
Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Adaptive Frameless Rendering

Abhinav Dayal1, Cliff Woolley2, Benjamin Watson1 and David Luebke2
1Northwestern University, 2University of Virginia

Abstract
We propose an adaptive form of frameless rendering with the potential to dramatically increase rendering speed
over conventional interactive rendering approaches. Without the rigid sampling patterns of framed renderers,
sampling and reconstruction can adapt with very fine granularity to spatio-temporal color change. A sampler
uses closed-loop feedback to guide sampling toward edges or motion in the image. Temporally deep buffers store
all the samples created over a short time interval for use in reconstruction and as sampler feedback. GPU-based
reconstruction responds both to sampling density and space-time color gradients. Where the displayed scene is
static, spatial color change dominates and older samples are given significant weight in reconstruction, resulting
in sharper and eventually antialiased images. Where the scene is dynamic, more recent samples are emphasized,
resulting in less sharp but more up-to-date images. We also use sample reprojection to improve reconstruction
and guide sampling toward occlusion edges, undersampled regions, and specular highlights. In simulation our
frameless renderer requires an order of magnitude fewer samples than traditional rendering of similar visual
quality (as measured by RMS error), while introducing overhead amounting to 15% of computation time.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture-Image Generation—Display algorithms;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics And Realism—Raytracing; Virtual reality

1. Improving Interactive Rendering

In recent years a number of traditionally offline rendering
algorithms have become interactive or nearly so. The intro-
duction of programmable high-precision graphics proces-
sors (GPUs) has drastically expanded the range of algo-
rithms that can be employed in real-time graphics; mean-
while, the steady progress of Moore’s Law has made tech-
niques such as ray tracing, long considered a slow algo-
rithm suited only for offline realistic rendering, feasible in
real-time rendering settings. These trends are related; in-
deed, some interactive global illumination research per-
forms algorithms such as ray tracing and photon mapping
directly on the GPU [PBMH02]. Future hardware should
provide even better support for these algorithms, bringing
us closer to the day when ray-based algorithms are an ac-
cepted and powerful component of every interactive ren-
dering system.

What makes interactive ray tracing attractive? Research-
ers in the area have commented on ray tracing’s ability to
model physically accurate global illumination phenomena,
its easy applicability to different shaders and primitives,
and its output-sensitive running time, which is only weakly
dependent on scene complexity [WPS*03]. We focus on

another unique capability: selective sampling of the image
plane. By design, depth-buffered rasterization must gener-
ate an entire image at a given time, but ray-tracing can
focus rendering with very fine granularity. This ability
enables a new approach to rendering that is both more in-
teractive and more accurate.

The topic of sampling in ray tracing may seem nearly ex-
hausted, but most previous work has focused on spatial

Figure 1: Adaptive frameless rendering improves upon
frameless rendering [BFMS94] (left) with adaptive sam-
pling and reconstruction (right). Resulting imagery has
similar visual quality to a framed renderer but is produced
using an order of magnitude fewer samples per second.

 Adaptive Frameless Rendering

sampling, or where to sample in the image plane. In an
interactive setting, the question of temporal sampling, or
when to sample with respect to user input, becomes equally
important. Temporal sampling in traditional graphics is
bound to the frame: an image is begun in the back buffer
incorporating the latest user input, but by the time the
frame is swapped to the front buffer for display, the image
reflects stale input. To mitigate this, interactive rendering
systems typically increase the frame rate by reducing the
complexity of the scene, trading off fidelity for perform-
ance. A few systems (e.g., [WDP99; SS00; TPWG02])
have explored an alternative: reuse samples over multiple
frames, extending the useful life of prior rendering compu-
tations. Our own work falls into this second category.

Specifically, we investigate novel sampling schemes for
managing the fidelity-performance tradeoff. Our approach
has three important implications. First, we advocate adap-
tive spatio-temporal sampling, analogous to the adaptive
spatial sampling long employed in progressive ray tracing
[BFGS86; M87; PS89]. Spatially adaptive renderers have
long focused rendering computation where it is most im-
portant; spatio-temporally adaptive sampling also focuses
computation when it is most important. Second, we advo-
cate frameless rendering [BFMS94], in which samples are
located freely in space-time rather than placed at regular
temporal intervals forming frames. Frameless rendering
provides lower latency than framed rendering since every
sample reflects the most recent user input. Third, we advo-
cate temporally adaptive reconstruction, in which images
are reconstructed from a sampled space-time volume, rather
than a coherent temporal slice. We observe that the impor-
tance of old samples during this reconstruction varies ac-
cording to the local temporal gradient, and adjust our re-
construction filter accordingly.

Our prototype adaptive frameless renderer consists of two
subsystems. An adaptive sampler directs rendering to im-
age regions undergoing significant change (across space
and/or time). The sampler produces a stream of samples
scattered across space-time; recent samples are collected
and stored in two temporally deep buffers. One of these
buffers provides feedback to the sampler, while the other
serves as input to an adaptive reconstructor, which repeat-
edly reconstructs the samples in its deep buffer into an
image for display, adapting the reconstruction filters to
local sampling density and color gradients. Where the dis-
played scene is static, spatial color change dominates and
older samples are given significant weight in reconstruc-
tion, resulting in sharper images. Where the scene is dy-
namic, only more recent samples are emphasized, resulting
in a less sharp but correctly up-to-date image.

We describe an interactive system built on these princi-
ples, and show in simulation that this system achieves supe-
rior rendering accuracy and responsiveness. We compare
our system’s imagery to the imagery that would be dis-
played by a hypothetical zero-delay, antialiased renderer
using RMS error. Our system outperforms not only frame-

less sampling (Figure 1), but also equals the performance of
a framed renderer sampling 10 times more quickly.

1.1. Contributions

Our work introduces several new ideas to the existing body
of research on sample reuse:

• An incrementally updated tiling that guides adaptive
frameless sampling by spatio-temporal color variation.

• Use of methods from closed-loop control to improve
adaptive sampling quality.

• Estimation of color gradients in time, using the “cross-
hair” mechanism described in Section 4.1.

• Use of filter kernels in image reconstruction that span
not just space, but also time.

• Use of temporal gradients to shape these filter kernels,
permitting low latency response or antialiasing, de-
pending on scene content.

• Decoupling of the structures (the “deep buffers”) used
to guide adaptive sampling and image reconstruc-
tion/display.

• A GPU implementation of point-based reconstruction
with support for arbitrarily sized space-time filters.

Ultimately, we argue that (with these improvements) the
use of framelessly distributed samples can reduce latency
and improve adaptivity in interactive systems, and has the
potential to reduce synchronization requirements in parallel
computer graphics.

2. Related work

Bishop et al.’s frameless rendering [BFMS94] replaces the
coherent, simultaneous, double-buffered update of all pix-
els with samples distributed stochastically in space, each
representing the most current input when the sample was
taken. Pixels in a frameless image therefore represent many
moments in time. Resulting images are more up-to-date
than double-buffered frames, but temporal incoherence
causes visual artifacts in dynamic scenes. A later technical
report [S97] proposed (but did not implement) several ex-
tensions; adaptive frameless rendering incorporates some of
these.

Other researchers have also examined loosening framed
sampling constraints. Just-in-time pixels [OCMB95] takes
a new temporal sample for each scanline. Interruptible
rendering [WLWD03] uses a temporally adaptive framed
sampling scheme that adaptively controls frame rate to
minimize simultaneously the error created by reduced ren-
dering fidelity (coarse imagery) and by reduced rendering
update (late imagery). The address recalculation pipeline
[RP94] sorts objects into several layered frame buffers

 Adaptive Frameless Rendering

refreshed at different rates. Talisman [TK96] renders por-
tions of the 3D scene at different rates. Corrective texturing
[SHSS00] uses rasterization hardware to generate images
rapidly, and lazily fills in details from an ongoing global
illumination simulation as progressively refined superim-
posed texture maps. Ward and Simmons [WS99] and Bala
et al. [BDT99] store and reuse previously rendered rays.
Havran et al. [HDM03] calculate the temporal interval over
which a given sample will remain visible in an offline ani-
mation and reproject that sample during the interval, recal-
culating shading for all reprojected samples in every frame.

Several researchers have studied sample reprojection,
which reuses samples from previous frames by reposition-
ing them to reflect the current viewpoint. Some of this
work is particularly relevant, and we make detailed com-
parisons to three important examples. The Render Cache
by Walter et al. [WDP99; WDG02] is most closely related
to our work; it reprojects samples each frame to account for
camera motion and applies an image-space filter to recon-
struct. The Tapestry system by Simmons and Séquin
[SS00], and the Shading Cache by Tolé et al. [TPWG02]
both integrate new samples into 3D meshes to use hard-
ware-accelerated projection and Gouraud shading for image
reconstruction. All three techniques perform prioritized
sampling with similar goals to our own. We provide de-
tailed comparisons after describing our own sampling and
reconstruction techniques in Sections 4 and 5.

Many recent advances have made high-speed ray tracing
a reality. These include clever optimizations and improved
memory locality [PKGH97; TA98; WBWS01] as well as
advances in the underlying hardware. Researchers have
demonstrated interactive ray tracers on supercomputers
[PMS*99], on PC clusters [WSB01; WBDS03], on the
SIMD instruction sets of modern CPUs [WBWS01;
RSH05], on graphics hardware [PBMH02; CHH02], and on
custom hardware [SWWPS04]. These advances will soon
make interactive ray-based rendering commonplace, ena-
bling fine-grained selective sampling in real time.
3. Algorithm overview

Our system has two major components (Figure 2). The
sampler consists of a controller, a ray tracer guided by the

controller, and a temporally deep buffer that stores samples
for feedback to the controller. For implementation effi-
ciency, the reconstructor keeps a second deep buffer. The
samples in this buffer are the input to the reconstructor’s
adaptive filter bank, which forms images according to local
estimates of color gradients and sample density.

The sampler strives to increase sampling frequency in
image regions where color variation across space and/or
time is high. Because every new frameless sample is more
current than the last, local sample density varies not only
across space (for spatially adaptive response to edges), but
also across time (for temporally adaptive response to mo-
tion). To track color variation, the controller uses an image-
space tiling (Figure 3) of the deep buffer. In this frameless
context, sampled content is constantly changing. The con-
troller therefore continually adjusts the tiling using merges
and splits, ensuring that tiles cover roughly equal amounts
of color variation, with small tiles located over scene edges
and motion. To decide where to sample next, the controller
simply picks a tile at random. While adding new samples to
a tile, the controller also reprojects several samples covered
by the tile to new deep buffer locations that reflect the cur-
rent view. This improves the feedback provided by the deep
buffer to the controller and permits improved sampling
response to occlusion.

The reconstructor strives to provide spatially detailed, an-
tialiased imagery where the scene is static, and low-latency
(if blurred) imagery where the scene is dynamic. It achieves
this with locally adaptive space-time filtering (Figure 6).
The sampler streams the same samples placed in its own
deep buffer to the reconstructor’s deep buffer. At each dis-
play refresh, the sampler also provides the reconstructor
with local color gradient and sample density information.
This information is then used to “shape” and “size” local
space-time filters in the reconstructor’s adaptive filter bank.
Where scene content is static, temporal color gradients will
be low, and temporal filter extents can incorporate older
buffer samples for antialiasing. Where scene content is
dynamic, temporal gradients will be high, and temporal
filter extents can ignore older buffer samples for low-
latency response. To improve resulting imagery, the recon-
structor reprojects all of the samples in its buffer to reflect

Sampler Reconstructor

Controller

Deep
Buffer

Ray
Tracer

Adaptive
Filter Bank

Deep
Buffer

samplessamples

va
ria

tio
n,

gr
ad

ie
nt

s im
age

locations

sam
ples

tiling, view,
gradients

Sampler Reconstructor

Controller

Deep
Buffer

Ray
Tracer

Adaptive
Filter Bank

Deep
Buffer

samplessamples

va
ria

tio
n,

gr
ad

ie
nt

s im
age

locations

sam
ples

tiling, view,
gradients

Figure 2: Adaptive frameless rendering system components
and data flow.

Figure 3: A reconstructed image and an overlay showing
the tiling used by the sampler at that moment in time. Note
the finer tilings over object edges and occlusions.

 Adaptive Frameless Rendering

current view information. We have implemented the entire
reconstructor on the GPU.

4. Adaptive frameless sampling

Because sampling is frameless and distributed across time
as well as space, samples are collected not into a frame but
into a temporally deep buffer. This deep buffer is a 3D
array sized to match the number of image pixels in two
dimensions, and to accommodate a shallow buffer depth b
in the temporal dimension (we use b = 4). Buffer entries at
each pixel location form a queue, with new samples in-
serted into the front causing the removal of samples in the
back if the queue is full. Each sample is described by its
color, position in world space, age, and optionally a view-
independent velocity vector.

Like previous importance sampling techniques [BFGS86;
G95; M87; PS89], our controller uses an image-space tiling
to guide adaptive sampling. However, while these previous
techniques worked in a static framed context, our sampler
operates in a dynamic, frameless context. The controller’s
tiles therefore partition not just image space, but also seg-
ment the deep buffer into space-time volumes called blocks
using planes parallel to the temporal axis. To remain useful,
this tiling must constantly change in response to user inter-
action and animation. We manage this change using a K-D
tree, with the current tiling implemented as a cut across the
tree. Given a target number of tiles, the tree is managed to
ensure that the amount of color variation in each tile’s
block is roughly equal: the tile with the most color variation
is split and the two tiles with the least summed variation are
merged, until all tiles have roughly equal variation. As a
result, small tiles emerge over image regions containing
edges and motion (Figure 3).

We calculate spatio-temporal color variation within a
block using the equation vtile = 1/n Σi (Li – Lm)2, where Li is
a sample’s luminance and Lm the mean luminance in the
block. We ensure prompt response to changes in scene
content by weighting samples in the variance calculation
using a function that declines exponentially as sample age
increases: e-3.47a, where a is sample age.

Sampling is a biased probabilistic process that makes use
of these tools for measuring color distribution. Since the
current time is not fixed as it would be in a framed ren-
derer, we cannot simply iteratively sample the tile with the
most variation—in doing so, we would overlook newly
emerging motion and detail. At the same time, we cannot
leave rendering non-adaptive and unimproved. Our solution
is to iteratively select the next tile to sample randomly us-
ing a uniform distribution, and to choose the sampled loca-
tion within the selected tile similarly. Because tiles vary in
size, sampling is adaptively biased towards those regions of
the image which exhibit high spatial and/or temporal color
variation. Because all tiles are randomly sampled, we re-
main sensitive to newly emerging motion and detail.

4.1. Gain control and gradient sampling

Our adaptive sampler’s controller is less effective when the
rendered scene is more dynamic, making the color distribu-
tion more difficult to track. To address this problem we
apply a control engineering technique: adjusting gain. We
implement this by adjusting the number of tiles onscreen,
restricting the ability of the sampler to adapt to deep buffer
content when the scene is dynamic, and increasing this
ability when the scene is static. Specifically, we change the
target number of image-space tiles so that color change
over space and time are roughly equal in all blocks by en-
suring that dC/ds S = i dC/dt T, where dC/ds and dC/dt are
spatial and temporal color gradients averaged over the en-
tire image (Figure 4), S is the average width of the tiles, T
the average age of the samples in each tile, and i is a con-
stant adjusting the relative importance of temporal and
spatial color change in control. By solving for S we can
derive the appropriate number of tiles.

To sample color gradients, we organize all samples into
spatio-temporal crosshairs (Figure 4), each of which forms
a single entry in the sampler’s deep buffer. At each sam-
pled sub-pixel location (x,y,t), we find current spatial gradi-
ents by sampling four cotemporal image locations (x±1,y,t)
and (x,y±1,t) each one pixel width from x,y, and then calcu-
lating the average horizontal and vertical absolute lumi-
nance differences |Lx,y,t-Lx±1,y,t|/2 and |Lx,y,t-Lx,y±1,t|/2. To find
a current temporal gradient, we must compare two spatially
collocated samples made at different times. We accomplish
this by finding the absolute luminance difference between
the center (x,y,t) sample and a sample (x,y,t0) made previ-
ously at the same sub-pixel spatial location, and divide by
the time elapsed since that previous sample was made:
|L(x,y,t)-Lx,y,t0)|/(t-t0). Each crosshair is pushed into the xy
queue of the deep buffer. To determine average gradients,
we reduce the weight of each sample gradient as a function
of age using the same exponential scheme used to track
color variation.
4.2. Algorithm details and output to reconstructor

The complete sampling algorithm is described in Figure 5,
including an inner reprojection loop which we will discuss

Figure 4: We organize samples into “crosshairs" (left) to
compute spatial and temporal tile gradients (right), shown
here as red (Gx), green (Gy), and blue (Gt).

xy

t

xy

t

xy

t

(x,y,t0)

(x,y,t)

 Adaptive Frameless Rendering

later in Section 6.1. The deep buffer is initialized using a
spatially gridded, cotemporal sampling pattern. Sampling
iteration then begins and continues until the user halts ren-
dering. Note that sampling of temporal gradients requires
distributing crosshair sampling across two sampling itera-
tions. In each iteration, one crosshair consisting of old
samples at (x,y,t0) and new samples at (x,y,t), (x±1,y,t) and
(x,y±1,t) is completed, and another crosshair is initiated with
a new sample at location (x,′y,′t) (which will become old
sample (x,y,t0) in the next iteration that visits the same tile).
These initial crosshair samples are not stored in the tiling,
but in a separate image-sized array, avoiding the complica-
tions caused by retiling before the crosshair is completed.

All samples in each crosshair are also immediately
streamed to the reconstructor’s deep buffer, without any of
the crosshair structure. At each display refresh, the sampler
also sends the current view and tiling to the reconstructor,
including each tile’s image coordinates as well as the aver-
age temporal and spatial gradients in the tile’s block. The
sampler’s tiling is updated after a chunk (currently 25) of
new crosshairs have been generated.

4.3. Comparison to prior work: sampling

Rather than a deep buffer, Tapestry [SS00] stores samples
as vertices in a 2.5D Delaunay triangulated mesh spanning
a sphere around the eyepoint. This mesh is used both in
reconstruction (see Section 5.3 below) and as feedback for
adaptive sampling. At the beginning of each frame, a prior-
ity image is formed by rendering the error assigned to each
face in the mesh as color. Total face error increases with
face area, the age of the samples forming its vertices, and
the differences in sample color and depth among its verti-
ces. The priority image’s pixels are then traversed quasi-
randomly in a space-filling fashion. Whenever error at a

pixel rises above a certain threshold, that pixel is sampled
and placed into the mesh, and mesh correctness checked.

Sampling in the Shading Cache [TPWG02] has several
similarities to Tapestry. Rather than a 2.5 mesh, Shading
Cache places samples into a subdividable 3D mesh that in
fact represents the entire scene being rendered. Once more
the mesh is rendered at each frame to form a priority image,
which guides sampling. An additional flood fill stage hones
in on high priority image discontinuities. Total error of
each mesh face once more increases with face size, color
differences, and age (on specular or moving objects).

The Render Cache [WDP99; WDG02] places samples
into a fixed-size list. Priority images are generated with
each frame, in which a pixel's sampling priority depends on
the local sample density and age. Large color differences
between consecutive samples in the same pixel age samples
in nearby pixels more quickly. View prediction compen-
sates for the undersampling caused by frame and network
delays, e.g. at image edges during rotation.

Our renderer differs in its use of a frameless sampling
pattern, which allows lower-latency response to scene
change. To exploit this possibility, our sampler guides
adaptive sampling with an incrementally and frequently
updated tiling rather than a priority image formed once per
frame. Error does not increase with sample age, but directly
with temporal color variation, allowing temporal sampling
density to drop drastically in static image regions (increas-
ing average sample age), and increase steeply in regions
containing motion (decreasing age). In previous methods
the scene cannot change during a single frame, so these
systems can form priority images with confidence. Since in
our adaptive frameless renderer the scene can change after
every crosshair is generated, we vary adaptive response
(gain) using methods inspired by control engineering.

5. Interactive space-time reconstruction

Frameless sampling strategies demand a rethinking of the
traditional computer graphics concept of an “image”, since
at any given moment the samples in an image plane repre-
sent many different moments in time. The original frame-
less work [BFMS94] simply displayed the most recent
sample at every pixel. This traditional reconstruction re-
sults in a noisy image that appears to sparkle when the
scene is dynamic (Figure 1). In contrast, we convolve the
frameless samples in the reconstructor’s deep buffer with
space-time filters to continuously reconstruct images for
display. This is similar to the classic computer graphics
problem of reconstruction of an image from non-uniform
samples [M87], but with a temporal element: since older
samples may represent “stale” data, they are treated with
less confidence and contribute less to nearby pixels than
more recent samples (Figure 1).

fill deep buffers non-adaptively
loop

update view and animation state to current time t
choose a tile to render
find last sample made in tile at sub-pixel location xyt0
complete crosshair with 5 new samples centered at (x,y,t)
update deep buffers and tile statistics
repeat 5 times

choose a tile crosshair and reproject it
reevaluate gradients in crosshair
check visibility of crosshair center sample
if occluded then create new crosshair at same location
update deep buffers and tile statistics

end repeat
choose a new sub-pixel location x,′y′ in tile to sample
initiate crosshair with sample at (x,′y,′t), set xyt0 to (x′,y′,t)
update deep buffers and tile statistics
if one refresh time elapsed

then send reconstructor view and tile information
if another chunk of crosshairs has been completed

then adjust tiling
end loop
Figure 5: Pseudocode for the main loop in the sampler.

 Adaptive Frameless Rendering

5.1. Choosing a filter

The key question is what shape and size filter to use. A
temporally narrow, spatially broad filter (i.e. a filter which
falls off rapidly in time but gradually in space) will give
very little weight to relatively old samples, emphasizing the
newest samples and leading to a blurry but very current
image. Such a filter provides low-latency response to
changes and should be used when the underlying image is
changing rapidly. A temporally broad, spatially narrow
filter will give nearly as much weight to relatively old sam-
ples as to recent samples; such a filter accumulates the
results of many samples and leads to a finely detailed, an-
tialiased image when the underlying scene is changing
slowly. However, often different regions of an image
change at different rates, as for example in a stationary
view in which an object is moving across a static back-
ground. A scene such as this demands adaptive reconstruc-
tion, with filter space-time extent varying across the image.

We use local sampling density (Figure 7) and space-time
gradient information (Figure 4) to guide filter size. The
reconstructor maintains an estimate of local sampling den-
sity across the image, based on the tiling used to guide
sampling. We size our filter support—which can be inter-
preted as a space-time volume—as if we were reconstruct-
ing a regular sampling with this local sampling density, and
while preserving the total volume of the filter, perturb the
spatial and temporal filter extents according to local gradi-
ent information. A large spatial gradient implies an edge,
which should be resolved with a narrow filter to avoid blur-
ring across that edge. Similarly, a large temporal gradient
implies a “temporal edge” such as an occlusion event,
which should be resolved with a narrow filter to avoid in-
cluding stale samples from before the event. This is equiva-
lent to an “implicit” robust estimator; rather than searching
for edges explicitly, we rely on the gradient to allow us to
size the filter such that the expected contribution of sam-
ples past those edges is small.

Thus, given a local sampling rate Rl, expressed in sam-
ples per pixel per second, we define VS as the expected
space-time volume occupied by a single sample:

1
S

l

V
R

= .

The units of VS are pixel-seconds per sample (note that
the product of pixel areas and seconds is a volume). We
then construct a filter at this location with space-time sup-
port proportional to this volume. For simplicity we restrict
the filter shape to be axis-aligned to the spatial x and y and
the temporal t dimensions. The filter extents ex, ey, and et
are chosen to span equal expected color change in each
dimension, determined by our estimates of the gradients Gx,
Gy, and Gt and the total volume constraint Vs:

x x y y t te G e G e G= =

S x y zV e e e=

Thus the filter extents are given by

3 332 2 2, ,S y t S x yS x t
x y t

x y t

V G G V G GV G Ge e e
G G G

= = = .

What function to use for the filter kernel remains an open
question. We have experimented with a range of filters.
The Mitchell-Netravali filter [M87] is considered among
the best filters for nonuniform sampling, but is costly and
requires more precision than the 16-bit floating point buff-
ers of our GPU implementation provide. We have also
experimented with a simple inverse exponential filter,
which has the nice temporal property that the relative con-
tribution of two samples does not change as both grow
older; however, the bandpass properties of this filter are
less than ideal. We currently use a Gaussian filter.

5.2. Scatter versus gather

We can consider reconstruction a gather process which
loops over the pixels, looks for samples in the neighbor-
hood of each pixel, and evaluates the contribution of those
samples to that pixel. Alternatively, we can cast reconstruc-
tion as a scatter process which loops over the samples,
projects each onto the image plane, and evaluates its con-
tribution to all pixels within some footprint. We have ex-
perimented with both approaches.

We implemented the reconstructor initially as a gather
process directly on the sampler’s deep buffer. At display
time the reconstructor looped over the pixels, adjusting the
filter size and extents at each pixel using gradient and local
sample density as described above. The reconstructor gath-
ered samples outwards from each pixel in space and time
until the maximum possible incremental contribution of
additional samples would be less than some threshold ε.
The final color at that pixel was computed as the normal-
ized weighted average of sample colors. This process
proved expensive in practice—our unoptimized simulator
required reconstruction times of several hundred ms for
small (256 × 256) image sizes. It was also unclear how to
efficiently implement hardware sample reprojection.

We have therefore moved to a scatter-based implementa-
tion that stores the N most recent samples produced by the
sampler across the entire image; the value of N is typically
at least 4× the desired image resolution. This store is a
distinct deep buffer for the reconstructor that organizes the
samples as a single temporally ordered queue rather than a
spatial array of crosshairs. At reconstruction time, the sys-
tem splats each of these samples onto the image plane and
evaluates the sample’s affect on every pixel within the splat
extent by computing the distance from the sample to the
pixel center and weighting the sample’s color contribution
according to the local filter function. These accumulated
contributions are then divided by the accumulated weight at
each pixel to produce the final image (Figure 6).

 Adaptive Frameless Rendering

We implement this scatter approach on the GPU, improv-
ing on the speed of our CPU-based gather implementation
by almost two orders of magnitude. The GPU treats the
samples in the deep buffer as vertices in a vertex array, and
uses an OpenGL vertex program to project them onto the
screen as splats (i.e., large GL_POINTS primitives). A
fragment program runs at each pixel covered by a sample
splat, finding the distance to the sample and computing the
local filter shape by accessing tile information (local filter
extent and Gx,Gy,Gt gradients) stored in a texture. This
texture is periodically updated by rasterizing the latest til-
ing (provided by the sampler) as a set of rectangles into an
offscreen buffer. To reduce overdraw while still providing
broad filter support in sparsely sampled regions, the vertex
program rendering the samples adaptively adjusts point size
(see Section 6.2).

The reconstructor uses several features of recent graphics
hardware, including floating-point textures with blend sup-
port, multiple render targets, vertex texture fetch, dynamic
branching in vertex programs, and separate blend functions
for color and alpha. The results presented in this paper were
obtained on a NVIDIA GeForce 6800 Ultra, which can
reconstruct a visually sufficient number of samples for
256×256 pixel imagery (N=400K) at about 20 Hz.

5.3. Comparison to prior work: reconstruction

Both Tapestry [SS00] and the Shading Cache [TPWG02]
use graphics hardware to perform a piecewise linear recon-
struction of sparse samples by incorporating the samples as
vertices into a Gouraud-shaded mesh, which is then ren-
dered normally. In the case of Tapestry, this mesh is a De-
launay triangulation of a height field surrounding the view-
point; in the case of the Shading Cache, it is a hierarchical
subdivision meshing of the actual 3D scene similar to those
used in radiosity methods. In both cases maintenance of the
mesh requires a relatively expensive remeshing step that by
its nature must happen on the CPU, though the Shading
Cache amortizes this cost across several frames by double-
buffering the display mesh and the mesh being updated.

Both techniques target extremely sparse sampling rates,
citing examples in the range of 50-400 samples per frame.

By design, a mesh-based reconstruction gives equal
weight to all samples; the color of each pixel is fully de-
termined by the three samples that form the vertices of the
triangle visible at that pixel. The use of Z-buffered rasteri-
zation precludes incorporating multiple samples with dif-
ferent weights, for example to incorporate our temporal
filters or to perform antialiasing. While Tapestry does not
require the original 3D model or place any restrictions on
its geometry, Shading Cache utilizes the full geometry of
the original scene, which it requires in a locally parame-
terizable form suitable for hierarchical subdivision. As a
result it provides very crisp imagery with no reprojection
artifacts, but may not scale well to very complex scenes.

The Render Cache [WDP99; WDG02] uses an image-
based reconstruction closer in spirit to our work. Two
fixed-size image-space kernels are used: a 3×3 Gaussian
filter reconstructs most pixels, and a 7×7 box “prefilter”
provides coarse hole-filling where the 3×3 filter cannot
reach any samples, i.e. for heavily disoccluded regions. The
principal difference in our work is the use of filters with a
temporal aspect, whose size and shape are fully adaptive
and vary across the image as described. The Render Cache
also uses a depth-sensitive filter that helps prevent occluded
samples from “leaking through” the occluding surfaces,
while we rely on the sampler to detect such occlusion arti-
facts (and the high temporal gradients they create) and to
respond by sending more samples and emphasizing recent
samples representing the correct occlusion.

6. Reprojection

Our adaptive frameless sampling and reconstruction tech-
niques operate entirely in 2D image space and do not rely
on information about sample depth or the 3D structure of
the scene. However, because camera location and sample
depth are easily available from our ray-tracing renderer, we
also incorporate sample reprojection [WDP99; WDG02;
BDT99; WS99] into our algorithms. During sampling,

 (a) (b) (c) (d)
Figure 6: Adaptive reconstruction illustrated in one moment of a scene with a moving view and car, sampled using our adap-
tive frameless techniques. In (a), traditional frameless reconstruction leaves many artifacts of the view motion in the image.
In (b), adaptive reconstruction rejects many of the outdated samples, eliminating artifacts and clarifying edges. (c) shows the
improvements possible by reprojecting samples as in [WDP99], even without adaptive reconstruction. When reprojection is
combined with adaptive reconstruction as in (d), the car’s motion and view-dependent reflections in the floor are clarified.

 Adaptive Frameless Rendering

reprojection can help the sampler find and focus on image
regions undergoing disocclusion, occlusion, view-
dependent lighting changes, or view-independent motion.
During reconstruction, sample reprojection extends the
effective “lifetime” of a sample by allowing older samples
to contribute usefully to imagery even after significant
camera or object motion. We use different strategies for
reprojection within the sampler and reconstructor.

6.1. Reprojection in the sampler

It is not necessary to reproject every sample at fixed inter-
vals, and indeed this would not be desirable since it would
introduce periodicity (i.e., frames) into our frameless sam-
pler. Instead, we reproject a small number of recent sam-
ples as we generate each new sample. Reprojection is quite
fast; when updates of tiling statistics (e.g. variation, gradi-
ents) are included, reprojecting a sample takes roughly
1/35th the mean time required to generate a new sample in
our test datasets. We therefore reproject a small number r
(currently r=5) of crosshairs from a tile each time the sam-
pler visits that tile to generate a new sample. In this way the
same rendering bias that guides generation of new samples
also guides reprojection of existing samples, focusing re-
projections on important image areas.

When the sampler visits a tile, it chooses r pixels to re-
project randomly and relocates the crosshairs from the front
of each pixel’s queue in the deep buffer (Figure 5). To relo-
cate a crosshair we apply both the current viewing trans-
formation and stored sample velocity (if any) to the sam-
ples in the crosshair. We determine a crosshair’s new loca-
tion in the buffer by its relocated center sample, insert the
crosshair at the back of its new queue, and update source
and destination tile statistics if necessary. When updating
tile gradients, spatial gradients for the crosshair are recalcu-
lated using the new spatial locations of the crosshair sam-
ples; we recalculate the crosshair temporal gradients by
finding the absolute difference between the reprojected
center sample and the newest sample in that pixel region,
and dividing this difference by the age of this newest sam-
ple. Note that a crosshair may potentially be reprojected
more than once.

Regions containing disocclusions will be undersampled
as samples reproject to other image locations. We bias
sampling toward these disocclusions with a new undersam-
pling measure utile:

.
||

|||)|(
,1min1

||
1















−
∑ −

−= =

tilesb

tilesbufferwhbm
u

tiles
j

tile

Here the number of empty samples in a tile must be m
times greater than the mean number of empty samples in all
tiles to affect sampling. |buffer| and |tile| are the number of
samples in the deep buffer and the current tile’s block,
while whb is the number of samples the deep buffer can
hold (with image size w×h).

Regions undergoing occlusion will contain samples from
multiple surfaces at differing view depths, leading to uncer-
tainty about image content. To resolve this uncertainty, we
increase sampling in occluded regions. We detect occlu-
sions by casting rays from the center sample of each repro-
jected crosshair to the eye. Like shadow rays, these rays
need no shading and can terminate if they hit any geometry
at all. If this sample is no longer visible from the eye, we
replace the reprojected crosshair with a new one centered at
the same image location. We also increase sampling den-
sity in the occluded region by increasing error in tiles ex-
periencing occlusion with an occlusion term otile = |O|/sb,
where |O| is the number of occluded samples in a tile’s
block, tracked by our occlusion test. Figure 7 shows the
occlusions that affect sampling. Tile error Etile then be-
comes:

()| | | | | |1tile tile tile
tile tiles tiles tiles

j j jj j j

E s v u o
v u o

κ λ κ λ
 
 = + + − −
 
 ∑ ∑ ∑

.

Here κ, λ, and (κ + λ) are all in [0,1]; vtile, utile and otile are
normalized by their sum over all tiles; and s is tile size.

6.2. Reprojection in the reconstructor

Unlike the sampler, the reconstructor operates in a framed
context: to display an image on existing hardware, it scans
out a traditional image (i.e., a uniform grid of pixels) at the
regular intervals of the display refresh. Since each sample
in the reconstructor’s deep buffer stores the 3D hit point of
the primary ray that generated that sample, reprojecting and
reconstructing each of our renderer’s images reduces to
rendering the vertex array in the deep buffer with the cur-
rent camera and projection matrices bound. Figure 6 shows
the results of using reprojection in reconstruction.

Reprojection can generate regions of low sample density,
for example at disocclusions and near leading screen edges
during view rotation. In such regions, filter support for the
few samples present must be quite large, requiring rasteri-
zation of samples with large splats. Rather than rasterizing

Figure 7: A sample density map (left) used by the recon-
structor to determine the expected local sample volume Vs,
and occlusion detection (right) used direct sampling.

 Adaptive Frameless Rendering

all samples with large splats, we adjust splat size adap-
tively. Samples are accumulated into a coverage map dur-
ing rendering that tracks the number and average splat size
of all samples rendered to each pixel. To size splats, the
sample vertex program binds the previous image’s cover-
age map as a texture, computes the projected coordinates of
the sample, and uses the coverage information at those
coordinates to calculate the splat size at which the sample
will be rasterized. Sample splats in a region have the aver-
age size of splats used in that region during reconstruction
of the previous image, but splat sizes in undersampled re-
gions (defined currently as fewer than 4 samples affecting a
pixel) are multiplied by 4 to grow rapidly, while splat sizes
in oversampled regions (more than 32 samples reaching a
pixel) are multiplied by 0.7 to shrink gradually.

7. Evaluation

Using the gold standard validation described in
[WLWD03], we find that our adaptive frameless renderer
outperforms traditional framed and frameless renderers
using the same sampling rates. The control machinery that
achieves this improved performance requires less than 15%
of total computation time.

Gold standard validation uses as its standard a simulated
ideal renderer capable of rendering antialiased imagery in
zero time. To perform comparisons to this standard, we
create n ideal images Ij at 60 Hz for an animation using a
simulated ideal renderer and n images Rj for the same ani-
mation using an actual interactive renderer R. We next
compare each image pair (Ij,Rj) using an image comparison
metric. Here we use root-mean-squared error (RMS).

We report the results of our evaluation in Table 1, which
compares several rendering methods producing 256x256
images using various sampling rates. Two framed render-
ings either maximize temporal resolution (i.e., frame rate)
at the cost of spatial resolution (400K 60Hz), or maximize
spatial resolution at the cost of temporal resolution (400K
Full Res). The traditional frameless rendering simply dis-
plays the newest sample at a given pixel. The adaptive
rendering uses our system to produce the imagery. Full Res
60Hz is a framed renderer that uses a sampling rate 10
times higher than all of the other renderers to produce full
resolution imagery at 60Hz. (The difference between the
ideal renderer and the Full Res 60Hz renderer is that the
latter suffers from double-buffering delay and does not use
anti-aliasing). Rendering methods were tested in 3 different
animations, all using the publicly available BART testbed
[LAM00]: the testbed viewpoint animation (Bart); a fixed
viewpoint close-up of a moving car (Toycar), and a re-
cording of user viewpoint interaction (Interactive).

Adaptive frameless rendering is the clear winner, with
lower RMS error than all techniques using the same sam-
pling rate and comparable error to the Full Res 60Hz ren-

dering, with sampling rate 40, 10 and 5 times higher than
the 100K, 400K and 800K adaptive frameless renderings.

Figure 8 offers a more detailed view. The graphs here
show frame-by-frame RMS error comparisons between
several of these rendering techniques and the ideal render-
ing. Note the sawtooth pattern produced by the 400K Full
Res renderer, due to double buffering error. In the interac-
tive animation, the periodic increases in error correspond to
periods of rapid viewpoint change. Again, adaptive frame-
less rendering has lower RMS error than all rendering tech-
niques using equivalent sampling rates, and comparable
error to the much more densely sampled Full Res 60Hz
renderer. The top right graph also depicts the advantage of
using reprojection in the sampler (Adaptive no reprojec-
tions). Error is considerably higher without reprojection.

8. Discussion and future work

Frameless rendering and selective sampling have been
criticized for sacrificing spatial coherence and thus memory
locality, which can reduce sampling speed. We will ex-
periment with increases in the number of samples we gen-
erate each time we visit a tile, increasing spatial coherence
at the cost of slightly less adaptive sampling overall. How-
ever, exploiting spatial coherence has its limits: ultimately,
it will limit our ability to take advantage of temporal coher-
ence and force us to sample more often. Traditional render-
ers must sample every single pixel dozens of times each
second; as displays grow in size and resolution, this cease-
less sampling becomes wasteful of computation, power,
and heat. With this work, we hope to shift the emphasis of
interactive ray tracing research from spatial to temporal
coherence, and from brute-force to selective sampling.

Good filter design for adaptive space-time reconstruction
of frameless sample streams remains an open problem. We
have begun investigating the edge-preserving concepts of
bilateral and trilateral filtering [DD02; CT03], which per-
form nonlinear filtering by weighting samples according to
their difference in luminance as well as their distance in
space. However, extending these approaches to include a
third temporal dimension and to operate on non-uniformly
distributed samples presents a significant challenge. An-
other possibility is to exploit a priori information about the
underlying model or animation, as do Bala et al. [BWG03].

We will continue this research in several longer-term di-
rections. Extending our temporally adaptive methods to

Table 1: Summary error analysis using the techniques of
Figure 8, with some additional sampling rates.

100k 400k 800k 400k 800k 400k 800k
400K 60Hz 92.7 71.8 60.9 112 100 47 42.8
400K Full Res 110 72.6 60.4 127 112 43.8 38.9
Traditional Frameless 80.8 48.8 39.3 92.3 74.8 35.3 32.5
Adaptive 34.4 24.1 23.6 50.1 51.9 20.4 18.5
Full Res 60Hz 28 28 28 30.7 30.7 29.4 29.4

Render Method
Animation/Sampling rate

Interactive Bart Toycar

 Adaptive Frameless Rendering

more sophisticated global illumination algorithms is one
obvious avenue. With its ability to selectively alter sam-
pling and reconstruction across both space and time, our
adaptive frameless renderer is an ideal platform for experi-
menting with perceptually driven rendering in interactive
settings [LRC02]. We are studying the possibility of ex-
tremely high resolution (“gigapixel”) display hardware fed
streams of frameless samples, with adaptive reconstruction
performed in the display itself. This might be one solution
to the immense bandwidth challenge posed by such dis-
plays. Such a rendering configuration would also enable a
truly asynchronous parallelism in graphics, since renderers
would no longer have to combine their samples into a sin-
gle frame. For this reason we are particularly interested in
implementing these algorithms in graphics hardware.

9. Conclusion

In conclusion, we advocate a revival of frameless render-
ing, enabled by recent advances in interactive ray tracing
and based on spatio-temporally adaptive sampling and
reconstruction. Adaptive frameless rendering incorporates
techniques from adaptive renderers, reprojecting renderers,
non-uniform reconstruction, and GPU programming. The

resulting system outperforms traditional framed and tradi-
tional frameless renderers and offers the following exten-
sions of previous reprojecting renderers:

Improved sampling response. Rather being clustered at
each frame time, samples reflect the most up-to-date in-
put available at the moment they are created. Closed-loop
control guides samples toward not only spatial but tem-
poral color discontinuities at various scales. These ele-
ments combine to reduce rendering latency.

Improved reconstruction. Rather than being non-adaptive
or hardware-interpolated, reconstruction is adaptive over
both space and time, responding to local space-time color
gradients. This significantly improves image quality,
eliminating the temporal incoherence in traditional
frameless imagery without requiring framed sampling
and its increased latency, and permitting antialiasing in
static image regions. Reconstruction is implemented on
existing GPU hardware.

Our prototype system displays greater accuracy than
framed and frameless rendering schemes at comparable
sampling rates, and similar accuracy to a framed renderer
sampling 10 times more quickly. Based on these results, we

Figure 8: Error analysis of rendering techniques for several animation sequences created using 100K or 400K samples/sec.
Graphs show frame-by-frame RMS error between each technique’s images and the ideal image that would be displayed by a
hypothetical zero-delay, antialiased renderer at the same moment in time. Resolution is 256x256 pixels at 60 Hz.

Interactive Animation 100k samples/sec

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

#Frame

R
M

S
er

ro
r

Interactive Animation 400k samples/sec

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800
Frame#

R
M

S
er

ro
r

400k Full Res
400k 60Hz
traditional frameless
Full Res 60Hz
adaptive no reprojections
adaptive

Bart Animation 400k samples/sec

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Frame#

R
M

S
er

ro
r

Toycar Animation 400k samples/sec

0

10

20

30

40

50

60

70

0 50 100 150 200

#Frames

R
M

S
er

ro
r

 Adaptive Frameless Rendering

believe that adaptive frameless approach shows great prom-
ise for future rendering algorithms and hardware.

10. Acknowledgements

Thanks to Greg Humphreys, who created the video, and to
Bruce Walter for discussions of the Render Cache. Our
gratitude to Ed Colgate and Kevin Lynch for their discus-
sions of control engineering. This research was supported
by NSF grants 0092973, 0093172, 0112937, and 0130869.

11. References

[BDT99] BALA, K., DORSEY, J., TELLER, S. 1999. Radiance
interpolants for accelerated bounded-error ray tracing. ACM
Trans. Graph, 18, 3, 213-256.

[BWG03] BALA, K., WALTER, B., GREENBERG, D.P. 2003.
Combining edges and points for interactive high-quality render-
ing. ACM Trans. Graph., 22, 3, 631–640 (Proc. ACM
SIGGRAPH).

[BFGS86] BERGMAN, L., FUCHS, H., GRANT, E., SPACH, E.
1986. Image rendering by adaptive refinement. Proc. ACM
SIGGRAPH, 29–37.

[BFMS94] BISHOP, G., FUCHS, H., MCMILLAN, H., SCHER
ZAGIER, E.J. 1994. Frameless rendering: double buffering con-
sidered harmful. Proc. ACM SIGGRAPH, 175–176.

[CHH02] CARR, N.A., HALL, J.D., HART, J.C. 2002. The ray
engine. Proc. ACM SIGGRAPH/Eurographics Graphics Hard-
ware, 37–46.

[CT03] CHOUDHURY, P., TUMBLIN, J. 2003. The trilateral
filter for high contrast images and meshes. Proc. Eurographics
Workshop on Rendering, 186–196.

[DD02] DURAND, F., DORSEY, J. 2002. Fast bilateral filtering
for the display of high-dynamic-range images. ACM Trans.
Graphics, 21, 3, 257–266 (Proc. ACM SIGGRAPH).

[G95] GLASSNER, A. 1995. Principles of Digital Image Synthe-
sis, 1st ed. Morgan Kaufmann.

[HDM03] HAVRAN, V., DAMEZ, C., MYSZKOWSKI, K. 2003.
An efficient spatio-temporal architecture for animation render-
ing. Proc. Eurographics Symposium on Rendering, 106-117.

[J01] JENSEN, H.W. 2001. Realistic Image Synthesis Using Pho-
ton Mapping. AK Peters.

[LAM00] LEXT, J., ASSARSSON, U., MOELLER, T. 2000. Bart:
A benchmark for animated ray tracing. Tech. Rpt. 00-14, Dept.
Computer Engineering, Chalmers Univ. Tech.
http://www.ce.chalmers.se/BART.

[LRC*02] LUEBKE, D., REDDY, M., COHEN, J.D.,
VARSHNEY, A., WATSON, B., HUEBNER, R. 2002. Level of
Detail for 3D Graphics, 1st ed. Morgan Kaufmann.

[M87] MITCHELL, D.P. 1987. Generating antialiased images at
low sampling densities. Proc. ACM SIGGRAPH, 65–72.

[OCMB95] OLANO, M., COHEN, J., MINE, M., BISHOP, G.
1995. Combatting rendering latency. Proc. ACM Interactive 3D
Graphics, 19–24.

[PS89] PAINTER, J., SLOAN, K. 1989. Antialiased ray tracing by
adaptive progressive refinement. Proc. ACM SIGGRAPH, 281–
288.

[PMS*99] PARKER, S., MARTIN, W., SLOAN, P.-P.J.,
SHIRLEY, P., SMITS, B., HANSEN, C. 1999. Interactive ray
tracing. Proc. ACM Interactive 3D Graphics, 119–126.

[PKGH97] PHARR, M., KOLB, C., GERSHBEIN, R.,
HANRAHAN, P. 1997. Rendering Complex Scenes with mem-
ory-coherent ray tracing. Proc. ACM SIGGRAPH, 101– 108.

[PBMH02] PURCELL, T.J., BUCK, I., MARK, W.R.,
HANRAHAN, P. 2002. Ray tracing on programmable graphics
hardware. ACM Trans. Graphics, 21, 3, 703–712 (Proc. ACM
SIGGRAPH).

[RP94] REGAN, M.J.P., POSE, R. 1994. Priority rendering with a
virtual reality address recalculation pipeline. Proc. ACM
SIGGRAPH, 155–162.

[RSH05] RESHETOV, A., Soupikov, A., Hurley, J. 2005. Multi-
Level Ray Tracing Algorithm. ACM Trans. Graph., 24, 3, (Proc.
ACM SIGGRAPH, to appear Aug 2005).

[S97] SCHER-ZAGIER, E. 1997. Defining and Refining Frame-
less Rendering. University of North Carolina Technical Report
#TR97-008.

[SWWPS04] SCHMITTLER, J., WOOP, S., WAGNER, D.,
PAUL, W., and SLUSALLEK, P. 2004. Realtime Ray Tracing
of Dynamic Scenes on an FPGA Chip. Proc. Graphics Hard-
ware 2004.

[SS00] SIMMONS, M., SÉQUIN, C. 2000. Tapestry: A dynamic
mesh-based display representation for interactive rendering.
Proc. Eurographics Workshop on Rendering, 329–340.

[SHSS00] STAMMINGER, M., HABER, J., SCHIRMACHER,
H., and SEIDEL, H. 2000. Walkthroughs with Corrective Tex-
turing. Proc. Eurographics Workshop on Rendering, 377–390.

[TA98] TELLER, S., ALEX, J. 1998. Frustum Casting for Pro-
gressive, Interactive Rendering. Massachusetts Institute of Tech-
nology Technical Report LCS TR-740. Available at
http://graphics.csail.mit.edu/pubs/MIT-LCS-TR-740.ps.gz

[TPWG02] TOLE, P., PELLACINI, F., WALTER, B.,
GREENBERG, D.P. 2002. Interactive global illumination in dy-
namic scenes. ACM Trans. Graphics, 21, 3, 537–546 (Proc.
ACM SIGGRAPH).

[TK96] TORBORG, J., KAJIYA, J. 1996. Talisman: Commodity
Reality Graphics for the PC. Proc. ACM SIGGRAPH, 353-363.

[WBDS03] WALD, I., BENTHIN, C., DIETRICH, A.,
SLUSALLEK, P. 2003. Interactive distributed ray tracing on
commodity PC clusters—state of the art and practical applica-
tions. Lecture Notes on Computer Science, 2790, 499–508
(Proc. EuroPar).

[WBWS01] WALD, I., BENTHIN, C., WAGNER, M.,
SLUSALLEK, P. 2001. Interactive rendering with coherent ray
tracing. Computer Graphics Forum, 20, 153–164 (Proc. Euro-
graphics).

[WPS*03] WALD, I., PURCELL, T.J., SCHMITTLER, J.,
BENTHIN, C., SLUSALLEK, P. 2003. Realtime ray tracing and
its use for interactive global illumination. Eurographics State of
the Art Reports.

[WSB01] WALD, I., SLUSALLEK, P., BENTHIN, C. 2001. In-
teractive distributed ray tracing of highly complex models. Proc.
Eurographics Workshop on Rendering, 277– 288.

[WDG02] WALTER, B., DRETTAKIS, G., GREENBERG, D.P.
2002. Enhancing and optimizing the render cache. Proc. Euro-
graphics Workshop on Rendering, 37–42.

[WDP99] WALTER, B., DRETTAKIS, G., PARKER S. 1999.
Interactive rendering using render cache. Proc. Eurographics
Workshop on Rendering, 19–30.

[WS99] WARD, G., SIMMONS, M. 1999. The Holodeck ray
cache: an interactive rendering system for global illumination in
nondiffuse environments, ACM Trans. Graph. 18, 4, 361-398.

[WLWD03] WOOLLEY, C., LUEBKE, D., WATSON, B.A.,
DAYAL, A. 2003. Interruptible rendering. Proc. ACM Interac-
tive 3D Graphics, 143–151.

