
Super-criticality revisited

Sudhir Srinivasan
Paul F. Reynolds, Jr.

Computer Science Report No. CS-93-29
Issued May 25, 1993

Revised November 8, 1994

Super-criticality revisited

Sudhir Srinivasan
Paul F. Reynolds, Jr.

Contact:
Sudhir Srinivasan

Department of Computer Science
Olsson Hall, University of Virginia

Charlottesville, VA 22903
Email:ss7a@uvacs.cs.Virginia.EDU

Abstract

Critical path analysis has been suggested as a technique for establishing a lower
bound on the completion times of all parallel discrete event simulations (PDES). A
protocol is super-critical if there is at least one simulation that can complete in less than
the critical path time using that protocol. Previous studies have shown that several
practical protocols are super-critical while others are not. We present a sufficient condition
to demonstrate that a protocol is super-critical. Also, we show that a condition used in a
previous study is not sufficient but necessary for super-criticality. It has been claimed that
super-criticality requires independence of one or more messages (or states) on events in
the logical past of those messages (states). We present an example which contradicts this
claim and examine the implications of this contradiction on lower bounds.

Appeared in the9th Workshop on Parallel and Distributed Simulation

Super-criticality revisited

2

1 Introduction
One of the techniques that has been suggested to derive a theoretical lower bound on the

completion time of all parallel discrete-event simulations (PDES) is critical path analysis. This application

of critical path analysis is particularly interesting because of the somewhat counter-intuitive result that it is

possible for certain simulations to complete in less than the critical path time, a phenomenon we callsuper-

critical speed. We say a protocol issuper-critical if it is possible for at least one simulation using that

protocol to complete in super-critical time. There are several practical protocols that are super-critical and

several that are not [JeRe91(6)]. In this paper, we re-examine two issues concerned with super-critical speed:

(i) a sufficient condition to demonstrate a protocol is super-critical, and (ii) the requirement for super-

criticality, of independence of messages or states on events earlier in logical time.

Berry and Jefferson [BeJe85(2)] applied critical path analysis to PDES and argued that the critical

path time is a lower bound on the completion time. In [Berr86(1), JeRe91(6)] it was shown that certain

variants of the Time Warp protocol [Jeff85(5)] are super-critical. In particular, [JeRe91(6)] presented a

criterion for super-criticality and used it to show that four protocols were super-critical. These results

showed that the critical path time is not a lower bound for all PDES’s. Lin and Lazowska [LiLa91(8)]

proposed a lower bound that applies to all PDES’s but is a very loose one since it requires that each LP guess

all of its computation correctly. These early analyses defined inter-event dependence based on the

timestamps of events and messages. This scheme has the disadvantage of incorrectly assuming some pairs of

events to be dependent when in fact there is no semantic dependence between them. Recently, Gunter

[Gunt94a(3)] has proposed an enhanced definition of dependence which attempts to overcome this

limitation. Based on this definition, he contends that independence is necessary for super-criticality and

derives a new lower bound which is tighter than that of [LiLa91(8)].

This paper makes two contributions:

i) We present a sufficient condition for a protocol to be super-critical (recall that a super-

critical protocolallows the possibility of super-critical speed; it does not guarantee it).

We show that the condition used in [JeRe91(6)] is necessary for super-criticality but

not sufficient. The condition we present has been used in [Gunt94a(3)] to prove that

super-criticality requires independence but was presented without apparent support

[Gunt94b(4)]. In a result developed independently we establish the truth of the

sufficiency condition.

Super-criticality revisited

3

ii) We show, by example, that Gunter’s enhanced definition of dependence is not

sufficient to capture all forms of super-criticality. Specifically, super-critical speed is

also possible when an LP guesses correctly a dependence on a message that it has not

yet received. Thus the claim that super-criticality requires independence is

invalidated. This insight suggests that irrespective of how accurately we are able to

capture the semantic dependence of events, it is still possible to be super-critical.

While Gunter’s lower bound does not hold for simulations where LP’s guess the

existence of dependence, it does hold for simulations where LP’s only guess thelack

of dependence. Since all known aggressive protocols allow LP’s to guess both the

lack and the existence of dependence, it seems unlikely that critical path analysis can

improve upon the lower bound of [LiLa91(8)].

2 Critical path analysis
We assume the PDES consists of a set of logical processes (LP’s), P1, P2 ... Pn and each LP

executes on its own processor* . Each Pi represents a sequence of simulated events. In the case of aggressive

protocols, critical path analysis applies only to committed events. The timestamp of an evente is denoted by

V(e). Each LP may send messages to other LP’s as a result of executing events. In addition to simulation-

specific information, a message contains a send-time which equals the logical clock of the LP sending the

message and a receive-time which is greater than or equal to its send-time. When the message is received,

the receiving LP schedules an event with timestamp equal to the receive-time of the message. This model is

called themessage-initiating model. With this model, we define the following two relations on events:

• Event e is thepredecessor of evente’ (or e’ is thesuccessor of e) if: (i) e ande’ are

executed by the same Pi, (ii) V(e) < V(e’) and (iii) there is no other evente’’ in Pi such that

V(e) < V(e’’) < V(e’). We denote the predecessor of an evente aspred(e).

• Evente is theantecedent of event e’ if the execution ofe causes a message to be sent

which schedulese’. Note e and e’ may be executed by the same LP. We denote the

antecedent of an evente asante(e).

If defined,pred(e) andante(e) are unique for a given evente. Also, an event can be the predecessor of at

most one event but the antecedent of more than one event. We define the relation→ as e → e’ (e

immediately affects e’) if eithere = pred(e’) or e = ante(e’). Finally, the transitive closure⇒ of the relation

→ induces a partial orderingon the events in the simulation as follows:e ⇒ e’ (e influences e’) if there

* Obviously, the lower bound may change if multiple LP’s execute on a processor since more than one LP may have an
executable event at the same time. The issue of optimal scheduling when multiple LP’s are assigned to a single processor is
addressed in [Lin92(7)].

Super-criticality revisited

4

exists a sequence of events e = e(0), e(1), ... e(n) = e’ such that e(i) → e(i+1) for all 0 ≤ i < n. A particular

parallel discrete event simulation run (an execution of a simulation program with a given set of input values)

may be represented using a space-time diagram as in Figure 1. The points in this 2-dimensional plane

represent events that were executed in the simulation run. The two co-ordinates of each event are the LP at

which it was executed (the space co-ordinate) and its logical timestamp (the time co-ordinate). Arrows are

used to represent the → relation among events. For example, e1,10 is the predecessor of e1,21 and the

antecedent of e2,15. Events that have no predecessors are called initial events. These are the first events to be

executed at any LP. Further, initial events that have no antecedents (e.g., e1,10 and e3,9) are called start

events.

With each event e, we associate an amount of real time required to execute that event, T(e). Also,

for the sake of simplicity we ignore all overheads associated with inter-LP communication. These overheads

can be incorporated easily into critical path analysis if required. If start(e) is defined to be the real time at

which the execution of event e is started, then complete(e) = start(e) + T(e) is the time at which the

execution of event e completes. The critical time crit (e), of each event e is defined as follows:

crit (e) = MAX {crit (ante (e)), crit (pred (e))} + T(e)

where the simulation is assumed to start at real time zero and crit (ante (e)) and crit (pred (e)) are defined to

be zero if ante (e) and pred (e) are not defined respectively. crit (e) is the earliest time the event e can

complete execution under the assumption that no dependences are violated. Consequently, the largest value

of crit (e) among all of the events in the simulation run will give us the lower bound on the completion time

of the simulation run under the same assumption. Events that have this maximum critical time are called

Figure 1 - Space-time diagram

Logical Processes

S
im

ul
at

io
n

Ti
m

e

P1 P2 P3 P4

e1,40

e1,31

e1,21

e1,10

e2,38

e2,22

e2,15

e3,39

e3,26

e3,9

e4,24

e4,35

Super-criticality revisited

5

final events. An example of the computation of critical times is shown in Figure 2. The first number beside

each evente is T(e) and the second number iscrit (e).

A critical path is a path from a start event to a final event defined as follows:

i) Every final event is on a separate critical path.

ii) If e is on a critical path andcrit (ante (e)) ≤ crit (pred (e)) then ifpred (e) exists, it is
on the critical path.

iii) If e is on a critical path andcrit (pred (e)) ≤ crit (ante (e)) then ifante (e) exists, it is
on the critical path.

We have highlighted the two critical paths in Figure 2. The maximum value ofcrit (e) is called thecritical

path time.

3 When is a protocol super-critical?
The critical path time defines a lower bound on the completion time of a simulation under the

assumption that events are actually executed in the order specified by the dependence relation⇒. However,

it is only required that the overall effect of the simulation be the same as if the events were executed in that

order. Therefore, if an LP “guesses” correctly, it may execute certain events out of order while keeping the

simulation accurate. By guessing correctly on the critical path, it is possible to complete the simulation in

less than the critical path time. This phenomenon was calledsuper-critical speed-upin [JeRe91(6)] but we

refer to it assuper-critical speedsince the critical path time is an absolute quantity. For a simulation run to

be super-critical, the act of “guessing correctly” must occur on every critical path of the simulation.

It is important to note the distinction between a super-critical simulation run and a super-critical

protocol. A super-critical run is a particular execution of a simulation (using some protocol) that completes

Figure 2 - Critical paths
Logical Processes

S
im

ul
at

io
n

Ti
m

e

P1 P2 P3 P4

5,5 10,10

15,20

7,12

5,17

20,37
12,40

8,28 15,25

5,45

20,30

15,45

Super-criticality revisited

6

in super-critical time. A protocol is said to be super-critical if it is possible for a simulation run (at least one)

using that protocol to be a super-critical run. By its very nature, a general PDES protocol cannot guarantee

that LP’s will guess correctly; it can only enable them to do so. Even so, it is desirable to be able to

determine whether a protocol has this capability or not. To do so, we require a (sufficient) condition for

super-criticality, SC such that if a protocol allows SC to be true in a simulation run, then the protocol

permits the simulation run to be super-critical (i.e. the protocol is super-critical). We may then prove

protocols to be super-critical by showing that they allow SC to be true in at least one simulation run. In

[JeRe91(6)], the authors present one such condition. We show that their condition is merely necessary (i.e.

super-critical protocols will satisfy it) and present the actual sufficient condition.

3.1 Condition for enabling super-critical speed
Recall that for any event e, the following are defined:

• start (e) : the real time at which the execution of e commences.

• complete (e) : the real time at which the execution of e completes.

• crit (e) : MAX {crit (pred (e)), crit (ante (e))} + T(e), which is the earliest time

at which e can complete if no dependences are violated.

The super-criticality condition of [JeRe91(6)], which we call C, is stated below:

C: There must be at least one pair of events e and e’ on every critical path such that e →

e’ and complete (e) > start (e’)

We show by construction that the fact that C is true for a simulation run does not imply the run can complete

in super-critical time.

Consider conceptually extracting a critical path and laying it on the real-time line as shown in

Figure 3a. Each block of time (shaded rectangle) corresponds to the execution of an event on the critical

path. Dots indicate that intermediate events have been left out for brevity. Note, since we have ignored the

cost of inter-LP communication in this paper, we do not allocate any real time between events. Now

consider the critical path of a particular simulation run in which the condition C is satisfied. This condition

could have been satisfied in one of the two ways shown in Figure 3. In Figure 3b, C is satisfied because the

execution of e(i+1) commenced on time (at crit (e(i))) but the execution of e(i) completed late (after crit (e(i))).

Note e(i) may have completed late due to several reasons. For instance, it may be that just prior to this

execution of e(i), the LP executing e(i) may have guessed incorrectly and consequently rolled back, causing

Super-criticality revisited

7

the delay of e(i). We have depicted this by a single delay (gap in the shading) at some point earlier than the

execution of e(i). The LP executing e(i+1) guessed correctly so that the execution of e(i+1) was not rolled back

when e(i) completed after crit (e(i)). By only observing e(i) and e(i+1), the two events that satisfy C, we cannot

conclude that the simulation can complete in super-critical time. In Figure 3c, C is satisfied because the

execution of e(i+1) commenced early (before crit (e(i))) while the execution of e(i) was on time (completing at

crit (e(i))). This occurs because the LP executing e(i+1) guessed correctly so that it is not rolled back when e(i)

completes execution at crit (e(i)). If every event on this critical path following e(i+1) is executed immediately

after its preceding event completes (as depicted), the simulation will complete before crit (e(n)), as shown

(assuming this is the only critical path).

In [JeRe91(6)], the authors consider only the scenario of Figure 3c and not that of Figure 3b. By

itself, condition C specifies nothing about the absolute completion times of e and e’, which are essential to

super-critical speed since the maximum critical time is an absolute quantity. Indeed, the scenarios of Figure

3b and Figure 3c were generated simply by moving events along the real time line while maintaining their

relative timing relations. Clearly, crit (e) is the quantity which must link the condition for super-critical

speed with the absolute timings of events since it defines whether an event is early, on time or late.

Therefore, we claim that the actual sufficient condition for a protocol to be super-critical is:

Figure 3 - Super-critical speed

(b) Execution satisfying C but not SC

(c) Execution satisfying SC

T(e(0)) T(e(n))T(e(i+1))

Real time
0 crit(e(0)) crit(e(i)) crit(e(i+1)) crit(e(n))

T(e(0)) T(e(n))

T(e(i+1))

Real time

0 crit(e(0)) crit(e(i)) crit(e(i+1)) crit(e(n))

T(e(i))

(a) Critical path

complete(e(i))

complete(e(i+1))

T(e(0)) T(e(i)) T(e(n))T(e(i+1))

Real time

0 crit(e(0)) crit(e(i)) crit(e(i+1)) crit(e(n))

T(e(i))

Super-criticality revisited

8

SC:There must be at least one evente on every critical path such that

complete (e) < crit (e)

Note, this condition is satisfied in Figure 3c (complete (e(i+1)) < crit (e(i+1))) but not in Figure 3b, thus

distinguishing the two. The intuition behind this condition is very simple: at least one event on every critical

path must complete before its critical time so that there is the possibility of all events following it on the

critical path to complete before their critical times and thus for the simulation to complete before the

maximum critical time. The key is thatcrit (e) (and not the starting or completion time of evente relative to

its adjacent events on the critical path) defines the earliness or tardiness of evente. Thus we have shown by

construction that the fact that a simulation run satisfiesC does not imply that it can complete in super-critical

time whereas the fact that a simulation run satisfiesSC does imply that it can complete in super-critical time.

Of course, even in the situation of Figure 3c, it is possible for the simulation to complete aftercrit (e(n)), if at

least one event followinge(i+1) is sufficiently tardy.

If a protocol is super-critical, then by definition, there exists a simulation run using that protocol

such that the final events on every critical path complete before their critical times. Trivially therefore,

super-criticality implies that the protocol allowsSC to hold for at least one simulation run. ThusSC is also a

necessary condition for super-criticality.

Revisiting Figure 3c, ifSC is true on a particular critical path, we can show by contradiction thatC

is true for ande wheree is the earliest event for whichSC is true on the critical path and→ e. Thus,SC

⇒ C. SinceSC is necessary for super-criticality, C is also a necessary condition for a super-critical protocol.

In [JeRe91(6)], the authors useC to show that the four protocols:Time Warp with Lazy

Cancellation, Time Warp with Lazy Reevaluation, Time Warp with Phase Decomposition and Space-Time

Simulation are capable of super-critical speed. In the appendix to this report, we have shown that all of these

protocols satisfySC and therefore are indeed, super-critical.

It is possible to extendSC to a stronger condition which is sufficient to guarantee super-critical

speed:

SCG: The final event on every critical path satisfiesSC

Clearly, SCG ⇒ SC ⇒ C. No known protocol satisfiesSCG.

ê ê

Super-criticality revisited

9

Finally, a common misconception seems to be that a protocol that allows LP’s to guess events is

super-critical. A distinction must be made between all events and the ones that are actually committed. Time

Warp with aggressive cancellation allows LP’s to guess events but does not commit events which have

started prior to the completion of previous events (i.e. it does not allow LP’s to guess committed events).

Accordingly, it has been established [LiLa91(8)] that Time Warp with aggressive cancellation is not super-

critical. In words, this is what C claims: if a protocol allows LP’s to guess committed events correctly, then

it is super-critical. However, that is not sufficient. We have shown that the protocol must allow LP’s to guess

committed events correctly and before their critical times.

4 Super-criticality and independence
We make the following key observation:

Observation: There are two phenomena that may result in super-critical speed:

i) when LP’s correctly guess that no messages will arrive that affect an event

ii) when LP’s correctly guess the effect of one or more messages that have not yet
arrived on an event

In the first case, super-critical speed is possible because the dependence relation → is defined based

on timestamps of events (and messages). Under this definition, an event e at some Pi is dependent on a

message m if m schedules an event e’ at Pi such that V(e’) < V(e). However, it is possible that the execution

of e’ affects only a part of the state of Pi upon which the execution of e does not depend, i.e., the outcome of

executing e is independent of whether e’ is executed or not. Recognizing this intra-process concurrency,

Gunter [Gunt94a(3)] formalizes the notion of independence of states and messages on events which we

reproduce here for convenience:

Definition: A state (message), denoted S (m), created by event e is said to be independent

of a set of events E if E is a subset of the set of all events E’ such that e ⇒ E’ and the S

(m) resulting when all of the events in the simulation are properly executed is the same as

the S (m) when all of the events in E are not executed.

In particular, a message m is independent of an event e if the same message m is generated irrespective of

whether e is executed or not. It follows that a message m is dependent on an event e if m is not independent

of e. Using this enhanced definition of dependence, Gunter derives two results: (i) independence is necessary

for super-critical speed, and (ii) a new definition of the critical path and hence a new lower bound which is

tighter than that of [LiLa91(8)]. By capturing semantic dependences accurately, this new definition of

Super-criticality revisited

10

dependence accounts for super-critical speed that occurs when LP’s guess only the lack of dependence.

However, it fails to capture super-critical speed that may occur when LP’s guess the existence of

dependence.

To understand how super-critical speed may occur when LP’s guess the existence of dependence

correctly, consider the physical system shown in Figure 4. The system consists of n physical processes, PPi,

each of which begins in a starting state iSTART. At time 1.0, PP1 transitions to state 1S with probability p or to

state 1N with probability 1-p. At time 2.0, PP2 transitions to state 2N if PP1 has transitioned to state 1N

earlier or to state 2S if PP1 has transitioned to state 1S earlier. Note there is no default action for PP2: it

knows that PP1 has transitioned earlier. Similarly, at time 3.0, PP3 transitions to state 3N if PP2 has

transitioned to state 2N earlier or to state 3S if PP2 has transitioned to state 2S earlier. The remaining

processes also behave similarly. Pictorially, the dependences among the transitions are shown by the dashed

lines in Figure 4.

Assume this system is simulated by n logical processes, Pi, one for each PPi. After a state transition,

each Pi (except Pn) sends a single message mi to Pi+1 indicating the direction in which it has transitioned

(North or South). Recalling the definition of dependence above, clearly each mi is dependent on mi-1 and the

event that caused mi-1. Now consider an execution of this simulation using Time Warp with Lazy

Cancellation. Each Pi, () has an event which will cause it to transition out of iSTART. Since these Pi’s

have not yet received the transition messages (mi) from their predecessors, they have to guess the next state

to which they must transition. Let us assume that each Pi decides to transition to state iS and generates mi

informing its successor of the transition. At the same time, P1 executes its only event, decides

(probabilitistically) to transition to state 1S and sends m1 accordingly. Since every Pi has guessed its

incoming message correctly, no antimessages are generated (because of Lazy Cancellation) and the

simulation is complete when all mi have been received. The entire simulation run takes O(1) time whereas,

under the new definition of dependence, the critical path time is O(n). Thus, this simulation run has

Figure 4 - A super-critical simulation without independence

1.0 2.0

1-p

p

1START 2START

∞

1.0

∞

3.03START

1N

1S

2N

2S

3NPP1 PP2 PP3
∞

∞ ∞

3S

2 i n≤ ≤

Super-criticality revisited

11

completed in super-critical time. In this example, the super-critical speed comes from processes P2 through

Pn. The events they execute and the messages they generate are all dependent on other events and messages

(in other words, there are no indpendent messages or states). Thus, Gunter’s claim that super-critical speed

requires independence is refuted.

From our example, it is evident there are simulations where Time Warp with Lazy Cancellation

may complete in super-critical time, even with the new definition of the critical path in [Gunt94a(3)]. It

follows that the lower bound derived in [Gunt94a(3)] based on this critical path is not a lower bound for

Time Warp with Lazy Cancellation (in fact for any super-critical protocol). Our insight suggests that

irrespective of how accurately we capture the semantic dependence among events, protocols such as Time

Warp with Lazy Cancellation (and others listed in [JeRe91(6)]) still have the capability to complete in super-

critical time. Under the best circumstances, each LP can guess all of its dependences correctly (as is the case

in our example above), completing its execution in an amount of time equal to the sum of the execution

times of all of its events. We are thus led to the conclusion that the lower bound of [LiLa91(8)] (which was

stated as a lower bound only for Time Warp with Lazy Cancellation but applies to all protocols):

 where Ei is the set of events executed by Pi

remains the best known general lower bound for all PDES’s. Moreover, it suggests that critical path analysis

will not be able to improve upon this general lower bound. However, this lower bound is of limited

significance because it is nearly impossible to achieve in practice for any realistic simulation. Consequently,

it is important to note that Gunter’s lower bound, which is a tighter one, applies to particular simulation runs

using super-critical protocols (under the old definition of the critical path) in which LP’s do not guess the

existence of dependence*.

It is natural to ask if the example we have presented is realistic (i.e. has any practical counterparts).

We believe it is because one can imagine a simulation where LP’s can determine statistically that the

probability of transitioning along a particular arc (p in Figure 4) is high and consequently, guess that the next

transition will be along that arc. Finally, we note our example also serves to demonstrate that while super-

criticality is possible, it may not be observable in practice because it may occur only in brief phases during

the simulation but not for the entire simulation. Specifically, if only a subset of the Pi () guess their

computation correctly, the rollbacks induced could cause the simulation to take longer than the critical path

time even though that subset of the processes completed their execution in super-critical time.

* It seems difficult to incorporate this restriction into the protocol itself, because the nature of an LP’s guessing depends on
the application and cannot be specified in a protocol.

LB MAXPi
T e()

e Ei∈
∑()=

2 i n≤ ≤

Super-criticality revisited

12

5 Conclusions
A protocol is said to be super-critical if there exists at least one simulation which can complete in

less than the critical path time using that protocol. Since several implemented protocols have been shown to

be super-critical, a sufficient condition for super-criticality is desired which may be used to determine

whether protocols of interest are super-critical or not. We have argued that one such condition used in a

previous study to demonstrate the super-criticality of four protocols is not sufficient but necessary. By the

same argument, we have established a sufficient condition for super-criticality. Our observation that super-

critical speed is possible when LP’s guess correctly the dependence of some events on unreceived messages

disproves the claim in [Gunt94a(3)] that super-critical speed requires independence. We have studied the

implications of this contradiction on lower bounds on completion times of simulations.

APPENDIX: Super-critical protocols
We examine the four protocols described in [JeRe91(6)] as being super-critical and show that they

are indeed super-critical using the condition SC presented in Section 3. Note these protocols have already

been shown to satisfy the condition presented in [JeRe91(6)], which we call C. This is in accordance with

our earlier result that SC ⇒ C. We assume familiarity with general PDES terminology and the Time Warp

protocol [Jeff85(5)] in particular. The messages and events of interest in the examples are assumed to be on

the critical path as required by SC.

I. Time Warp with Lazy Cancellation
In this protocol, when an LP rolls back, it does not immediately send out antimessages for all

messages sent out with timestamps greater than the rollback time. Instead, it completes the rollback and

resumes execution of events. During this resumed execution, it sends out antimessages for previously sent

messages which are determined to be incorrect. The rationale behind this scheme is that if the previously

sent message turns out to be correct despite the rollback, then the antimessage is not required and some time

is saved. Intuitively, this is where this scheme “guesses”. If the guess is correct, then it is possible to beat the

critical path time.

The scenario satisfying SC is shown in the space-time diagrams of Figure 5 which is the same as

Figure 4 of [JeRe91(6)]. A vertical arrow (predecessor dependence) is labeled with the state of the LP

between the execution of the two events. For example, S1 is the state at the end of the execution of event A

and is the state on which event B is executed in Figure 5a. A slanted (or horizontal) arrow (antecedent

relation) is labeled with the message that caused it. For instance, the execution of event B caused message M

to be sent to P2 which caused the scheduling of event C. We see that P1 receives message L with a timestamp

Super-criticality revisited

13

less than that of event B after it executes B and sends message M to P2. This causes P1 to roll back to event A

and process the message L. Event B is then re-executed as event B’ which causes message M’ to be sent to

P2. If M = M’, M’ will not be sent and therefore, event C will not be re-executed. Assuming event B’

completes at its critical time and is committed, we see that event C will complete before its critical time

(since it has started execution before its earliest starting time). Thus event C satisfies SC.

II. Time Warp with Lazy Rollback
Lazy Rollback (or Lazy Re-evaluation) is the equivalent of lazy cancellation for states of LP’s (i.e.

lazy rollback works on states of LP’s while lazy cancellation works on messages sent by LP’s). Lazy

rollback works as follows. Upon receiving a straggler (a message out of order), an LP does not immediately

perform all of the actions of rolling back (state restoration, undoing events, etc.). Instead it executes the

straggler message in its proper context (i.e. in the state it would have been executed in if it had arrived in the

correct order) and examines the resulting state with the LP’s previously computed state at that logical time.

If these two are the same, rollback is inhibited and the LP continues execution of events. If they are not the

same, the LP proceeds to re-execute events until it finds a state which matches a corresponding state before

the arrival of the straggler. At this point it restarts its normal execution of events. Thus, the effect of this

scheme is that the LP only re-evaluates as many states as required instead of all states in ordinary Time

Warp. Of course, lazy rollback also relies heavily upon the capability of an LP to guess its state correctly.

Figure 5 shows a scenario under lazy rollback which satisfies SC. In Figure 5a, P1 has processed message M

and thereafter event B in state S1. In Figure 5b, the message M is annihilated by its antimessage -M and P1

receives another message M’. It executes the corresponding new event A’ resulting in state S2 for event B. If

Figure 5 - Lazy cancellation

A

B

C

A

B’

C’

D

S1

M

S1

S2

M’

P1 P2 P1 P2

(a) Before rollback (b) After rollback

L

Super-criticality revisited

14

S1 = S2, then B is not re-executed. Assuming event A’ is committed (not rolled back later) and completes on

or after its critical time, then event B has completed before its critical time, thus satisfying SC.

III. Time Warp with Phase Decomposition
In this scheme, LP’s are decomposed into phases. Each phase simulates the PP corresponding to the

LP for a segment of logical time. Different phases simulate mutually exclusive and exhaustive segments of

time. Each phase assumes an initial state for the LP. At the end of its time segment, each phase forwards its

final state to the phase simulating the next contiguous time segment. This is where the phases guess. If a

phase guesses its initial state correctly, it is capable of completing before its critical time. Using lazy

rollback, this scheme can be made more efficient by having a phase re-evaluate its computation lazily if it

receives an initial state which is different from the one it assumed. Figure 5 shows a scenario where Time

Warp with phase decomposition achieves super-critical speed. P1 has been decomposed into two phases, one

simulating from time 0 to time 100 and the other from time 100 to time 200. In Figure 5a, P1[0-100] has

completed simulating its time segment and has sent state S1 as its final state to P1[100-200]. At a later time

(Figure 5b), P1[0-100] receives the message M and therefore has to rollback and re-evaluate event A

resulting in a final state S2. If S1 = S2, then P1[100-200] will not have to re-evaluate its state and assuming

event A’ is committed and that it has completed on or after its critical time, event B will have completed

before its critical time and will therefore satisfy SC.

IV. Space-Time simulation
Time Warp with phase decomposition is a specific case of a more general method called Space-

Time simulation. The space-time method partitions a simulation’s space-time diagram into mutually

Figure 6 - Lazy rollback

A

B

A’

B

S1 S2

P1 P1

(a) Before straggler (b) After straggler

M’, -M
M

Super-criticality revisited

15

exclusive and exhaustive regions which are then simulated by processes. Thus, Time Warp with phase

decomposition is a space-time partitioning in which each partition has unit width in the space dimension.

Space-time simulation is capable of super-critical speed for the same reason that phase decomposition is;

viz. if a process guesses its initial state correctly. Since phase decomposition is an example of space-time

simulation, the scenario of Figure 5 serves to satisfy SC for space-time simulation as well.

ACKNOWLEDGMENTS
The concept of SCG, the condition which guarantees super-critical speed is due to a referee of an

earlier version of this paper. This work was supported in part by the National Science Foundation (grant

CCR-9108448, Aug. 91, number 48), MITRE Corporation (Academic Affiliates Program) and Mystech, Inc.

(Academic Affiliates Program).

Figure 7 - Phase decomposition

A

B

S1

(a) Before straggler (b) After straggler

C

A’

B

S2

C

M
D

P1 [100-200]

P1 [0-100] P1 [0-100]

P1 [100-200]

Super-criticality revisited

16

REFERENCES
1. Berry O., “Performance evaluation of the Time Warp distributed simulation mechanism”, Ph.D. thesis,

University of Southern California, 1986.

2. Berry, O. and Jefferson, D., “Critical path analysis of distributed simulation”, Proceedings of the 1985
SCS Conference on Distributed Simulation, January 1985, 57-60.

3. Gunter, M., “Understanding supercritical speedup”, Proceedings of the 1994 Workshop on Parallel and
Distributed Simulation, July 1994, 81-87.

4. Gunter, M., Private communication, November 1994.

5. Jefferson, D., “Virtual time”, ACM Transactions on Programming Languages and Systems. Vol. 7, No.
3, July 1985, 404-425.

6. Jefferson, D. and Reiher, P., “Supercritical speedup”, Proceedings of the 24th Annual Simulation
Symposium, April 1991, 159-168.

7. Lin, Y-B., “Parallelism analyzers for parallel discrete event simulation”, ACM Transactions on
Modeling and Computer Simulation, Vol. 2, No. 3, July 1992, 236-264.

8. Lin, Y-B. and Lazowska, E.D., “A study of Time Warp rollback mechanisms”, ACM Transactions on
Modeling and Computer Simulation, Vol. 1, No. 1, January 1991, 51-72.

