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Abstract— In this paper we propose an architecture consisting
of a particular type of node, namely a communication server
that collects and aggregates data, and establishes a link between
the users and the sensor nodes through satellite communication.
A key challenge with satisfying a lifetime requirement of the
communication server is the unpredictability of the sensor
data volume arriving at the communication server and the
transmission power of the satellite terminal. To provide lifetime
predictability we propose an approach that automatically adjusts
the quality of the data such that the specified lifetime if achieved.
We have shown through an extensive evaluation that the approach
manages to provide an actual lifetime within 2% of the specified
lifetime despite variations in workload and communication link
quality.

I. INTRODUCTION

The use of wireless sensor networks (WSNs) has increased
dramatically during the last years due to the development
of hardware technologies enabling large-scale deployment of
very small devices capable of wireless communication, sensing
and computing [1]. In this paper we consider WSNs deployed
in remote areas, which are geographically separated from areas
having fixed communication infrastructures or may be located
near or in an area where the communication infrastructure has
been eliminated. WSNs deployed in remote areas may be used
for continuous monitoring of the environment, e.g., detection
of earthquakes and tsunamis, monitoring of ecosystems, or
may be deployed in response to events, e.g., natural disasters.
In the latter it is of paramount importance that the WSN is
deployed in a timely manner to closely track the event. The lat-
ter and deployment in remote areas require that battery-driven
satellite terminals must be used to establish communication
between a WSN and its users.

We assume the following system architecture for communi-
cating with remote area WSNs, as shown in Figure 1. The
physical entities of interest are measured by nodes having
sensing and computing capabilities. A set of nodes within a
geographic proximity form a sensor patch. The communication
with each sensor patch goes through a base station. The sensor
nodes either send aggregated or raw data to the base stations.
In the latter case the raw data may be aggregated at the base
station. Data from the base stations (and the sensor patches)
are transmitted to a communication server (CS), which acts
as a bridge between the users of the network and the sensor
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Fig. 1. An architecture for remotely deployed WSNs.

nodes. The CS has the following functionality. It receives
queries sent by the users of the WSN and forwards the queries
to the base stations for further dispersal. In response to the
queries, the nodes send data to the CS where the data is stored
in a database (DB) for further processing. The database acts
as a data repository for data fusion algorithms, as well as
for caching purposes for faster data retrieval from users. The
CS also includes a mobile satellite personal communication
system (SPCS) terminal, consisting of a satellite antenna and
a modem. The CS, i.e., the computer and the satellite terminal,
runs on batteries. The satellite system is connected to the
Internet, which enables communication with a set of users
via a communication central.

In this paper we focus on WSNs that must satisfy a given
lifetime requirement. For example, consider a remote area that
needs monitoring due to a natural disaster. Assume that it
takes three days until a fixed communication infrastructure is
established. Until then we need to setup a temporary WSN that
is required to deliver sensed data for three days. Although, it
is desirable that all nodes satisfy the lifetime requirement, the
importance of individual nodes meeting the lifetime depends
on the actual type of node. For example, the CS failing to meet
the lifetime has a much more significant impact compared to
a sensor failing to meet the lifetime. As such there exists a
hierarchy of nodes with respect to criticality of meeting the



network lifetime. We have, therefore, in this paper chosen to
focus on the lifetime management of the CS, since this is the
most critical node. As argued in Section VII, there is a need
for developing new approaches for guaranteeing the lifetime
of the CS since previous work (e.g. [2]) addressed lifetime
management of smaller nodes, e.g., the sensor nodes, which
do not hold for the CS.

The main contribution of this paper is an approach for
guaranteeing the lifetime of the CS under uncertain workload
and satellite communication channel impairments. We start by
exploring the relationship between energy consumption in CS
and quality of data (QoD), defined in terms of the sampling
period of the sensors. We introduce a system specification
model enabling a user of the wireless sensor network to declare
the required network lifetime, and the desired as well as
the lowest QoD. Given the system specification an approach
for satisfying the lifetime requirement is introduced, and we
show through extensive performance evaluation that the actual
lifetime is within 2% of the required lifetime. The approach
satisfies the QoD requirement and successfully manages to
provide an actual lifetime that is very close to the required
lifetime, despite unpredictable workload and satellite channel
impairments.

The outline of the paper is as follows. In Section II we give
an overview of the current satellite communication technolo-
gies and in Section III we present the problem formulation. In
Section IV we outline our assumptions on the WSN and its
constituents, and this is followed by the approach, which is
given in Section V. An extensive evaluation of the approach
is presented in Section VI followed related work in Section
VII, and conclusions in Section VIII.

II. OVERVIEW OF SATELLITE COMMUNICATION SYSTEMS

The use of low-earth orbit (LEO) satellite systems has
increased due to their ability to provide global coverage
including the polar regions. The antennas are omnidirectional,
which means that they radiate and receive radio signals from
all directions, hence, there is no need to manually direct the
antennas. It has been reported that future mobile SPCS will
employ LEO satellites due to their appealing characteristics,
such as low propagation delay, lower power consumption (due
to low transmission power), and smaller antennas, see e.g. [3].
To provide more bandwidth and smaller antennas, the trend
points toward communication frequencies in the range of 3-
30 GHz. However, attenuation due to rain, fog, and cloud
influences significantly for systems above 3 GHz [4]. During
severe weather conditions, e.g., rain, sand storm, or when
terrestrial landscape blocks the radiowave path, the signal
quality (signal to noise ratio) decreases and, consequently,
the transmission error increases. Mobile satellite systems,
e.g., Globalstar [5], use uplink power control to maintain an
acceptable level of transmission error. The transmission power
is increased in response to decreasing signal quality.

Studies have shown that forested and suburban areas suffer
significantly from channels impairments due to the terrestrial
environment, e.g., buildings, bridges, and trees [6]. It was

shown that in 90% (or 99%) of the farmland area, the received
signal was greater or equal to 0.4 (or 0.06) times the line of
sight value, which corresponds to an attenuation of 4 dB (or 12
dB). For forested and suburban areas the situation was even
worse. In 90% (or 99%) of the forested and suburban area,
the received signal was greater or equal to 0.06 (or 0.008)
times the line of sight value, corresponding to an attenuation
of 12 dB (or 21 dB). This means that we have to increase
the transmission power by 16 times (12 dB) compared to
the line of sight power in order to be able to transmit from
90% of the forested and suburban areas and 99% from the
farmland areas. The attenuation due to rain is time-variant
and depends on the transmission frequency. The International
Telecommunications Union (ITU) has developed a procedure
for predicting the attenuation caused by rain [7]. For example,
the ITU procedure predicts that in 0.10% of the time the rain
attenuation in Washington D.C. (USA) exceeds 3 dB, 4 dB, 8
dB, and 15 dB for frequencies 12 GHz, 14 GHz, 20 GHz, and
30 GHz. For a more thorough discussion on satellite systems
we refer to [8].

III. PROBLEM FORMULATION

The energy consumption of the CS increases as the work-
load applied on the computer, hence, the CPU utilization
increases. The CPU utilization increases as the number of
queries and data streams increases, and more sophisticated
data fusion algorithms are used. Furthermore, the energy
consumption of the second component of the CS, i.e., the
satellite terminal, increases as the amount of transmitted data
increases and the radiowave attenuation increases as discussed
in Section II.

In general, QoD increases as the transmission rate and the
CPU utilization increases, e.g., the sampling periods decreases
and more complex data fusion algorithms are used. If QoD is
set too high, then the battery of the CS may be depleted too
fast and the lifetime requirements may not be met. On the
other hand, if QoD is too low, then the lifetime requirements
are satisfied, however, the QoD is unnecessarily low. Given
the lifetime requirement for a WSN, determining the right
level of QoD a priori to deployment is not possible for the
following reasons: (1) the rain attenuation varies over time and
is unpredictable as described in Section II, (2) the particular
area where the CS is deployed may suffer from radio fading
and shadowing due to terrestrial impediments, (3) unexpected
events that need additional sensing may occur, (4) the mission
and lifetime requirement may change, (5) one or several CSs
may fail in the case when there are several CSs deployed
for increased fault tolerance and lifetime. As such, the CS
needs to determine a suitable QoD when deployed and adjust
the QoD depending on the prevailing conditions, e.g., weather
and number of events that need to be monitored. The problems
that we address in this paper are the following: How can QoD
be defined in the context of WSNs? What is the relationship
between QoD and energy consumption and how does a cer-
tain QoD affect the lifetime of the CS? How can lifetime
requirements be met despite unpredictable radiowave channel
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attenuation, unexpected number of events, and changes of
mission and lifetime requirements? In summary, the results
obtained in this paper give an insight in how mobile satellite
communication can be used for accessing WSNs and retrieving
data from them such that lifetime requirements are met.

IV. SYSTEM MODEL

A. Sensor Patches

We make the following assumptions regarding the sensor
patches and the sensor nodes. Sensor nodes sample data peri-
odically and send raw or aggregated data to the communication
server. There is a set of data streams Stream1, . . . , Streamn

arriving at the CS. Within each stream, the sensor data arrives
periodically with a period pi. Further, we assume that it is
possible to change the arrival rate of the streams. This is
done by (i) altering the sampling period of the sensors, or
(ii) altering the aggregation window if temporal aggregation
[9] is used at the base stations or the sensor nodes.

B. CS - Communication Server

The CS has three constituents, namely, a computer, a
satellite terminal, and the battery powering the computer and
the satellite terminal. Below we model each of the constituents
with respect to their power consumption.

1) Battery: Devices powered by a battery require the DC
input voltage VIn of the device to be constant. Since, the
voltage of the battery decreases over time, a DC-DC converter
is used to stabilize and maintain the supply voltage at a con-
stant level, as shown in Figure 2(a). The device discharges the
battery with the current IIn(t). Hence, the power consumption
of a device connected to the battery is PIn = VIn(t)IIn(t).
Let VC(t) be the value of the state of charge, i.e., how much
charge the battery holds at time t. The internal resistance of
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Fig. 3. Measured data from [11] (Figure 34.3, algorithm LEDF3) and
corresponding quadratic fit. The power consumption of the LCD display
corresponding to 8W is subtracted from the original data.

the battery is Rint and the efficiency of the DC-DC converter
is η. The capacitance of the battery is C = 3600×Capacity,
where Capacity is usually provided in the battery’s datasheet.
We employ the battery model presented by Benini et al., where
the voltage of the battery VBatt is [10],

VBatt(t) = VC(t)− IBatt(t)Rint, (1a)

VC(t) = VC(0)
(

1− 1
C

∫ t

0

IBatt(x)dx

)
, (1b)

IBatt(t) =
VInIIn

ηVBatt(t)
. (1c)

Figure 2(b) shows how the voltage of the battery evolves as
PIn is constant. As we can see, VBatt is a nonlinear function
over time and decreases significantly at the end.

2) Computer: We assume that the computer is similar to
modern energy efficient laptops without any display (to save
additional energy). Within a stream Streami, the arrival of a
sensor datum triggers data processing and analysis with an
estimated execution time (eeti). The actual execution time
(aeti) of the data processing and analysis is unpredictable and
may deviate from the estimated execution time. The estimated
workload generated by the arrival of a sensor datum is eeti

pi
.

We assume that the computer employs digital voltage scal-
ing. We model the power consumption of the computer based
on the results obtained by Swaminathan et al., where they
measured the power consumption of a laptop with a AMD
Mobile Athlon 4 processor as a function of the workload
[11]. To model the power consumption, we fitted a quadratic
polynomial to the measured data, obtaining a relation between
the power consumption of the computer and the workload as
shown in Figure 3. We also fitted higher order polynomials,
however, the results were less satisfactory.

3) Satellite Terminal: We assume that each data arrival
generates a number of bits that need to be transmitted via the
satellite link. For simplicity, we assume that the number of bits
that need to be transmitted is proportional to the execution time
of the data processing and analysis task. This assumption does
not affect the approach for guaranteeing lifetime and, hence,
we expect our approach to also function satisfactorily when
the transmission model is different.

To model the effects of channel impairments we have
studied the existing Globalstar GSP-1620 terminal [5] and



used available power consumption data for devising a model
describing the relationship between power consumption and
channel impairments. This gives that during transmission
the total power consumption of the terminal varies between
approximately 4.6 W and 7.3 W depending on the weather
conditions and terrestrial shadowing and blocking. The energy
consumption is 0.5 W when the terminal is idle, i.e., not
transmitting. Finally, we assume that the maximum bandwidth
is 10 kbps (the Globalstar system has a maximum bandwidth
of 9.6 kbps). For details regarding the modeling of the energy
consumption of the satellite terminal we refer to [8].

V. APPROACH

In this section we outline the proposed approach for satis-
fying a given system specification. We start by defining the
system specification model followed by a description on the
architecture and its constituents.

A. System Specification

In this section we define QoD and provide a system spec-
ification model consisting of QoD and lifetime requirements.
We define QoD in terms of the sampling period of the sensors.
Recall from Section IV-A that Streami has a nominal period
pi. The actual period of the streams is altered through period
scaling, where the actual period of Streami is given by
p′i = spi. We define QoD in terms of the period scaling factor
s and we say that QoD increases as s decreases.

The system specification < L,Q > consists of a lifetime
specification L and a QoD specification Q. The lifetime
requirement L ∈ Z+ gives the required lifetime of the
WSN in seconds. The QoD specification Q is given by,
Q =< p1, . . . , pn, smax >, where p1, . . . , pn denote the
nominal periods of the data streams Stream1, . . . , Streamn

and smax ≥ 1 denotes the maximum tolerable period scaling
factor, i.e., s ≤ smax. According to above the maximum
sampling period of the sensors is smaxp1, . . . , smaxpn. Note
that there is no lower bound on the periods as in general the
user(s) requires a sampling period as low as possible (such
that lifetime requirements are met).

B. Approach for Satisfying the System Specification

Key issues in satisfying the system specification include
handling uncertanties in the arrival load, inaccuracies in the
power consumption estimates of the computer and the satellite
terminal, and unexpected changes in channel impairments
(satellite communication link). Using feedback control has
shown to be very effective for a large class of computing
systems that exhibit unpredictable workload and model inaccu-
racies [12]. To provide system specification guarantees without
a priori knowledge of the workload or accurate system model
we apply feedback control, see Figure 4.

The CS stops operating when VBatt reaches a certain cutoff
threshold. To meet the system specification, we force VBatt

to follow a target trajectory VBatt,r. The target trajectory is
found by solving the differential equation (1) for an average
power PIn = VInIIn, which results in VBatt reaching the
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Fig. 4. The feedback architecture for guaranteeing the system specification.

cutoff threshold at time L. We refer to VBatt as the controlled
variable and we force VBatt to follow the reference voltage
VBatt,r by changing the manipulated variable s, which is
computed by the controller.

Let T be the sampling period and x(k) be the value
of a variable at time kT . The battery voltage VBatt(k) is
periodically measured at each sampling instant 0T, 1T, 2T, . . .
and filtered using a moving average (MA) filter to smoothen
out large deviations from one sampling period to another.
More specifically, the filtered signal V̂Batt(k) is given by,
V̂Batt(k) = αV̂Batt(k − 1) + (1 − α)VBatt(k), where 0 <
α < 1 is the forgetting factor. The filtered voltage V̂Batt(k)
is fed back and the difference between the reference and
the filtered voltage is formed, which acts as an input to the
controller. Using this difference, the controller computes a
period scaling factor s(k) such that VBatt(k) converges to
VBatt,r(k) . The period scaling factor needs to be transmitted
to the base stations for further dispersal to the nodes collecting
the data. However, since transmitting data over a wireless
link is very energy consuming in WSNs, we transmit control
packets (containing the period scaling factor) only when the
difference between the current scaling factor and the previ-
ously transmitted scaling factor is greater than a threshold. We
call this technique delta filtering, which is further discussed in
Section V-E.

C. Controller

To design controllers there is a need to model the behavior
of the so-called controlled system. The controlled system in
our case (see Figure 4) consists of the subsystem with s(k)
as the input and VBatt(k) as the output, i.e., the delta filter,
computer, satellite terminal, and the battery. Once we have an
adequate model we can then continue to design the controller.

1) Modeling: To design controllers it is necessary to use
models that describe the relationship among the controlled
variable VBatt(k) and the manipulated variable s(k) in terms
of differential or difference equations. Since computer systems
are inherently discrete, below we only address models based
on difference equations. The model that we are seeking has
the following form,

a1VBatt(k) + · · ·+ am+1VBatt(k −m) =
b1s(k) + · · ·+ bn+1s(k − n). (2)

Mehdi Amirijoo
Line

Mehdi Amirijoo
Line



This equation basically says that the current voltage is a
linear function of the previous battery voltages, and the current
and previous period scaling factors. Modeling deals with the
problem of choosing the proper model order, i.e., m and n,
and the parameters a1, . . . , am+1 and b1, . . . , bn+1, such that
the difference between the output predicted by the model and
the measured output is minimized. Hence, we would like the
model to be as accurate as possible.

The information available to the designer for the purpose of
modeling is typically of two kinds. First, there is knowledge
about the system being controlled based on equations or laws
of science describing the dynamics of the system. Using this
approach, a system designer describes the system directly
with mathematical equations based on the knowledge of the
system dynamics. However, in the case the mathematical
function of a system is unknown, or too complicated to
derive, the use of models tuned using system profiling and
statistical methods have shown to provide good results [13].
In these circumstances the designer turns to data taken from
experiments directly conducted to excite the controlled system.
Statistical methods are then used to tune the parameters of the
model, i.e., a1, . . . , am+1 and b1, . . . , bn+1. Note that the order
of the model still has to be determined by the model designer.

Now, let us turn to the controlled system presented in
Figure 4. The relationship between s(k) and VBatt(k) is very
intricate, since a change in s(k) translates (nonlinearly) into a
change in arrival load, which affects (nonlinearly) the power
consumption of the computer and the satellite terminal and,
consequently, VBatt(k). Also, there may be delays between a
change in s(k) and VBatt(k) since s(k) needs to be transmitted
to the sensor nodes. Rather than going into the details of each
step we model the relationship between s(k) and VBatt(k)
by using profiling data and statistical methods, as mentioned
above.

We expect s(k) to vary within an envelope of 0.5 and 2.0.
To fully excite the system, we apply a binary signal that shifts
randomly between 0.5 and 2.0 and we measure VBatt(k). Our
studies have shown that the relationship between s(k) and
VBatt(k) changes as VBatt(k) decreases, i.e., the variables
ai and bj in (2) are varying according to VBatt(k). Since
VBatt(k) decreases over time, this implies that we have a time-
variant system. We have therefore tuned two first order models,
G1 and G2 that describe the dynamics of the controlled system
for voltages 4.5V to 7.2V and 3.0V to 4.5V, respectively.

Now that we have derived a model, the crucial question is
whether it is good enough for the intended purpose. Testing if
a given model is good enough is known as model validation.
This is carried out by checking whether the derived model
agrees sufficiently well with observed data from the modeled
system. Specifically, the same input is fed into the controlled
system and the model of the controlled system. The measured
output of the controlled system and the output predicted by
the model are then compared and their difference formed. The
percentage of the measured output variation explained by the
model is given by the metric fit (see, e.g., [13]). The fit, which
is between 0% and 100%, increases as the difference between

the measurements and predictions decreases.
We have obtained a 94.66% fit for G1, which implies that

the predictions are very close to the actual measured data.
Although the fit for G2 is less (the fit is 65.49%), we have
observed that G2 manages to explain the variations in VBatt(k)
significantly better than G1 for voltages 3.0V to 4.5V. As
such, G2(z) adequately describes VBatt(k) for voltages 3.0V
to 4.5V. Now that we have arrived at a model, the next step
becomes to tune a suitable controller.

2) Controller Design: Given a model, one can design a
controller based on a variety of existing mathematical tech-
niques, such as root locus, frequency response, and state space
design [12]. Using mathematical techniques enable us to derive
analytic guarantees on how well the controller manages to keep
the controlled variable VBatt(k) near its reference VBatt,r(k).
Ideally, we would like VBatt(k) to equal VBatt,r(k), however,
this is not possible due to variations in energy consumption.

We have found that a proportional integral (PI) controller
[12] provides adequate performance. Let the control error, e(t),
be the difference between the reference and the controlled
variable, i.e., e(t) = VBatt,r(k) − VBatt(k). PI controllers
consist of two different parts, namely, the proportional and
the integral controller. The proportional (P) controller is given
by KP e(t) where KP is the proportional gain. We can view
the P controller as an amplifier that adjusts the manipulated
variable s(t) based on the control error. A P controller may
not manage to force e(k) to converge to zero, i.e., we may
have a so-called steady-state error. For this reason we add an
integral part forming the PI controller,

s(k) = KP e(k) + KI

k∑

j=0

e(j) (3a)

= s(k − 1) + KP (e(k)− e(k − 1)) + KIe(k) .(3b)

where the integral part increases in magnitude forcing
VBatt(k) to converge to VBatt,r(k) if the error e(k) persists
over time. Note, equations (3a) and (3b) are similar, however,
(3b) is computationally lighter than (3a).

Using mathematical analysis techniques we have found that
the PI controller (3) is sufficient in forcing e(k) to converge
to zero, i.e., we have that limk→∞ e(k) = 0. This means
that VBatt(k) is guaranteed to converge to VBatt,r(k), even
if there are variations in energy consumption of the computer
and satellite terminal. We have derived KP and KI based on
the model tuned in Section V-C.1. Due to space limitation we
have not provided a full description of the design and tuning
method and the interested reader is referred to [8].

D. Gain Scheduler

In Section V-C.1 we observed that the controlled system
is time-variant, meaning that the relationship between s(k)
and VBatt(k) changes over time. To handle the time-varying
character of the controlled system we have used gain schedul-
ing [12]. Initially, when 7.2V ≤ VBatt(k) < 4.5V we use
controller C1 that is tuned using model G1. As soon as
VBatt(k) reaches 4.5V we switch to controller C2, which
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is tuned using model G2. We have observed that using gain
scheduling results in less variance and oscillations in VBatt(k)
for lower battery voltages. This in turn results in an actual
lifetime closer to the desired lifetime.

E. Delta Filter

We employ a simple and very effective method for lowering
the number of control packets (containing the period scaling
factor) that need to be transmitted to the sensor nodes. We say
that sf (k) is the delta filtered signal of s(k). If the difference
between the output of the controller s(k) and sf (k−1) is less
than δf (i.e., |s(k) − sf (k − 1)| < δf ), then sf (k) is set to
sf (k − 1). Otherwise we set sf (k) to s(k) and transmit the
new value s(k) to the base stations, which in turn disperse
the values to the sensor nodes. During steady-state when s(k)
does not change considerably, then we may discard more of
the packets containing the period scaling factor. However,
when the system is in transient-state, e.g., the workload of
the computer and the transmission power vary, then we may
be able to discard only a few number of packets since s(k)
changes significantly. Hence, the number of packets discarded
depends on δf and the variance of s(k).

VI. PERFORMANCE EVALUATION

The goal of the experiments are as follows. First, we
want to establish the relationship between QoD and lifetime.
Second, we want to determine how accurately a given system
specification in terms of a lifetime specification L and a quality
of data specification Q is satisfied when using the approach
outlined in Section V. Finally, we want to evaluate the benefits
in using delta filtering, namely, we want to show how δf

affects the difference between the actual and the specified
lifetime and the amount of packets that can be discarded.

A. Experiment Setup

In our performance evaluation we have used a simulator,
where the underlying characteristics of the battery, computer,
and satellite terminal are based on the assumption outlined
earlier in Section IV. Within each stream Streami, the nomi-
nal period pi is uniformly distributed in the range (1s,50s),
i.e. U : (1s, 50s). The actual execution time of the data
processing and analysis is unpredictable and is given by the
normal distribution N : (eeti,

√
eeti), where eeti is uniformly

distributed according to U(5ms, 50ms). Note that only eeti
is known to the system, i.e., the actual execution times are
unknown. For all experiments the cutoff voltage of the battery
is set to 2.0V.

For all the performance data, we present the average of 10
simulation runs. We have derived 95% confidence intervals
based on the samples obtained. We denote the average of a
time-domain variable x(k) with x̄. In addition to monitoring
the workload of the computer and sf (k) we also measure
the following performance metrics. Let the lifetime difference
L∆ = |LA − L| denote the absolute difference between the
actual lifetime LA and the specification L. The performance
of the approach with respect to satisfying L increases as
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L∆ decreases. Ideally, we would like L∆ to be zero. To
measure the number of control packets that are discarded using
delta filtering we introduce the period scaling discard ratio,
DR = NDiscard

NRescale
, where NRescale = bLA

T c + 1 is the total
number of times the manipulated variable s(k) is computed
and NDiscard is the number of times a computed value of the
manipulated variable is discarded.

To the best of our knowledge this is the first paper describing
an approach for guaranteeing a given lifetime where there is
little or no information about the energy cost related to trans-
mission and data processing. To fully evaluate the approach
we devise a baseline as follows. As mentioned in Section VII,
a substantial number of papers assume that the voltage of the
battery decreases linearly, e.g., [2]. Therefore, in the baseline
we assume that the baseline reference voltage VBattBas,r(k)
decreases linearly, reaching the cutoff voltage at the lifetime
specification, i.e., VBasBatt,r(t) = −VBasBatt,r(0)−2.0

L t +
VBasBatt,r(0), where VBasBatt,r(0) denotes the value of the
baseline reference at time 0s.

B. Experiment 1: Effects of QoD on Lifetime

The goal of this experiment is to show the effects of QoD
on the lifetime of the CS. The setup of the experiment is as
follows. We assume that no delta filtering is used, i.e. δf = 0
and s(k) = sf (k). We vary sf (k) according to 0.60, 0.70,
0.80, 0.90, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00, 4.00, and
5.00. The actual lifetime LA and the workload applied on the
computer are measured.

Figure 5(a) shows the actual lifetime LA as a function of the
period scaling factor sf .1 We notice that the actual lifetime LA

increases fast for small sf . However, the slope of LA decreases
for larger sf and at approximately sf = 3 there is no further
significant increase in LA. We say that LA becomes saturated
at sf = 3, since a change in sf does not result in a significant
change in LA. Therefore, for the remaining of this paper we
set smax = 3, since there is no further gain in having sf > 3
or equivalently a lower QoD.

We need to understand the reasons for the saturation of LA

as shown in Figure 5. When nominal periods are chosen, i.e.,
sf = 1, then the workload arriving to the CS is approximately
50%. Now, there are two reasons why the slope of LA

1Differential equation (1b) requires that a small simulation step is chosen.
To keep the overall simulation time within reasonable limits we have chosen
a small battery, which results in an actual CS lifetime in the order of hours.
We expect, however, that our results also hold when larger batteries are used.
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Fig. 6. Performance of the approach in the time-domain.

decreases with increasing sf . First, the workload is inversely
related to sf as shown in Figure 5(b) and, therefore, the
relationship between LA and sf is nonlinear. Second, when
sf is between 3 and 5, then the actual workload arriving
at the CS is correspondingly between 16.7% and 10%. As
shown in Figure 3 the power consumption of the computer
does not change considerably when the load is varied between
10% and 20%. Since the power consumption of the computer
accounts for a larger portion of the total power consumption,
the difference in lifetime is not significant when altering the
load between 10% and 20%. Therefore, the lifetime is not
affected noticeably when varying sf between 3 and 5.

In this experiment we showed that the lifetime is signif-
icantly affected by sf when sf is small. Experimental data
also showed that there is a limit for which a further reduction
of QoD does not result in significant lifetime savings. These
findings may serve as a guideline for choosing appropriate
lower boundaries for QoD.

C. Experiment 2: Satisfying System Specification under Vary-
ing Conditions

The goal of this experiment is to show whether a system
specification in terms of a lifetime and QoD requirements
can be satisfied under varying computer load and satellite
channel impairment. The setup is as follows. We evaluate
the performance of the approach with respect to L∆ for the
following lifetime requirements (which are chosen arbitrarily):
L = 14440s, 16040s, 17900s, 20120s, 22760s, and 26020s.
The QoD specification is given by smax = 3. We assume that
no delta filtering is used, i.e., δf = 0 and s(k) = sf (k).
To change the workload characteristics we carry out the
following. We add an additional workload of 20% at times
3000s and 7000s and we remove 20% workload at times 8000s
and 12000s. In addition we assume that channel impairments
are initially zero and at time 5000s we simulate heavy channel
impairments (due to e.g., rain) resulting in increased transmis-
sion power. At time 10000s we set the channel impairment to
zero. We measure sf (k), s̄, the workload of the computer, and
L∆.

Figure 6 shows the results of the experiment in the time-
domain. From Figure 6(b) we see that the workload increases
by 20% at time 3000s. This results in a greater energy
consumption, causing VBatt(k) to drop below VBatt,r(k). To
keep VBatt(k) at VBatt,r(k), the workload of the computer is
reduced by increasing the period scaling factor sf (k) as shown

1.6 1.8 2 2.2 2.4 2.6

x 10
4

0

200

L (s)

L ∆ (
s)

1.6 1.8 2 2.2 2.4 2.6

x 10
4

0

1

L (s)

L ∆ / 
L 

(%
)

1.6 1.8 2 2.2 2.4 2.6

x 10
4

0
1
2

L (s)

s

Fig. 7. Average-based performance

in Figure 6(a) (note that s(k) = sf (k) in this experiment). At
time 5000s the transmission power of the satellite terminal
increases resulting in an increase in the overall power. Again,
the controller reacts by increasing sf (k). At time 7000s, the
workload of the computer is further increased, which results
in an increase in sf (k). At times 8000s and 12000s the
workload decreases and at time 10000s the transmission power
of the satellite terminal decreases, resulting in a lower energy
consumption. Consequently, the controller decreases the period
of the sensor streams, i.e., sf (k) is reduced, to fully utilize
the remaining energy in the battery.

Figure 7 shows the lifetime difference L∆ and the average
s(k), i.e., s̄, versus the lifetime requirements. We see from the
bottom figure that s̄ is monotonically increased in response
to increased lifetime requirements. The period scaling factor
s̄ varies between 0.8025 ± 0.002 and 2.4341 ± 0.0598. The
top figure shows that the lifetime difference L∆ varies from
183.1 ± 19.8s to 362.0 ± 11.2s. This means that we can say
with 95% confidence that L∆ lies between 163.3s and 373.2s.
We plot the ratio L∆

L as a function of L and this gives that
L∆
L falls within 0.9% and 2.0%.

We have not provided data for the baseline due to space
limitation. Our evaluation shows, however, that the baseline
fails to provide lifetime guarantees even during stationary
conditions when the load of the computer and the transmission
power is constant. We showed that during stationary condition
L∆
L spans from 5.3% to 16.8%, which is unacceptable in

terms of lifetime predictability. In contrast, experimental data
presented above show that the approach outlined in Section V
manages to guarantee the lifetime within ±2% of the lifetime
specification L even though the workload and transmission
channel characteristics vary over time.

D. Experiment 3: Effects of Delta Filtering

In this experiment we determine whether a significant gain
in reducing the number of packets can be achieved, while at the
same time maintaining acceptable differences in actual lifetime
and required lifetime. The setup is as follows. We evaluate the
performance of the approach with respect to L∆ and DR for
the following lifetime requirements: L = 14440s and 22760s.
The QoD specification is given by smax = 3. We assume
that δf varies according to 0.000, 0.002, 0.005, 0.010, 0.015,
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Fig. 8. The effects of delta filtering on the lifetime difference and packet
discard ratio during transient-state.

0.020, 0.025, 0.030, 0.040, and 0.050. We assume the same
experimental setup as in Experiment 2 (Section VI-C), namely
we vary the workload and the channel impairment during run-
time.

As can be seen from Figure 8(a), we are able to obtain a
very high DR meaning that we only send a small fraction of
the control packets. Setting δf to 0.01 only, results in more
than 50% of the control packets to be discarded, which is a
substantial improvement in reducing the number of transmitted
packets. Figure 8(b) shows the lifetime difference for varying
δf . As can be seen, the average lifetime difference does not
change considerably with varying δf meaning that we are able
to skip transmitting the period scaling factor and still obtain
accurate lifetime guarantees. This means that the lifetime of
the network is prolonged while at the same time lifetime
guarantees are made for the CS.

VII. RELATED WORK

Numerous reports have mentioned the use of satellite net-
works for communicating with remote area WSNs, e.g., [1],
[14]. However, details regarding the energy supply to the
satellite terminals have been omitted. In TinyDB [2], it is
possible for the users to explicitly declare the lifetime of
the network. The system adjusts the sampling rates of the
sensors such that a given lifetime requirement is satisfied. It
is assumed that the exact cost of transmitting and processing
data is known. Although, these assumptions have shown to be
effective for small nodes, the same is not true for larger devices
such as the base stations or the CS. For example, the energy
consumption for processing data depends on the workload
(actual CPU frequency used), cache, and branch prediction.
Further, the quality of the satellite communication link varies
heavily over time, resulting in the transmission cost to change
in an unpredictable manner. In TinyDB, it is assumed that the
voltage (which is a measure of remaining energy capacity)
decreases linearly, which does not hold for most battery types
where a DC-DC converter is used, as discussed in Section
IV-B.1. In contrast to the TinyDB approach, in this work we
do not assume accurate knowledge of the cost of transmitting
over a wireless link and processing data, and we employ a
more accurate battery model.

VIII. CONCLUSIONS

In this paper we suggest that a particular type of node,
namely, the CS to bridge the gap between a WSN and the

users through satellite communication. We have focused on
the problem of achieving lifetime guarantees for the CS, since
this node is the most critical point in the network and previous
work on lifetime management does not apply to the CS. Key
challenges include uncertainty in the energy consumption of
the satellite terminal and the computer. We have proposed an
approach based on feedback control where the QoD, defined in
terms of the sampling period of the sensors, is continuously ad-
justed to meet the specified lifetime. The approach is adaptive
in that it reacts to unexpected variations in energy consumption
and sets the QoD with minimal knowledge of the workload
and transmission impairments. We show through extensive
performance evaluation that the proposed approach is able to
provide an actual lifetime that is within 2% of the specified
lifetime. This result implies that the actual lifetime is very
close to the specified lifetime even though the workload of the
CS and the transmission impairments vary in an unpredictable
manner during run-time.

In our future work we plan to investigate whether the
approach presented in this paper can be applied to smaller
nodes, i.e., the sensor nodes and the base stations. We also
intend to incorporate techniques for periodically putting the
CS into sleep to save energy.
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