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Abstract

The demand for real-time data services has been increasing recently. Many e-commerce applications and
web-based information services are becoming very sophisticated in their data needs that span the spectrum
from low level status data, typically acquired from sensors, to high level aggregated data. A real-time database,
a core component of many information services for such applications, can be a main service bottleneck.
Current databases are not time-cognizant, are poor in supporting temporal consistency of real-time data and
real-time access with guarantees, and therefore they do not perform well in these applications. Because of this,
there has been significant increase in research in real-time data services in both academia and industry, and
several commercial products are beginning to emerge in this area. To address this problem, we propose a QoS
management scheme for real-time data services that provides guarantees on transaction timeliness and data
freshness, which are considered two fundamental performance metrics for real-time data services. Using our
approach, admitted user transactions can be processed in a timely manner and data freshness can be guaranteed
even in the presence of unpredictable workloads and data access patterns. We present a framework for real-
time data services in unpredictable environments, and an architecture for differentiated services based on
feedback control and QoS adaptation. We also discuss how to extend our approach in distributed environments.

1 Introduction

The demand for real-time information services has been increasing recently. Many e-commerce applications
and web-based information services are becoming very sophisticated in their data needs that span the spectrum
from low level physical data, typically acquired from sensors, to high level aggregate data. Other examples
include data fusion, decision support, and data-intensive smart spaces. A real-time database, a core component
of many information services for such real-time applications, can be a main service bottleneck. Current databases
are not time-cognizant, are poor in supporting temporal consistency of real-time data and real-time access with
guarantees, and therefore they do not perform well in these applications. For example, Lockheed found that
they could not use a commercial database system for military real-time applications and implemented a real-
time database system called Eaglespeed. TimesTen, Probita, Polyhedra in UK, NEC in Japan, and ClusterRa
in Norway are other companies that have also implemented real-time databases for various application areas,
but similar reasons. While the need for real-time data services has been demonstrated, it is clear that these
and other real-time database systems are initial attempts and have not yet solved all the problems. One main
difficulty in meeting performance requirements by current real-time data services lies in their data-dependent
resource requirements which cannot be predicted precisely a priori. Another major issue is that they may have
highly uncertain workloads; it is hard to estimate how many users will request some resource in web-based
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information services or how many people will walk into a smart space. As the applications that require real-
time data services are being distributed, complex interactions among distributed sites add another set of issues.
Consequently, developing real-time data services should involve techniques for managing unpredictability of the
environment, handling imprecise or incomplete knowledge, reacting to overloads and unexpected failures (i.e.,
those not expressed by design-time failure assumptions), to achieve the performance requirements and temporal
behavior necessary for accomplishing the specified tasks.

In this paper, we present a novel QoS management scheme for real-time data services to meet the requirements
of transaction timeliness and data freshness, which are considered two fundamental performance metrics for
real-time applications. The ultimate vision of this work is to provide a guarantee that admitted transactions
are processed in a timely manner and required data freshness is satisfied even in the presence of unpredictable
workloads and data access patterns. Unfortunately, timeliness and data freshness requirements can conflict with
each other. The deadline miss ratio of user transactions can be decreased by giving a higher priority to user
requests. In contrast, better freshness can be achieved by favoring sensor updates [4]. Effective balancing between
the user transactions and sensor update workload is the key to provide a satisfactory service, which can meet
both the specified deadline miss ratio and data freshness constraints. For this purpose, we propose a dynamic
balancing scheme to balance the user transaction and sensor update workloads. We use a cost-benefit model for
sensor updates and derive an adaptive update policy from the model.

Issues of performance control in the presence of unpredictability, incomplete knowledge, load disturbances and
noise have been addressed in a different discipline; namely, automatic control. We propose to apply a feedback
control theory [14, 34] to provide robustness against unpredictable workloads. In a feedback control system,
target performance can be achieved by dynamically adjusting the system behavior based on the error measured
in the feedback loop. A preliminary performance study indicates that our QoS-sensitive approach can achieve a
significant performance improvement, in terms of transaction timeliness and data freshness, compared to several
baseline and ad hoc approaches.

The rest of this paper is organized as follows. In Section 2, the semantics for real-time data services and
their performance metrics are provided. Section 3 discusses a scientific methodology for modeling real-time
data services in unpredictable environments. Section 4 presents a QoS management scheme for derived data,
and Section 5 presents an architecture for differentiated services based on feedback control and QoS adaptation
techniques. Section 6 presents some ideas on managing timeliness-freshness tradeoffs using replicated data
objects in distributed environments. Related work is presented in Section 7, and finally, Section 8 concludes the
paper.

2 Real-Time Data, Transactions, and QoS Metrics

In real-time databases, workloads and data access patterns can be time-varying. For example, in decision support
systems users may read varying sets of data and perform different arithmetic/logical operations based on the
current situation. In this paper, we assume that some deadline misses or freshness violations are inevitable due to
unpredictable workloads and data access patterns. It is also assumed that a deadline miss or freshness violation
does not incur a catastrophic result. A few deadline misses or freshness violations are considered tolerable as
long as they do not exceed certain thresholds. For this reason, we consider the miss ratio and data freshness as
key metrics in database QoS. In this section we give an overview of real-time data and transactions, and discuss
performance metrics.

2.1 Real-Time Data and Transactions

Our target applications are firm real-time data services, in which tardy transactions � transactions that have
missed their deadlines � add no value to the system, therefore, are aborted. In this paper, we consider the main
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memory database model. Main memory databases have been increasingly applied to real-time data management
such as online auction/stock trading, e-commerce and voice/data networking [4, 7, 38]. In our main memory
database model, the CPU is the system resource of main consideration.

Data can be classified into two classes: non-temporal and temporal. A non-temporal data object does not
become outdated due to the passage of time, e.g., PIN numbers. In contrast, a temporal data object may change
continuously to reflect the real world state, e.g., current temperature or stock prices. Each temporal data object
has a timestamp indicating the latest observation of the real-world state.

Temporal consistency was defined using validity intervals in a real-time database to address the consistency
issue between the real world state and the reflected value in the database. A temporal data object X is considered
temporally inconsistent or stale if

�
current time � timestamp

�
X ��� avi

�
X ��� , where avi

�
X � is the absolute validity

interval of X . Therefore, absolute validity interval is the length of the time a temporal data object remains fresh
or temporally consistent [36].

Temporal data can be further classified into base data and derived data. Base data objects import the view
of the outside environment. A derived data object can be derived from possibly multiple base/derived data. For
example, a composite index can be derived from various stock prices. A base data item is directly associated with
an absolute validity interval. A derived data object is associated with absolute and relative validity intervals [36].

Temporal data can be updated periodically or aperiodically: a periodic update occurs at fixed intervals, while
an aperiodic update is not predictable and occurs only if the data value is changed. Periodic updates will be
considered first in this paper, since periodic updates are common in real-time applications.

Currently, our real-time database model includes two types of transactions:

� Sensor Transactions: In a real-time database, base data objects should be updated periodically to reflect the
current status of the real-world environment, e.g., sensor data updates. Sensor transactions are write-only
transactions specially designed for this purpose.

� User Transactions: User transactions arrive aperiodically. User transactions do not write any temporal
data object, but they can read/write non-temporal data. A user transaction can perform arithmetic/logical
operations based on a set of temporal/non-temporal data. User transaction execution time and data access
pattern can be time-varying. For example, in a decision support system a transaction can read different sets
of data and perform different operations according to the situation.

We assume that each user transaction has a deadline. The deadline of a sensor transaction is set to the up-
date period. A tardy transaction is aborted. For scheduling transactions, we apply earliest deadline first (EDF)
algorithm [24] combined with our adaptive update scheduling policy.

Admission control can be applied to user transactions. A newly arriving user transaction is admitted to the
system if the requested CPU utilization is currently available. The current utilization can be examined by aggre-
gating the utilization estimates of the previously admitted transactions.

2.2 QoS Performance Metrics

Before we discuss QoS management and performance metrics for real-time data services, it is important to note
that we do not aim to provide hard guarantees. Instead, we focus on soft/firm real-time applications, in which
infrequent deadline misses or temporal consistency violations can be tolerated, if neither of them exceeds the
specific limits specified in the QoS requirements. This type of requirement is typical of many complex real-time
applications such as web-based information services and sensor networks in smart spaces.

Two major performance metrics are considered for QoS specification:

� User Transaction Deadline Miss Ratio: In a QoS specification, a database administrator can specify the
target deadline miss ratio that can be tolerated for a specific real-time application.
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� Data Freshness: We categorize data freshness into database freshness and perceived freshness. Database
freshness is the ratio of fresh data to the entire temporal data in a database. Perceived freshness is the ratio
of of fresh data accessed to the total data accessed by timely transactions. To measure the current perceived
freshness, we exclusively consider timely transactions. This is because tardy transactions, which missed
their deadlines, add no value to the system. Note that only the perceived freshness can be specified in the
QoS requirement. Our QoS-sensitive approach provides the perceived freshness guarantee while managing
the database freshness internally (hidden to the users).

In addition, we also consider two additional performance metrics:

� Differentiated Timeliness: In QoS requirements, relative response time between service classes can be
specified. For example, relative response time can be specified as 1:2 between premium and basic classes.
By allowing and enforcing the explicit specification, we can guarantee the distance between service levels
of different classes. Therefore, the performance can be differentiated in proportion to the importance of
service classes. It will be interesting to find out if relative service differentiation can be actually achieved,
while satisfying both data freshness and transaction timeliness, given unpredictable workload.

� Freshness of Derived Data: To maintain the freshness, a derived data object has to be recomputed as the
related base data changes. A recomputation of derived data can be relatively expensive compared to a base
data update. It can include arithmetic and/or logical computations from multiple base data, which might
be updated frequently. Therefore, it could be computationally very expensive if a derived data object is
recomputed on each base data change.

We discuss these metrics further in Sections 4 and 5 on QoS adaptation techniques for derived data and on an
architecture for differentiated services.

Long-term performance metrics such as ones listed above are not sufficient for performance specification of
dynamic systems, in which the system performance can be widely time-varying. For this reason, we use transient
performance metrics such as overshoot and settling time, adopted from control theory, as performance metrics
for real-time data services [14, 28, 34]:

  t 
s


Miss Ratio

Threshold


Miss Ratio

(%)


M 
p


Time (sec)


Figure 1: Definition of Overshoot and Settling Time in Real-Time Data Services

� Overshoot (Mp) is the worst-case system performance in the transient system state. In this paper, it is
considered the highest miss ratio over the miss ratio threshold in the transient state as shown in Figure
1. Overshoot is an important metric because a high transient miss ratio can cause serious implications in
several applications such as robots and e-commerce.
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� Settling time (ts) is the time for the transient overshoot to decay and reach the steady state performance,
as shown in Figure 1. The settling time represents how fast the system can recover from overload. This
metric has also been called reaction time or recovery time.

Similar transient performance metrics are proposed in [37] to capture the responsiveness of adaptive resource
allocation in real-time systems. These transient performance metrics provide a much better understanding of
highly dynamic systems than just average case metrics.

3 Feedback Control for QoS Management

In this section, we first present the feedback control approach for QoS management in real-time data services,
and then introduce a cost-benefit model to quantify the utility of an update for a specific temporal data object.
Using this model, we propose a database QoS adaptation technique for managing data freshness. In general, the
update policy is not dynamically changed in databases. In contrast, our QoS adaptation technique dynamically
adjusts the update policy based on the current workload and system behavior.

3.1 Feedback Control

It is a challenging research problem to provide a certain guarantee for transaction timeliness and data freshness,
given aperiodical arrival of transactions and unpredictable workload. We have developed a methodology for
feedback control scheduling for adaptive real-time systems [26, 27, 29, 40, 41]. An advantage of the feedback
control scheduling is its use of feedback control theory, rather than ad hoc solutions, as a scientific underpinning.
The control theory based design methodology allows to satisfy the steady state as well as transient performance
specifications.

We have been working on developing a framework for QoS management of real-time data services, based on
feedback control theory [20]. Using this framework, a designer can systematically design an adaptive QoS man-
ager to satisfy the performance specifications with established analytical methods. This approach is in contrast
with existing ad hoc methods that depends on design/testing/tuning iterations. The outline of our framework is
as follows. It is similar to the process a control engineer uses to design a controller for a feedback control system
to achieve the desired dynamic responses.

� The designer specifies the desired behavior using steady state as well as transient state performance metrics.
This step maps the existing metrics of real-time data services to the dynamic responses of control systems.

� The designer establishes a dynamic model of the real-time data services for performance control. The
model describes the relationship between the control input and the performance of the system with differ-
ential/difference equations. Modeling is important because it provides the basis for the analytical design
of the QoS controller. To establish a dynamic model, system identification method [14] can be used to
estimate the system behavior using profiling experiments. Our earlier work on system identification of
web servers using profiling shows that such an approach could work well for software systems [26].

� Based on the system model and the performance specifications from previous steps, the designer applies
existing mathematical techniques (e.g., the Root Locus method, frequency design, or state-based design) of
feedback control theory to design the feedback controller with analytic guarantees on the desired transient
as well as steady state behavior.

For real-time data services, we apply a feedback control real-time scheduling policy, called FC-UM [29], to
manage the miss ratio without under-utilizing the CPU in the presence of unpredictable workloads. As shown in
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Figure 2, FC-UM employs two control loops, one for miss ratio and one for CPU utilization management. FC-
UM achieves the stability by integrating two control loops. The intuition behind this combination lies in the fact
that the saturation conditions of the two control loops are mutually exclusive. A utilization controller is saturated
at 100% utilization, while a miss ratio controller can be saturated when the real-time system is underutilized (0
miss ratio as a result). Each control loop generates a control signal to achieve the target utilization or miss ratio
based on the current performance error, which is the difference between the target miss ratio (utilization) and the
currently measured miss ratio (utilization). Each controller computes the control signal, called requested CPU
utilization adjustment ∆U , to achieve the target miss ratio (or target utilization).

Transactions


(a) Utilization Control Loop


Target Miss

Ratio

   
 
   +


(b) Miss Ratio Control Loop


Measured

Miss Ratio


Miss Ratio

Controller
 RTDB


error
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U


-
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Figure 2: Miss Ratio/Utilization Controllers

We have selected FC-UM to manage QoS for real-time data services, since it can meet our basic require-
ments for real-time scheduling: miss ratio guarantees while not under-utilizing the CPU given a mix of periodic
and aperiodic workloads. Another advantage of FC-UM is that it works well even without a precise workload
model. The procedure to adapt and tune the feedback controllers is outlined in Appendix A. For detailed control
modeling and controller design, refer to [29].

In our model, data freshness is managed by an actuator (i.e., database QoS manager) in the real-time database.
We do not consider designing a separate feedback controller for freshness management since timeliness and
freshness can pose conflicting requirements, leading to a potentially unstable feedback control system.

The interactions between FC-UM and our QoS management scheme are described in Figure 3. When ∆U
is negative (indicating a violation of the specified miss ratio), QoS in terms of data freshness can be degraded
to improve the miss ratio if the current perceived freshness is above the target and the degradation bound is
not reached yet. (More discussions shall be given in the following sections.) When the perceived freshness is
violated, QoS will be upgraded as long as ∆U � 0 and a certain upgrade bound is not exceeded. The correspond-
ing QoS upgrade/degradation stops when either of the conditions is not satisfied. Without these conditions, a
QoS degradation (upgrade) could adversely affect freshness (miss ratio) in the next sampling period, leading to
possible oscillations between many deadline misses and data freshness violations.

In an extreme case, not only miss ratio, but also freshness constraints can be violated. In this case, incoming
transactions will be rejected until a fraction of currently running transactions terminate and ∆U becomes positive
as a result. The chance of an extreme case is reduced by enforcing the QoS adaptation conditions as described
before. Furthermore, feedback control scheduling and admission control can prevent a severe overload.

6



1. Collect access statistics at each sampling period.

2. Monitor deadline miss ratio, CPU utilization, and perceived freshness.

3. At each sampling period, compute the miss ratio and utilization control signals based on the current miss ratio
and utilization error, respectively. Get the utilization adjustment ∆U � Minimum(miss ratio control signal,
utilization control signal) for a smooth transition from a system state to another. Based on ∆U and the current
system behavior, perform one of the following alternative actions.

4. If the measured miss ratio is below the target (i.e., ∆U
�

0) and the perceived freshness requirement is
satisfied, no QoS adaptation is required. Inform the admission controller of ∆U to admit more transactions to
prevent a potential under-utilization.

5. If the measured miss ratio is over the target miss ratio (i.e., ∆U � 0) and the current perceived freshness is
above the target, degrade the QoS. Increase ∆U by the utilization saved from a QoS degradation. Repeat until
∆U

�
0 or the degradation bound is reached. Inform the admission controller of the new ∆U .

6. If the current perceived freshness is below the target and ∆U � 0, the QoS will be upgraded. Subtract the
required utilization for an upgrade from ∆U . Repeat until ∆U � 0 or a certain upgrade bound is reached.
Inform the admission controller of the new ∆U .

7. If the specified miss ratio is violated (i.e., ∆U � 0) and so is the perceived freshness requirement, do not
admit any incoming transaction until a fraction of currently running transactions terminate, i.e., commit or
abort upon their deadline misses, and ∆U becomes positive as a result.

Figure 3: Database QoS Management Scheme

3.2 A Cost-Benefit Model of Updates

In a real-time database, the temporal data update workload might be high. For example, in the NYSE trace the
update stream can reach up to 696 updates/sec [22]. If updates receive higher priority, there may not be enough
time left to finish transactions in time. In contrast, if the transactions are scheduled in a preferred manner, they
may have to read stale data [4]. To balance the update and transaction workload efficiently, we need to estimate
the update utility which captures the cost-benefit relation of temporal data updates. The cost is defined as the
update frequency of a temporal data object. To consider the benefit, access frequency is measured for each data
object. If a data object is accessed frequently, e.g., a popular stock price, an update of the object can produce
a relatively high benefit. To quantify the cost-benefit relationship, we define the update utility, called Access
Update Ratio (AUR), for a data object Oi as follows:

AUR � i ��� Access Frequency � i �
Update Frequency � i � (1)

The notion of AUR has several interesting features. It can be a guideline to decide a proper update policy for
a certain data object. A pictorial description is given in Figure 4, which is a snapshot of a real-time database.
In the figure, the temporal data objects in the database are ordered by non-increasing value of AUR. 1. If a data

1To reduce the overhead of sorting, the granularity of data unit can be increased. AUR can be measured for a block of data with a
common update period. Also, sorting can be avoided by classifying data into two classes, hot (AUR 	 1) and cold (AUR 
 1), and by
randomly selecting a data object from a certain class to adapt the corresponding update policy. This can be considered a trade-off between
QoS management overhead and accuracy of QoS adaptations.
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object is on or above the horizontal line of AUR = 1, the benefit of the corresponding data update is worth the
cost, since it is accessed at least as frequently as it is updated. Otherwise, it is not cost-effective. For simplicity,
let us call the corresponding data hot, and the data below the horizontal line (AUR = 1) cold, respectively.

Hot (High AUR) Data


AUR =1


Max AUR


Cold (Low AUR) Data


Min AUR


Figure 4: Database Snapshot Sorted by Access Update Ratio

It is reasonable to update hot data in an aggressive manner. If a hot data object is out-of-date when accessed,
potentially a multitude of transactions may miss the deadline waiting for the update. Alternatively, it may not
be necessary to update cold data aggressively when overloaded. Only a few transactions may miss deadlines
waiting for the update. For cold data, the CPU utilization can be reduced by applying a lazy update policy under
overload. In fact, cold data could always be updated by a lazy update policy regardless of the current system load.
However, that approach may increase the response time of the accessing transaction. There can be several policies
to provide aggressive and lazy updates. In this proposed work, we will first consider immediate and on-demand
policy as the aggressive and lazy update policy, respectively, and study their performance implications.

An immediate update receives a higher priority than user transactions and on-demand updates. Conceptually,
there are separate scheduling queues for immediate updates and for user transactions/on-demand updates, re-
spectively. Immediate updates in the high priority queue are scheduled before user transactions and on-demand
updates in the low priority queue. In each queue, transactions are scheduled by EDF scheduling algorithm. As a
result, the freshness of cold data can be relatively low compared to hot data, if a lazy update policy is applied for
cold data.

Note that the notion of AUR does not depend on a specific access pattern or popularity model. It can be derived
simply from the known update frequency and monitored access frequency. Therefore, it greatly simplifies our
QoS model and makes the model robust against potential unpredictability in data access patterns.

3.3 Dynamic Adaptation of Updates

Figure 5 gives a pictorial example of our approach to dynamic update adaptation based on the cost-benefit model.
In Figure 5, D represent the set of the all temporal base data in the database, in which Dimm is the set of data
updated immediately, and Dod stands for the set of data updated on demand. Since a data object is updated either
immediately or on demand, D � Dimm � Dod and Dimm � Dod � Ø. Initially, every data is updated immediately.
As the load increases, a larger fraction of cold data objects are updated on demand. This is called degradation,
since it may potentially degrade data freshness. The update policy degradation stops once it reaches a certain
degradation bound, namely AUR � 1.

Several issues need to be addressed in this approach. First, access statistics need to be collected to compute
AUR � i � for each temporal data object Oi. On each access of Oi, the access counter ACCESS � i � is incremented.
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Figure 5: Update Policy Adaptations

However, the access frequency may have a large deviation from one sampling period to another. To smooth the
potentially large deviation, it might be necessary to take a moving average in the kth sampling period:

SACCESSk � i ��� a � SACCESSk � 1 � i ���
�
1 � a � � ACCESSk � i � (2)

where 0 � a � 1. As the value of a gets closer to 0, only the recent access frequencies are considered to compute
the moving average. In contrast, the wider horizon will be considered to compute the moving average as a get
closer to 1.

Since the update frequency UPDATES � i � in a sampling period is known for periodic updates of Oi, we can
compute Access Update Ratio for Oi:

AUR � i ��� SACCESSk � i �
UPDATES � i � (3)

To handle aperiodic updates, the update frequency can be monitored and smoothed in a similar way as the
access frequency. For aperiodic updates the definition of data freshness may have to change, since there might
be no explicit notion of validity interval related with aperiodic updates. In that case, a temporal data object can
be considered stale upon the arrival of the corresponding update, which is not applied yet [5]. An important
question is how to estimate the CPU utilization saved from each degradation. We need to find out the difference
between the required CPU utilization for purely immediate updates and for adaptive updates. The number of
saved updates due to the degradation is approximately:

N � UPDATES � i � � SACCESS � i � (4)

Given the average CPU utilization per single update transaction, σU , the saved CPU utilization from the update
policy degradation for Oi is approximately:

δU � N � σU (5)

Average per update utilization, σU , can be either pre-profiled before the database service initiation, or mea-
sured at run time. Either approach may not introduce a considerable error, since each update transaction is known
a priori and fixed in our real-time database model.

After the update policy degradation for a single data object, the new CPU utilization adjustment is:

∆U � ∆Uold � δU (6)
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The degradation continues for the next data object in Dimm with the least AUR until ∆U � 0 or the degradation
bound is reached. The horizontal line at AUR = 1 in Figure 4 is the update policy degradation bound, which limits
the degradation within a certain range of AUR. Further degradation past the degradation bound is meaningless
because the number of updates may not be reduced if hot data object is updated on demand, while accessing
transactions may suffer unnecessary delay for update. An example of update policy degradations is shown in
Figure 5. Initially, every update is performed immediately. The update policy is gradually degraded as the load
increases. The degradation stops if no more adaptation is allowed either by the violation of perceived freshness
or reaching the degradation bound.

In QoS upgrades, the update policy is switched back to the immediate policy for certain data objects to ensure
that timely transactions access fresh data. An important issue in QoS upgrades is to avoid a potential miss
ratio overshoot in the next sampling period, while improving the perceived freshness as needed. Given a target
perceived freshness Ftarget , the current perceived freshness Fcurrent can be measured in a sampling period. If
Fcurrent is less than Ftarget , some of these data should be updated immediately in the next sampling period. The
freshness can be improved approximately in proportion to the number of data moved from Dod to Dimm. The key
question is how to estimate the number of data (and which ones) to be updated immediately. More details of QoS
upgrade/degradation are discussed in [20].

Due to the approximation, unpredictable workloads and access patterns, our QoS adaptation may not be pre-
cise. However, the target performance can be achieved by continuously adjusting the QoS level based on the
performance error measured in the feedback loop. By balancing update and transaction workload efficiently, a
target deadline miss ratio and perceived freshness can be achieved at the same time. It will be interesting to
investigate the accuracy of the approximation of CPU utilization and perceived freshness, and their impact on
the feedback controller. That could provide a quantitative measure of the effectiveness of the proposed QoS
management approaches in terms of guaranteeing the required timeliness and data freshness.

The QoS management approach proposed above is relatively coarse-grained. A more fine-grained approach is
also possible which dynamically increases the update periods for cold data. We suspect that such a fine-grained
approach may incur high overhead, since the appropriate update period and the corresponding temporal validity
interval should be dynamically managed per data object. However, changing update period could be useful in
applications such as web-based information services for smart spaces, because controlling the data generation
rate of sensors could be very effective to control the volume of data to go through the network [19]. Our future
work includes the details of such fine-grained approach and compare its performance to the coarse-grained QoS
management scheme.

4 Derived Data Management

Management of derived data, which are derived from multiple sensor data possibly changing at high rates, is
an important problem. In our QoS-sensitive database model, base data and derived data are treated in different
ways according to the respective freshness maintenance cost. Derived data recomputation can be relatively ex-
pensive; it may include complex logical and/or arithmetic computations, and the recomputation might occur very
frequently. It may not be acceptable to recompute the derived data upon each base data change unless the system
is underutilized. To reduce the recomputation workload under overload, we need a QoS management technique
that adapts to the workload. For QoS adaptation for real-time data services, we apply the notion of forced delay
[5] to batch the derived data recomputations during the overload to reduce the number of recomputations. For
example, the recomputation of a composite index can be delayed for a certain period of time. During the delay,
a related stock price (base data) may change multiple times. The simulation study in [5] shows the performance
improvement by applying the forced delay. However, they did not show how to determine the length of the delay.
To reduce the computational cost, every derived data can be recomputed on demand [6]. A possible disadvantage
of the approach is that the accessing transaction may have to tolerate relatively long response time due to on
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demand recomputations.
Our QoS management scheme can be extended such that the freshness of the derived data is gradually de-

graded by increasing the forced delay. We provide two alternatives for derived data freshness management: QoS
adaptation and differentiated service. In the first approach, the forced delay is gradually increased while the
system is overloaded. The QoS degradation should stop, if a further increase of the forced delay is meaningless,
i.e., the average inter-access time is shorter than the delay. The forced delay for a specific derived data object Oi

should not be longer than the Average Time between two consecutive accesses of Oi, which is approximated:

AT � i ��� Sampling Period
SACCESSderived � i � (7)

where SACCESSderived � i � is to measure the smoothed access frequency for a derived data object i similar to
SACCESS � i � defined for a base data item. If the further increase of the delay is not possible, the recomputation
policy changes to on demand for a cold data object. If the data object is hot, the forced delay is simply not
increased. A hot data object is never recomputed on demand for a similar reason discussed in the previous
section. By limiting the forced delay below the average inter-access time, soft guarantees can be provided for the
perceived freshness of the derived data.

Considering the relatively high cost for derived data management, the real-time database performance can be
further improved by a differentiated service. For example, the freshness of aircraft position data can be differ-
entiated according to the vicinity for collision detection, e.g., near or far. In the online stock trading, the trading
server can specify differentiated freshness between composite index classes considering the popularity. To cap-
ture the popularity and the recomputation frequency (recomputation cost) of derived data objects, the cost-benefit
model described earlier can be extended. The extension should be straightforward considering the generality of
the proposed cost-benefit model. Further, the length of the forced delay increase between derived data classes can
be differentiated. The improvement by the freshness differentiation could be non-trivial considering the cost of
derived data recomputations. Note that we do not need a different control model to support differentiated service
in terms of derived data freshness. It can be achieved by extending the QoS manager in the proposed real-time
database model.

5 Differentiation of Transaction Classes

In several applications, the timeliness requirements of transactions of different classes need to be treated dif-
ferently. For example, the deadlines of the transactions in the highest class should be satisfied with certain
guarantees even if the system is overloaded. In general, service differentiation improves the system performance
by effectively utilizing the system resources under overload [9, 10, 11, 18]. In real-time databases, differentiated
services can be provided in terms of deadline miss ratios and data freshness constraints for different transaction
classes. The importance of service differentiation is increasing as the demand for real-time data services has
been increasing. In this section, we consider an architecture for differentiated services for real-time data services.
Although there has been a number of differentiated service models proposed recently [3, 9, 11, 18], none of them
have considered transaction timeliness for real-time data services. A thorough investigation of the control model
and controller design alternatives for real-time transactions is needed for the differentiated services in databases.

The differentiated service architecture is shown in Figure 6. It consists of a transaction handler, a monitor,
feedback control loops, a QoS manager, an update scheduler, and an admission controller.

The transaction handler provides an infrastructure for real-time database services, which consists of a concur-
rency controller (CC), a freshness manager (FM) and a basic scheduler. For concurrency control, we use two
phase locking high priority (2PL-HP) [1], in which a low priority transaction is aborted and restarted upon a
conflict. 2PL-HP is selected since it is free of a priority inversion.
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Figure 6: Real-Time Database Architecture for Differentiated Services

The FM checks the freshness before accessing a data item using the corresponding absolute validity interval. It
blocks a user transaction if an accessing data item is currently stale. The blocked transaction(s) will be transferred
from the block queue to the ready queue as soon as the corresponding update commits.

By the basic scheduler, user transactions are scheduled in one of multi-level queues (Q0 � Q1, and Q2 as shown
in Figure 6) according to their service classes, i.e., Classes 0, 1, or 2. A fixed priority is applied among the multi-
level ready queues. A transaction in a low priority queue can be scheduled if there is no ready transaction at the
higher priority queue(s). A low priority transaction is preempted upon the arrival of a high priority transaction.
In each queue, transactions are scheduled in EDF manner. To provide the data freshness guarantee, all updates
are scheduled at Q0.

By applying the fixed priority among the service classes, we provide a basic support for the service differenti-
ation in real-time applications. However, this is insufficient to provide guarantees on the miss ratio and perceived
freshness in the presence of unpredictable workloads/access patterns.

A feedback control scheduler [29] is extended to differentiate per-class miss ratios in a guaranteed manner
despite potential unpredictability in workloads. The QoS manager enforces the control signal computed in the
feedback control loops to adjust the CPU utilization based on the current system behavior observed by the Moni-
tor. More specifically, it dynamically adjusts the update workload considering the current miss ratio and perceived
freshness by adapting the database update policy. As a result, some data is updated on demand while others are
updated immediately. The utilization threshold is dynamically adjusted considering the current system behavior
to increase the CPU utilization avoiding miss ratio overshoots. The QoS manager dynamically adapts database
update policy to enforce the CPU utilization adjustment. The Update scheduler decides whether to schedule or
drop an incoming update based on the current update policy. Admissions of incoming transactions are controlled
to avoid a potential overload or an underutilization.

One of the key issues in providing different classes of services on the web is the type of performance guar-
antees, since there are multiple classes of transactions and multiple performance metrics used to specify the
requirements. Most ad hoc approaches can be called the best effort differentiation, since they do not provide any
guarantees, although they provide better service in general to high class clients. In particular, they do not provide
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guarantees on the extent of the difference between different classes. There are three different types of perfor-
mance guarantees which are stronger than the best effort differentiation: absolute, relative, and hybrid [26]. In
the absolute guarantee model, a set of specified performance guarantees are provided for each class. Since the
workload may increase arbitrarily high for web-based data services, it may not be possible to meet the absolute
guarantees of all classes under a severe overload.

In the relative guarantee model, a fixed ratio of performance between classes are enforced. The system tries
to support the desired “distance” between the performance levels of different classes. This model might be more
precise in specifying the difference between classes, and also more flexible than the absolute guarantee model,
since it does not require to achieve an absolute performance level for each class.

Depending on the semantics of applications and the nature of the overload situations, either model of per-
formance guarantee could be desirable. The relative guarantee model may not be appropriate in severe overload
situations, since even high class transactions may get unacceptable performance (although the requirement of dif-
ferentiation between classes are satisfied). During normal operation conditions, however, the relative guarantee
model may be more appropriate. The hybrid guarantee model might be the most desirable in some applications,
since it can switch between the absolute and relative guarantees dynamically, depending on the requirement for
differentiation and the system workload. For example, a hybrid guarantee can support a relative differentiation
between the classes while the performance in each class is in the acceptable range. When the performance in the
high class becomes unacceptable, it changes to the absolute guarantee model to enforce the required performance
in that class, possibly at the cost of sacrificing the performance in the low class.

We plan to implement all three guarantee models in our differentiated services architecture. Other interesting
issues that remain to be addressed for differentiated services include:

� complex profiling of database systems for feedback controller design, since transactions are scheduled in
different service classes,

� control of the interactions of multiple control loops which could introduce an unexpected behavior (e.g., a
surge in overshoot or longer settling time during transient states), and

� the effectiveness of our differentiated service architecture compared to alternative architectures.

6 Replicated Data in a Distributed Environment

While a number of problems must still be addressed in a centralized environment for managing QoS, distributed
systems issues are also critical for improving the performance of real-time data services. Although there are
many issues in a distributed environment in general, in this section, we focus on data replication. Data repli-
cation has been used to improve the performance and availability in distributed applications. Performance in
terms of transaction timeliness can be improved since replicated copies are available at the site where they are
frequently accessed. Availability can be improved since the sites at which they are stored have independent fail-
ure modes. However, theses benefits come at the cost of overhead associated with update transactions that can
be committed only after all sites containing replicated copies agreed to commit to enforce mutual consistency.
This approach, called synchronous replication, has serious performance problems in practice [32]. Some com-
mercially available distributed database systems such as Sybase and Oracle 7 support synchronous replication as
well as lazy (asynchronous) replication, in which the updates of replicated data objects can be deferred. With
lazy replication, a transaction can commit without waiting for all the replicated copies to be updated, relaxing the
mutual consistency property. For lazy replication, data freshness is a key concern.

For web-based information services, replication of data/information using proxies and web caching has been
popular. Although web caching and proxies addressed the scalability problem in providing desired performance
for static contents, it introduced another problem of data freshness for dynamic contents. As the number of web
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pages that contain dynamic contents that are continuously changing is increasing rapidly, providing any guarantee
for the freshness of data becomes important.

We consider the problem of maintaining acceptable freshness in lazy replication by extending our QoS man-
agement scheme. For each replicated temporal data object, there is a primary copy (denoted by capital letters)
which is updated by a sensor transaction. We call the site which contains the primary copy of a data object a
master node (of that data object). Other copies are called a secondary copy and the sites which contain a sec-
ondary copy is called a slave node. The set of replicated copies, consisting of the primary copy (e.g., R) and all
secondary copies (r1, r2, ...), is referred to replicated data.

When an application starts to run at a site which does not have the temporal data object it needs, a secondary
copy (ri) is created and initialized by the current value of the primary copy (R). Secondary copies can be updated
by either push or pull. We consider the pull model first, because it reduces the overhead at the master node and
provides flexibility to each slave node to change its access pattern (i.e., a slave node does not need to inform
the master node to make any change on its behalf). Each slave node pulls the value of the primary copy at
the master node periodically, considering the local workload and data access statistics. The period of pull can
be dynamically adapted by the QoS manager of the node using the current status information on timeliness,
freshness, and utilization. Some of the cold data might be pulled on demand as discussed in the previous section.

We assume that when initially created, all the secondary copies are updated at the same rate of the primary
copy. Each slave node keeps the track of the access pattern for its secondary copies. Using Access Update Ratio
(AUR) as discussed in Section 3.3, the slave node computes the candidates of its secondary copies for delayed
update. When an overload occurs at a node, it can now adjust CPU utilization in several ways. It can switch
its update policy from immediate update to on-demand update for some of its primary copies. Alternatively, it
can delay updates for some of its secondary copies. Another possibility is to consider both primary copies and
secondary copies together. Instead of giving priority to one over the other, whichever copy that brings in higher
access demand (or being accessed by high class/priority transactions) will be kept fresh as much as possible –
either by updating immediately (primary copies) or pull the value of the primary copy at the initial rate.

To provide appropriate QoS over replicated data in distributed environment, there is another issue to deal with:
update scheduling problem. Since secondary copies are being refreshed constantly, a separate update scheduler is
responsible for scheduling the updates, using the portion of the CPU utilization allocated for refreshing secondary
copies at the node. The primary objective of the update scheduler is to satisfy the specified QoS by achieving the
maximum overall perceived freshness of replicated data. Since the cost of refreshing secondary copies could be
different in general for each replicated data, the update scheduler should consider the frequency of access as well
as the cost for each one to determine the right ordering.

We want to avoid any unnecessary refreshing from being scheduled, since it would waste CPU utilization
without any benefit to the applications. One simple method is have the master node send a special reply (e.g.,
nochange), when a slave node pulled the value of R for ri, if the current value of R is the same as ri. When a
slave node receives nochange, it discards it so that the CPU utilization is not wasted. This idea can be extended
further by introducing the notion of imprecise computation [15, 25]. For each replicated data, we may specify
the tolerance level of imprecision (Rp). If the change in the value of R is not more than Rp, a slave node will
receive nochange. The proper value for Rp depends on the semantics of the data and applications that access it.
We can customize the value of Rp, depending on how each copy is used by applications at each slave node. If ri

is used by an application whose Rp is different from that of applications that use r j , the slave node that maintains
ri should specify its Rp when ri is created.

Depending on the application semantics, real-time data services may need alert rules to be included for excep-
tion handling. The master node of a replicated data may have to push the data upon a certain condition, although
the system is relying on the pull model. For example, consider the following situation. In a smart building, the
temperature of a vacant room is pulled less frequently when the system has a transient overload. However, an
alert can be triggered at the master node if the temperature exceeds a certain threshold (i.e., a possibility of fire).
In that case, the master node should push its value to all the slave nodes with secondary copies.
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7 Related Work

Previous research work has shown that QoS-sensitive approaches can improve system performance in a cost-
effective manner [2, 8, 13, 16, 17]. Despite the abundance of the QoS research, QoS-related work is relatively
scarce in database systems. Priority Adaptation Query Resource Scheduling (PAQRS) provided timeliness dif-
ferentiation of query processing in a memory-constrained environment [33]. From the observation that the per-
formance of queries can vary significantly depending on the available memory, per-class query response time
was differentiated by an appropriate memory management and scheduling. Given enough memory, queries can
read the operand relations at once to produce the result immediately. If less memory is allocated, they have
to use temporary files to save the intermediate results, therefore, the query processing may slow down. In this
way, query deadline miss ratios were differentiated between the classes. However, the performance could easily
fluctuate under the workload changes. No data freshness issues were considered.

A novel on-line update scheduling policy has been proposed in the context of the web server [22]. The
performance of a web server can be improved by caching dynamically generated data at the web server and the
back-end database continuously updates them. Given the views to materialize, the proposed update scheduling
policy can significantly improve the data freshness compared to FIFO scheduling. They discuss a complementary
problem in [21], i.e., view selection problem to materialize. Trade-off issues between response time and data
freshness are considered in their work. However, they provide neither miss ratio nor data freshness guarantees.

Stanford Real-Time Information Processor (STRIP) addressed the problem of balancing between the freshness
and transaction timeliness [4]. In a real-time database, data should be maintained fresh to correctly reflect the
status of the real-world environment, and transactions should be processed in a timely manner. To study the
trade-off between freshness and timeliness, four scheduling algorithms were introduced to schedule updates and
transactions, and the performance was compared. In their later work, a similar trade-off problem was studied for
derived data [5]. Ahmed et al proposed a new approach to maintain the temporal consistency of derived data [6].
Different from STRIP, an update of a derived data object is explicitly associated with a certain timing constraint,
and is triggered by the database system only if the timing constraint could be met. By a simulation study, the
relative performance improvement was shown compared to the forced delay scheme of STRIP. None of the two
approaches considers dynamic adaptations of update policy. Also, performance guarantee is not provided.

The correctness of answers to database queries can be traded off to enhance the timeliness. A query processor,
called APPROXIMATE [43], can provide approximate answers depending on the availability of data or time.
An imprecise computation technique (milestone approach [23]) is applied by APPROXIMATE. In the milestone
approach, the accuracy of the intermediate result increases monotonically as the computation progresses. There-
fore, the correctness of answers to the query could monotonically increase as the query processing progresses.
A relational database system called CASE-DB [31] can produce approximate answers to queries within certain
deadlines. Approximate answers are provided processing a segment of the database by sampling, and the cor-
rectness of answers can improve as more data are processed. Before beginning each data processing, CASE-DB
determines if the segment processing can be finished in time. In replicated databases, consistency can be traded
off for shorter response time. For example, epsilon serializability [35] allows a query processing despite the
concurrent updates. Notably, the deviation of the answer to the query can be bounded, different from a simi-
lar approach called quasi serializability [12]. An adaptable security manager is proposed in [39], in which the
database security level can be temporarily degraded to enhance timeliness. These performance trade-off schemes
lack a systematic QoS management architecture and none of them consider providing guarantees for both miss
ratio and data freshness.

An algorithm for update scheduling was proposed in a recent [22]. Their goal is to achieve the maximum
overall QoD (quality of data), which is the weighted sum of the freshness probabilities of all views in the database.
They have demonstrated the importance of the update scheduling problem using server log traces of trade and
quote database from New York Stock Exchange. They defined the rank function for each view in the database as
a ratio between the frequency of access to that view over the cost required to refresh the view. Then their update
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scheduling algorithm considers the popularity weight from the dependency graph among the views and relations
to determine the update with the biggest impact on QoD to schedule next. Our approach is different from their
work in that we have the timeliness metric to support, and we use the feedback control based QoS management
scheme, instead of open loop approach.

Recently, feedback control has been widely applied to QoS management and real-time scheduling [2, 29, 42,
30]. However, to our best knowledge none of them considered QoS management issues in real-time databases
considering the timeliness and data freshness constraints.

8 Conclusions

The demand for real-time information services is rising in several new applications. Databases, the core compo-
nents of many information systems, could be a service bottleneck in the upcoming information era due to their
relatively low predictability. In this paper, we presented an approach for QoS management to meet the funda-
mental requirements for real-time data services, i.e., deadline miss ratio and data freshness guarantees, even in
the presence of unpredictable workloads and data access patterns.

By adopting our QoS management approach in real-time data services, sensor transactions and user service
requests can be dynamically balanced to guarantee potentially conflicting miss ratio and freshness requirements
at the same time. A cost-benefit model is derived to measure the update utility. A novel QoS management
scheme is developed based on the model. Combined with the feedback control scheduling and admission control,
our QoS management approach can provide guarantees on miss ratio and perceived freshness while other non-
adaptive approaches fail. A preliminary performance study indicates that our approach can achieve a significant
performance improvement, compared to several ad hoc approaches. We have discussed the issues in applying our
method for derived data, differentiated services, and replicated data in a distributed environment.
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Appendix A Feedback Controller Tuning

To tune the controllers of FC-UM, the performance of the controlled system should be profiled under the worst
case set-up that can cause the highest miss ratio [29]. The worst case should be considered to provide a certain
miss ratio guarantee. For the profiling under the worst case set-up, we turned off admission control and QoS
management. All updates are applied immediately in a preferred manner to user transactions. As a result, the
user transaction deadline miss ratio increases sharply as load increases (Figure 7). Average deadline miss ratio
and utilization are measured for loads increasing from 60% to 200% by 10%. Execution time estimation error
is set to 1, which indicates that the average actual execution time could be two times of the average estimated
execution time. Update workload is designed to be about 50% of the total CPU utilization for each load. Uniform
access pattern is assumed for data accesses. For each load, 10 simulation runs are performed and 90% confidence
intervals are derived (vertical bars in Figure 7).
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Figure 7: System Profiling Results

The miss ratio gain, GM � Max
� Miss Ratio Increase

Unit Load Increase � , should be derived to tune the controllers [29]. According
to our profiling results shown in Figure 7, the miss ratio gain is approximately 1.1682 when the load increases
from 110% to 120%. We set the sampling period to 5sec for feedback control. Given the sampling period and
miss ratio gain GM, Root Locus method [14, 34] of Matlab can be used to tune the controllers to support 0 steady
state error. The closed loop poles are p0 � p1 � 0 � 552 � 0 � 153i. The feedback control system is stable, since the
closed loop poles are inside the unit circle. The tuned feedback control system can provide the following transient
performance:

� The theoretical overshoot (the worst case performance, e.g., highest deadline miss ratio) is 27% for a unit
step input. For example, if the target deadline miss ratio is 5%, the theoretical miss ratio overshoot is
5% �

�
1 � 0 � 27 � � 6 � 35%.

� From the Root Locus design, the theoretical settling time (the time for system transients to decay) is 45sec
(i.e., 9 sampling periods). In the previous example, the miss ratio overshoot should decay within 45sec for
a unit step input.

Careful readers may have noticed that the measured average utilization tends to be higher than the load applied
to the system before it saturates. This is because the data/resource conflicts increase between updates and user
transactions as load increases. (More transactions access temporal data updated by update transactions increasing
potential read/write conflicts). From Figure 7, we can observe that the wasted utilization increases until the
system saturates. (It decreases after the system is saturated, since tardy transactions can be aborted even before
accessing temporal data). The increase of wasted utilization adversely affects the total utilization and miss ratio.
This observation motivates the necessity of dynamic balancing between updates and user transactions considering
the current system status.
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