On the Worst—Possibig Analysis
of Weighted Comparison-Based
Algorithms

By
Dana Richards
Computer Science Report #TR-=-86-04

March 1986



On the Worst-Possible Analysis
of Weighted Comparison-Based Algorithms

Dana Richards

University of Virginia
Charlottesville, VA 22903

L Introduction

The typical analysis of a comparison-based algorithm is concerned with the total
number of comparisons. This is evidenced in the vast literature on sorting and
order statistics (e.g. [KNUT73]). We assume that each gecord has a price or weight
associated with its use, perhaps reflecting the length of the key or the difficulty of
access. The price is independent of the value of the key field m each record. The
cost of a comparison is the sum of the prices of the comparands (though other
measures couid Se irn_agined). We are concerned with the worst—cas;e total cost of an

algorithm, i.e. the most costly.path through its decision tree.

_ '_Thére are several types of analyses we could do and they are best understood -
by analogy with F. K. Hwang's “group testing gz;me" [HwaNS84]. There are two
p]ayérs G and H, where G 'poses a problem instance for which H musi a give an
algdr.ithm that solves it. The problem which Hwang addressed was to find the set
of d counterfeit ‘coins in é' set of n coins. The basic operation was a ternary
" query, ie. “good, bad, or mixed”, of any arbilrary subset. By changiﬁg ‘Lhé rules to
have .queries of two elements only with the responses > and £, we get closer to
the model in this paper.'

Hwang described three ways of playing such & game. While our iniziai work

predated Hwang's paper we find it convenient to use the same terminology:

¢ G is almighty, the A-version. In this version G-wil_l know the algorithm H
will choose. G will assign the values to the prices and the keys in such a

way as to force H to have the worst total cost. H does not know the prices.

e G is just, the J-version. In this case G does not know the algorithm H will
adopt before it assigns the values to the prices of the reéords. However G
will still try to maximize the cost for H by assigding- the key values after

knowing A 's algorithm. Again H does not know the prices.



o G is merciful, the M-version. In this version G will reveal the price of each
record to A initially. H may spend much time choosing its algorithm. Again

G will assign key values in an adversarial manner.

The M-version above differs greatly from Hwang's definition (which did not even
have a notion of prices). The original definition called for G to be completely ran-
dom, - which is appropriate for a discussion of the average performance A could

expect. However we are only concerned with worst-case analysis.

If G is merciful then we are in a posilion {0 choose the best possible algo-
rithm, though it may be prohibitively expensive to find it. In; [RicH84] we discuss
how H can use preprocessing 1o produce a comparatively short list of algorithms to
choose from when the prices become known. We used a dynamic programming

approach which does not extend 1o the case when the prices remain unknown.

In this paper we assume that G is almighty. unless otherwise stated. So we
must adopt a pessimistic stance. G is an adversary who will ass;ign the p'rices and
answer our comparisons so that H will get the "worst-possible” cost. In parlicular,
G will not cnly take H down a costly path of our decision tree but will make the
most' used Key the most expensive and so on. In’the next section we present some
formalisms and in the iasvseciion‘ we concenirate on the problem of finding the

. maximum.
2. Preliminaries

We expect a comparison-based algorithm to be represented by ils decision tree.
Each internal node compares the keys of t@o records and we branch to one of its
two sc)nsldepending on the result. Let the n keys be KK, ...,K, with associ-
ated prices py1.pa . -..Pn. (To simplify our exposition we assume that G is' con-
sirained to always use the same set of prices and just permutes them as best possi-
ble. OQur results do not assume any distribution on the prices beyond that they
could be skéwed.) Each path from the root to a leaf has an outcome, which is a vec-
tor ¢ ={cy, €2, ..., ¢y ), where ¢; is the number of comparisons involving K; in that

path. Each outcome is identified with the (relative) ordering of the keys that defines

. n
_its path in the decision tree. The path cost of that oulcome is. ¥ pic;. The algo- .

sl

rithm cost is the maximum of the path costs.



To analyze the A-version we sort each outcome. Let ¢ =(cy\co'i. .., ")

denote the vector with the same elements as (¢, ¢a, ..., ¢,) sorted in nonincreasing

order. We say ¢ dominates d if 5:{:,-' 2 f_‘,d,-‘. for all 1€/;<n, that is ¢ “major-

i=1 i=1
izes” d'. Further we say c striectly dominates d if ¢’ and d' are distinct.
Lemma 1: If G is almighty and ¢ dominates d then G can have the path cost of ¢

be greater than or equal the péth cost of d.

Proof: G can assign the most used key of ¢ the largest price, and so on. C}early
the path cost of d is maximized if it also happens to have ils most used Xkey
assigned the highest price, and so on. But even then the result follows immediat-

edly. [J : =

Hence in analyzing an algorithm H need consider only those outcomes which are not

strictly dominated. We call these the worst-possible outcomes.

When choosing between two algorithms H can reject the first if every'ou‘wome
of the second is dominated by an outcome of the first. We say the first algorithm
dominates the second, and that it strictly dominates the second if the worst-possible
outcomes are different. This can be easily decided by comparing just their worst-
possible outcomes. H H ca—nnoi' reject all algorithms but one with this criterion
then H ig in a no-win siluation, due to the following simple observation. Let ¢ and
d be a worst-possible outcome for the first and second algorithm of the remaining
, a}gorithmhs, respectively. If neither ¢ nor d dominates the other then . the adversary
G could come up with assighments of the prices that would faver eiti;er the first or
the éec_ond algorithm. We call an algorithm optimal if it does not strictly don{inéte

another algorithm for the same problem; there may be several optﬁmél algorithms.

Finding an optimal aigprithm' for the sorting problem appears 1o be difficult.
The best known aigo'rithms with respect to our worst-possible case analysis are'seri—
alizations” of O(logn) depth sorting networks. (e.g. [AITA83)). All other sorting
algorithms, that we have seen, are rejected because they have some comparands that

are not in O(logn) comparisons.
3. Max-Finding Algorithms

We turn our attention to the problem of finding the maximum of n keys when
G is almighty. since this is a problem we can complelely solve. We will character-

ize the optimal algorithms. The analysis is simplified because there is a unique



worst-possible outcome for these algﬂfithms. A balanced knock-out tournament, dis-
cussed below, suggests itself. In that case the keys are all equally vulnerable and
H is not giving the adversary any advantage. We show that such-a tournament is

optimal but we must be careful in defining “balanced”.

First we observe that the M-version of the max-finding game, .where the prices
are known to M, is irivial. H will compare the two cheapest keys, then the third
cheapest will be compared with the previous winner, and so on. Clearly the best G
can do is to have the more expensive comparand ‘win each comparison. (If ihe
problem is somehow constrained so that A must use a tournament Wwith the records
assigned to the leaves in a given left-to-right order then the: a solution is also

known. based on Huffman's algorithm [ZHan84]) Below we deal with the A-version.

Aﬁy full binary tree on n leaves is identified with a “knockout™ fowrnament.
That is, thle n leaves correspond 1o keys and internal nodes are “matches’” which the
greater key wins and advances to the next match, i.e. the parent node. (The tourna-
ment tree describes an algorithm with a corresponding decision tree. The two trees

are otherwise unreiaied) We define a tourney to he a tournament based on a binary

tree ‘which has height Ilogzn and one of the two sublournamentis has exaclly 2*

participants, % 20, and both subteurnaments are themselves tourneys. A perfect tour-

ney is for 2* paruupantS, that is all the leaves are at depth k.
Lemma 2: Every max- ﬁndmg aioorxthm dommates some tournament.

Proof: If the algorithm never involves the loser of a comparison i further com-
parisons then it already corresponds to a tournament. Otherwise select a path in the
decision tree of the algorithm such that a previous loser always loses (or if two
losers compete choose arbitrarily).. Recall that every path in such a decision tree
muét have .n-1 first-time losers. It is easy to see that the irredundant comparisons
done on the path we selected can be represented by 2 tournament. Clearly the

entire algorithm dominates the algorithm defined by this one tournament. 0O

How is a worsi-possible outcome of a tournament calculated? Recall that in
this type of analysis the outcomes are sorted to test for domination. So the Iéading
- largest terms are the most important. Informally this implies that in the tourna-
ment the players at the deepest levels (in both subtrees) should continue to win

antil the final round. Formally, the cost can be found by ]abelimg each internal



node of the tournament with the minimum of the heights of its two subtrees.
Combine with these n—1 numbers the height of the entire tree; call this set F. Let
the sorted values of F be (f{.f2. " *.fn'). Note an outcome corresponds to an

arrangement of wins at the internal nodes.

Lemma 3: Fach worst-possible outcome for a tournament is such that the subtour-

naments had worst-possible outcomes.

Proof: Suppose there were a counterexample. Il is easy to see that if the oulcome
of the offending subtournament was replaced by its worsi-possible outcome then the

oulcome of the entire tournament would dominate the previpus outcome. [

Corollary 1: For each worsi-possible outcome the winner of each comparison is the

comparand with the most previous wins, with ties broken arbitrarily.

Proof: A formal induction proof can be posed using lemma 3 and the definition of

deminating outcomes. [

Lemma 4: For any worsi-possible outcome ¢ of 2 tournament
(Cll;czis coe ey crz’) = (f]'- fQ': T, fn‘)-

Proof: From corlollary 1 we see that before a match the number of wins for each -
p]ayér is the. height of their respective subtrees. It follows that the corresponding
set of comparison counts is . Note that each internal node was labelled with the
lifespan of the loser at that peint, while the number of games of : the ultimate
" winner is the height of the tree. Figure 1 illustrates the correspondence. (v is an
interesting exercise to show with graph—-theofetic arguments that the sum over F is

2.(,n-—i). as it must be.) O

In the sequel we will speak of "the” worst~possible outcome of a {ournament
since it is essentially unique. It is the simple structure of the worst-possible ‘out-
come in the preceding proof that permits us to study tournaments. We now want
to show !;h::u among 2ll tournaments will prefer tou%neys. The next lémma
shows, for example, that it does not matter if the toumey for n=19 splits elements
initially so that we get the best of 16 against the best of 3, 8 ‘against 11.'01'- 4

~against 15.
Lemma 5: The worst-possible outcome for every tourney on n Keys is.the same.

Proof: If n = 2% there is.only the one perfect tourney, otherwise consider the



Figure 1

tourney in figure 2. We let'n, be the number of leaves in tree T, and so on. In

loggmi . L . . e
i , i.e. it i$ as large as possible. It is easy to verify every tour-

figure 2 n, =72
ney is isomorphic to one formed by the following interchange: switch some perfect
sublourney 7, of 7, with T,, when n, 2 n;. Note that this interchange does not

ceffect F. O

The next result is the key lemma, and it is easily verified for small n, n <6.
For éxanﬁ;’ﬁle, for n =6 if we end with the best of 4 against the best of 2 the
(sorted) outcome is (322111); however 3 against 3. gives the -undesired outcome

(331111).

Lemma 6: The worst-possible outcome of every tournament that is not a tlourney

strictly dominatles the (unique) outcome of any tourney on the same keys.

Proof: Suppose n is the least number of leaves leading to a coﬁnierexampie. From
the preceding discussion we see n > 6. Wlog assume this tournament is as shown
in figure 3, where T, and 7. are pérfect tourneys, n, & ny n. #=ng, and ny > n.
Recall by lemma 2 and the minimality of n that the subtournaments must be tour-
neys. By lemma 5 we can assume n, > n, and n. > ny. N‘o\#._"és in figure 2, we

cut a perfect subtourney Tp out of T} and switch it with T, where the heights "of




Figure 2

Iy and Ty .are the same. Note F is unchanged. . Now the left sublree is not a

tourney. The left subtree with lemma 3 contradicls the minimality of n. 0

Figure 3




Theorem 1: Every max-finding algorithm dominates any tourney in the worst-

possible case.
Proof: This follows from lemmas 2 and 6. O

Finally we remark that the J-version, where the prices are assigned randomly,

can be easily solved. H will use a “balanced tournament” [HwaN77] which has

or

every.leaf at depth

logz n logan|— 1. (It is not necessarily a tourney.) The

reasoning is that any tournament with greater height would dominate this. Further

among tournaments of the same height this one has the fewest nodes at depth

loga n| and therefore minimizes the chances of having expensive records assigned to

them. It is inieresting that the same type of tournament has been conjectured 1o
give 1he best average performance for stochastic lournaments; this has been shown
for a few probability distributions [HWAN77,MAURT5). It would be interesling to

investigate any connection between those studies and J-version problems.

4, References _ _
[A1TA83] M. Ajtai, J. Komlos and E. Szemeredi, Sorting in ¢ log n Parallel Steps,
Combinatorica, 3, 1983, pp. 1-19. :

[HwaN77]F. K. Hwang, Several Problems on Knockout Tournaments, Proc 8th S.E.
Conf Combinatorics, Graph Theory, and Computing, 1977, pp. 363-380.

| [Hwan84]F. K. Hwang, Three Versions of a Group Testing Games, SIAM J Alg Disc
' Meth, 3, 1984, pp. 145-153.

[KNUT73] D. Knuth, The Art of Computer Programming: Sorting and Sear ching, Addason—
- Wesley, 1973.

[MAUR75] W. Maurer, On the Most Effective Tournament Plans with Fewer Games
than Competitors, Ann Statistics, 3, 1975, pp. 717-727.

fRicu84] D. Richards, Sortmg with Ezpenswe Comparands Intl J Computer Marh 16,
1984, pp. 23-45.

[Z1naN84] C. ‘Zhang, Optimal Alphabetic Binary Tree for a Nonregular Cost Function,
Disc Appl Math, 8, 1984, pp. 307-312. :



