ON VARIABLES AS ACCESS SEQUENCES
IN PARALLEL ASYNCHRONOUS COMPUTATIONS

Craig Williams
Paul F. Reynolds, Ir.

Computer Science Report No. TR-89-17
December, 1989

On Variables as Access Sequences
In Parallel Asynchronous Computations®

Craig Williams
Paul F. Reynoids, Ir.

ABSTRACT

We introduce a new method for coordinating access to shared variables in parallel asynchronous computa-
tions. The method is based on access sequences, the representation of each shared variable as the se-
quence of values written to and read from the variable, and on parallel operations, a mechanism for ac-
cessing groups of shared variables atomicaily. Parallel operations on access sequences replace locks as
the basis for implementing atomic actions and process synchronization. Advantages include reduction of
the potential for deadlock and starvation and greater concurrency in accessing shared memory. The prin-
cipal costs are the increase in space needed 1o represent shared variables and in the complexity of the in-
terconnection network and the memory modules.

1. INTRODUCTION

The essence of a variable is that it changes, that it exists in time. We propose that it can be useful to
think about a variable as the sequence of values written to and read from the variable during a computa-
tion and, in an asynchronous parallel computation, to represent shared variables as access sequences.
Representation of variables as access sequences, together with parallel operations, a mechanism for
accessing groups of shared variables atomically without locks, form the basis for a simple and efficient
way for asynchronously executing processes to coordinate their accesses to shared memory. Parallel

operations are defined in a companion paper [RWW§89].

Asynchronous processes need two types of coordination in accessing shared memory. First,
processes must be able to access groups of shared variables as an atomic action, without interference from
other processes. (We do not use the term ‘*mutual exclusion’” only because it implies a mechanism we do
not use.) Second, processes must be able to synchronize to ensure a specific ordering among accesses to

shared data. An example of a synchronization pattern is the producer/consumer relationship.

* The work of Craig Williams was supported by an assistaniship in parallel processing sponsored by DARPA and NASA and administered
by the University of Maryland. :

Parallel operations on access sequences provide a mechanism for handling both types of coordina-
tion without the use of locks. Concurrency is restricted, but by data dependencies, not locks. Eliminating
locking as the basis for coordinating access to shared variables brings many benefits, including greater
concurrency in accessing shared variables and elirﬂination of the potential for deadlock implicit in lock-
ing. The principal costs are the increase in the complexity of the memory modules implied by the access
sequence representation, and in the space needed to represent variables. In section 6, we describe a practi-
cal implementation of access sequences and show that the entire access sequence need not actually be

stored.

Our proposal for coordinating accesses to shared memory is based on three ideas:

(1) Variables can be represented as sequences of values instead of as single values. Each element in the
sequence represents an access to the variable. An element can contain a value read from or written
to the variable or can reserve a position for such a value.

(2) The execution of an access to a shared variable can be split into a scheduling step and an assignment
step. The scheduling step reserves a position in the variable’s access sequence and the assignment
step transfers a value to, in the case of a write, or from, in the case of a read, the position reserved
by the scheduling step.

(3) A process can schedule accesses to multiple shared variables as an atomic action using parallel
operations.

A process executes an atomic action by issuing a parop scheduling all the shared variable accesses
required by the atomic action, executing the assignment steps for these accesses as the values become
available. The use of the parallel operation in the scheduling step reserves a consistent ‘‘slice’’ across the
sequences of the shared variables accessed in the atomic action. A process synchronizes with another pro-
cess by scheduling a write (read) to a shared variable immediately succeeded by a read (write) where

either the write or read is executed by the other process.

There is an important limitation on the use of parallel operations in scheduling atomic actions: a
process must be able to name the shared variables the atomic action will access before it executes the
atomic action. If a process must both read and use a pointer or index in the same atomic action it will
have insufficient information to schedule the atomic actions. We propose three methods of accommodat-

ing these troublesome atomic actions. One of these methods involves introducing a form of locking we

call RW-locking. We are able to prove that atomic actions that do not use RW-locking are deadlock-free.
Programs with atomic actions that are implemented using RW-locking must be independently proven

deadiock-free.

Our focus is on asynchronous, shared memory computations, For concreteness, we assume a topol-
ogy in which a bank of processing elements (PEs) is connected by an Omega interconnection network to a
bank of memory modules (MMs). The use of parallel operations imposes the requirement that all
processes access shared memory through the same network. We discuss extending this method of coordi-
nating paraliel computations to synchronous computations in section 5 and to other topologies and

message-based computations in section 8.

In the next section, we describe each of the three ideas that form the basis for our proposat for coor-
dinating access to shared memory. Section 3 defines the operations on access sequences, In sec.tions 4
and 5, we describe how these operations can be used to implement atomic actions and synchronization.
Section 6 proposes an implementation of variables as access sequences. In the remaining sections, we

review related work and discuss topics for future research.

2. THE BASES FOR ATOMIC ACTIONS

The following three ideas form the basis for our proposal for coordinating access 1o shared vari-

ables:

(1) Variables can be represented as sequences of values instead of as single values. Imagine that
each shared variable is represented by a stack of children’s alphabet blocks, each with a value, the same
value for a given block, stamped on each face. An assignment to the variable adds a new block to the top
of the variable's stack. Representing variables as single values can be compared to looking at the stacks
only from directly overhead. In this one dimensional view, only the top block in each stack is visible.
Representing variables as sequences corresponds to looking at the stacks from the side. All the blocks in

every stack are visible in this two dimensional view.

An immediate advantage of the access sequence representation is the additional freedom this extra
dimension gives processes in accessing variables. In a parallel asynchronous computation, the order in
which processes access a given shared variable is constrained by the order in which the processes
accessed other shared variables. As an example, consider the following atomic actions executed con-

currently by processes P, and P,

Pl:: IF V1 THEN read{(V2):
P2:: V1 := FALSE; V2 := 10;

Assume initially vi = TRUE and v2 <> 10. If p, accesses vl before P,, then », must read v2
before p, writes v2, i.e, P,’s access to v2 must logically precede 2,’s access. If variables are
represented as single values, then P,’s access to V2 must not only logically precede Pp,’s access, but
must also actually precede P,’s access. Otherwise P, will overwrite the value of v2 that p; must read.
The access sequence representation allows the accesses to occur in either order. The *‘old”’ value of v2
is still visible even after p, completes its assignment. Thus the access sequence representation allows
accesses 10 be executed ‘“‘out of sequence’’, in an order that is different from the order that would other—
wise be required for correct execution of atomic éctions. In particular, writes can occur as soon as the
process executing the write computes the value to be written. The write will not obscure a value that must
be seen by subsequent reads that logically precede the write. This idea of maintaining old versions of
data to accommodate tardy reads has been well studied and is the basis for multiversion concurrency con-

trol in databases. (See section 7.)

An additional advantage of the access sequence representation is that it provides the structure for
scheduling accesses as atomic actions. A access sequence not only records values for each write made to
the variable, but also records reservations for writes and reads. As we will explain, these reservations

allow tardy writes to be accommodated as well as tardy reads.

(2) The execution of an access to a shared variable can be divided into two parts: scheduling and
assignment. Scheduling reserves the context for a read or write by reserving a position in the access

sequence. Note that the scheduling step for a write can be executed before the value to be written has

been determined. Assigrnment transfers a value. For writes, the transfer is from a local variable or regis-
ter to the position reserved for the write in the access sequence. For reads, the direction of the transfer is
reversed. The assignment step for writes is initiated by the MM containing the variable when the value of
the variable at the position reserved by the read has been determined. This value is determined when the

assignment step is executed for the write preceding the read in the access sequence.

Note that the assignment steps for scheduled accesses can occur at any time subject to one con-
straint — the assignment step for a scheduled read must occur after the assignment step for the highest
write under it in the stack. This freedom in the order in which assignment stéps can be executed i's one
source of additional concurrency over that allowed by methods of coordinating access 10 shared memory

that rely on locking.

The reason for dividing accesses into a scheduling step and an assignment step is that the separation
allows processes 10 use parallel operations to schedule atomic actions. If scheduling could not be
separated from assignment, scheduling would have to be piecemeal. It would be impossible to guarantee
that a group of accesses could complete without either rollback or interference owing to intervening

accesses by other processes.

Another reason for dividing accesses into a scheduling step and an assignment step is synchroniza-
tion. Not only can scheduling and assignment occur at different times, they can be performed by different
processes. Using operations on access sequences, a process can schedule a write (read) and an immedi-
ately succeeding read (write) where the assignment for either the read or write is to be executed by

another process.

(3) A process can operate on multiple shared variables as an atomic actiont using parallel operations.
Parops are described in a companion paper [RWWS89]. A parallel operation (parop) is a special case of
the atomic action, a set of one or more operations on shared variables executed as an indivisible step. The
parop is not as general as the atomic action because each operation must be independently issuable, i.e.,

the process issuing a parop must be able to issue all the operations in the parop before any operation in

that parop is execuied. In this paper, we assume that parops are composed of operations that schedule or
execute assignments on access sequences. The operations on access sequences are defined in the next

section.

Every execution of a parop program is ‘‘sequentially consistent’’. A computation is sequentially
consistent if it is equivalent to an execution in which the atomic actions are executed serially in an order
that is consistent with the order specified by each process's sequential program [ShS88]. Parops can be

implemented without locking and can be pipelined.

We can now explain inforrnally how these ideas combine to support atomic actions. A process exe-
cutes an atomic action by issuing a parop scheduling all the accesses to shared variables required for the
atomic action, executing the assignment steps for these accesses as the values become available, For

example, a process, P,, executes the atomic action

Py:: V1 := Vi * V2 V1 and V2 are shared variables

by first issuing a parop naming v2 for a read access and v1 for a read access followed by a write access.
Note that execution of the assignment steps is controlled by data flow. For a read this means waiting
until the immediately preceding write scheduled to access the variable completes its assignment and the
MM returns the value assigned. For a write, the assignment can be executed as soon as the value to be
computed becomes available. Typically this computation will require the completion of reads in the same
atomic action. In the example, when P, receives back the values for v1 and v2 it can compute the new

value of v1 and execute the assignment step for the write it has already scheduled to v1.

Execution of an atomic action scheduled with parops is atomic because the parop that schedules the
atomic action reserves a position in the access sequence of each of the accessed shared variables that is
consistent with indivisible execution of the atomic action. Even though the accesses to shared variables in
an atomic action may occur at widely separated times and places, they appear 1o every process in the

computation 0 be executed as an indivisible operation.

3. OPERATIONS ON ACCESS SEQUENCES

The access sequence of a shared variable v is the sequence of values written to and read from v
during a computation. An access sequence is similar to an access trace or log, but is in the order in which
the accesses are scheduled, rather than the order in which assignments are executed. Initially, v’s access
sequence is empty. The scheduling step for a read or write to v appends an element to v with the special
value TBA *‘to be assigned”’. In the case of a read, the pld of the process to which the value of visto be
returned is also recorded as a component of the value of the element appended by the read. The assign-
ment step fof a write changes the value from TBA to the value assigned. We say that a write (read) is
‘“‘unsubstantiated”’ if the scheduling step has been executed but not the assignment step and that a write
(read) has been ‘‘substantiated’’ when the assignment step has been executed. The assignment step for a
read changes the value from TBA(pId) to the value assigned to v by the *‘preceding’’ write when that
write is substantiated. The write “*preceding’’ a given read to v is the last write that appended an ele-
ment t0 v before the element appended by the read. We say that a read ‘‘succeeds” a given write if the
write is the preceding write for the read. A read 1o an empty sequence is undefined. Note that reading an

empty sequence corresponds to reading an uninitialized variable,

The scheduling and assignment steps can sometimes be collapsed. For a write accessing v, it is
convenient to define an operation that appends an element to v with the value assigned to v in a single
step. (This operation is the w operation defined below.) For a read, if the preceding write is aiready sub-
stantiated when the read is scheduled, the assignment step can be executed immediately. In this case, a
practical implementation will skip the scheduling step that would otherwise append an element with the

value TBA(pId) and instead immediate return to process pld the value assigned by the preceding write.

The operations we define are on variables, where it is understood that a variable is of a primative
data type, not a data structure, such as a record or an array. As a simplifying assumption, we assume that
each shared variable is located in a single MM and that the hardware supports indivisible reads and writes

to individual variables. The assumption can be relaxed by representing each shared variable in the pro-

gram with one or more ‘‘machine-unit’’ shared variables, each of the size for which the hardware sup-
potts indivisible access, and treating each access to a shared variable in the program as an atomic action

that accesses each of the *‘machine-unit’’ variables constituting that variable.

We define five operations on access sequences. The operations are intended to be executed by the
memory modules (MMs) on access sequences implemented as arrays. We assume initially that the arrays

are infinite. Section 6 describes a practical implementation. The five operations are as follows:

SCHED(V,pos,pID)
Schedules a write. Appends an element to Vv’s access sequence and sends to process pid (which
may be different from the process that issued the operation) the address of v and the position, pos,
of the newly appended element in v’s access sequence. Process pId will use these values as
parameters to the ASSIGN operation when it executes the assignment step for the write.

ASSIGN(V pos,val)
Executes the assignment step for a previously scheduled write. Assigns the value val to element
pos of V’s access sequence and propagates the value to the succeeding reads.

R(V ,pos,var,plD)
Executes a read access, assigning the local variable var the value of v. If the preceding write is
already substantiated, the R operation immediately sends to process pId the address of v and the
value assigned by the preceding write. Otherwise, the R operation appends an element with the
special value TBA (pId) and sends to process pid the position, pos, of the new element in the
access sequence. The value assigned to v by the preceding write will be sent to process pzd as a
result of alater ASSIGN or CANCEL operation.

W(V,val)
Schedules and executes the assignment for a write in a single step. The w operation appends an ¢le-
ment to V’s access sequence with the value val.

CANCEL(V,pos) _
Cancels a previously scheduled write. The CANCEL operation changes the value of the posth ele-
ment in Vv’s access sequence from TBA to DELETED. If the preceding write is substantiated, the
CANCEL operation propagates the value of that write {0 succeeding reads. When an ASSIGN opera-
tion propagates, the value propagates through elements marked DELETED.

To enable the process receiving a value returned from a R operation to associate the value with the
correct local variable, the MM tags values it returns from an R operations with both the variable name
and the position of the read in the access sequence. The access sequence position must be included in the
tag because a process may have more than one unsubstantiated read scheduled for the same variable. A
table for each process is maintained locally (by the process, the operating system, or the processor net-
work interface), recording for each unsubstantiated read the name of the shared variable, the local vari-

able that is to receive the value, and, when the MM supplies the value, the position of the read in the

variable’s value sequence. Since the process itself does not typically refer to the value of the pos param-

eter of the R operation, we will usually substitute a hyphen for this parameter.

The canceL operation cancels only write accesses. We do not propose an operation on access
sequences to cancel reads because the cost of cancellation is comparable to the cost of executing the read
and because the cancellation may be ineffective — unlike a write, a read may be substantiated before the
cancel arrives at the MM. The /*vdiscard/*w operation, an operation that cancels reads, but that is exe-

cuted locally at the PE is introduced in a later section,

Note that if the third parameter in a SCHED or R operation specifies a pID that is different from that
of the process executing the operation, then the assignment step will be executed by another process. We
call such operations ‘‘synch operations’’. For example, the operation R{(V, -,val,2) is a synch opera-
tion if it is issued by a process other than P,. The operation sends the value of the current element of v
10 P, even if the operation is executed by another process. We treat the pId parameter of the SCHED
and R operations as a default parameter. When omitted it is assumed to specify the pID of the process

that executes the operation.

We do not intend that these operations be used directly by the programmer. Ideally, the program-
mer will use higher level constructs that will be translated automatically into access sequence operations.
We define notations for specifying atomic actions and send/receive synchronization in the following two
sections, but our primary purpose is not to define a programming language but to show that parallel

operations on access sequences can be used as a basis for coordinating access to shared memory.

This is a basic set of operations. In section 8 we briefly describe other operations that we intend to

consider adding to the operation set.
4. ATOMIC ACTIONS

An atomic action is a group of statements executed by a single process as an indivisible unit from
the point of view of any other process in the computation [OwL82]. Within an atomic action, the compu-

tation can be analyzed as if it were a sequential computation. No other process can interfere with an

atomic action or observe intermediate states of the execution of the atomic action.

An atomic action may not contain a synch operation. Communication with another process from

within an atomic action violates the definition of an atomic action.

The simple way to implement atomic actions in a shared memory computation is to use locks.
Before executing an atomic action, a process sets locks that prevent other processes from accessing the
shared variables named in the atomic action, releasing the locks upon completion of the atomic action.
Locks can be placed on the shared variables directly or on a critical section, the code that references the
shared variables. The monitor typifies this latter approach to locking. Locking limits concurrency beyond

the limitation implied by data dependencies and creates the potential for deadlock and starvation.

Parallel operations on access sequences give an alternative way of implementing atomic actions.
Instead of locking out other access to variables accessed in an atomic action, the process reserves a slice
of each variable’s access sequence, using parops to ensure that the slice is consistent with indivisible exe-
cution of the atomic action. Advantages of this approach are greater concurrency and freedom from

deadlock and starvation.

In this section we define a notation for designating an atomic action and describe how atomic

actions are implemented using parallel operations on access sequences.

4.1. Notation

Atomic execution of a group of statements is specified by inclosing the statements within curly

braces:

{ an atomic action }.

Atomic actions may not contain other atomic actions — nesting of curly braces is undefined.

Since we assume that the hardware supports indivisible reads and writes to individual variables
(scalars), a single reference to an individual shared variable is the trivial case of the atomic action. We

omit curly braces in the trivial case. For example, to indicate that the value of v2 is to be read as an

10

atomic action and then, in a subsequent atomic action, written to V1, we write

V1 1= V2
instead of
{var := V2}; {V1 := var}. var is a local variable
Note that there are no curly braces around the the first statement, v1 := v2. The statement specifies

that the read to v2 and the write to v1 are cach executed as an atomic action, but not as part of the same

atomic action.

4.2. Translation of atomic actions

We define the “‘write set” of an execution of an atomic action to be the set of shared variables writ-
ten by the atomic action. The ‘‘read set’’ is defined analogously, except that a variable is not in the read
set if the first read in the atomic action to the variable occurs after the first write. These access sets are
defined with reference to a given execution because different executions of the same atomic action may
have different access sets. The name of a variable or the type of access to be made 10 the variable may
depend on the value of another variable accessed in the same atomic action, Later in the section, we
describe methods for translating atomic actions with access sets that can only be determined dynamically.

For now we assume that the access set of an atomic action can be statically determined.

An atomic action can be translated into a sequence of one or more parops, interspersed with state-
ments specifying local computation, where each parop is composed of one or more operations on an
access sequence. The first parop in the sequence, the ‘‘scheduling parop’’, contains a SCHED operation
for evefy variable in the write set and an R operation for every variable in the read set. The scheduling
parop may also include w operations if the process has already computed the value to be assigned. Sub-

sequent parops contain ASSIGN operations for SCHED operations contained in the scheduling parop.

The scheduling parop need contain at most two operations for any given shared variable even if the

atomic action accesses the variable more than twice. Only.the first read and the last (as determined by the

11

sequential flow of control within the atomic action) write to any one variable need be scheduled (and no
read need be scheduled if the first read occurs after the first write). Since no other process can interfere
with an atomic action, the other accesses can be to a local copy of the variable. If the atomic action first

reads a variable v and then writes v, the scheduling parop will contain the operations

< R(V,pos,var) || SCHED(V,pos) >.

The angle brackets signify that the order in which the operations are listed in the parop is the order in
which the operations will be executed at the MM. Operations inclosed by a pair of angle brackets must
all name the same shared variable. In the absence of angle brackets, operations within a parop may be

executed in an arbitrary order.

4,3, Execution of atomic actions

A process begins execution of an atomic action by issuing the scheduling parop. As the values
become available from which to compute the values to be assigned, the process issues an ASSIGN opera-
tion for each SCHED operation, completing each write access. An atomic action is ‘‘completed’” when the
assignment step for every access scheduled by the scheduling parop has been executed. Unless the pro-
cess has insufficient information to schedule the next atomic action until the current atomic action is
completed, a process is not required to compl_cte an atomic action before issuing the scheduling parop for
the next atomic action. In an efficient implementation, each process will overlap the assignment phase of

the current atomic action with the scheduling of the next.

Whether an R operation is blocking is an implementation choice. Blocking is the simplest alterna-
tive. A process blocks until all reads issued in the scheduling parop are satisfied, i.e., until the process
receives back from the MM values for each R operation issued in the scheduling parop. This choice
unnecessarily limits concurrency and prevents pipelining atomic actions. A better choice is to allow a
process to proceed until it must use a value not yet returned by an R operation. If this latter alternative is
chosen, care must be taken that the process continues to ‘‘listen for’’ the return of previously issued r

operations. This requirement is implied by the write-substantiation rule.

12

4.4, The write-substantiation rule

Once memory has returned values for every R operation issued by a process in a parop, po, and in

parops issued by the process before Po, the process must be able to issue an ASSIGN operation for every

SCHED operation it issued in po. We refer to this requirement as the ‘‘write-substantiation’® rule. The

write-substantiation rule is important to ensure that execution of atomic actions is correct and free of the

potential for deadlock and starvation.

The rule imposes three restrictions — one on the implementation, the other two on the program, as

follows:

(1)

(2

3

The process must *‘listen for’’ the return of values from unsubstantiated R operations. In particular,
if the process executing an atomic action is blocked, it must be reactivated when the last unsubstan-
tiated R operation of its oldest uncompleted parop returns a value. (This is the minimal require-
ment, not a recommended implementation. A rule that is likely to be easier to implement and that
conforms with this restriction is that a process is reactivated whenever a value is returned to it by an

R Operation.)

For every SCHED operation contained in parop po, the value to be assigned in each corresponding
ASSIGN operation (or the information needed to cancel the write reservation) must depend only on
values known to the process that issues PO when every R operation in po and in parops issued by
the process bef_ore PO is substantiated. In particular, values assigned in write accesses scheduled in

PO must not depend on values returned by R operations contained in parops issued after po.

Every write access scheduled by an atomic action must be substantiated by the atomic action. In
terms of operations on access sequences, for every SCHED operation issued in an atomic action, the

process must issue a corresponding ASSIGN or CANCEL operation.

It is possible to write programs that violate the last two restrictions by directly specifying operations on

access sequences (the next subsection contains an example), but is difficult or impossible in a typical pro-

cedural programming language to violate either of these restrictions. If all three restrictions are observed,

13

execution of an atomic action conforms to the write-substantiation rule,

4.5, Correctness

Concurrent execution of a group of atomic actions is “‘correct’” if the execution is equivalent-from
the point of view of every other process in the computation to a serial execution of the same atomic
actions in an arbitrary order. (Of course, if the program specifies that atomic action A must precede
atomic action B, then the execution must be equivalent 1o some serial execution in which A precedes B.)
The serializability of the execution of atomic actions implies that the execution of each atomic action is

indivisible from the point of view of any other process in the computation.

Concurrent execution of a group of atomic actions using parallel operations on access sequences is
serializable if each atomic action conforms with the write-substantiation rule and begins execution by
issuing a scheduling parop. The sequential consistency of parops ensures that the execution of a set of
parops induces a partial order over the parops. If every atomic action in a computation conforms to the
write-substantiation rule, concurrent execution of a group of atomic actions is equivalent to a serial exe-
cution of the same atomic actions in an order that extends the partial order induced by the execution of

their scheduling parops.

Correctness depends on conformity with the third restriction imposed by the write-substantiation
rule — for every SCHED operation issued by an atomic action, the atomic action must issue a
corresponding CANCEL or ASSIGN operation. Violation of this restriction can cause a serial execution
of a group of atomic actions to block even though a concurrent execution of the same atomic actions ter-
minates. As an example of the need for conformity with the write-substantiation rule, consider the atomic
actions A, B, C,and D below. Atomic actions A and B executed by process P, assign the value of v2
to v1. Note that a violates the write-substantiation rule by containing a SCHED operation with no

corresponding ASSIGN operation.

Pl { SCHED(V1,pos) }: atomie action A

{ R(V2,—,var); ASSIGN(V1,pos,var) }; atomic action B
P2:: { R(V1,-,varl) || R({(V2,-,var2) } atomic action C
P3:: { W(V2,5) 3: atomic action D

14

Assume that the partial order (in this case also a total order) induced by the execution of the scheduling
parops for these atomic actions is AcDB. Execution of these atomic actions using parallel operations is
not equivalent to serial execution in this (or any other) order. The concurrent execution terminates but a
serial execution in the order defined by the execution of the scheduling parops blocks, The preceding
write for the R operation on vl in C can not be substantiated until B is executed, but B can not be exe-
cuted in a serial computation until ¢ completes. Ineffect, p, creates a twist in time, reaching into p,’s
future to bring back a value (the‘ value of v2) that it inserts into p,’s past (as the value of vi), In the
reduced computational space of a serial computation, there is not enough room for this twist and the exe-
cution blocks. Conformity with the write-substantiation rule implies that no such twist can occur - that
each atomic action will be able to complete when executed serially in an order that is consistent with the

partial order induced by execution of their scheduling parops.

4.6. Deadlock-freedom

Atomic actions that conform with the write-substantiation rule are deadlock-free. Deadlock implies
a cycle in the ordering among parops and the sequential consistency of parops implies that such a cycle

can not exist.

If the computation is deadlocked, then there is a cycle of processes such that each process is waiting
on the process that precedes it in the cycle. Assuming processes p; and P, are both executing atomic
actions using parallel operations on values sequences, p; waits on process b, if and only if p; is wait-
ing for a value to be retumned by an R operation, where the preceding write for the R operation was
scheduled by a SCHED operation issued by P;. Each blocked process in the cycle is waiting on an R
operation that was issued in the scheduling parop for the process’s oldest uncompleted atomic action.
Otherwise, by the write-substantiation rule, the oldest uncompleted atomic action could be completed.
Therefore, a cycle of blocked processes implies a cycle in the execution order of the set of parops contain-
ing of the scheduling parop for the oldest uncompleted atomic action for each of the blocked processes.

But the sequential consistency of parops ensures that the order in which parops are executed is acyclic.

15

4.7. Liveness

Assuming that every write is eventually substantiated or cancelled, atomic actions are starvation-
free — no process that attempts to execute an atomic action will be blocked forever. All operations on a
shared variable are executed by the MM in FIFO order by arrival time at the MM. Thus every atomic
action will be scheduled in the order in which the scheduling operations arrive at the MM. The assign-
ment step for each read access will eventually be executed because the condition for the read — substan-
tiation of the preceding write — will eventually be true. Our assumption that every write is eventually
substantiated is valid unless the code specifies a SCHED operation with no corresponding ASSIGN or
CANCEL operation or a process deadlocks, fails, or enters a nonterminating loop before substantiating or

cancelling a scheduled write.

Note that starvation in the form of livelock can occur in implementations of atomic actions in which
atomic actions may rollback [Ree83] or in implementations that rely on the test-and-set primitive 1o

acquire locks or to ensure mutually exclusive execution of P and V operations.

4.8. Dynamic access sets

The method we have described for implementing atomic actions requires that the read and write sets
of the atomic action be known before execution of the atomic action begins. As indicated above, this
information may not be available. The access sets may not be known at the beginning of the atomic
action because the name of a variable to be accessed or the type of access to be made may depend on the
value of another variable in the same atomic action. We call a variable whose value determines the
access set of an atomic action an ‘‘access variable’”. Access variables either appear in boolean expres-
sions that determine the flow of control or are used in address computations, €.g.. pointers and array

indices.

We propose three techniques for executing atomic actions with access sets that can only be deter-
mined dynamically.

THE CANCEL TECHNIQUE. In some atomic actions, the process can schedule accesses 10 every variable

16

that be accessed, using the CANCEL operation to cancel write reservations that are later determined
may pe

to be unnecessary. Consider the atomic action

{ IF V1
THEN V2 := 5
ELSE V3 := V4 }

Unitil the access variable v1 is read, the access sets are unknown. (If v1 is true, the write set contains v?2
and the read set contains only v1, otherwise the write set contains v3 and the read set conains both v1
and v4.) This type of atomic action can be executed with parallel operations on access sequences by
issuing a scheduling parop based on the assumption that all branches of the condition will be executed,
canceling unneeded SCHED operations after the condition is evaluated. In the example above, the process

can reserve space in all of v2, v3,and v4’s access sequences, later cancelling the unused write reserva-

tion:
R(Vl,=,vall) || SCHED(VZ2,v2Zpos) || SCHED({V3,v3pos) || R{V4,vipos,vals)
IF vall
THEK ASSIGN(VZ,v2pos,5) |i CANCEL(V3,v3pos) || discard(V4,vdpos)
ELSE ASSIGN(V3,v3pos,vald) || CANCEL(V2,v2pos)

A discard(V,pos) operation is a locally executed operation that cancels a read access. It updates the
process’s locally maintained table of unsubstantiated reads to indicate that a value sent to the process by
main memory tagged (V,pos) should be discarded. After executing a discard(V,pos) operation the
process is free to issue another R operation naming the same local variable to receive the value. The
local variable will be assigned the value returned by the second R operation even if it arrives at the pro-
cess network interface before the value returned by the first R operation. The discard operation was not

necessary in this example, but can be necessary in the execution of atomic actions that contain loops.

The cancel technique is designed for atomic actions in which control flow creates the uncertainty
over the access sets, as in the example above, and can also be appropriate for atomic actions that read a
variable and use it to index into a small array. Performance limits the use of the cancel technique to cases
in which the process can identify in advance a superset of each of the actual access sets that is *‘not much

larger’’ than the access set. If every process routinely reserves all of shared memory for each atomic

17

action using this technique, the computation would be serialized. At some point, as the size of this super-
set grows in relation to the size of the actual access set, other techniques are needed.

THE REPEATED READ TECHNIQUE. Atomic actions that contain pointers or indices into large arrays are
more troublesome because there is no way to identify a ‘‘not much larger’’ superset of an access set. An
example of an atomic action in which the access sets are unknown because a pointer is read and then

dereferenced in the same atomic action is as follows:

{n = ¢”.next; n".data := e}

Until the access variable ¢~ .next is read, the process has insufficient information to schedule the write
access. Atomic actions that contain such pointers and indices can be executed by using repeated reading.
The process executing the atomic action first reads the access variable (or variables) and then issues the
scheduling parop for the atomic action based on the value read. The scheduling parop must contain a
second read of the access variable to confirm that the value has not changed. If it has, the process must

cancel every write and discard every read scheduled by the scheduling parop and try again.

The atomic action above can be executed using the repeated read technique as follows:

R{c™.next, -, n); the first read
done := FALSE;
REPEAY
R{(e”.next,—-,n’) {| SCHED(n".data,pos); the scheduling parop comains the confirming read
IF n = n’
THEN BEGIN

done := TRUE;
ABSIGN(n".data,pos,e)
END
ELSE CANCEL{n".data,pos} {| R{c".next,~,n); the confirming readfor the next iteration
UNTIL done;

This technique’s drawback is that it is not starvation-free. A steady stream of processes changing the
pointer, at the rate of one per memory cycle, can prevent the termination condition from ever becoming
true. The advantage is concurrency. Subject to the ‘‘one-access-at-a-time’’ limitation imposed by the
MM hardware and any data dependencies implied by the code, any number of processes can traverse the
pointer concurrently using repeated reading. Although the loop in this atomic action may not terminate,

execution of the atomic action does not introduce the potential for starvation for other processes since all

18

SCHED operations issued by the atomic action are cancelled on each failing iteration.

The repeated read method may be also be useful in some computations in which the access set can
be statically determined. An atomic action that computes a function that takes a long time to compute
may be executed by first reading the input variables and computing the function before issuing a schedul-
ing parop containing the SCHED operation on the output variable and confirming R operations on the
input variables. By decreasing the time between the execution of the SCHED operation and the
corresponding ASSIGN operation on the output variable, this approach should decrease the time that pro-
cess reading that variable are delayed. A similar use for the repeated read method is in executing atornic
a_ctions that write a variable that has been identified as a botileneck.

THE RW-LOCKING TECHNIQUE. A third technique for executing atomic actions with dynamic access sets
is RW-locking, intended for use with access variables that are pointers. The method is called RW-
locking because the pointer functions as a lock that is set by scheduling a read access immediately fol-
lowed by a write. The unsubstantiated write on the pointer creates a data dependency that delays all sub-
sequently scheduled reads of the pointer. The pointer functions as a lock protecting the variable to which
it points from access through that pointer until the process that set the lock releases it by substantiating or
cancelling its write reservation on the pointer. The protection is partial — RW-locking a pointer does
not prevent accesses by all other processes to the variable to which it points, only accesses through that
pointer — but it is sufficiently powerful in combination with parallel operations on access sequences to

support correct execution of atomic actions that read and dereference a pointer.

A process executes an atomic action using RW-locking in four steps:
(1) request the lock (or Jocks) by issuing an R-SCHED operation pair on the pointer.
(2) wait until the read to the pointer is substantiated, i.e., until the lock is acquired.

(3) issue a parop scheduling every other access required by the atomic action. {(Note this parop is not a

scheduling parop because it does not contain the r operation on the pointer.)

19

@

release the lock by cancelling or substantiating the write reservation on the pointer. This operation
can be issued in the parop issued in step two (unless the process needs a value read in the parop

before it can release the lock) but must not be issued before the that parop.

The pointer example above is executed using RW-locking as follows:

R{c”.next,—,n} }| SCHED(¢".next,pos); set lock
W{n" .data,e) i| CANCEL{c”.next,pos) access data and release lock

Note that the CANCEL in this case is issued in the same parop that contains the operation dereferencing

the pointer.

If any process uses a variable, v, as a lock, then every access to v must be consistent with v's

function as a lock. In particular, the following restrictions apply 10 accesses 10 V.

(1

@)

no process can write v without first reading v in the same atomic action. Blind writes have the

effect of releasing a lock set by another process.

Every process that accesses both v and the data protected by v in the same atomic action must first
acquire the lock represented by v before scheduling any access to v~, Note that RW-locking and
the repeated read technique can not both be used with the same variable. pp Atomic actions exe-
cuted using the RW-locking method are correct because these restrictions, together with the sequen-
tial consistency of parops and the write-substantiation rule, imply a partial order over the atomic
actions. Either for every variable accessed by both atomic actions 2 and B, A’s access is
scheduled before B’s access or, for every such variable, B’S access is schedulcd before a’s, Note
that the partial order over parops implied by the sequential consistency of parops is insufficient to
establish atomicity of atomic actions that use RW-locking because there is no scheduling parop —
the pointer is read and dereferenced in separate pai'ops. The restrictions above ensure that for any
pair of atomic actions, A and B8, that read and dereference the same pointer, v, using RW-locking,
if A’s R-SCHED operation on v. is executed before B’s,then A’s operations scheduling accesses to

v~ will also be executed before B’s. Atomic action A does not substantiate or cancel its write

20

reservation for v until it schedules all of its accesses dereferencing v and B can not schedule any

operation dereferencing v until A substantiates or cancels its write reservation.

Atomic actions executed using the RW-locking technique may violate the second restriction of the

write-substantiation rule. For example, the atomic action

{n := ¢".next; ¢”.next = n".next }

executed using the RW-locking technique as follows:

R{c¢”.next,~-,n) || SCHED{c".next,pos}:
R{n" .next,~,p}):
ASSIGN{¢” .next,pos,p};

violates the write-substantiation rule by assigning t0 <" .next a value read in a parop issued after the

parop that schedules the write 10 ¢~ . next.

Atomic actions executed with the RW-locking technique can deadlock if they fail to conform with
the write substantiation rule and they operate on a daia structure that contains a cycle. On a circularly
linked list of n elements, n processes will deadlock executing the code above if ¢ points to a different
element for each process and the processes concurrently issue the first parop. Each process waits for its
successor in the cycle of waiting processes to substantiate the link field in the ¢lement, n, that is the suc-
cessor of its starting element, <. Note that a cycle in the structure is necessary in order to create a cycle
of waiting processes. Atomic actions that use the RW-locking technique must be independently proven
deadlock-free by showing that the structure accessed does not contain a cycle or that at least one element

in the cycle will not be accessed concurrently with the other clements.

4.9. Examples

For each example problem, we present a solution written in a Pascal-style high-level language fol-
lowed by the translation of that solution into a sequence of parallel operations on access sequences.
Ideally the programmer writes the solution using a high-level language and the translation is done

automaticatly.

21

COUNTER INCREMENT. Each process increments a shared counter, v, by the value of delta, a variable
local to the process. The counter must be read and incremented atomically 10 prevent the erroneous
answer that results if a process reads the counter between the time another process reads and writes the

counter.

The counter increment

{V := Videltal

is executed using parallel operations on-access sequences as follows:

< R{V,-,vax} || SCHED({V,pos) >;
ASSIGN (V,pos,vart+delta)

If two processes concurrently increment the counter, the accesses are serialized in the order in which their
scheduling parops arrive at the MM containing the counter. The increment is atomic because the schedul-
ing parop for the increment reserves two contiguous elements in the counter’s access sequence — a read
immediately followed by a wfite. No other process can intervene by accessing the counter between the

read and write.

The usual solution

repeat busywait
until test—and-set (lock) = 0

var = V;

V = vartdelta;

lock = 0; relecse the lock

uses locks to ensure that the increment is executed atomically.

DELETION FROM A DOUBLY-LINKED LIST. Each process begins at the head of the list and searches for an
element with a data field that matches target, a variable local to the process. If it finds a matching ele-
ment, the process deletes it from the list and exits. We assume that the first element on the list is a sen-
tinel element with a data field equal to nilval, a value that does not match any process’s target. The
shared variable head points to the sentinel element. The value of head does not change. Each element

contains two link fields, the £ (forward) link and the b (back) link.

22

The accesses required to delete an element must be done atomically or portions of the list can be

lost. When a process deletes an element it changes the data value 1o nilval to prevent any other pro-

cess with the same target that may be currently visiting the element from attempting to delete the element

again. The data field is read tw

ice to avoid the overhead of the atomic action if the data value is not equal

to target. The second reading is necessary to ensure that no process deleted the element, changing its data

value to nilval between readings. The procedure makes no provision for garbage collection.

p := head; found

REPEAT
p = p .L;
IF p = nil THE
IF p~.data t
THEN ({IF p~
TH

UNTIL found;

:= FALSE;

N EXIT;
arget
.data
EN BEGIN
p.b". £

target

This search and delete procedure is executed using the repeated read technique as foliows:

p := head; found := FALSE;
REPEAT

R(p*-fr“rp);

IF p = nil THEN EXIT;

R{p~.data,—-,d)
IF d = target
THEN BEGIN
Rip~.f
done
REPEAT
R{p
Rip
SCH
IF

UNTIL

(=2} || R(p".b,—, b} the first reads

:= FALSE:

i
| { SCHEED (p”.data,dpos)

“uby=,b7) | R{PTLE - ETY) the confirming reads
~.data,-,d}
ED{p"~.£" .b, fpos}
d <> target
THEN BEGIN
done := TRUE;
CANCEL (p~.f".b, fpos)
CANCEL (p”~.data, dpos)
END
ELSE IF (b=b') AND (f=£7)
THEN BEGIN
done := TRUE; found
ASSIGN(p~.f".b, fpos,b) ||
ASSIGN(p”.b~.f,bpos, f) ||
ASSIGN (p~.data,dpos,nilval};
END
CANCEL (p~.£" .b, fpos} |
CANCEL(p”~.data, dpos} |
R{p".£,~, £} I R(phvbr-rb):

[
SCHED (p” .b".f,bpos);

|| CANCEL{p".b".f,bpos}

H

1= TRUE;

ELSE | CANCEL(p~.b".f,bpos} 1|
|

[irst reads for next iteration
done;

23

END;
UNTIL found;

Though lengthy, the translation is essentially mechanicai. The deletion is executed atomically because
the reads for p~. £, p~.b, and p~.data and the writes for p~.p".f, p~.f".band p~.data are all
scheduled in the same parop. Note that the RW-locking technique cannot be used here. The double links
create a cycle of pointers between pairs of adjacent elements.

DELETION FROM A SINGLY-LINKED LIST. The same problem — search and deletion of an element
matching target — can be solved using the RW-locking technique on a singly-linked list. In the first
solution below, variables are represented as single values and explicit use is made of locks. Each link
field has an associated lock. When a process deletes an alement, c, it holds locks on ¢’s link field and
on the link field of <’s predecessor. Since no other process can access either link, the deletion is atomic.

found := FALSE; g := head;

lock (g™ .next);

P = g .next;

IF p = niil THEN BEGIN unlock (g~ .next); EXIT; END;
lock (p~.next);

¢ 1= p”.next;
IF p~.data = target

THEN BEGIN
g-.next 1= c

unlock {g”.next):;
found := TRUE
END;
WHILE (NOT found) ARD (¢ <> nil) DO
BEGIN
unlock (g~ .next):;
lock{c” .next};
n 1= ¢”.next;
IF c¢”.data = target
THEN BEGIN
p~.next = n;
unlock (p~.next)} ;
found := TRUE;

END
ELSE BEGIN
unlock (g”.next} ;
g 1= p; p i=c¢} ¢ t=n; move to next element
END;
END;
IF NOT found unsuccessful search

THEN BEGIN unlecck(p”.next)}; uniock{g”.next) END;

Translation of a program that uses edge (pointer) locks into a program that uses the RW-locking tech-

nique is straightforward. The procedure above is executed using RW-locking as follows:

24

found := FALSE; g :~ head;

R{g”.next,-,p} | SCHED({g~.next,gpos):
IF p = nil THEN BEGIN CANCEL(g~.next,gpos}; EXIT; END;
R{p~.data,-,d) i| R{p".next,~,c} || SCHED(p".next,ppos);
IF d = target

THEN BEGIN

ASSIGN({p~ .next,ppos, <)
found := TRUE

END
WHILE (NOT found)} AND (¢ <> nil} DO
BEGIN
CANCEL{g" .next,gpos) || R{¢".data,~,d} }| R{c".next,~,n) |} SCHED(¢".next,cpos);
IF d = target
THEN BEGIN

ASSIGN {p” .next,ppos,n);
found := TRUE;
END
ELSE BEGIN

g = p; p =7 Cc 1= n; move to next element
gpos = ppos! DPPOS i= CpOs;
END;

END:

IF NOT found unsuccessful search
THEN CANCEL(p”.next,ppes) |i CANCEL{g".next, gpos)

Deletion is atomic because at the time of the deletion, the deleting process holds RW-locks on the link
field of both the deleted element and the predecessor of the deleted element.

ASYNCHRONOUS GAME OF LIFE. Assume that the game is played on a two-dimensional array,
A(l..maxrow,l..maxcol] by maxrow * maxcol processes. Process P, is assigned to cell Af[(i
div maxcol)+1,:i mod maxcol]. Each process repeatedly computes a new value for its cell that is a

function of the values of the cell and the eight neighboring cells, The code for process p, is as follows:

r 3= {1 div maxcol)+l; ¢ = i mod maxcol;
REPEAT
{ A[r,e] 1= £{(A[r-1,c-1],Alzr~1,c},A[r-1,c+l},
A[I,C"‘l}, Alr,c}, Alr,c+l],
Aflr+i,e-1],8{+l,c) A+, ctl]) }
FOREVER

This atomic action is executed using parallel operations on access sequences as follows:

r 1= (i div maxcol)+l; ¢ 1= i mod maxcol;

REPEAT
R(Afr-1,¢c-1],~,0w) || R{A[r-1,c],~,n} i R{Afr-1,c+l],~,ne} ||
R{A{I‘,C-l],",W) I% R(A[r,c],—,me) Fl SCHED(A[rrC]rPOS) | R(A{I,C+1},“,e) H
R{A[r+l,c-1],-,8w} || R{A[x+]l,c},~,s} bl R{A{rt+l,ct+l]) -, s5e);

ASSIGN(A[x,c],pos,f(nw,n,ne,w,me,e,sw,s,se));

FOREVER

25

Since the reads for all the input values and the write for the output value are all scheduled in the same
parop, execution is atomic. We expect the same approach to be useful in 2 number of more serious appli-
cations, including production systems and simulated annealing, where the basis for a process’s action can
be undermined by the action of other processes unless the basis is examined and acted upon as an atomic

action.

5. SYNCHRONIZATION

Asynchronous shared memory computations require not only the ability to access multiple shared
variables without interference, but also the ability to synchronize to ensure that execution respects the
read-write, write-write, and write-read data dependencies implied by the code. These dependencies typi-
cally arise in the parallel execution of loops where a process must access the value of a variable accessed
by another process in a previous iteration. A write-read dependency, for instance, is created when one
process reads a variable that another process writes in a previous iteration. Synchronization between the
two processes is required in order 1o ensure that the read occurs after the write. Locks are again the usual
means of achieving the necessary coordination. The lock prevents the second access from occurring until
the first access is complete. The locks can be on individual variables or on code. An example of a syn-
chronization lock on code is the lock used in barrier synchronization. In barrier synchronization, no pro-
cess can begin the next iteration until the last process to complete the current iteration releases the lock

set at the beginning of each iteration.

Operations on access sequences provide a simple and flexible alternative. Synch operations can be
used to control the order in which accesses are executed. When a process assigns a new value to a shared
variable, v, it can ensure that a given other process reads the new value of v by issuing a parop contain-
ing a W operation immediately succeeded by an R synch operation, where the synch operation names the
process that is to receive the new value. By scheduling more that one R synch operation, the process can

send the value 10 more than one other process.

26

A simple example (that is not simple using traditional means of implementing synchronization) is a
Jacobi iteration, an iterative method for solving linear equations. In a Jacobi iteration each process
updates the value for the variable it has been assigned to compute with a value that is a function of the
values of all the variables from the last iteration. The procedure below is for process P, in a Jacobi itera-
tion involving three processes. In each iteration, each process exchanges the value of the variable it has

been assignied {o compute with the other two processes.

Pl:: myval := initialvalue;
REPEAT
< W{Vl,myval) {| R(Vi,-,-,P2) || R(V1,~,~,P3) >
nyval := £{myval, receive(V2), receive(V3)})
UNTIL done;

The receive construct sets up a local variable or register to receive the value from a read initiated by
another process. A process executing a receive is delayed until the value has been received. The
hyphen is a space holder. In the case of an R or SCHED synch operation the value corresponding to the
second parameter is sent to the process specified in the operation, not the process that issued the opera-

tion.

An alternative way 1o enforce a write-read data dependency is for a process to schedule a write

operation for another process immediately followed by a read access for itself:

Pl:: <« SCHED(V,-,P2) |} R{V,—-,var} >
P2:: ASSIGN{V, receivePos {V},val)

A process executing receivepPos (V) is delayed until it receives from main memory a value for variable

v that represents the position of the element in V’s access sequence to which the process should write.

The send construct enforces a write-read data dependency. The other data dependencies can be
enforced in a similar way. A read-write dependency is created when a process must read the value of a
shared variable before it is overwritten by another process. This can be implemented in either of two
ways:

(1) ““I read, you write’’, A process, P,, that is reading a shared variable, v, can ensure that it sees the

value of v before it is written by a given other process, P, by issuing an R-SCHED operation pair, where

27

the SCHED operation is a synch operation that names P.,.

Pl:: < R(V,—,var} || SCHED(V,-,P2) >
P2:: ASSIGN(V, receivePcs (V},val)

(2) ““You read, I write’’. Alternatively, the process, P,, that is writing the new value can schedule a read
by P, to precede its write,

Pl:: war := raceive (V)
P2:: < R{V,=-,~,P1} || W(V,val} >

The matrix transpose program below illustrates the use of the first of these two techniques for enforcing
read-write data dependencies. The program uses n processes to transpose an a*n matrix. Process py

copies column & to row &.

Py 12 FOR 1 := 1 TO n DO

BEGIN

< R{A{i,k],-,var) || SCHED(A[i,k],~, Py} >;

ASSTIGN (Alk,il,receivePos{A{k,11),var} Alk,i] 1= Afi.k]
END;

Each element A(i, j) of the matrix is read by process P, before it is written by process p;.

A write-write data dependency is created when two processes write a variable where one write logi-
cally succeeds the other. The specified order can be enforced by having one process schedule both writes,

one for itself and one for another process.

These techniques for using operations on access sequences to enforce data dependencies in a shared
memory computation can also serve as the basis for an implementation of a message based model (MBM)
computation on a shared memory architecture. The technique used by a writer to enforce "I write, you
read" synchronization can be used in the obvious way to implement send/receive corﬂmunicalion, as fol-

lows:

send (V,val,P1l,P2,...,Pn} =
<W(V,val) tl R(Vr“r-rPl) I‘ R(v:"r'rpz} §| .. i[R(vr_t—lpn) >

Other synchronization techniques using operations on access sequences are also useful. For example, a

server/client interaction can be implemented using the "you write, I read" form of synchronization as fol-

28

lows:

client:: send(Vl,argument,server} || < SCHED({VZ,-,server) {]| R({V2,-, result} >;
server:: invalue := receive(V1l}; read the input from the client

ang := f{invalue};

ASSIGN(VZ, receivepos (V2),ans); write the answer in the space reserved by the client

Note that the use of ‘‘you write, I read’’ synchronization permits the server to communicate with its

clients without knowing their identities.

Access sequences provide a simple and elegant way to implement buffers. On a machine that
represents variables as access sequences, most arrays will be represented as arrays of access sequences,

but an array that serves as a buffer can be represented using a single access sequence.

Producer{s)::
REPEAT
produce_val (val}; produce a value, val, for the consumer
send (V, val, consumex} ;
FOREVER;

Consumer::
REPEAT
consume val (receive(V}): receive and use the next value
FOREVER.

Note that more than one process can add values to the buffer. A buffer for one producer and many consu-
mers can be implemented as the access sequence of a single variable by using the alternative way of
enforcing write-read data dependencies. Each consumer repeatedly schedules a write for the producer
followed, in the same parop, by a read for itself, The operations we have defined on access sequences are
not powerful enough to implement a buffer with many producers and many consumers using a single
access sequence. The buffer must be implemented as usual as an array. In section 8 we propose addi-

tional operations on access sequences that support the single access sequence implementation.

Synch operations support SIMD-style programming. The following parallel-prefix computation on

an array, A[l..n], assignsto A[i].sum, forall i,the sum

}EA[k].vai
kel

in @ (og n) steps. Process p, computes the partial sum for element a[i].

29

Py r: R{A{i].val,—,v};
FOR k := 0 TO [logn] - 1 DO
BEGIN
IF i + 2% < n
THEN send(A(i].sum,v,P{i + 2F)};
IFi-2xz21
THEN v := v + receive{(A[i - 2%].sum);
END;
W(ALi].sum, v};

On a typical asynchronous shared memory architecture, this computation requires barrier synchronization

on each iteration to simulate the steps of the SIMD computation.

6. IMPLEMENTATION OF VARIABLES AS ACCESS SEQUENCES

The representation of variables as values requires adding intelligence to the memory modules.
Instead of executing reads or writes on variables represented as single values, we require that the MMs
execute SCHED, ASSIGN, R, W, and CANCEL operations on variables represented as access
sequences. There are many altemative ways of implementing the access sequences and operations on

access sequences. In this section we describe one altemnative,

We implement the access sequence for variable v as an array, V[1...] of V_record_type, in
main memory. One field of Vv_record_type is a value of V_type, where v_type is the declared type
of v. The other field is a control field used to indicate whether the value recorded in the first field is an
assigned value or one of the special values TBA for an unsubstantiated write, TBA (pIg) for an unsub-
stantiated read, or DELETED. (The first field can be used to store the pId of the scheduling process if the
size of the value field is always large enough to represent the highest pld.) For now, assume that the
arrays representing access sequences are infinite. The MM.maimains, for each array, an index which
indicates the element in the array of the last element of the sequence. The value of the index for each
array is initially O if the lower bound of each array is 1. Given this array implementation, the MM’s exe-

cute each of the five defined operations as follows:

SCHED(V ,pos,piD)
increment the index for v and send to process pId v’s address and the value of v’sindex.

ASSIGN(V,pos,val)
Assign the value val to element V(ipos] and propagate the value to the succeeding reads. The

30

MM propagates the value by copying it to each element that follows Vv([pos] in the array until it
has propagated the value through the last element of the sequence or reached an element added by a
write (whether substantiated or not). Propagation continues through elements marked DELETED.
Every time it copies the value to an element with value TBA (a_pId), the MM also sends the value
to process a_pId.

R{V.var,pld)
If v([index] has a special value (TBA,TBA(a_pId), Orf DELETED), then the previous read is
unsubstantiated. Increment index, assign to V[index] the value TBA(pId) and send process
pId the address of v and the value of the index. Otherwise, send to process pId the address of v,
value of V[index], and a special value -1 as the pos parameter to indicate that the value retumed
is from a read access that was immediately substantiated.

W(V,val)
Increment index and assign the value valto viindex]. Note that no propagation can occur.

CANCEL(V pos)
Change the value of V[pos] from T8A to DELETED. If the preceding write is substantiated, pro-
pagate the value of that write 10 reads succeeding the cancelled element.

The MM does not need to store the entire access sequence for a variable. The arréy for a variable
need only hold the “‘active’’ portion of the access sequence, the subsequence beginning with the element
preceding the first unsubstantiated write and ending with the ‘‘last’” element of the sequence, V[index].
The implementation must either provide for overflow or ensure that the space allocated for the array is at
least as large as the maximum size the active subsequence can attain during the computation. The MM
can handle overflow locally (allocating another array in MM and linkihg it to the initial array) or by writ-
ing page sized chunks of a lengthy access sequence to secondary memory. The latter proposal assumes
an architecture in which the MM’s can access secondary memory quickly. Further research is needed to
determine the best size for access sequence arrays and the best policy for handling overflow. We .aiso
intend to explore the effect of limiting each of the n process to ¢ outstanding accesses, i.e., limiting the
number of R and SCHED operations a process can issue for which there has been no corresponding
assignment step. (For synch operations, enforcement of this limitation would require notifying the pro-
cess that issued the operation when the assignment step is completed.) The limitation can be enforced at
the process network interface and allows all the access sequences stored in a given MM to be represented

as paths in an n*c array in the MM,

Implementation of parallel operations on access sequences also requires modifying the processor

network interface to provide mechanisms for receiving values returned from the MMs, notifying the

31

correct resident process of the receipt, and storing the value until it is retrieved by the process.

7. RELATED WORK

Our concept of representing variables as access sequences is similar to the use of multiple versions
in implementing atomic actions as described by Reed [Ree78,Ree83]. There are two major differences.
First, Reed’s proposal does not rely on scheduling accesses. An advantage is that data dependent
accesses (e.g., through pointers) can be handled in the same way as other accesses. A disadvantage is that
the atomic action may be forced to roll-back. The second difference is in the underlying mechanism used
to ensure atomic execution and the consequences of that difference. Reed’s proposal for multiversion
concurrency control uses timestamps instead of scheduling parops to specify the logical order in which
access operations are to be executed. Unfortunately, access operations can arrive out of order, i.e., a write
can arrive after a read that has a higher timestamp and thus logically follows the write. In contrast, when
parops are used to schedule accesses, the order in which the scheduling access operations arrive defines a
logical ordering of the operations that is consistent with atomic execution. One consequence of the fact
that the timestamped access operations can arrive out of order, is that the sequence of versions must be
implemented as a linked list (unless writes with a timestarnp less than the timestamp of the latest version
are aborted) instead of the more efﬁciént array representation. A more significant consequence is that a
tafdy write, i.e., a write arriving after a read with a higher timestamp, must be aborted, resulting in the

roll-back of the atomic action that issued the write.

Fujimoto has proposed implementing a scheme similar to Reed’s in hardware [Fuj89].

8. CONCLUDING REMARKS

We have proposed a new method for coordinating access to shared memory in an asynchronous
parallel computation. The method is based on the representation of shared variables as access sequences,
the division of accesses into a scheduling and an assignment step, and parallel operations. The use of

parallel operations on access sequences to coordinate access to shared memory has several advantages

32

over other coordination mechanisms because it does not rely on locks. We do not claim these advantages

for programs that use RW-locking or that use parallel operations on access sequences to simulate locks.

The advantages include the following:

M

@

3

The timing of reads and writes to shared variables is controlied by data flow, the availability of the
values to be read or written, not by locks. Writes can occur in any order. They are not constrained
to oceur in the logical order defined by the order in which the writes are scheduled. Writes never
wait, except for completion of the scheduling step. Once the value to be written has been computed
the write can be substantiated without waiting for logically preceding reads to complete. A write is
required to wait if the value to be written is computed after the SCHED operation for the write is
issued but before the SCHED operation returns the index of the position reserved for the write. A
read waits only if the preceding write is unsubstantiated. If the preceding write is substantiated, the
read can be executed even if earlier writes, scheduled before the preceding write, are still unsubstan-

tiated.

No space is needed for locks or for process queues associated with locks. This advantage helps
offset, but does not eliminate, a disadvantage of the use of parallel operations on access sequences

— the increased space necessary for the access sequence representation of variables,

Reads and writes execute without intervening lock and unlock operations. Processes do not need to
set and release locks and any number of both read and write accesses to the same shared variable
can be scheduled or substantiated in a single memory cycle, that is, without intervening communi-
cation across the ICN. For example, if v’s access sequence, starting with the first unsubstantiated
write is S,R(P1),R(P2),5,R(P3) and the ASSIGN operations corresponding to both scheduled
writes arrive in the current cycle, then the MM can immediately substantiate both writes and all the
reads. In a system based on locks, execution of the accesses would be interleaved with lock and
unlock operations, each requiring one or more trips across the ICN. Process P, ’s read could not be

executed until after the process that executes the first write in the sequence releases the lock on v

33

4)

(5)

(6

@)

and P, acquires the lock. The read by P, could not be executed until v’s lock was acquired or

released eight times.

Variables are always available for access, though substantiation of the accesses may be delayed by
the inavailability of data. In contrast, in a system based on locking, a variable is unavailable not
only during the time the process holding the lock needs exclusive access to the variable, but also for
the time it takes to confirm and release the lock and obtain other locks needed for the atomic action.
In order to avoid deadlock, a process typically is constrained to acquire locks sequentially, waiting
for confirmation of each lock before attempting to acquire the next, so the total time the variable is
unavailable may be significantly larger than the time the process actually needs exclusive access 1o

the variable.
implementation of atomic actions is deadlock-free.

Access to shared variables is fair. Accesses are scheduled in FIFO order and executed as soon as

the value to be written or read is available.

Atomic actions can be pipelined. After scheduling an atomic action, the process can schedule
another atomic action without waiting for the accesses scheduled in the current atomic action to be
substantiated. Pipelining accesses can help mask the memory access latency. Theoretically, with
an ICN of sufficiently high bandwidth, a process can complete atomic actions at the same rate at
which it can assemble and accept communication to and from the MM’s and perform the local com-
putation required for the atomic actions, i.e., at a rate independent of the network latency. In prac-
tice, pipelining will be limited to a degree dependent on the application by the occurrence of
dynamically determined access sets. An implementation designed to bound the size of the access
sequences may also limit the length of the pipeline by limiting the number of scheduled but unsub-
stantiated accesses that a process can have outstanding. For systems based on locking, pipelining

atomic actions decreases concurrency and increases the potential for deadlock.

34

(8) A speculative advantage for parallel operation on access sequences is that such operations may be
combinable. (Combining is briefly discussed below.) Accesses to locked variables definitely are

not combinable.

The disadvantages to paraliel operations on access sequences are the increased cost and complexity
of the ICN and MM'’s, the need for the process (or process network interface) to keep track of unsubstan-
tiated reads, the additional space required by the access sequence representation, and a longer memory
cycle time implied by the increased complexity of the ICN and MM's. Whether parallel operations on
access sequences is a practical method for coordinating access to shared memory will depend on the cost
of the additional hardware and on the results of the tradeoff of an increase in memory latency for a

decrease in the effect of the latency.

There are many aspects of our proposal that we have yet to fully explore. A list of some of these
topics follows, along with a brief and tentative discussion of each and an indication of the approach we

plan to take or the expected results:

¢ Fault-detection and recovery. The system we propose may support fault-detection and recovery
as well as coordination of access to shared memory. In particular, the heartbeat of pulses generated by
the PE’s and propagated through the ICN to support parops may also be useful in detecting failures in the

PE’s and ICN. The access sequences resemble logs and may be useful in fault recovery.

e Combining. Some parallel architectures allow certain operations fo be combined in the ICN,
increasing the potential concurrency of access to shared memory [KRS88]. Since parallel operations are
compatible with combining [RWWE89], we believe that some combining of the operations defined here
may also be possible. FFor instance, a switch in the ICN could combine a group R operations on the same
shared variable that arrive at the switch without other operations on that same variable intervening, for-
warding only a single R operation from the group, and satisfying all the combined reads with the value

received back from the MM.

3s

¢ Sequential programming. In most sequential programs the representation of variables as
sequences would be merely burdensome. The last value would always be the relevant value, But in
sequential programs which are in some sense "about” time, for instance simulations or real-time pro-

grams, the access sequence representation may be useful.

» Additional operations on access sequences. We intend to consider expanding the set of opera-

tions defined for access sequences. Candidate operations include the following:

~ @ “*‘fastread’’ operation. A fastread operation immediately returns a recent value for the variable.
If the last write to be scheduled is unsubstantiated, the operation returns the value assigned by the most
recently scheduled substantiated write, even if the most recently scheduled write is unsubstantiated. The

fastread operation could be useful in real-time computations and relaxed algorithms.

— acknowledged R and sCHED synch operations. When the assignment step for a synch operation
is executed, the MM notifies the process that scheduled the synch operation. This acknowledgement is
necessary for any scheme for limiting the size of access sequences based on limiting the number of

unsubstantiated accesses a process can schedule.

- yead-any and write-any operations. Instead of naming a specific process, a synch operation can
specify that any process can execute the assignment step. For example SCHED (V, pos, ANY) schedules a
write access where the process that executes the assignment step is determined dynamically. The opera-
tions are necessary when the name of the other process is unknown to the scheduling process and is useful

for resource allocation and many-to-many synchronization,

A woperation is ‘“‘matched’’ to the oldest SCHED (ANY) element in the access sequence, if there is
one. Otherwise it is executed as before, by appending an element to the access sequence. Similarly, an R
operation is matched to the oldest R(aNY) element in the access sequence. Matching a w operation to a
SCHED (ANY) element means assigning the value specified to that element and propagating the value.
Matching an R operation to an R (ANY) element means recording the pId of the process that issued the

R operation in the element so that when a value propagates through the element it will be the value will be

36

sent to that process.

Given these operations, we can define special synchronization variables on which the only legal
operations are SCHED (ANY)-R and W-R(ANY) operation pairs. A SCHED (ANY) -R operation pair is exe-
cuted by “‘matching’’ the R operation with the oldest R (aNY) operation in the access sequence, if there
is one. If there is n0 R(ANY) element in the access sequence, then a SCHED (ANY) element is added to
the access sequence followed by an element reserving the read for the process that issued the operation
pair. A W-R (ANY) operation pair is executed by matching the w operation with the oldest SCHED (ANY)
element. If there is no unsubstantiated write, an element recording the value written is added to the

access sequence followed by an. ® (ANY) element.

A buffer accessed by many producers and many consumers can be implemented using a single such

synchronization variable, v, as follows:

Producers ::
REPEAT
produce_val (val);
< W{V,val}) 1| R{V,~,~,ANY)} >; I write - any process reads
FOREVER;

Consumers ;:
REPEAT
< SCHED(V,-,ANY} |{ R(V,—,val} >; any process wriles - [read
consume {val};
FCREVER.

Each value written by a producer is read by exactly one consumer in FIFQ order.

-— aread-all operation. A W-R(ALL) operation pair changes the value of a variable and broadcasts
the new value to all processes. Efficient implementation requires adding intelligence to the ICN so that it

can fan-out values sent from memory to all the PEs.

¢ Production systems. An impediment to parallel execution of ruie production systems is the fact
that the application of one rule may interfere with the application of another rule. To avoid this interfer-
ence, processes synchronize after identifying the set of rules that are eligible for firing in order to select
the single rule or the set of noninterfering rules to fire. This production cycle severely limits the speedup

obtainable by parallel execution of production programs. A study of existing production systems shows

37

that rule parallelism is of limited effectiveness because firing a rule typically affects only a small constant
number of other rules [GFN89]. Processes assigned 1o unaffected rules must either wait for the processes
whose rules were affected by the rule fired in the last cycle or must participate in reevaluating the affected

rules at a fine-grained level of paralielism.

An approach suggested by our proposal for coordinating access to shared memory is to rely on rule
parallelism but eliminate the synchronization point in the production cycle. Each process would fire its
rule whenever the rule became applicable. Processes executing the production program would use the
repeated read technique. As soon as a process determines that its rule is eligible for firing, it would, in a
single parop, reread the facis justifying firing and schedule writes for the facts that are changed by firing.
If the second reading shows that firing is still justified, the assignments for the scheduled writes would be
executed, otherwise, the writes would be cancelled. Instead of limiting the amount of parallelism, the fact
that firing a rule affects only a few other rules is acmally a benefit since it implies minimal interference
— the facts justifying firing will rarely change between readings. For this reason we expect that the level
of parallelism achievable will be on the order of the number of rules in the production system. A limita-
tion imposed by this approach is that correctness of the production program must not depend on any

given policy for selecting a rule to fire from among the rules eligible for firing.

e Message-based model computations. In the message-based model (MBM), there are no shared
variables — a process can access only the variables in its local memory. Nevertheless, our proposal for
coordinating access to shared variables may have a dual in the MBM based on a correspondence between
MMs in the shared memory model and processes, as mediators of access to local variables, in the MBM.
We would expect that our proposal, mapped to the MBM, would allow a process to schedule actions by
several different processes that appear, to every other process in the computation, to occur as an indivisi-
ble operation. For object-oriented computations, this capability would allow an object to be distributed
over several different processes without requiring locking to coordinate the activities of the constituent
processes. The greater processing power associated with memory in the MBM may make a wider range

of operations on access sequences possible.

38

¢ High level constructs. The access sequence operations defined in section 3 are not intended for
direct use by the programmer. We intend that the programmer use higher level constructs that are com-
piled into these operations. For atomic actions, the translation into parallel operations on access
sequences is straightforward unless a pointer or array index read within the atomic action determines the
access sets. An initial question is whether automatic translation of such atomic actions is possible given
the choice of execution techniques. For synchronization, we have proposed using send and receive state-
ments for ‘I write, you read’’ synchronization. High level constructs to express other synchronization

patterns are needed.

In a high level language based on parallel operations on access sequences provision should be made
for declaring special variables on which only certain operations are legal, e.g. pointers on which RW-
locking is used, so that the compiler can enforce the restriction. We also intend to investigate the extent
to which variables represented as single values are compatible with variables represented as access

sequences. Where there is a choice, the programmer should be able to declare the desired representation.

There are choices that need to be explored in defining the semantics of the operations where the
basic mechanism we have proposed can support more than one alternative. For example, are accesses
blocking? That is, does process P, wait after it issues an R(V,var, 1) operation until it is receives the

value of v?

o Performance evaluation. A pressing problem is how to evaluate the performance parallel opera-
tions on access sequences. Comparisons based on the number of global references are biased in favor of
our proposal because the memory cycle time will be longer for the machine we have described than for a
typical shared memory multiprocessor. We expect that any useful simulation will have to be finely

detailed in order to capture the additional cost of supporting parallel operation on access sequences.

References

[Fuj89] R. M. Fujimoto, The Virtual Time Machine, Proc. of the ACM Symp. on Parallel Algorithms
and Architectures , Santa Fe, New Mexico, June 18-21, 1989, 199-208.

[GFNRS] A, Gupta, C. Forgy and A. Newell, High-Speed Implementations of Rule-Based Systems,
ACM TOCS 7, 2 (May 1989), 119-146.

39

[KRS88] C. P. Kruskal, L. Rudolph and M. Snir, Efficient Synchronization on Multicomputers with
Shared Memory, ACM Trans. Prog. Lang. and Systems 10, 4 (October 1988), 579-601.

[OWL.82] 8. Owicki and L. Lamport, Proving Liveness Properties of Concurrent Programs, ACM
Trans. Prog. Lang. and Systems 4,3 (July 1982), 455-495,

[Ree78] D. Reed, Naming and Synchronization in a Decentralized Computer System, MIT/L.CS/Tech.
Rep. 205, Laboratory for Computer Science, MIT, September 1978.

[Ree83] D. Reed, Implementing Atomic Actions on Decentralized Data, ACM TOCS 1, 1 (February,
1983), 3-23,

[RWWS89] P.F. Reynolds, Jr., C. Williams and R, R. Wagner, Jr., Parallel Operations, Tech. Rep. 89-16,
University of Virginia, Department of Computer Science, December, 1989.

[ShS88] D. Shasha and M., Snir, Efficient and Correct Execution of Parallel Programs that Share
Memory, ACM Trans. Prog. Lang. and Systems 10, 4 (October, 1988), 282-312.

40

