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Abstract 
The growing disparity between processor and memory 

speeds has caused memory bandwidth to become the 
performance bottleneck for  many applications. In 
particulal; this performance gap severely impacts stream- 
orientated computations such as (de)compression, 
encryption, and scientijic vector processing. This paper 
describes the development of an intelligent memory 
interface that can exploit compiler-provided information 
on streamed memory access patterns to improve memory 
bandwidth. Simulation results show that such shared- 
memory multiprocessor systems can deliver nearly the full 
attainable bandwidth with relatively modest hardware 
costs. 

1. Introduction 

It has become painfully obvious that processor speeds 
are increasing much faster than memory speeds. For 
example, a 300 MHz DEC Alpha can perform more than 20 
instructions in the time required to complete a single 
memory access to a 4011s DRAM 

Caching has often been used to bridge the gap between 
microprocessor and DRAM performance, but as the 
memory bandwidth problem grows, the effectiveness of the 
technique is rapidly diminishing [Bur95, Wu1951. Even if 
the addition of cache memory is a sufficient solution for 
general-purpose scalar computing (and some portions of 
streaming computations), its effectiveness for vector 
processing is still subject to debate. The streams used in 
these computations are normally much too large to cache in 
their entirety, and each element is visited only once during 
lengthy portions of the computation. This lack of temporal 
locality of reference makes caching less effective than it 
might be for other parts of the program. The kinds of 
applications that are particularly affected by the growing 
processor-memory performance gap include scientific 
computations, multi-media (de)compression, encryption, 
signal processing, and text searching, to name a few. 
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A comprehensive solution to this bandwidth problem 
must exploit the richness of the full memory hierarchy, 
including component capabilities. We have proposed part 
of such a solution in the form of a Stream Memory 
Controller (SjMC) that reorders accesses dynamically at 
run-time [McK94a, McK94bI. 

2. Access Ordering 

The performance of most memory systems is dependent 
upon the actual sequence of address references. An 
interleaved system, for example, performs better if the 
order of accesses permits concurrency among the banks. 
Order matters at an even lower level, too: most memory 
devices manufactured in the last decade provide special 
features (nibble-mode, static column mode, or a small 
amount of SRAM cache on chip) or exhibit novel 
organizations (such as Rambus, Ramlink, and synchronous 
DRAM designs [IEE92]) that make it possible to perform 
some access sequences faster than others. Effective 
bandwidth can be increased by arranging requests to take 
advantage of these capabilities. 

Here we focus on fast-page mode devices, which behave 
as if they were implemented with a single on-chip cache 
line, or page. A memory access falling outside the address 
range of the current page forces a new one to be set up, a 
process that is significantly slower than repeating an access 
to the current page. 

Access ordering is any technique that changes the order 
of memory requests from that generated by the issuing 
program. We are specifically concerned with ordering 
vector-like stream accesses to exploit multi-bank systems 
using devices ,with special properties like page-mode. In 
earlier work [M[cK94a, McK94b1, we proposed a combined 
hardware/software scheme for implementing access 
ordering dynamically at run-time, and presented numerous 
simulation results demonstrating its effectiveness on a 
single-processor system. 

In this paper we analyze the performance of this scheme 
for symmetric multiprocessor systems. We find that the 
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way in which a computation is partitioned has a significant 
impact on memory performance: as expected, the highest 
bandwidth is achieved when processors share the same 
working set of DRAM pages throughout most of the 
computation. For long-vector computations exhibiting a 
high degree of DRAM page-sharing, the SMC can deliver 
nearly the full system bandwidth. 

3. The SMC 

There are many ways to approach the bandwidth 
problem, either in hardware or software. In addition to 
traditional caching, other proposed solutions range from 
software prefetching [Ca191, Mow921 and iteration space 
tiling [Car89, Lam9 1, Wol891, to address transformations 
[Har89], unusual memory systems [Gao93, Rau9 1, Va1921, 
and prefetching hardware or non-blocking caches [Bae91, 
Che92, Soh91, Chi94, Jou901. Most of these schemes 
simply mask latency without increasing effective 
bandwidth. They are still useful, but will be most effective 
when combined with complementary technology to take 
advantage of memory component capabilities. 

Software access-ordering techniques range from 
Moyer’s algorithms for non-caching register loads 
[Moy93] to schemes that stream vector data into the cache, 
explicitly managing it as a fast local memory [Lee93, 
Mea92, Pa1951. We have studied access-ordering in depth 
[McK95], developing performance bounds for these and 
other access-ordering schemes. Compile-time approaches 
are limited by contention for processor resources (e.g., 
register pressure or cache conflicts) and the lack of data 
placement and alignment information. These limitations 
motivated us to consider an implementation that 
dynamically reorders accesses at run-time. Benitez and 
Davidson’s algorithm can be used to detect streams at 
compile-time [Ben91], and the stream parameters can be 
transmitted to the reordering hardware at run-time. 

Figure 4 MP Stream Memory Controller System 

Scheduling Unit (MSU). The MSU includes logic to issue 
memory requests and to determine the order of requests 
during streaming computations. For non-stream accesses 
(which may or may not go through the cache) the MSU 
provides the same functionality and performance as a 
traditional memory controller. 

Given the base address, stride, data size, and vector 
length (derived from compile-time analysis) of all streams 
currently needed by the processors, the MSU can generate 
the addresses of all elements in those streams. The 
scheduling unit also knows the details of the memory 
architecture, including the degree of interleaving and the 
characteristics of the memory components. The access- 
ordering circuitry uses this information to issue requests for 
individual stream elements in an order that attempts to 
optimize memory system performance. 

A separate Stream Buffer Unit (SBU) for each processor 
contains high-speed buffers for stream operands and 
provides memory-mapped registers that the processor uses 
to specify stream parameters. Together, the MSU and SBU 
comprise a Stream Memoly Controller (SMC) system. 

From the processor’s point of view, the stream buffers 
are implemented logically as a set of FIFOs within the 
SBU. Each stream is assigned to one FIFO, which is 
asynchronously filled from or drained to memory in an 
order determined by the access/issue logic of the MSU. The 
MSU need not perform the accesses in FIFO order. The 
FIFO “head” is another memory-mapped register, and load 
or store instructions for a particular stream reference this 
register, dequeueing or enqueueing data as is appropriate. 

Note that since cache placement does not affect the 
SMC, logically the system could consist of a single cache 
for all CPUs or separate caches for each - the choice is an 
implementation issue. Figure 1 depicts separate caches to 
emphasize the fact that the SBUs and cache reside at the 
same logical level of the memory hierarchy. 

Due to both the high communication requirements for a 
fully distributed (multiple-MSU) approach and the 
limitations on the number of processors that may share a 
centralized resource, we do not expect shared-memory 
SMC systems to scale to large numbers of processors. Here 
we focus on the performance of systems with two to eight 
processors. The design of SMC systems that scale to more 
CPUs is an interesting issue for further research. 

4. Parallelization Schemes 

The way in which a problem is partitioned for a 
multiprocessor system can have a marked effect on 
effective memory bandwidth. In particular, SMC 
performance is affected by whether the working sets of 
DRAM pages needed by different CPUs overlap during the 
course of the computation. If they overlap, the set of FIFOs 

Our analysis is based on the simplified architecture of 
Figure 1. In this system, all processors are interfaced to 
memory through a centralized controller, or Memory 
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using data from a particular page will be larger, making it 
possible for the SMC to get more page-hits. 

The physical layout of vectors in memory also affects 
the working sets of DRAM pages. For the experiments 
described here, we use a DRAM page size of 4K bytes, thus 
each page can hold 512 double-word vector elements. On 
an 8-way interleaved memory system, a computation 
incurs an initial page miss on each bank, but 
512 x 8 = 4096 elements of a given vector can be accessed 
before crossing a page boundary (assuming vectors are 
page-aligned). On a 16-bank system, the vectors cross 
DRAM page boundaries at element 8192. 

Here we focus on two partitioning models. The first, 
cyclic scheduling, distributes loop iterations among the 
CPUs, as in a FORTRAN DOALL. This scheme makes the 
efSective stride at each CPU N times the original stride. If 
the number of banks is a multiple of the number of CPUs, 
then a different subset of banks will provide the data for 
each CPU. Since each of the N processors references every 
N th vector element, all CPUs will tend to share the same 
set of DRAM pages throughout most of the computation. If 
the processors proceed at different rates, some may cross 
page boundaries slightly sooner than others, but recent 
empirical studies suggest that the slowest processor is 
normally not more than the mean execution time of one 
loop iteration behind the average processor [LiN94]. 

The second strategy we investigate is block scheduling. 
Here the vector is split into approximately equal-size 
pieces, and each processor performs the computation on a 
single piece. This partitioning scheme makes it likely that 
the portions of a stream assigned to different CPUs will 
reside in different DRAM pages, resulting in less overlap 
among the different processors’ working sets of pages. 

5. Simulation Environment 

We have simulated a wide range of SMC configurations 
and benchmarks, varying FIFO depth; dynamic orderhssue 
policy; number of CPUs; number of memory banks; 
DRAM speed and page size; benchmark kernel; and vector 
length, stride, and alignment with respect to memory 
banks. Here we focus on the general performance trends for 
a single ordering policy when used with both cyclic and 
block task partitioning. Complete uniprocessor results, 
including a detailed description of each access-ordering 
heuristic, can be found in [McK95]. The overwhelming 
similarity of the performance curves presented in our 
uniprocessor SMC studies indicates that neither the 
ordering strategy nor the” processor’s access pattern has a 
large effect on the MSU’s ability to optimize bandwidth. 
Complete shared-memory multiprocessor results can be 
found in [McK95]. 

We assume the system is matched so that bandwith 
between the CPUs and the SMC equals that between the 

SMC and memory. In order to stress the memory system as 
much as possible, we model the CPU as a generator of non- 
cached loads and stores of vector elements. Our results are 
therefore given as a percentage of the system’s peak 
bandwidth, or that necessary to allow each processor to 
perform one memory operation per cycle. Instruction and 
scalar data references are assumed to hit in the cache, and 
all stream references use non-caching loads and stores. 

We model DRAMS with a page size of 4K bytes; 
accesses that miss the current page take four times as long 
as those that hit. Our vectors are of equal length and stride, 
share no DRAM pages in common, and are aligned such 
that the ith elements of each vector reside in the same bank. 
Finally, we assume a model of operation in which each 
CPU accesses its FIFOs in order, consuming or producing 
one data item per FIFO during each loop iteration. 

The ordering policy we consider here operates as 
follows. At each available memory bus cycle the MSU 
attempts to initiate an access to the next bank in sequence. 
If this bank is busy, the MSU moves on to the following 
bank and waits for the next bus cycle. If the bank is idle, the 
MSU looks for a ready access that hits the bank’s current 
DRAM page. PL ready access refers to an empty posilion in 
a read FIFO (ready to be filled with the appropriate data 
element) or a full position in a write FIFO (the 
corresponding data element is ready to be written to 
memory). If such an access exists, the MSU issues it. 
Otherwise the AASU issues an access for the FIFO requiring 
the most service (e.g., the emptiest read FIFO). 

operation 

for (i - 0; i < N; i++) 
.y[ i l  - x[ i l ;  1 write 1 cii;;; I for (i - 0 ;  i < N; i++) 1 I read 

for (i = 0 ;  i < N; i++) 2 read 

1 read-write :r[il = a * x[i l  + yCi1; 

y[ i ]  = a[i]  * x[i]  + u t i ] ;  1 read-write 

Figure 2 Benchmark Algorithms 

The simulations we discuss focus on three kernels, the 
access patterns for which are depicted in Figure 2. Copy 
involves two vectors (two streams); duxpy involves two 
vectors (three streams); and vmpy involves three vectors 
(four streams). ’Varpy denotes a “vector axpy” operation: a 
vector a times a vector x plus a vector y. Our technical 
reports explore a larger space, simulating the performance 
of a suite of access patterns found in real scientific codes: 
all our experiments indicate that the SMC’s ability to 
optimize bandwidth is relatively insensitive to vector 
access patterns, hence the shape of the performance curves 
is similar for all benchmarks - asymptotic behavior 
approaches 100% of peak bandwidth. 
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ounds on Bandwidth 

The percentage of peak bandwidth delivered is 
ultimately determined by the MSU’s ability to exploit both 
fast accesses (in the form of DRAM page hits) and the 
memory system’s concurrency. We can bound SMC 
performance for any dynamic ordering scheme by 
calculating the minimum number of page misses for the 
extreme case when all CPUs share the same working set of 
DRAM pages throughout the computation. Similarly, we 
can calculate the minimum time for a processor to execute 
a loop by adding the startup costs to the time required for 
the CPU to execute all memory references for the loop. We 
include versions of these formulas below, but the 
derivation and analysis of these bounds is given elsewhere 
[McK95] and is beyond the scope of this paper. The first 
equation gives asymptotic performance limits for very long 
vectors, and the others describe limits due to startup effects. 

Let f be the depth of the FIFOs, n be the vector length, 
s and sr be the total number of streams and the number of 
read-streams in a computation, respectively, and v be the 
number of vectors (a vector that is both read and written 
counts as two streams). N is the number of processors in the 
system, and we assume that they all participate in the 
computation. For simplicity in our formulas, we assume 
that the vector stride is small with respect to DRAM page 
size and is relatively prime to b , the number of interleaved 
memory banks. 

The page-miss bound calculates the minimum fraction 
of memory accesses that must generate DRAM page 
misses, and uses this to compute the average time to 
complete an access. The bandwidth limit is then obtained 
by dividing the minimum access time by this average. The 
fraction of page misses for a multiple-vector computation 
is bounded by: 

b N ( s -  1) ( v -  1) r =  
f d s 2  

If we let tph and tpm represent the time required to 
complete accesses that hit and miss the current DRAM 
page, respectively, then the maximum percentage of peak 
bandwidth for the computation is: ~ _ _  

The startup delay bound equals the minimum time to 
perform all accesses in the loop (i.e. the vector length times 
the number of streams) divided by itself plus the number of 
cycles the last processor must wait to receive all operands 
for its first iteration. The waiting time is a function of the 
number of read-streams in the computation, the FIFO 
depth, and the order in whch  the MSU fills the FIFOs. 
When cyclic scheduling is used, this bound is: 

loons 
cf-1) ( s r - l ) t  +srtpm+ns 

Ph 

% peak ( cyclic) = 

This equation reflects the fact that all processors share 
the same worlung set of DRAM pages throughout the 
computation. For block scheduled workloads in which the 
vector portions assigned to different CPUs begin in 
different DRAM pages, data from the current page only 
maps to one FIFO. This means that the MSU must finish 
filling one CPU’s FIFO for a particular stream before 
switching pages to fill another CPU’s FIFO for that stream, 
resulting in a longer overall startup delay. The 
corresponding equation is: 

SMC performance is governed by these two competing 
factors: the page-miss model bounds bandwidth between 
the SMC and memory, whereas the startup-delay model 
bounds bandwidth between the processors and SMC. 

7. Results 

Our results are given as a percentage of the system’s 
peak bandwidth, or that necessary to allow each CPU to 
perform a memory operation each cycle. The vectors used 
for these experiments are 10,000 and 80,000 elements in 
length, and are aligned to begin in the same bank. Given the 
overwhelming similarity of the performance trends for 
most benchmarks and system configurations, we only 
discuss highlights of our results. Although it is unlikely that 
anyone would build an SMC system with a FIFO depth less 
than the number of banks, we include results for such 
systems for purposes of comparison. 

To demonstrate the difference an SMC makes, Figure 3 
illustrates effective bandwidth for our three kernels on 
10,000-element vectors. The non-SMC data in Figure 3(a) 
represents the maximum measured performance using non- 
caching and caching loads in the natural order of the 
computation on a 2-bank Intel i860 system with an 8Kbyte 
write-back cache with 32-byte lines. That for Figure 3(b) 
represents the performance bounds generated by Moyer’s 
static access ordering software [Moy93]. The percentage of 
bandwidth exploited in the natural-order (non-SMC) 
computations is independent of vector length, and is 
roughly constant for a given ratio of CPUs to memory 
banks. As the figure illustrates, using the SMC realizes a 
significant performance improvement over using either 
non-caching or caching loads and stores in the natural order 
for these computations. We have no caching performance 
data for the systems with eight times as many banks as 
CPUs, but our studies [McK95] indicate that dynamic 
access ordering consistently out-performs traditional 
caching for streaming computations. For instance, we 
expect caches with a line size of eight elements (64 bytes) 
to be limited to less than 36% of peak bandwidth, or that 
measured in simulating an SMC with 8-deep FIFOs. 
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Figure 3 Comparative Performance 

In the remaining graphs, the number of banks is kept 
proportional to the number of GPUs, thus the curves for an 
8-CPU system represent performance for four times the 
number of banks as the corresponding curves for a 2-CPU 
system. We keep the peak memory bandwidth and DRAM 
page-misdpage-hit cost ratio constant, so an 8-bank system 
has four times the DRAM page-miss latency as a 2-bank 
system. More banks result in fewer total accesses to each, 
so page-miss costs are amortized over fewer fast accesses. 
The performance curves for systems with 16 banks thus 
represent a smaller percentage of a much larger bandwidth 
compared to those for 2-bank systems. 

Recall that cyclic scheduling assigns every N th 
iteration to each processor, whereas block scheduling 
breaks the vectors into chunks, assigning each chunk to a 
different CPU. Figure 4 though Figure 6 present 
multiprocessor SMC performance for our three kernels 
using both cyclic and block scheduling on systems with 2, 
4, and 8 processors. The top curve in each graph represents 
the performance limits for the computation: the ascending 
portion is the page-miss bound for a system in which the 
number of banks equals the number of processors, and the 
descending portion is the startup-delay bound. Page-miss 
bounds for other systems are omitted for readability. 

The top row of Figure 4 illustrates effective bandwidth 
when cyclic scheduling is used to partition the tasks of the 
copy kernel. The first operands from vector x for all CPUs 
come from the same DRAM page, and the MSU can supply 
these values right away. Since this kernel only reads one 

stream, with ithis partitioning strategy there is no startup 
delay. Bandwiidth for the graphs in the top row is therefore 
limited only by the page-miss bounds, and with deep 
FIFOs, all the SMC systems deliver over 95.8% of the peak 
system bandwidth for these computations. The graphs in all 
columns are very similar, indicating that performance is 
relatively constant for a given ratio of processors to banks. 

The bottom row of Figure 4 shows copy performance 
when block sclheduling is used. The worhng sets of DRAM 
pages for each1 processor tend not to overlap. The MSU is 
forced to switch pages more often. resulting in lower 
overall bandwidth. This also creates a longer startup delay: 
the MSTJ provides as many operands as it can from the 
current DRAM page before switching to a new one, and the 
last CPOU ends up waiting while the MSU fills the other 
CPUs’ FIFOs. Even though block-scheduled computations 
do not perform as well as cyclic-scheduled ones, the SMC 
still delivers over 83.5% of peak for deep FIFOs. 

The shapes of the performance curves for the 8-CPU 
systems in the third and fourth columns of Figure4 are 
particularly interesting. For shallow FIFOs, the systems 
with more banks deliver greater bandwidth than those with 
fewer banks, even though there are fewer vector elements 
per bank over which the SMC can amortize page-miss 
costs. The shallowness forces the MSU to switch FIFOs 
often, causing it to service the FIFOs of all CPUs relatively 
evenly. This prevents any processor from getting ahead of 
the others, creating a more even workload for the MSU, 
and promoting better bank utilization. IJnfortunately, the 
FIFO depths at which this serendipity occurs are difficult to 
predict: they depend on the number of streams in the 
computation, the number of CPUs and the degree of page- 
sharing among, them, the DRAM cycle time, and the 
number of memory banks. 

The way the vectors are laid out in memory also affects 
block-scheduled workloads on systems with many banks. 
More banks means fewer elements per bank, so the data 
spans fewer DRAM pages within each bank. Depending on 
the length of the vector, there may be a greater overlap 
among the CPUs’ workmg sets of DRAM pages. Data 
layout accounts for the differences in performance between 
equivalent systems in the graphs for the 8-CPU systems: in 
the second row of Figure 4’s graphs, the working sets for 
the systems in the column three overlap more than those in 
the column four, resulting in better memory performance. 

Figure 5 presents daxpy performance for both 
partitioning schemes. These curves illustrate the 
relationship between FIFO depth and vector length: as the 
number of processors grows and the amount of data 
processed by each CPU decreases, performance becomes 
limited by startup-delay costs for the 10,000-element 
vectors in columns one through three. For the 80,000- 
element computations of column four, each CPU has a 
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larger share of data over which to amortize costs, thus the 
startup-delay bound ceases to be the limiting performance 
factor. These results emphasize the importance of adjusting 
the FIFO depth to the computation. Deeper FIFOs do not 
always result in a higher percentage of peak bandwidth. For 
good performance, FIFO depth must be adjustable at run- 
time. Equations for computing optimal FIFO depth can be 
derived from the SMC performance bounds [McK95]. 

Figure 6 presents effective bandwidth for the same 
systems running the vavpy benchmark. The similarity in 
the shapes of the performance curves for the different 
benchmarks illustrates the SMC’s relative insensitivity to 
the processors’ access patterns in its ability to improve 
bandwidth. In all cases, asymptotic behavior for long 
vectors approaches 100% of the peak bandwidth that the 
memory system can deliver. 

8. Conclusions 

As processors become faster, memory bandwidth is 
rapidly becoming the performance bottleneck in the 
application of high performance rd;croprocessors to 
important stream-oriented algorithms. These computations 
lack the temporal locality required for caching alone. 
Dynamic access ordering, however, can optimize such 
accesses. Previous papers have shown that by combining 
compile-time detection of streams with execution-time 
selection of the access order and issue, we achieve high 
bandwidth relatively inexpensively. 

The results presented here indicate that dynamic access 
ordering via the SMC can be an effective means of 
improving memory bandwidth for streaming computations 
on shared-memory multiprocessor systems. Using only a 
modest amount of buffer space, the SMC consistently 
delivers nearly the full system bandwidth for cyclic- 
scheduled computations on long vectors. SMC 
performance for block-scheduled parallel computations is 
not as dramatic, but still represents a significant 
improvement over performing memory accesses in the 
natural order of the computation. The superiority of cyclic 
scheduling over block scheduling is not surprising, since 
explicit, cooperative management of shared resources has 
been shown to be an important factor in obtaining good 
performance on multiprocessor platforms. 

In addition, our results emphasize an important 
consideration in the design of an efficient SMC system that 
was initially a surprise to us - FIFO depth must be run- 
time selectable so that the amount of stream buffer space to 
use can be adapted to individual computations. 
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