments, a library will be included as a
repository for certified code fragments that might be applicable to a range of applications.
The configuration information is read in by a translator and will be mechanically incorpo-
rated into an executable safety kernel.

Specification and Implementation of Kernel-Enforced Safety Policies

With the kernel instantiation process outlined above there are two critical design
issues. The first is the mechanism by which the various policies are specified. The second
is the way in which the policy specifications are incorporated into an implementation of the
safety kernel. These two issues are addressed below for a number of the classes of policies
described in section VI.

Many of the device control policies are enforced at the time a request is made for a
device action. As a result, these policies can be enforced through the use of a “filter” on the
kernel operations. Included in this group are state-command restrictions, state-command
timing requirements, parameter checks, and operational state condition checks. These pol-
icies are specified using a tabular format like the one shown in Fig. 8. The table has device
states on the left side of the table and potential action requests across the top. The table is
a representation of a finite state machine with the action requests representing the inputs to
the machine. The transitions are recorded in the cells along with conditions that must be
satisfied for the transition to occur. The states are the command states that result from action
requests. Other elements of the state that might change without a direct action request are
a part of the operational state of the device. For example, a motor might have command
states on and off, but the speed of the motor could be a part of the operational state that
would change without a direct command. In addition to holding the acceptable transition
for a state, a cell might also contain restrictions on the operational state, parameters checks,
and timing requirements. Logically, the state-action table will be utilized as follows:

1. When the safety kernel receives an action request for a device, it will

Action Requests

St
at

es

Action1 Action2 Action3 Action4 Action5

State1

State2

State3

State4

1. Next state.
2. Operational state
checking procedures.
3. Parameter check
procedures.
4. Timing require-
ments
5. Error responses

Fig. 8. Specification Of Device Control Policies.
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first check to see if there is a transition specified for the device in its
present state. If there is no legitimate transition, then a specified
response procedure will be invoked.

2. If there is a transition, then that transition will be made only if any con-
ditions on the operational state are met, if timing restrictions are satis-
fied, and if the checks on the action request parameters are satisfied.
Otherwise, a specified response procedure will be called.

3. If the above are met, then the state of the table will be changed and the
action request will be sent to the device.

The tabular specification is read by a translator that produces a procedure for each
type of device action request. Within each procedure, actions and checks corresponding to
a table cell are selected based on the present state of the device. When the checks are
applied status values are produced that indicate whether the requested action may be carried
out or if an error response is required. For each device the safety kernel maintains a record
of the present state and the time of the most recent action request.

The specification and implementation of the application software activity policies
is very similar to that for the device control polices. A tabular representation is used to spec-
ify acceptable command sequences and actions to be taken when a particular software
activity occurs.

Another major set of safety policies are the device failure detection policies. These
policies are primarily concerned with the monitoring of devices to ensure that the device
state is consistent with the most recent command to the device. The policies for detection
of device failure will be specified for each of the possible command states. The policies will
determine the expected state of the device based on the present command state of the device
and the time the state was entered. The policies will also dictate how the prediction should
be compared to the actual device state to detect possible device failures and will designate
which error response should be called in the event that an error is detected. The observed
state consistency policies will be specified similarly. Because the devices will be monitored
on a periodic basis, each command state will also have associated with it a time that deter-
mines how frequently the device should be monitored.

This specification of the device failure detection policies will be translated into a
monitoring procedure for each device. Within the procedure the appropriate state checks
will be selected depending on the command state of the device. The safety kernel will
invoke these device monitoring procedures at the intervals specified for the present state of
the device.

The specification and implementation of the error response policies would be quite
similar to the device error detection policies. Responses would be provided for each type
of error and for various combinations of the device states that would need to be considered
in responding to the error. An error response is chosen based on the type of the error and
the present state of the system.

A consideration with the error response policies in particular and with policies
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parameterized with code fragments in general is whether the kernel or the application
should execute the code fragment. Code that is executed within the kernel would need to
be verified for certain properties, so that it would not fail and interfere with the operation
of the kernel. In many cases the best scenario would be to have the kernel identify the need
to run a particular routine and then signal the application to actually execute the operation.
This is especially critical in cases where the application is being reconfigured due to some
device failure detected by the kernel. In this case, there is no way that the kernel could actu-
ally execute the software necessary for continued operation. Executing responses within
the application software would enable the kernel to continue to monitor the application and
obviate the need for the safety kernel to monitor itself. Even in this case, it still might be
desirable to have the safety kernel perform the immediate response operations, and then
turn continued operation over to the application. Simple checks and device error detection
routines will be executed from within the kernel.

Verification of Kernel-Enforced Safety Policies

The safety policies that are enforced by the kernel are ensured independent of the
implementation of an application. Thus, verification of kernel-enforced policies involves
verification of the safety kernel and not the application software. That is not to say that the
application will not need to be verified, but it will not be necessary to verify it to ensure
enforcement of the kernel-enforced safety policies. Verification of the kernel is focused on
two areas. The first area is the verification of the general mechanisms of the kernel and any
tools used to produce an instance of the kernel from configuration data. The second area is
the verification of the configuration data, including constant information and code frag-
ments, that specify the policies to be enforced by an instance of the kernel.

In theory the kernel mechanisms and support tools will be sufficiently general that
they can be reused with a range of applications. These elements of the kernel will be veri-
fied once and then utilized multiple times. Verification of the safety kernel mechanisms and
support tools will be based on software inspections, testing, and formal verification of
essential properties.

Because it must be repeated, the major concern with the verification of an instance
of the safety kernel is making certain that the configuration of the safety kernel accurately
reflects the requirements given in the software safety specification. Verification of an
instance of the safety kernel involves demonstrating that the given parameters correctly
specify the desired safety policies and that the code fragment parameters exhibit essential
properties. Ideally, the verification of the use of parameters in the configuration of an
instance of the kernel could be obviated by developing a precise mapping from the software
safety specification to the configuration data. In lieu of this, the emphasis will be on speci-
fying kernel configuration safety policy data in a manner (e.g., the structured tables
described above) that simplifies verification with the software safety specification.

Code fragment parameters will need to be verified for properties such as bounded
execution time, freedom from memory leaks, and correct implementation of the particular
check or action. Since these fragments are a part of the kernel, the verification techniques
will be the same ones identified above for verification of kernel mechanisms. The code
fragment reuse library is intended to support reuse of these parameters and thereby reduce
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the verification required for an instance of the safety kernel.

Dealing with Unreliable Support Software

The safety kernel is situated between the application and a significant amount of
support software. In particular, the kernel depends on an unverified operating system and
network communication subsystem. Clearly, the kernel must be implemented in such a way
that it can deal with failures in this support software.

One way to deal with the dependence on support software is to reduce the amount
of software upon which the kernel depends. This is one of the goals of the partitioned archi-
tecture. Moving all of the application software except the control software to remote hosts
is intended to simplify the functionality required of the support software. As a result the
safety kernel and the critical application control software depend on a far smaller amount
of untrusted software. The partitioning also permits the hardware and software that control
application devices to be physically isolated from much of the application software, thus
reducing the possibility of harmful interaction between critical device control software and
other modules.

Although reducing the amount of support software is a good first step, there are still
several general classes of support software failures with which the safety kernel must be
concerned including (but not limited to):

• Incorrect execution of device control commands, including spurious commands
to devices.

• Failure of support software operations serving the kernel or application soft-
ware.

• Failure of software on remote hosts in the partitioned architecture.

• Failure to provide timely service.

• Corruption of data.

The failure of the system software in performing device control commands, such as
not turning on a device or turning one on when not required, is dealt with by the device fail-
ure policies described above. This is possible because, from the perspective of the safety
kernel, failure of the operating system in this manner is indistinguishable from a failure of
the device itself. In fact, this type of operating system failure emulates the failure of the
device [5]. As a result, by being prepared to respond to device failures, the kernel is also
able to respond to this class of operating system failure. If for some reason the monitoring
was not sufficient, extra assurance of correct system execution of device commands would
be provided by an acknowledgment system. With this approach, a device would be required
to echo any request for action back to the safety kernel and wait for an acknowledgment for
action.

The failure of an application initiated request to the operating system appears iden-
tical to the failure of the application itself. Therefore, the kernel requires no extra facilities
to prevent this type of failure from impacting system safety. The failure of a safety kernel
request for an operating system service is a problem only in the event that the failure is not
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detectable and the system continues to operate with corrupted data. In the worst case,
detectable failures can always be dealt with by invoking the safety kernel monitor referred
to previously and described in detail below.

The partitioned safety kernel must be able to deal with software having undeter-
mined properties on the remote hosts. This software will include operating systems, com-
munications packages, user interface libraries, etc. The concern with this software is not
that it might fail to execute — the safety kernel will assume that this is likely and will be
prepared to invoke a recovery mechanism if necessary. The real concern is with those
actions that might adversely impact the application control software. For example, remote
software could fail in a manner that would cause the application control software to be
flooded with messages. Although these messages might have legitimate content, they might
cause the application control software to fail. The safety kernel will deal with this by mon-
itoring message traffic to ensure that the communication to the kernel conforms to specified
safety rules. Transmission of garbled messages might also result in a failure. This is a rel-
atively simple problem that can be dealt with by suitable redundancy in the message data.

The failure to provide timely service can result from support software domination
of resources or from a fatal operating system error. In either case, there is no means for the
safety kernel itself to respond to the problem, because it is not receiving the services it
needs to continue operation. This class of failure renders the safety kernel and all other soft-
ware either inoperative or unable to perform in a timely manner. As a result, this type of
failure (and only this type of failure) must be dealt with by an external entity that is capable
of detecting the failure and restoring the system to a safe state. This is thesafety kernel mon-
itor and it could be either purely a hardware device or a dedicated computer. It would oper-
ate as a watchdog timer that required periodic liveness signals from the safety kernel. In the
event that the liveness signal was not received on time, the monitor would execute a routine
to restore the system to a safe state.

Corruption of data occurs with data stored in a file system or handled by the network
(it is assumed that corruption of data in memory will be detected by the hardware and will
either be corrected or cause the safety kernel monitor to be invoked). Corruption of data
will be dealt with by requiring that all data utilize some redundant information such that
corruption can be detected with some appropriate probability.

VIII  CONCLUSIONS

Software in any non-trivial safety-critical system must be assumed to contain faults
that could compromise system safety. The complexity of the software, and the lack of com-
pletely effective techniques for either preventing the introduction of or removing these
faults combine to produce this problem. The MSS case study provides a ready example of
a complex software-controlled system. The safety kernel attempts to deal with a part of this
problem by providing execution-time enforcement of several classes of safety policies in a
relatively small, simple structure. This structure simplifies the implementation of the poli-
cies and facilitates their verification. Situated between the application software and the
physical devices, the safety kernel enforces these policies regardless of the actions of the
application software.
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A partitioned architecture is utilized to enable the safety kernel to deal more easily
with a large amount of untrusted software and to meet the diverse computer resource
requirements of typical safety-critical systems. An early minimal architecture was rejected
based on the experience with the requirements of the MSS. The partitioned architecture
emphasizes the separation of the control software from the rest of the application software
in order to permit a relatively simple safety kernel and support software. The safety kernel
operates on top of existing, unmodified support software in this architecture because it is
able to detect and respond to most system software failures. This frees the safety kernel
from providing typical system services and enhances the portability of the kernel. Failures
of the support software that completely inhibit the kernel are detected by the safety kernel
monitor that is equipped to restore the system to a safe (perhaps inactive) state. Although
some systems might require a safety kernel built on the bare hardware, we conclude that
the model of the system software sandwiched between a safety kernel and a safety kernel
monitor is widely applicable.

The safety kernel architecture provides a heretofore unavailable framework for the
abstraction of safety policies that are applicable to a range of safety-critical systems. Using
this framework several classes of general, kernel-enforced safety policies have been iden-
tified. These kernel-enforced policies ultimately depend on kernel operations and are true
for all combinations of kernel operations — the two conditions identified by Rushby. Pol-
icies are not inherently kernel-enforced, but are selected for kernel enforcement based on
criteria that consider the impact on the simplicity and verifiability of both the safety kernel
and the application software. The relevance and utility of the identified classes has been
confirmed through their application to the MSS.

Although the safety kernel is a general architecture, an instance of the kernel will
be configured for a given application. The issues with configuration of the kernel are how
to facilitate verification of an instance of the kernel and how best to promote its reuse by a
range of applications. The safety kernel will enforce safety policies that are parameterized
by constant information and code fragments. The parameterization enables the policies to
be quite general and the structured format of the specifications will facilitate the analysis
of the kernel configuration. The parameter information will be integrated into the kernel
framework by a mechanical translator.

The feasibility of the safety kernel concept and all the design and implementation
issues described here are being evaluated during the development of a prototype with an
instantiation targeted at the MSS. The implementation of this prototype and the associated
tools is incomplete. The MSS application software is being developed in parallel and is also
incomplete at this time. This paper reports our results to date obtained with this develop-
ment activity.
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