
A Memory Controller for Improved Performance of Streamed Computations on
Symmetric Multiprocessors

Sally A. McKee and Wm. A. Wulf
Department of Computer Science

Thornton Hall, University of Virginia
Charlottesville, VA 22903

{ mckee i wulf} @cs.virginia.edu

Abstract
The growing disparity between processor and memory

speeds has caused memory bandwidth to become the
performance bottleneck for many applications. In
particulal; this performance gap severely impacts stream-
orientated computations such as (de)compression,
encryption, and scientijic vector processing. This paper
describes the development of an intelligent memory
interface that can exploit compiler-provided information
on streamed memory access patterns to improve memory
bandwidth. Simulation results show that such shared-
memory multiprocessor systems can deliver nearly the full
attainable bandwidth with relatively modest hardware
costs.

1. Introduction

It has become painfully obvious that processor speeds
are increasing much faster than memory speeds. For
example, a 300 MHz DEC Alpha can perform more than 20
instructions in the time required to complete a single
memory access to a 4011s DRAM

Caching has often been used to bridge the gap between
microprocessor and DRAM performance, but as the
memory bandwidth problem grows, the effectiveness of the
technique is rapidly diminishing [Bur95, Wu1951. Even if
the addition of cache memory is a sufficient solution for
general-purpose scalar computing (and some portions of
streaming computations), its effectiveness for vector
processing is still subject to debate. The streams used in
these computations are normally much too large to cache in
their entirety, and each element is visited only once during
lengthy portions of the computation. This lack of temporal
locality of reference makes caching less effective than it
might be for other parts of the program. The kinds of
applications that are particularly affected by the growing
processor-memory performance gap include scientific
computations, multi-media (de)compression, encryption,
signal processing, and text searching, to name a few.

1063-7133196 $5.00 0 1996 IEEE
Proceedings of IPPS '96

A comprehensive solution to this bandwidth problem
must exploit the richness of the full memory hierarchy,
including component capabilities. We have proposed part
of such a solution in the form of a Stream Memory
Controller (SjMC) that reorders accesses dynamically at
run-time [McK94a, McK94bI.

2. Access Ordering

The performance of most memory systems is dependent
upon the actual sequence of address references. An
interleaved system, for example, performs better if the
order of accesses permits concurrency among the banks.
Order matters at an even lower level, too: most memory
devices manufactured in the last decade provide special
features (nibble-mode, static column mode, or a small
amount of SRAM cache on chip) or exhibit novel
organizations (such as Rambus, Ramlink, and synchronous
DRAM designs [IEE92]) that make it possible to perform
some access sequences faster than others. Effective
bandwidth can be increased by arranging requests to take
advantage of these capabilities.

Here we focus on fast-page mode devices, which behave
as if they were implemented with a single on-chip cache
line, or page. A memory access falling outside the address
range of the current page forces a new one to be set up, a
process that is significantly slower than repeating an access
to the current page.

Access ordering is any technique that changes the order
of memory requests from that generated by the issuing
program. We are specifically concerned with ordering
vector-like stream accesses to exploit multi-bank systems
using devices ,with special properties like page-mode. In
earlier work [M[cK94a, McK94b1, we proposed a combined
hardware/software scheme for implementing access
ordering dynamically at run-time, and presented numerous
simulation results demonstrating its effectiveness on a
single-processor system.

In this paper we analyze the performance of this scheme
for symmetric multiprocessor systems. We find that the

159

mailto:cs.virginia.edu

way in which a computation is partitioned has a significant
impact on memory performance: as expected, the highest
bandwidth is achieved when processors share the same
working set of DRAM pages throughout most of the
computation. For long-vector computations exhibiting a
high degree of DRAM page-sharing, the SMC can deliver
nearly the full system bandwidth.

3. The SMC

There are many ways to approach the bandwidth
problem, either in hardware or software. In addition to
traditional caching, other proposed solutions range from
software prefetching [Ca191, Mow921 and iteration space
tiling [Car89, Lam9 1, Wol891, to address transformations
[Har89], unusual memory systems [Gao93, Rau9 1, Va1921,
and prefetching hardware or non-blocking caches [Bae91,
Che92, Soh91, Chi94, Jou901. Most of these schemes
simply mask latency without increasing effective
bandwidth. They are still useful, but will be most effective
when combined with complementary technology to take
advantage of memory component capabilities.

Software access-ordering techniques range from
Moyer’s algorithms for non-caching register loads
[Moy93] to schemes that stream vector data into the cache,
explicitly managing it as a fast local memory [Lee93,
Mea92, Pa1951. We have studied access-ordering in depth
[McK95], developing performance bounds for these and
other access-ordering schemes. Compile-time approaches
are limited by contention for processor resources (e.g.,
register pressure or cache conflicts) and the lack of data
placement and alignment information. These limitations
motivated us to consider an implementation that
dynamically reorders accesses at run-time. Benitez and
Davidson’s algorithm can be used to detect streams at
compile-time [Ben91], and the stream parameters can be
transmitted to the reordering hardware at run-time.

Figure 4 MP Stream Memory Controller System

Scheduling Unit (MSU). The MSU includes logic to issue
memory requests and to determine the order of requests
during streaming computations. For non-stream accesses
(which may or may not go through the cache) the MSU
provides the same functionality and performance as a
traditional memory controller.

Given the base address, stride, data size, and vector
length (derived from compile-time analysis) of all streams
currently needed by the processors, the MSU can generate
the addresses of all elements in those streams. The
scheduling unit also knows the details of the memory
architecture, including the degree of interleaving and the
characteristics of the memory components. The access-
ordering circuitry uses this information to issue requests for
individual stream elements in an order that attempts to
optimize memory system performance.

A separate Stream Buffer Unit (SBU) for each processor
contains high-speed buffers for stream operands and
provides memory-mapped registers that the processor uses
to specify stream parameters. Together, the MSU and SBU
comprise a Stream Memoly Controller (SMC) system.

From the processor’s point of view, the stream buffers
are implemented logically as a set of FIFOs within the
SBU. Each stream is assigned to one FIFO, which is
asynchronously filled from or drained to memory in an
order determined by the access/issue logic of the MSU. The
MSU need not perform the accesses in FIFO order. The
FIFO “head” is another memory-mapped register, and load
or store instructions for a particular stream reference this
register, dequeueing or enqueueing data as is appropriate.

Note that since cache placement does not affect the
SMC, logically the system could consist of a single cache
for all CPUs or separate caches for each - the choice is an
implementation issue. Figure 1 depicts separate caches to
emphasize the fact that the SBUs and cache reside at the
same logical level of the memory hierarchy.

Due to both the high communication requirements for a
fully distributed (multiple-MSU) approach and the
limitations on the number of processors that may share a
centralized resource, we do not expect shared-memory
SMC systems to scale to large numbers of processors. Here
we focus on the performance of systems with two to eight
processors. The design of SMC systems that scale to more
CPUs is an interesting issue for further research.

4. Parallelization Schemes

The way in which a problem is partitioned for a
multiprocessor system can have a marked effect on
effective memory bandwidth. In particular, SMC
performance is affected by whether the working sets of
DRAM pages needed by different CPUs overlap during the
course of the computation. If they overlap, the set of FIFOs

Our analysis is based on the simplified architecture of
Figure 1. In this system, all processors are interfaced to
memory through a centralized controller, or Memory

160

using data from a particular page will be larger, making it
possible for the SMC to get more page-hits.

The physical layout of vectors in memory also affects
the working sets of DRAM pages. For the experiments
described here, we use a DRAM page size of 4K bytes, thus
each page can hold 512 double-word vector elements. On
an 8-way interleaved memory system, a computation
incurs an initial page miss on each bank, but
512 x 8 = 4096 elements of a given vector can be accessed
before crossing a page boundary (assuming vectors are
page-aligned). On a 16-bank system, the vectors cross
DRAM page boundaries at element 8192.

Here we focus on two partitioning models. The first,
cyclic scheduling, distributes loop iterations among the
CPUs, as in a FORTRAN DOALL. This scheme makes the
efSective stride at each CPU N times the original stride. If
the number of banks is a multiple of the number of CPUs,
then a different subset of banks will provide the data for
each CPU. Since each of the N processors references every
N th vector element, all CPUs will tend to share the same
set of DRAM pages throughout most of the computation. If
the processors proceed at different rates, some may cross
page boundaries slightly sooner than others, but recent
empirical studies suggest that the slowest processor is
normally not more than the mean execution time of one
loop iteration behind the average processor [LiN94].

The second strategy we investigate is block scheduling.
Here the vector is split into approximately equal-size
pieces, and each processor performs the computation on a
single piece. This partitioning scheme makes it likely that
the portions of a stream assigned to different CPUs will
reside in different DRAM pages, resulting in less overlap
among the different processors’ working sets of pages.

5. Simulation Environment

We have simulated a wide range of SMC configurations
and benchmarks, varying FIFO depth; dynamic orderhssue
policy; number of CPUs; number of memory banks;
DRAM speed and page size; benchmark kernel; and vector
length, stride, and alignment with respect to memory
banks. Here we focus on the general performance trends for
a single ordering policy when used with both cyclic and
block task partitioning. Complete uniprocessor results,
including a detailed description of each access-ordering
heuristic, can be found in [McK95]. The overwhelming
similarity of the performance curves presented in our
uniprocessor SMC studies indicates that neither the
ordering strategy nor the” processor’s access pattern has a
large effect on the MSU’s ability to optimize bandwidth.
Complete shared-memory multiprocessor results can be
found in [McK95].

We assume the system is matched so that bandwith
between the CPUs and the SMC equals that between the

SMC and memory. In order to stress the memory system as
much as possible, we model the CPU as a generator of non-
cached loads and stores of vector elements. Our results are
therefore given as a percentage of the system’s peak
bandwidth, or that necessary to allow each processor to
perform one memory operation per cycle. Instruction and
scalar data references are assumed to hit in the cache, and
all stream references use non-caching loads and stores.

We model DRAMS with a page size of 4K bytes;
accesses that miss the current page take four times as long
as those that hit. Our vectors are of equal length and stride,
share no DRAM pages in common, and are aligned such
that the ith elements of each vector reside in the same bank.
Finally, we assume a model of operation in which each
CPU accesses its FIFOs in order, consuming or producing
one data item per FIFO during each loop iteration.

The ordering policy we consider here operates as
follows. At each available memory bus cycle the MSU
attempts to initiate an access to the next bank in sequence.
If this bank is busy, the MSU moves on to the following
bank and waits for the next bus cycle. If the bank is idle, the
MSU looks for a ready access that hits the bank’s current
DRAM page. PL ready access refers to an empty posilion in
a read FIFO (ready to be filled with the appropriate data
element) or a full position in a write FIFO (the
corresponding data element is ready to be written to
memory). If such an access exists, the MSU issues it.
Otherwise the AASU issues an access for the FIFO requiring
the most service (e.g., the emptiest read FIFO).

operation

for (i - 0; i < N; i++)
.y[i l - x[i l ; 1 write 1 cii;;; I for (i - 0 ; i < N; i++) 1 I read

for (i = 0 ; i < N; i++) 2 read

1 read-write :r[il = a * x[i l + yCi1;

y[i] = a[i] * x[i] + u t i] ; 1 read-write

Figure 2 Benchmark Algorithms

The simulations we discuss focus on three kernels, the
access patterns for which are depicted in Figure 2. Copy
involves two vectors (two streams); duxpy involves two
vectors (three streams); and vmpy involves three vectors
(four streams). ’Varpy denotes a “vector axpy” operation: a
vector a times a vector x plus a vector y. Our technical
reports explore a larger space, simulating the performance
of a suite of access patterns found in real scientific codes:
all our experiments indicate that the SMC’s ability to
optimize bandwidth is relatively insensitive to vector
access patterns, hence the shape of the performance curves
is similar for all benchmarks - asymptotic behavior
approaches 100% of peak bandwidth.

161

ounds on Bandwidth

The percentage of peak bandwidth delivered is
ultimately determined by the MSU’s ability to exploit both
fast accesses (in the form of DRAM page hits) and the
memory system’s concurrency. We can bound SMC
performance for any dynamic ordering scheme by
calculating the minimum number of page misses for the
extreme case when all CPUs share the same working set of
DRAM pages throughout the computation. Similarly, we
can calculate the minimum time for a processor to execute
a loop by adding the startup costs to the time required for
the CPU to execute all memory references for the loop. We
include versions of these formulas below, but the
derivation and analysis of these bounds is given elsewhere
[McK95] and is beyond the scope of this paper. The first
equation gives asymptotic performance limits for very long
vectors, and the others describe limits due to startup effects.

Let f be the depth of the FIFOs, n be the vector length,
s and sr be the total number of streams and the number of
read-streams in a computation, respectively, and v be the
number of vectors (a vector that is both read and written
counts as two streams). N is the number of processors in the
system, and we assume that they all participate in the
computation. For simplicity in our formulas, we assume
that the vector stride is small with respect to DRAM page
size and is relatively prime to b , the number of interleaved
memory banks.

The page-miss bound calculates the minimum fraction
of memory accesses that must generate DRAM page
misses, and uses this to compute the average time to
complete an access. The bandwidth limit is then obtained
by dividing the minimum access time by this average. The
fraction of page misses for a multiple-vector computation
is bounded by:

b N (s - 1) (v - 1) r =
f d s 2

If we let tph and tpm represent the time required to
complete accesses that hit and miss the current DRAM
page, respectively, then the maximum percentage of peak
bandwidth for the computation is: ~ _ _

The startup delay bound equals the minimum time to
perform all accesses in the loop (i.e. the vector length times
the number of streams) divided by itself plus the number of
cycles the last processor must wait to receive all operands
for its first iteration. The waiting time is a function of the
number of read-streams in the computation, the FIFO
depth, and the order in whch the MSU fills the FIFOs.
When cyclic scheduling is used, this bound is:

loons
cf-1) (s r - l) t +srtpm+ns

Ph

% peak (cyclic) =

This equation reflects the fact that all processors share
the same worlung set of DRAM pages throughout the
computation. For block scheduled workloads in which the
vector portions assigned to different CPUs begin in
different DRAM pages, data from the current page only
maps to one FIFO. This means that the MSU must finish
filling one CPU’s FIFO for a particular stream before
switching pages to fill another CPU’s FIFO for that stream,
resulting in a longer overall startup delay. The
corresponding equation is:

SMC performance is governed by these two competing
factors: the page-miss model bounds bandwidth between
the SMC and memory, whereas the startup-delay model
bounds bandwidth between the processors and SMC.

7. Results

Our results are given as a percentage of the system’s
peak bandwidth, or that necessary to allow each CPU to
perform a memory operation each cycle. The vectors used
for these experiments are 10,000 and 80,000 elements in
length, and are aligned to begin in the same bank. Given the
overwhelming similarity of the performance trends for
most benchmarks and system configurations, we only
discuss highlights of our results. Although it is unlikely that
anyone would build an SMC system with a FIFO depth less
than the number of banks, we include results for such
systems for purposes of comparison.

To demonstrate the difference an SMC makes, Figure 3
illustrates effective bandwidth for our three kernels on
10,000-element vectors. The non-SMC data in Figure 3(a)
represents the maximum measured performance using non-
caching and caching loads in the natural order of the
computation on a 2-bank Intel i860 system with an 8Kbyte
write-back cache with 32-byte lines. That for Figure 3(b)
represents the performance bounds generated by Moyer’s
static access ordering software [Moy93]. The percentage of
bandwidth exploited in the natural-order (non-SMC)
computations is independent of vector length, and is
roughly constant for a given ratio of CPUs to memory
banks. As the figure illustrates, using the SMC realizes a
significant performance improvement over using either
non-caching or caching loads and stores in the natural order
for these computations. We have no caching performance
data for the systems with eight times as many banks as
CPUs, but our studies [McK95] indicate that dynamic
access ordering consistently out-performs traditional
caching for streaming computations. For instance, we
expect caches with a line size of eight elements (64 bytes)
to be limited to less than 36% of peak bandwidth, or that
measured in simulating an SMC with 8-deep FIFOs.

162

Figure 3 Comparative Performance

In the remaining graphs, the number of banks is kept
proportional to the number of GPUs, thus the curves for an
8-CPU system represent performance for four times the
number of banks as the corresponding curves for a 2-CPU
system. We keep the peak memory bandwidth and DRAM
page-misdpage-hit cost ratio constant, so an 8-bank system
has four times the DRAM page-miss latency as a 2-bank
system. More banks result in fewer total accesses to each,
so page-miss costs are amortized over fewer fast accesses.
The performance curves for systems with 16 banks thus
represent a smaller percentage of a much larger bandwidth
compared to those for 2-bank systems.

Recall that cyclic scheduling assigns every N th
iteration to each processor, whereas block scheduling
breaks the vectors into chunks, assigning each chunk to a
different CPU. Figure 4 though Figure 6 present
multiprocessor SMC performance for our three kernels
using both cyclic and block scheduling on systems with 2,
4, and 8 processors. The top curve in each graph represents
the performance limits for the computation: the ascending
portion is the page-miss bound for a system in which the
number of banks equals the number of processors, and the
descending portion is the startup-delay bound. Page-miss
bounds for other systems are omitted for readability.

The top row of Figure 4 illustrates effective bandwidth
when cyclic scheduling is used to partition the tasks of the
copy kernel. The first operands from vector x for all CPUs
come from the same DRAM page, and the MSU can supply
these values right away. Since this kernel only reads one

stream, with ithis partitioning strategy there is no startup
delay. Bandwiidth for the graphs in the top row is therefore
limited only by the page-miss bounds, and with deep
FIFOs, all the SMC systems deliver over 95.8% of the peak
system bandwidth for these computations. The graphs in all
columns are very similar, indicating that performance is
relatively constant for a given ratio of processors to banks.

The bottom row of Figure 4 shows copy performance
when block sclheduling is used. The worhng sets of DRAM
pages for each1 processor tend not to overlap. The MSU is
forced to switch pages more often. resulting in lower
overall bandwidth. This also creates a longer startup delay:
the MSTJ provides as many operands as it can from the
current DRAM page before switching to a new one, and the
last CPOU ends up waiting while the MSU fills the other
CPUs’ FIFOs. Even though block-scheduled computations
do not perform as well as cyclic-scheduled ones, the SMC
still delivers over 83.5% of peak for deep FIFOs.

The shapes of the performance curves for the 8-CPU
systems in the third and fourth columns of Figure4 are
particularly interesting. For shallow FIFOs, the systems
with more banks deliver greater bandwidth than those with
fewer banks, even though there are fewer vector elements
per bank over which the SMC can amortize page-miss
costs. The shallowness forces the MSU to switch FIFOs
often, causing it to service the FIFOs of all CPUs relatively
evenly. This prevents any processor from getting ahead of
the others, creating a more even workload for the MSU,
and promoting better bank utilization. IJnfortunately, the
FIFO depths at which this serendipity occurs are difficult to
predict: they depend on the number of streams in the
computation, the number of CPUs and the degree of page-
sharing among, them, the DRAM cycle time, and the
number of memory banks.

The way the vectors are laid out in memory also affects
block-scheduled workloads on systems with many banks.
More banks means fewer elements per bank, so the data
spans fewer DRAM pages within each bank. Depending on
the length of the vector, there may be a greater overlap
among the CPUs’ workmg sets of DRAM pages. Data
layout accounts for the differences in performance between
equivalent systems in the graphs for the 8-CPU systems: in
the second row of Figure 4’s graphs, the working sets for
the systems in the column three overlap more than those in
the column four, resulting in better memory performance.

Figure 5 presents daxpy performance for both
partitioning schemes. These curves illustrate the
relationship between FIFO depth and vector length: as the
number of processors grows and the amount of data
processed by each CPU decreases, performance becomes
limited by startup-delay costs for the 10,000-element
vectors in columns one through three. For the 80,000-
element computations of column four, each CPU has a

163

larger share of data over which to amortize costs, thus the
startup-delay bound ceases to be the limiting performance
factor. These results emphasize the importance of adjusting
the FIFO depth to the computation. Deeper FIFOs do not
always result in a higher percentage of peak bandwidth. For
good performance, FIFO depth must be adjustable at run-
time. Equations for computing optimal FIFO depth can be
derived from the SMC performance bounds [McK95].

Figure 6 presents effective bandwidth for the same
systems running the vavpy benchmark. The similarity in
the shapes of the performance curves for the different
benchmarks illustrates the SMC’s relative insensitivity to
the processors’ access patterns in its ability to improve
bandwidth. In all cases, asymptotic behavior for long
vectors approaches 100% of the peak bandwidth that the
memory system can deliver.

8. Conclusions

As processors become faster, memory bandwidth is
rapidly becoming the performance bottleneck in the
application of high performance rd;croprocessors to
important stream-oriented algorithms. These computations
lack the temporal locality required for caching alone.
Dynamic access ordering, however, can optimize such
accesses. Previous papers have shown that by combining
compile-time detection of streams with execution-time
selection of the access order and issue, we achieve high
bandwidth relatively inexpensively.

The results presented here indicate that dynamic access
ordering via the SMC can be an effective means of
improving memory bandwidth for streaming computations
on shared-memory multiprocessor systems. Using only a
modest amount of buffer space, the SMC consistently
delivers nearly the full system bandwidth for cyclic-
scheduled computations on long vectors. SMC
performance for block-scheduled parallel computations is
not as dramatic, but still represents a significant
improvement over performing memory accesses in the
natural order of the computation. The superiority of cyclic
scheduling over block scheduling is not surprising, since
explicit, cooperative management of shared resources has
been shown to be an important factor in obtaining good
performance on multiprocessor platforms.

In addition, our results emphasize an important
consideration in the design of an efficient SMC system that
was initially a surprise to us - FIFO depth must be run-
time selectable so that the amount of stream buffer space to
use can be adapted to individual computations.

Acknowledgments

(MIP-9114110 and MIP-9307626) and Intel.
This work was supported in part by grants from NSF

References
[Bae91] J.L. Baer, T.F. Chen, “An Effective On-Chip Preloading

Scheme To Reduce Data Access Penalty”, Proc.
Supercomputing’91, November 1991.

[Ben911 M.E. Benitez, J.W. Davidson, “Code Generation for
Streaming: An AccessiExecute Mechanism”, Proc. ASPLOS-
IV, April 1991.

[Bur951 D.C. Burger, J.R. Goodman, A. Kagi, “The Declining
Effectiveness of Dynamic Caching for General-Purpose
Microprocessors”, Univ. of Wisconsin, Department of
Computer Science, Technical Report 1261, February 1995.

[Cal91] D. Callahan, K. Kennedy, A. Porterfield, “Software
Prefetching”, Proc. ASPLOS-IV, April 1991,

[Car891 S. Carr, K. Kennedy, “Blocking Linear Algebra Codes
for Memory Hierarchies”, Proc. Fourth SIAM Conference on
Parallel Processing for Scientific Computing, 1989.

[Chi941 T. Chiueh, “Sunder: A Programmable Hardware
Prefetch Architecture for Numerical Loops”, Proc.
Supercomputing ‘94, November 1994.

[Gao93] Q.S. Gao, ‘The Chinese Remainder Theorem and the
Prime Memory System”, Proc. 20th ISCA, May 1993.

[Har89] D.T. Harper, “Address Transformation to Increase
Memory Performance”, Proc. 1989 International Conference
on Supercomputing.

[IEE92] “High-speed DRAMS”, Special Report, IEEE Spectrum,
vol. 29, no. 10, October 1992.

[Jou90] N. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully Associative
Cache and Prefetch Buffers”, Proc. 17th ISCA, May 1990.

[Lam9l]M. Lam, E. Rothberg, M. Wolf, “The Cache
Performance and Optimizations of Blocked Algorithms”,
Proc. ASPLOS-IV, April 1991.

[Lee931 K. Lee, “The NAS860 Library User’s Manual”, NAS TR
RND-93-003, NASA Ames Research Center, Moffett Field,
CA, March 1993.

[LiN94] Z. Li, T.N. Nguyen, “An Empirical Study of the Work
Load Distribution Under Static Scheduling”, Proc. Int’l.
Conf. on Parallel Processing 1994.

[McK94a]S .A. McKee, “Experimental Implementation of
Dynamic Access Ordering”, Proc. 27th Hawaii Intemational
Conference on Systems Sciences, Maui, HI, January 1994.

[McK94b]S.A. McKee, S.A. Moyer, Wm.A. Wulf, C. Hitchcock,
“Increasing Memory Bandwidth for Vector Computations”,
Proc. Programming Languages and System Architectures,
Zurich, Switzerland, March 1994.

[McK95]S.A. McKee, http://www.cs.virginia.edu/-wm/
smc.htm1.

[Mea921 L. Meadows, et.al., “A Vectorizing Software Pipelining
Compiler for LIW and Superscalar Architectures”, RISC’92.

[Mow92]T.C. Mowry, M. Lam, A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching”, Proc.
ASPLOS-V, September 1992.

[Moy93]S.A. Moyer, “Access Ordering and Effective Memory
Bandwidth”, Ph.D. Thesis, Department of Computer Science,
Univ. of Virginia, Technical Report CS-93-18, April 1993.

[Pa1951 S. Palacharla, R.E. Kessler, “Code Restructuring to
Exploit Page Mode and Read-Ahead Features of the Cray
T3D’, work in progress, February 1995.

[Rau9 11 B.R. Rau, “Pseudo-Randomly Interleaved Memory”,
Proc. 18th ISCA, Toronto, May 1991.

[Soh911 G. Sohi, M. Franklin, “High Bandwidth Memory
Systems for Superscalar Processors”, Proc. ASPLOS-IV,
April 1991.

[Val921 M. Valero, et. al., “Increasing the Number of Strides for
Conflict-Free Vector Access”, Proc. 19th ISCA, May 1992.

[Wo189] M. Wolfe, “More Iteration Space Tiling”, Proc.
Supercomputing ‘89, 1989.

[Wul95] Wm.A. Wulf, S.A. McKee, “Hitting the Wall:
Implications of the Obvious”, Comp. Arch.News, 23, 1,
March 1994.

164

http://www.cs.virginia.edu/-wm

FIFO depth FIFO depth FIFO depth FIFO depth

Y
0 Y
0 50

E
n

"S@&l@ "Sa$$#$ "S$$$$$Q "S&$$#$
h Q L g

FIFO depth FIFO depth FIFO depth FIFO depth

Figure 4 copy Performance for SMC Systems with N CPUs

0

0
%
0

.- -

FIFO depth FIFO depth FIFO depth FIFO depth

FIFO depth FIFO depth FIFO depth FIFO depth

Figure 5 daxpy Performance for SMC Systemis with N CPUs

limit
N banks
2N banks
4N banks
EN banks

FIFO depth FIFO depth FIFO depth FIFO depth

FIFO depth FIFO depth FIFO depth FIFO depth

Figure 6 vaxpy Performance for SMC Systemis with N CPUs

165

