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ABSTRACT

The goal of checkpointing in database management systems is to save database states
on a separate secure device so that the database can be recovered when errors and failures
occur. Recently, the possibility of having a checkpointing mechanism which does not infer-
fere with the transaction processing has been studied[5, 8, 23]. Users are allowed to submit
transactions while the checkpointing is in progress, and the transactions are performed in
the system concurrently with the checkpointing process. This property of non-interference is
highly desirable to real-time applications, where restricting transaction activity during the
checkpointing operation is in many cases not feasible. In this paper, we present a decentral-
ized algorithm for non-interfering checkpointing in distributed database systems, and prove

its correctness.

Index Terms - distributed database, recovery, consistency, checkpoint, transaction, non-

interference, availability



1. Introduction

The need for baving recovery mechanisms in distributed database systems is well ack-
nowledged. In spite of powerful database integrity checking mechanisms which detect errors
and undesirable data, it is possible that some erroneous data may be included in the data-
bagse. Furthermore, even with a perfect integrity checking mechanism, failures of bardware
and/or software at the processing sites may destroy the consistency of the database. In
order to cope with those errors and failures, distributed database systems provide recovery

mechanisms, and checkpointing is a technique frequently used in such recovery mechanisms.

The goal of checkpointing in database management systems is to save a consistent state
of the database on a separate secure device. In case of a failure, the stored data can be
used to restore the d;;ttabase. Checkpointing must be performed so as to minimize both the
costs of performing checkpoints and the costs of recovering the database. If the checkpoint
intervals are very small, too much time and resources are spent in checkpointing; if these
intervals are large, too much time is spent in recovery. Since checkpointing is an effective
method for maintaining consistency of database systems, it has been widely used and stu-

died by many researchers[2, 5, 6, 8, 10, 11, 20, 21, 23].

In order to achieve the goal of efficient database system recoverability, it is necessary
to consider issues such as global consistency, non-interference, and communication overhead,
when a checkpointing mechanism is designed for a distributed database system. The need
and the desirability of these properties is self evident. For example, even though an incon-
sistent checkpoint may be easy and inexpensive to obtain, it may require a2 lot of additional
work to recover a consistent state of the database. Some of the checkpointing schemes

appearing in the literature (e.g. [6]) do not meet this criteria.

A quick recovery from failures is desirable in many applications of distributed data-
bases that require high availability. For achieving quick recovery, each checkpoint needs to
be globally consistent so that a simple restoration of the latest checkpoint can bring the

database to a consistent state. In distributed database systems, this property of global con-



sistency makes the checkpointing more complicated. In order to make each checkpoint glo-
bally consistent, updates of a transaction must be either included completely in one check-
point, or not included at all. A straightforward method of assuring this is to suspend
further processing of transactions so that all sites can reach a state of inactivity in which
no transaction is active, before writing the local checkpoint. After the checkpointing bas
been completed. normal processing of transactions can be resumed. However, restricting tran-
saction activity during the checkpointing operation is undesirable, and in many cases not

feasible, depending on the availability constraints imposed on the system.

Traditiohal checkpointing in distributed database systems can be classified into three
categories according to the coordination necessary among the autonomous sites. These are (1)
fully synchronized[10], (2) loosely synchronized[20], and (3) nonsynchronized[6]. Fully syn-
chronized checkpointing is done only when there is no active transaction in the database
system. In this scheme, before writing a local checkpoint, all sites must have reached a
state of inactivity. In a loosely synchronized system, each site is not compelled to write its
local checkpoint in the same global interval of time. Instead, each site can choose the point
of time to stop processing and take the checkpoint. A distinguished site locally manages a
checkpoint sequence number and broadcasts it for the creation of a checkpoint. Each site
takes the local checkpoint as soon as it is possible, and then resumes normal transaction
processing. It is then the responsibility of the local transaction managers to guarantee that
all transactions run in the local checkpoint intervals bounded by checkpoints with the same
sequence numbers. In nonsynchronized checkpointing, global coordination with respect to the
checkpointing does not take place at all. It is a decentralized approach in that each site is
independent from all others with respect to the frequency of checkpointing and the time
instants when local checkpoints are saved. However, a logically consistent database state is

not constructed until a global reconstruction of the database is required.

In {2], & backup database is created by pretending that the backup database is a new
site being added to the system. An initialization algorithm is executed to bring the new site

up-to-date.



One of the drawbacks common to the checkpointing schemes above is that transaction
processing must be stopped for checkpointing. Maintaining transaction inactivity for the
duration of the checkpointing operation is not feasible for many applications of distributed

database systems.

When checkpointing is performed during normal operation of the system, the interfer-
ence with transaction processing must be kept to a minimum. It is highly desirable that
users are allowed to submit transactions while the checkpointing is in progress, and the
transactions are executed in the system concurrently with the checkpointing process. In [8],
an approach for checkpointing, based on a formal model of asynchronous parallel processes
and an abstract distributed transaction system, is proposed. It is called non-intrusive in the
sense that no operations of the underlying system need be halted while the global check-
point is being executed. The non-intrusive checkpointing approach as suggested in [8]

describes the behavior of an abstract system and does not provide a practical procedure for

obtaining a checkpoint.

One way of achieving both properties of non-interference and global consistency is that,
for each checkpoint, a centralized control process makes a decision on whether or not to

include updates of a transaction in it. The algorithm proposed in [23] follows this approach.

Algorithms with fully distributed control have been claimed to be more reliable than
those with centralized control, because even if one control site fails, it might be possible to
continue the tasks in progress by using other control sites. One of the problems associated
with the distributed control is the number of control messages that must be exchanged
among the participating sites: O(N?) messages are to be sent in one round of message

exchange, where N is the number of participants.

In this paper, we propose a decentralized checkpointing algorithm which is non-
interfering and which efliciently generates globally consistent checkpoints. The algorithm pro-
vides a practical procedure for non-interfering checkpointing in distributed environments,

through efficient implementation of the abstract idea of non-intrusiveness. The algorithm



constructs globally consistent checkpoints, and yet the interference of it with the transaction
processing is greatly reduced. Perfect non-interference can be achieved by the algorithm if
messages are delivered in the order they are sent. The notion of diverged computation in [8]
is captured in the "committed temporary versions’ of data objects in our algorithm. The
algorithm needs only O(NVN) messages in one round of message exchange, by using the
communication structure based on finite projective planes{1]. This paper is organized as fol-
lows. Section 2 introduces a model of computation used in this paper. Section 3 presents
the communication structure used by the algorithm. Section 4 describes the checkpointing
algorithm. Section 5 presents an informal proof of the correctness of the algorithm. Section
6 discusses the robustness of the algorithm and describes the recovery methods associated

with the algorithm. Section 7 concludes the paper.

2. A Model of Computation

This section introduces the model of computation used in this paper. We describe the

notion of transactions and the assumptions about the effects of failures.

2,1. Data Objects and Transactions

A database consists of a set of data objects. Each data object has a velue and represents
the smallest unit of the database accessible to the user. Data objects are an abstraction; in a
particular system, they may be files, pages, records, items, etc. All user requests for access
to the database are handled by the database system. We consider a distributed database sys-
tem implemented on a computing system where several autonomous computers (called sites)
are connected via a communication network., The set of data objects in a distributed data-
base system is partitioned among its sites. A database is said to be consistent if the values
of data objects satisfy a set of assertions. The assertions that characterize the consistent

states of the database are called the consistency constraints [7].

The basic units of user activity in database systems are fransactions. Fach transaction

represents a complete and correct computation, i.e., if a transaction is executed alone on an



initiaﬂy consistent database, it would terminate in a finite time and produce correct results,
leaving the database consistent. A transaction is the unit of consistency and hence, it must
be atomic. By atomic, we mean that intermediate states of the database must not be visible
outside the transaction, and every updates of a transaction must be executed in an all-or-
nothing fashion. A transaction is said to be commifted when it is executed to completion,
and it is said to be aborted when it is not executed at all. When a transaction is commit-
ted, the output values are finalized and made available to all subsequent transactions. We
assume that the database system runs a correct transaction control mechanism (e.g., atomic
commit algorithm{22] and concurrency control algorithm[3]). and hence assures the atomicity

and the serializability of transactions.

Each transaction has a time-stamp associated with it [14]. A time-stamp is a number
that is assigned to a transaction when initiated and is kept by the transaction. Two impor-
tant properties of time-stamps are (1) no two transactions bave the same time-stamp, and
{2) only a finite number of transactions can have a time-stamp less than that of a given

transaction.

The transaction managers that have been involved in the execution of a transaction are
called the participants of the transaction. The coordinator is one of the participants which
initiates and terminates the transaction by controlling all other participants. In our transac-
tion processing model, we assume that the coordinator decides on the participants using suit-
able decision algorithms, based on the data objects the transaction reads and writes. The
coordinator creates and sends a Transaction Initiating Message (TIM) to each participants. A
TIM contains the definition of the transaction, including the list of participants, the objects

to be accessed, and the time-stamp.

All participants that receive a TIM and are able to execute it reply with a TIM-ACK
message to the coordinator. The other sites send a TIM-NACK message indicating that the
transaction cannot be executed at this time. The coordinator waits for a response from all

of the participants. If they are all TIM-ACKs then it sends a Start Transaction Message



(STM). The transaction is started at a participating site only after it has received the STM.
One TIM-NACK message is enough to reject the transaction. In that case, the coordinator

sends a Reject message to each participants, and the transaction is rejected.

2.2, Failure Assumptions

A distributed database system can fail in many different ways, and it is almost
impossible to make an algorithm which can tolerate all possible failures. In general, failures
in distributed database systems can be classified as failures of omission or commission

depending on whether some action required by the system specification was not taken or

- some action not specified was taken[16]. The simplest failures of omission are simple crashes

in which a site simply stops running when it fails. The hardest failures are malicious runs
in which a site continues to run, but performs incorrect actions. Most real failures lie

between these two extremes.

In this paper, we do not consider failures of commission such as the "malicious runs"
type of failure. When a site fails, it simply stops running (fail-stop). When the failed site
recovers, the fact that it has failed is recognized, and a recovery procedure is initiated. We
assume that site failures are detectable by other sites. This can be achieved either by net-
work protocols or by high-level time-out mechanisms in the application layer[4]. We also
assume that network partitioning never occurs. This assumption is reasonable for most local

area networks and some long-haul networks.

3. Communication Structure

In a decentralized algorithm, each site is associated with it a set of other sites with
which it communicates. In many cases, this set consists of all other sites in the system.
The cardinality, membership, and intersection properties of these sets affect the message
complexity and the number of rounds of message exchange of the algorithm[13]. The com-
munication structure discussed in this section aims to reduce the number of messages by

requiring each site to communicate only with a subset of the set of sites in the system.



For correctness of the algorithm, each site must be capable of obtaining the necessary infor-
mation from any other sites. Therefore, the intersection of the sets associated with the
different sites must be non-null. One possible method of constructing sets with this pro-
perty is to use a finite projective plane, which consists of a finite collection of points and

lines that satisfy the following postulates:

P1. Two distinct points lie on one and only one common line.

P2: Two distinct lines pass through one and only one common point.

P3: There are four distinct points, no three of which lie on the same line.

Postulate P3 is necessary to eliminate certain degenerate finite projective planes such as
a set of points and a single line. Construction of finite projective planes is discussed in [19],
and a family of decentralized commit protocols that wuses finite projective planes is
developed in [12, 13). In [15], sets satisfying similar properties are used in the context of

mutual exclusion.

The key to our communication structure is the construction of N subsets of the set of
sites in the system. The subsets must satisfy constraints on the cardinality, membership,
and intersections among them. Let N be the number of sites in the system, and 8§ be a set
of subsets of them. It has been shown in [13] that a set of subsets can be constructed

which satisfies the following constraints:

(1) B =N

(2) IS} = m, where §; € S, 1<i€N,

(3) Each site is a member of exactly m subsets.
(4) The intersection graph of S is connected.

Consider a site i. It belongs to S; and m-1 other subsets. At each round of message
exchange, a site i sends messages only to other sites in §; and to the m-1 sites of other
subsets to which i belongs. We call them the communication group of the site. Messages are

exchanged only within a communication group, and hence at most 2X(m-1) messages are



sent by a site. Since m = O(VN) by the properties of the projective planes[1], only

O(NVN), instead of O(N?), messages are sent at each round of message exchange.

A projective plane may not exist for the given N. It happens when m is not the
power of a prime (i.e., m 2 P¥ for P prime and k a positive integer). In this case, several
virtual sites have to be added to the system for the communication structure to be used.
These virtual sites execute the algorithm identical to actual sites except that they should
have initial value zero to exchange. and no data objects are stored at those sites. It can be
easily shown that, despite the addition of virtual sites. only O(NVN) messages are sent at

each round of message exchange[12].

4. An Algorithm for Non-Interfering Checkpoints

In a distributed database system, each site saves the state of the data objects stored at
it to generate a local checkpoint. We cannot ensure that the local checkpoints are saved at
the same instance, unless a global clock can be accessed by all the checkpointing processes.
Moreover, we cannot guarantee that the global checkpoint, consisting of local checkpoints
saved, is consistent. Non-interfering checkpointing algorithms are very useful for the situa-
tions in which a quick recovery as well as no blocking of transactions is desirable. Instead
of waiting for a consistent state to occur, the non-interfering checkpointing approach con-
structs a state that would result by completing the transactions that are in progress when

the global checkpoint begins.

For each checkpoint to be globally consistent, updates of a transaction must be either
included in the checkpoint completely or not at all. To achieve this, transactions are divided
into two groups according to their relations to the current checkpoint: after-checkpoini-
transactions (ACPT) and before-checkpoint-transactions (BCPT). Updates belonging to BCPT
are included in the current checkpoint while those belonging to ACPT are not included. In a
centralized database system, it is an easy task to separate transactions for this purpose.
However, it is not easy in a distributed environment. For the separation of transactions in

a distributed environment, & special time-stamp which is globally agreed upon by the
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participating sites is used. This special time-stamp is called the Global Checkpoint Number
(GCPN), and it is determined as the maximum of the Local Checkpoint Numbers (LCPN)

through the coordination of all the participating sites.
An ACPT can be reclassified as a BCPT if it turns out that the transaction must be

executed before the current checkpoint. This is called the conversion of transactions. The

updates of a converted transaction are included in the current checkpoint.

4.1. The Algorithm

The checkpointing procedure begins when certain conditions for generating the next
checkpoint are satisfied. We assume that a special site (called checkpoint initiator, or CI) has
the responsibility for checking the conditions for the nexi checkpoint generation (e.g., the
number of transactions executed), and initiates the global checkpointing procedure when the
conditions are satisfied. Once a checkpoint has started, the initiator does not issue the next

checkpoint request until the first one has terminated.
The variables used in the algorithm are as follows:

(1)  Local Clock (LC): a clock maintained at each site which is manipulated by the clock

rules of Lamport[14].

(2)  Local Checkpoint Number (LCPN): a number determined locally for the current check-

point.

(3)  Global Checkpoint Number (GCPN): a globally unique number for the current check-

point.

(4) CONVERT: a Boolean variable showing the completion of the conversion of all the

eligible transactions at the site.
Our checkpeinting algorithm works as follows:

(1) The initiator sends a Checkpoint Request Message with a time-stamp LCq to its com-
munication group. The local checkpoint number of the initiator is set to LCgq. The

initiator sets the Boolean variable CONVERT to false:
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2)

3

(4)

&)

(6)

CONVERTyy := false
and marks all the transactions at the initiator site with the time-stamps not greatler
than LCPNg as BCPT.
On receiving a Checkpoint Request Message, the local clock of site n is updated and

LCPN,, is determined as follows:

LC, = max(I.Cq + 1, LCY)
LCPN, := LC,

The checkpoint process of site n sends LCPN, to its communication group, and sets

the Boolean variable CONVERT to false:

CONVERT, = false
and marks all the transactions at the site n with the time-stamps not greater than
LCPN, as BCPT.
When LCPN; is received from each of its communication group, LCPN, is updated as
follows:

LCPN, = max(LCPN;, LCPN,)

After the reception of the LCPN; from all members of its communication group, the
checkpoint process sends LCPNf to its communication group. notifying that this is the

final value of LCPN;,.

When all the LCPNf have been received from each of its communication group, the

GCPN is determined as follows:

GCPN := max(LCPNf)

For all sites, after LCPN is fixed, all the transactions with the time-stamps greater

than IL.CPN are marked as temporary ACPT. If a temporary ACPT wants to update

~-11-



)

(8)

9

any data objects, those data objects are copied from the database to the buffer space
of the transaction. When a temporary ACPT commits, updated data objects are not
stored in the database as usual, but are maintained as committed temporary versions
(CTV) of data objects. The data manager of each site maintains the permanent and
temporary versions of data objects. When a read request is made for a data object
which has committed temporary versions, the value of the latest committed temporary
version is returned. When a write request is made for a data object which has com-
mitted temporary versions, another committed temporary version is created for it

rather than overwriting the previous committed temporary version.

When the GCPN is known, each checkpointing process compares the time-stamps of
the temporary ACPT with the GCPN. Transactions that satisfy the following condition
become BCPT; their updates are reflected into the database. and are included in the

current checkpoint.
LCPN < time-stamp(T) € GCPN

The remaining temporary ACPT are treated as actual ACPT; their updates are not
included in the current checkpoint. These updates are included in the database after
the current checkpointing has been completed. After the conversion of all the eligible

BCPT, the checkpointing process sets the Boolean variable CONVERT to true:

CONVERT = true

Local checkpointing is executed by saving the state of data objects when there is no

active BCPT and the variable CONVERT is true.

After the execution of local checkpointing, the values of the latest committed tem-
porary versions are used to replace the values of data objects in the actual database.

Then, all committed temporary versions are deleted.
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The above checkpointing algorithm essentially consists of two phases. The function of
the first phase (steps 1 through 5) is the assignment of GCPN that is determined from the
local clocks of the system. The second phase begins by fixing the L.CPN at each site. This is
necessary because each LCPN is a candidate of the GCPN of the current checkpoint, and the
committed temporary versions must be created for the data objects updated by ACPT. The
notions of committed temporary versions and conversion from ACPT to BCPT are intro-
duced to assure that each checkpoint containg all the updates made by transactions with

earlier time-stamps than the GCPN of the checkpoint.

When a site receives a Transaction Initiation Message, the transaction manager checks
whether or not the transaction can be executed at this time. If the checkpointing process
has already executed step 7 and time-stamp(T)} € GCPN, then a TIM-NACK message is
returned. Therefore in order to execute step 8, each checkpointing process only needs to
check active BCPT at its own site, and yet the consistency of the checkpoint can be

achieved.

4.2. Termination of the Algorithm

The algorithm described so far has no restriction on the method of arranging the exe-
cution order of transactions. With no restriction, however, it is possible that the algorithm
may never terminate. In order to ensure that the algorithm terminates in a finite time, we
must ensure that all BCPT terminate in a finite time, because local checkpointing in step 8

can occur only when there is no active BCPT at the site.

Termination of transactions in a finite time is ensured if the concurrency control
mechanism gives priority to older transactions over younger transactions. With such a
time-based priority, it is guaranteed that once a transaction T; is initiated by sending Start
Transaction Messages, then T; is never blocked by subsequent transactions that are younger
than T, The number of transactions that may block the execution of T; is finite because
only a finite number of transactions can be older than T;. Among older transactions which

may block T, there must be the oldest transaction which will terminate in a finite time,
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since no other transaction can block it. When it terminates, the second oldest transaction
can be executed, and then the third, and so on. Therefore, T; will be executed in a finite
time. Since we have a finite number of BCPT when the checkpointing is initiated, all of
them will terminate in a finite time, and hence the checkpointing itself will terminate in a
finite time. Concurrency control mechanisms based on time-stamp ordering as in [3, 24] can

ensure the termination of transactions in a finite time.

5. Consistency of Global Checkpoints

In this section we give an informal proof of the correctness of the algorithm. In addi-
tion to proving the consistency of the checkpoints generated by the algorithm, we show that
the algorithm has another nice property that each checkpoint contains all the updates of
transactions with earlier time-stamps than its GCPN. This property reduces the work
required in the actual recovery, which is discussed in Section 7. A longer and more

thorough discussion on the correctness of the algorithm is given in [25].
The properties of the algorithm we want to show are

(1) a set of all local checkpoints with the same GCPN represents a consistent database

state, and

(2) all the updates of the committed transactions with earlier time-stamps than the GCPN

are reflected in the current checkpoint.

Note that only one checkpointing process can be active at a time because the check-
pointing coordinator is not allowed to issue another checkpointing request before the termi-

nation of the previous one.

A database state is consistent if the set of data objects satisfies the consistency con-
straints[7]. Since a transaction is the unit of consistency, a database state S is consistent if

the following holds:

(1) For each transaction T, S contains all subtransactions of T or it containg none of

them.
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(2) If T is contained in S, then each predecessor T° of T is also contained in 8. (T is a
predecessor of T if it modified the data object which T accessed at some later point

in time.)

For a set of local checkpoints to be globally consistent, all the local checkpoints with
the same GCPN must be consistent with each other concerning the updates of transactions
that are executed before and after the checkpoint. Therefore, to prove that the algorithm
satisfies both properties, it is sufficient to show that the updates of a global tramsaction T
are included in CP; at each participating site of T, if and only if time-stamp(T) &
GCPN(CP;). This is enforced by the mechanism to determine the value of the GCPN, and

by the conversion of the temporary ACPT into BCPT.

Consider the GCPN first. It can be shown that when the GCPN is determined at step

5, it is the maximum of all the LCPN in the system by the following arguments:

(1) Let the maximum of the LCPN in the system be the one at site j (LCPN)). Let site i

have the GCPN different from LCPN; by the end of step 5.

(2) I j is a member of the subset S;, i must have received LCPNj in step 3, and there-
fore LCPN{ must be LCPN; The maximum determined in step 5 must again be

LCPN;, which contradicts the assumption.

(3) If j is not a member of S, then j must belong to Sy for some k which is a member
of the communication group of i. In step 3, j must send its LCPN to k., and hence
LCPN{ at step 4 must be LCPN;. In step 4, k sends this value to i. Therefore, GCPN

determined at i in step 5 must be LCPN;, which contradicts the assumption.

A transaction is said to be reflected in data objects if the values of data objects
represent the updates made by the transaction. We assume that the database system pro-
vides a reliable mechanism for writing into the secondary storage such that a writing opera-
tion of a transaction is atomic and always successful when the transaction commits. Because
updates of a transaction are reflected in the database only after the transaction has been

successfully executed and committed, partial results of transactions cannot be included in
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checkpoints.

The checkpointing algorithm assures that the sequence of actions are executed in some
specific order. At each site, conversion of eligible transactions occurs after the GCPN is
known, and local checkpointing cannot start before the Boolean variable CONVERT becomes
true. CONVERT is set to false at each site after it determines the LCPN, and it becomes
true only after the conversion of all the eligible transactions. Thus, it is not possible for a
local checkpoint to save the state of the database in which some of the eligible transactions

are not reflected because they remain unconverted.

We can show that a transaction becomes BCPT if and only if its time-stamp is not
greater than the current GCPN, This implies that all the eligible BCPT will become BCPT
before local checkpointing begins in step 8. Therefore, updates of all BCPT are reflected in

the current checkpoint.

From the atomic property of transactions provided by the transaction control mechan-
ism (e.g. commit protocol in [22]), it can be assured that if a transaction is committed at a
participating site then it is committed at all other participating sites. Therefore if a transac-
tion is committed at one site, and if it satisfies the time-stamp condition above, its updates

are reflected in the database and also in the current checkpoint at all the participating sites.

6. Discussion

The desirable properties of non-interference and global consistency not only make the
checkpointing more complicated in distributed database systems., but also increase the work-
load of the system. It may turn out that the overhead of the checkpointing mechanism is
unacceptably high, in which case the mechanism should be abandoned in spite of its desir-
able properties. The practicality of non-interfering checkpointing, therefore, depends partially
on the amount of extra workload incurred by the checkpointing mechanism. In this section
we consider practicality and the robustness of the proposed algorithm, and present recovery

methods associated with the algorithm.
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6.1. Practicality of the Algorithm

There are two performance measures that can be used in discussing the practicality of
the proposed algorithm: extra storage and extra workload reguired. The extra storage
requi;rement of the algorithm is simply the CTV file size, which is a function of the
expected number of ACPT of the site, the number of data objects updated by a typical
transaction, and the size of the basic unit of information:

CTV file size = NyX(number of updates)X{(size of the data object)
where Ny is the expected number of ACPT of the site.

The size of the CTV file may become unacceptably large if N or number of updates
becomes very large, Unfortunately, they are determined dynamically from the characteristics
of transactions submitted to the database system, and hence cannot be controlled. The only
parameter we can change in order to reduce the CTV file size is the granularity of a data
object. The size of the CTV file can be minimized if we minimize the size of the data
object. By doing so, however, the overhead of normal transaction processing (e.g.. locking
and unlocking, deadlock detection, etc) will be increased. Also, there is a trade-off between
the degree of concurrency and the lock granularity[18]. Therefore the granularity of a data
object should be determined carefully by considering all such trade-offs, and we cannot

minimize the size of the CTV file by simply minimizing the data object granularity.

There is no extra storage requirement in intrusive checkpointing mechanisms[2, 10, 20].
However this property is balanced by the cases in which the system must block ACPT or

abort half-way done global transactions because of the checkpointing process.

The extra workload imposed by the algorithm mainly consists of the workload for (1)
determining the GCPN, (2) committing ACPT (move data objects to the CTV file), (3)
reflecting the CTV file (move committed temporary versions from the CTV file to the data-
base), and (4) making the CTV file clear when the reflect operation is finished. Among
these, workload for (2) and (3) dominates others. As in extra storage estimation, they are

determined by the number of ACPT and the number of updates. Therefore, as far as the
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values of these variables can be maintained within a certain threshold level, the proposed
algorithm would not severely degrade the performance of the system. A more detailed dis-

cugsion on the practicality of non-interfering checkpointing is given in [27].

6.2. Site Failures

So far, we assumed that no failure occurs during a checkpoint. This assumption can be
justified if the probability of failures during a single checkpoint is extremely small. How-
ever, it is not always the case, and we now consider the method to make the algorithm

resilient to failures.

The algorithm is insensitive to the failure of site i once it has sent LCPN{ to its com-
munication group. If the site fails before sending out LCPN{, each member of its communi-
cation group must communicate with the members of 8 to find out the values of their
LCPN. Because the algorithm is fully distributed, each site can take its local checkpoint
without further coordination once GCPN of the current checkpoint is known. When the site
recovers from the failure, the recovery manager of the site must find out the GCPN of the
latest checkpoint. After receiving information of transactions which must be executed for
recovery, the recovery manager brings the database up to date by executing all the transac-
tions whose time-stamps are not greater than the latest GCPN. Other transactions are exe-

cuted after the state of the data objects at the site is saved by the checkpointing process.

An atomic commit protocol guarantees that a transaction is aborted if any participant
fails before it sends a Precommit message to the coordinator. Therefore, site failures during
the execution of the algorithm cannot affect the consistency of checkpoints because each

checkpoint reflects only the updates of committed BCPT.

The algorithm is, however, sensitive to failures of the initiator. In particular, if the
initiator crashes before the broadcast of a Checkpoint Request Message. none will initiate the
next checkpoint. Too many transactions should be redone, or may even be lost if the tran-
saction log is damaged in the failure, if the intercheckpoint interval becomes very long due

to the crash of the initiator. One possible solution to this involves the use of a number of
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backup processes; these are processss that can assume responsibility for completing the
initiator’s activity in the event of its failure. These backup processes are in fact checkpoint-
ing processes at other sites. If the initiator fails before it broadcasts the Checkpoint Reguest
Message, one of the backups takes the initiative. A similar mechanism is used in SDD-1 [9]
for religble commitment of transactions. Proper coordination among the backup processes is
crucial here. In the event of the failure of the initiator, one, and only one backup process
has to assume the initiative. The algorithm for accomplishing this assumes an ordering
among the backup processes, designated in order as pi, P2, ..., Pp- Process py— is referred to
as the predecessor of process pe (for k > 0), and the initiator is taken as the predecessor

of process p;.

We assume that the network service enables processes to be informed when a given
site achieves a specified status (simply UP or DOWN in this case). Initially, each of the

backup processes checks the failure of its predecessor. Then the following rules are used.

(1) If the predecessor is found to be down, then the process begins to check the predeces-

sor of the failed process.

(2) If the initiator is found to be down, the first backup process assumes the initiative of
checkpointing.

(3) If a backup process recovers, it ceases to be a part of the current checkpointing.

(4)  After each checkpoint, the list of backup processes is adjusted by including all the

UP sites.

These rules guarantee that at most one process, either the initiator or one of the
backup processes, will be active at any given time. Thus a checkpointing will begin in a

finite time,.

The role of the initiator in the algorithm is simply that of starting the next check-
point. Apart from this function the initiator is not critical to the operation of the proposed
algorithm. If a uniformly agreeable point in time can be made known to the individual

sites, then the initiator can be eliminated from the algorithm. One way to achieve this is to
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preassign the clock values at which the checkpoints will be taken. For example, we may
take checkpoints at the clock values in the multiple of 1000. Whenever the local clock of a

site crosses the multiple of this value, checkpointing can begin.

If the frequency of checkpointing is related to the load conditions and not necessarily
to the clock valueé, then this method of preassignment will not work as well. In this cage,
a process will have to assume the role of the checkpointing initiator to initiate the check-
pointing. A unigue process has to be identified as the initiator. This may be achieved by
using the solutions to the mutual exclusion problem [17] and meking the selection of the

initiator a critical section activity.

6.3. Recovery

The recovery from site crashes is called the site recovery. The complexity of the site
recovery varies in distributed database systems according to the failure situation[20]. If the
crashed site has no replicated data objects and if the recovery information is available at
the crashed site, local recovery is enough. Global recovery is necessary because of failures
which require the global database to be restored to some earlier consistent state. For
instance, if the transaction log is partially destroyed at the crashed site, local recovery can-

not be executed to completion.

When a global recovery is required, the database system has two alternatives: a fast
recovery and a complete recovery. A fast recovery is a simple restoration of the latest
checkpoint. Since each checkpoint generated by the algorithm is globally consistent, the
restored state of the database is assured to be consistent. However, all the transactions com-
mitted during the time interval from the latest checkpoint until the time of crash would be
lost. A complete recovery is performed to restore as many transactions that can be redone
as possible. Te trade-offs between the two recovery methods are the recovery time and the

number of transactions saved by the recovery.

Quick recovery from failures is critical for some applications of distributed database

systems which require high availability (e.g.. ballistic missile defense or air traffic control).
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For those applications, the fate of the mission, or even the lives of human beings, may
depend on the correct values of the data and the accessibility to it. Awvailability of a con-
sistent state is of primary concern for them, not the most up-to-date consistent state. If a
simple restoration of the latest checkpoint could bring the database to a consistent state, it
may not be worthwhile to spend time in recovery by executing a complete recovery to save

some of the transactions.

For the applications in which each committed transaction is so important that the most
up-to-date consistent state of the database is highly desirable, or if the checkpoint intervals
are large such that a lot of transactions may be lost by the fast recovery, a complete
recovery is appropriate to use. The cost of a complete recovery is the increased recovery
time which reduces the availability of the database. Searching through the transaction log is
necessary for a complete recovery. The second property of the algorithm (i.e., each check~
point reflects all the updates of transactions with earlier time-stamps than its GCPN) is
useful in reducing the amount of searching because the set of transactions whose updates
must be redone can be determined by the simple comparison of the time-stamps of transac-
tions with the GCPN of the checkpoint. Complete recovery mechanisms based on the special

time-stamp of checkpoints (e.g., GCPN) have been proposed in [11, 26].

7. Concluding Remarks

During normal operation of the database system, checkpointing is performed to prepare
information necessary for a recovery from failures. For better recoverability and availability
of distributed database systems, checkpointing must be able to generate a globally consistent
database state, without interfering with transaction processing. Site autonomy in distributed
database systems makes the checkpointing more complicated than in centralized database sys-

tems.

In this paper, we have proposed a decentralized checkpointing algorithm for distributed
database systems. The properties of global consistency and non-interference of checkpointing

result in some overhead on the one band, and increase the system availability on the other
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hand. For the applications where the ability of continuous processing of transactions is so
critical that the blocking of transaction processing for ~checkpointing is not feasible, we
believe that the checkpointing algorithm presented in this paper provides a practical solution

to the problem of constructing globally consistent states in distributed database systems.
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