
Performance Evaluation of an Off-Host Communications Architecture

Jeffrey R. Michel, Alexander S. Waterman, Alfred C. Weaver

Technical Report No. CS-93-32
June 01, 1993



Abstract
The Computer Networks Laboratory at the University of Virginia has implemented the SAFENET
lightweight protocol suite on the Navy’s Desktop Tactical Computer (DTC-2). The software
includes the Xpress Transfer Protocol (XTP), a new transport and network layer protocol to support
high-throughput, low-latency, priority-sensitive communications. One of our research questions
was whether to embed XTP in the DTC-2’s UNIX kernel or run XTP on an attached processor on
the machine’s VMEbus. We implemented both strategies and the attached processor approach
proved to have somewhat higher performance. Our conclusions identify both the advantages and
performance concerns inherent in off-host protocol execution.

1 Introduction
Our challenge was to provide reliable end-to-end communications using XTP [STRA92] and an

FDDI network to application programs running over the SunOS (UNIX) operating system. Two
approaches seemed obvious: (1) embed XTP protocol processing in the DTC-2’s operating system kernel,
or (2) run XTP on an attached processor on the machine’s system bus. The first idea was conventional; we
chose the second because it offered several potential advantages:

• Reduced host load
• Predictable application processing
• Reduced and bounded host interrupt arrivals
• Dedicated processor cycles for protocol processing
• Specialized protocol processing hardware
• Ideal operating system environment in which to run the protocol

2 Implementation Architecture
This section describes the hardware and software implementation of our off-host communications

architecture.

2.1 Hardware
 Figure 1 depicts our hardware and software architecture. The host platform for our work is the C3

Desktop Tactical Computer (DTC-2), a SPARC-based machine with a VME backplane bus; the bus con-
tains our FDDI adapter and protocol processor. The FDDI board is manufactured by Network Peripherals
(NP), and the processor board is a Motorola MVME-167A (167) with 8 MB of on-board memory, all of
which is addressable on the VMEbus. The FDDI MAC device driver resides on the 167, which communi-
cates with the NP board through block-mode DMA, shared memory, and VME interrupts. The system is
configured such that a portion of the 167 memory is mapped into the virtual memory of the DTC-2 kernel’s
32-bit address space, facilitating communication through shared memory between the 167 and DTC-2.
Communication also occurs through interrupts generated on the 167 board for the DTC-2. The 167 runs the
pSOS+ lightweight multitasking operating system.

2.2 Software
Our software architecture exists to provide transport services to Ada applications running as UNIX

processes. It consists of a set of Ada packages, a C library, a UNIX character device driver, an implementa-
tion of XTP 3.6, and an FDDI MAC driver. The individual software components are partitioned onto our

Performance Evaluation of an Off-Host Communications
Architecture

Jeffrey R. Michel, Alexander S. Waterman, and Alfred C. Weaver

Department of Computer Science
University of Virginia

Charlottesville, VA 22903



2

two processor platforms and run in several address spaces. On the host, the Ada package bodies and C
library run in the address space of their Ada application’s process, while the character device driver runs in
the kernel with its own distinct address space. On the attached processor, the XTP implementation and
MAC driver run as a set of pSOS+ tasks sharing a common address space.

An Ada application employs primitives such as SEND_MESSAGE and GET_MESSAGE from the
Ada packages to perform network communication. The Ada program is linked with the library of C code
which contains the user-level portion of the implementation of the transport services. The primary function
of this C code is to issue control blocks to the protocol processor and receive its acknowledgments of com-
mand completion (acknowledgment blocks) through the use of the character device driver.

The C-library interface to the transport layer uses a standard UNIX character device interface. It
utilizes system calls such as read() and write() to communicate with the off-host protocol processor.
The communication mechanism between the host and the protocol processor is via two queues, the TN (To
Network) queue and the FN (From Network) queue. When the user process issues a control block in a
write(), this invokes the device driver, which queues the control block in the TN queue for the protocol
processor and returns control to the user. When the control block command completes, the protocol proces-
sor places an acknowledgment block in the FN queue and interrupts the host. This interrupt invokes a
device driver interrupt routine which in turn signals the user process. A signal handling routine in the user
process performs a read() in order to access the acknowledgment. A 4 MB memory region on the proto-
col processor board is allocated as a buffer pool which holds incoming and outgoing message data.

3 Performance
In order to illustrate the overall performance of our architecture, we provide throughput and

latency measurements at its MAC, transport, and user levels for the full range of message sizes available at
each. We also include a profile of host processing time for a SEND_MESSAGE operation.

3.1 MAC Layer
The MAC layer provides the transport protocol with a raw data link service over the 100-Mbit/s

FDDI network. Our results were obtained using a pair of NP and 167 boards in two stand-alone VME card
cages. Figure 2a shows end-to-end latency, and Figure 2b shows throughput. Here, latency is half of the
round-trip time of a frame, and throughput measures the rate at which the MAC driver can transmit frames
with no receiver. A minimum latency of 91.5 ns occurs for a frame with no payload, and the maximum

V
M

E
bu

s
DTC-2

Ada Application

C Library

167

MAC

XTP

NP

D

B

C

A

A- Buffer pool
B- TN queue
C- FN queue
D- NP registersFDDI

- VME-addressable
memory

Figure 1: Communications System Architecture

Device Driver

Ada Packages



3

throughput of 56.6 Mbit/s occurs for frames carrying a payload of 4487 bytes (4500-byte maximum FDDI
payload less LLC and SNAP headers).

3.2 Transport Layer
The transport protocol (XTP) provides reliable end-to-end delivery of memory buffers from the

local memory of one protocol processor board to another. For the throughput measurements, the data trans-
fer operations were performed in asynchronous mode, and data checksums were disabled with the XTP
NOCHECK option. Latency measures half the round-trip time of a message, and throughput is for connec-
tion-oriented message transmission. The minimum latency of the protocol is 2.7 ms for a one-byte mes-
sage, and the maximum throughput of 23.8 Mbit/s occurs for a 64-Kbyte message.

3.3 User Level
All user performance measurements were obtained with two Ada programs running on separate

hosts using the connection-orientedSEND_MESSAGE andGET_MESSAGE primitives. Latency measures
half the round-trip time of a message sent from one Ada application to another. For the throughput mea-
surements, the communication primitives were performed asynchronously, and XTP’s rate control features
andNOCHECK option were used to provide maximum performance.RATE was set to 1.5 Mbyte/s and
BURST was set to 10 Kbyte/burst. The minimum latency occurred at a message size of one byte and was
5.1 ms. The maximum throughput was 12.1 Mbit/s at a message size of 64 Kbytes.

3.4 Profiling
To analyze the user-level results, we profile the execution of theSEND_MESSAGE primitive. First

we concern ourselves with the processing of short messages. Table 1a lists where the host processor spends
its time during a one-byteSEND_MESSAGE call. The “other” category accounts for operations which con-
sume less than 10µs and accumulated measurement error.

The wait for completion is the amount of time that the host awaits an indication that the operation
is complete. Although it accounts for most of the total time, the wait does not require host processor
cycles; rather, it is a function of the transport protocol’s performance. All other times in the table are
incurred by various UNIX services. Most significant is the time required to perform the processing of
physio() andiodone(), routines which manage the arguments of theread() andwrite() system
calls. It is clear that UNIX overhead dominates the host processing time when the message size is small.

To study the processing overhead of long messages, we profile aSEND_MESSAGE of 64 Kbytes in
Table 1b. As before, the total time is dominated by the wait for completion. However, with the long mes-
sage size, the cost of allocating and deallocating a buffer on the local memory of the protocol processor

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

L
at

en
cy

 (
m

s)

Message Size (Kbytes)

user
XTP

MAC

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

M
bi

t/
s)

Message Size (Kbytes)

user
XTP

MAC

Figure 2: (a) End-to-End Latency vs. Message Size(b) Throughput vs. Message Size
(a) (b)



4

now becomes notable. Furthermore, a startling result is the time required to perform the datacopyin()
across the VMEbus. For long messages, the time to perform this backplane transfer dwarfs all UNIX over-
head and even rivals the wait for completion.

4 Conclusions
Our results lead to several conclusions. A large percentage of host processing time is spent in both

theSEND_MESSAGE andRECEIVE_MESSAGE operations performing programmed I/O copies to or from
the protocol processor buffer pool. Though all implementations will incur some amount of “peripheral
commanding” overhead, the fact that we were unable to have the protocol processor address host memory
effectively led us to use host cycles for buffer copies across the VME backplane. We believe this is a prob-
lem inherent in our host’s memory architecture, not a problem inherent in off-host protocol processing and
thus it should not be considered an inherent cost of an off-host processing architecture. For example, the
introduction of user buffer DMA capabilities would reduce the host’s VME data copy overhead to a con-
stant DMA setup time, not dependent on data length.

The time spent for a user to command the protocol is predictable since the command block is sub-
mitted to the processor and control returns directly to the system. Control returns to the user in a determin-
istic fashion such that other activities can be done; the application need not wait on the completion of the
transfer to regain control.

Preliminary measurements show the transmission of one 64-Kbyte message produces 26 host
interrupts for a UNIX in-host implementation of XTP, compared to 1 host interrupt for our off-host imple-
mentation. This is a reduction in host-processor interrupts of 96%. The ability of the attached processor to
field network interrupts and provide the MAC interface also decreases work the host must perform for
communication processing. Results of a in-kernel implementation also show transport level throughput to
be substantially lower than that of the off-host implementation. This shows that the lightweight operating
system of the attached processor is a better match to the performance demands of communications
[WATE93].

References
[STRA92] W. T. Strayer, B. J. Dempsey, A. C. Weaver, XTP: The Xpress Transfer Protocol, Addison-Wesley,

Reading, Massachusetts, 1992.

[WATE93] A. S. Waterman, “A Comparison of Off-Host vs. In-Kernel Communications Architecture,” M. S.
Thesis, Department of Computer Science, University of Virginia (in preparation).

Operation µs/call Calls total µs

wait for completion 3,881 1 3,881

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control blockcopyin() 29 1 29

ack blockcopyout() 23 1 23

other 732

total 6,097

Operation µs/call Calls total µs

wait for completion 23,455 1 23,455

datacopyin() 18,164 1 18,164

physio() & iodone() 301 3 903

read() system call 81 2 162

signal delivery 143 1 143

get and return buffer 109 1 109

write() system call 83 1 83

disable signals 25 3 75

enable signals 22 3 66

control blockcopyin() 29 1 29

ack blockcopyout() 23 1 23

other 1,636

total 44,848

Table 1: (a) Profile of a One-ByteSEND_MESSAGE (b) Profile of a One-ByteGET_MESSAGE
(a) (b)


