A Formal Semantics for Dynamic Fault Trees

September 7, 2002

Version 0.1
David Coppit Kevin J. Sullivan
Dept. of Comp. Sci. Dept. of Comp. Sci.
The College of William and Mary University of Virginia
Williamsburg, VA 23185 Charlottesville, VA 22903
david@coppit.org sullivan@cs.virginia.edu

Joanne Bechta Dugan
Dept. of Elec. Eng.
University of Virginia
Charlottesville, VA 22903
jbd @ee.virginia.edu

(© Copyright September 2002
All Rights Reserved

Contents

1 Scope

2 Conventions and Notation
3 Definitions

4 Basic Types

5 Abstract Syntax of Fault Trees
5.1 EventIdentifiersand Evenis e e e e e e e
5.2 BasicEVERLS . . . v . o e e e e e e e e e e e e e
5.3 GBS+ o e e e e e e e e e e e e
54 CONSAINIS . .« © o v o v e et e e e e e e e e e e e
5.5 Fault TECES . v v v v e e e e e e e e e e e

6 Failure Automata
6.1 States of Bvents and Histories L . e e e
6.2 Failure ARtomaton SEALE . . . o . v i e e e e e e e e e e e e
6.3 Failure Automaton Transitions« . . o o e e e e e e
6.4 Failure AWIOMata o o o e e e e e e e e e e e e e e e e

7 Semantics of Fault Trees in Terms of Failure Automata
7.1 Number of Replicates, Event Occurrences oL
72 Semantics 0T AND GAates - . o o o e
7.3 Semantics of ORGAtES . .+ . - o o o o e e e
7.4 Semantics of Threshold Gates L e
75 Semantics of PAND Gates o o o o e e e e e e e
7.6 Semanticsof Spare Gates
7.7 Semantics of Sequence Enforcing Constraintso
7.8 Semantics of Functional Dependency Constraints Lo
7.9 Uncovered Failure Semantics« o o o o it e e e e e e e
7.10 Causal Basic Event Semantics o v v o o i e e e e
7.11 Complete Fault Tree Semantics in terms of Failure Automata

8§ Markov Models
9 Basic Event Models

10 Semantics of Fault Tree Automata in Terms of Markov Chains
10.1 Structural Correspondence Between Failure Automata and Markov Models
10.2 Markov Model Transition Rate Functionso oo
10.3 Complete Failure Automaton Semantics in terms of Markov Models

11 Analyses
A Fauolt Tree Subtypes

Bibliography

10
10
10
10
11

12
12
I3
14
14
15
15
19
19
20
20
20

22
23

25
25
20
29

3
33

34

1 Scope

This document formally specifies the abstract syntax and semantics of dynamic fault trees. The specifi-
cation is written in Z [1], with the semantics expressed in terms of a lower-level domain called fault tree
automata. A subset of this lower-level domain is then formally defined in terms of the well-understood do-
main of Markov chains. Complete specification of the semantics of fault tree automata will require the use
of additional low-level domains besides Markov chains, and is not covered in this document.

While this document formalizes the key aspects of the dynamic fault tree framework, there are several
related aspects that are not covered. Most obvious is the formal semantics of subsets of DFTs which can not
be expressed as Markov chains. Another is a divide-and-conquer technique for modularizing a DFT, solving
the modules independently, and integrating the results. Similarly, we do not address the formal semantics of
DFTs with regard to properties of interest besides unreliability, such as the sensitivity of components or the
modeling of systems that operate in multiple phases.

2 Conventions and Notation

This section defines the conventions and text styles used throughout this document. The notation and con-
vention descriptions specific to the Z notation have been omitted.

defined term: A defined term is underlined.

variableName: Variable names begin with a lower case letter. Additional words in the variable name begin
with capital letters and are concatenated.

TypeName: Type names begin with an upper case letter. Additional words in the type name begin with
capital letters and are concatenated.

3 Definitions

basic event: A basic event models either the failure of an unelaborated subsystem, or the occurrence
of some phenomenon that affects the system.

gate: A gate models some combination or sequence of event occurrences.

constraint: An invariant imposes a constraint on the occurrence of events in the model.

event: An event models the occurrence of some phenomenon that affects the system, or the

failure of a system, subsystem, or component of a system. Events can be either basic
events or gates.

causal basic event: A basic event, the occurrence of which can cause the occurrence of all other newly
occurred events in a fault tree.

AND gate: A gate whose output event is occurred if all of the input events are occurred.
OR gate: A gate whose output event is occurred if any of the imput events are occurred.
threshold gate: A gate whose output event is occurred if the number of input events that are occurred

exceeds a specified threshold.

priority-and (PAND) gate: A gate whose output event is occurred if all of the input events have occurred and
if they occutrred “in order”.

spare gate: A gate in which spare inputs are used in order until no operational input is available, in
which case the event associated with the output of the gate occurs.

functional dependency (FDEP) constraint: A constraint which specifies that the dependent events must oc-
cur 1f the trigger event occurs.

sequence (SEQ) constraint: A constraint which specifies that the input events can only occur “in order”.

coverage model: Three values used to model the probability that either a basic event occurs but is not
visible to the system, a basic event occurs and can be handled by the system, or a basic
event occurs and results in a failure.

dormancy: A factor between 0 and 1 inclusive that is used to attenuate a spare when it is not in use.

n order occurrence: Two events A and B are satd to occur in order if A occurs before or ar the same time as
B.

Fault tree state: the state of a fault tree, consisting of the number of occurrences for each event, the
atlocation of spares, the history of event occurrences, and the fault tree status.

history: a sequence of event states resulting from a sequence of event occurrences.

time step: one position in a fault tree history

4 Basic Types

We begin by defining an abstract system of real numbers and operations in this section.
In this section we begin the formal specification with the definition of the abstract syntax of DFTs in Z.
We first define an abstract system of real numbers and operations.

[R]

0. R
IH:R

We introduce R as a given type, and declare Oy and 1y to be elements of that type. In our use of real
numbers, the subscript is used to distinguish between the values and operators used for non-reals and those
used for reals.

b RxR— R
ity RxR—R
S RxR+=R
“xﬂ\\;mIRMR
wHn TR R
<y ReR
g R R
<p R R
e R« R
+/e : FR— R

ﬁ*f(ﬁ.)_:(R—»R)wa(RHR)
w'}jf(ﬂ-{):(RHR)X(R%}R)%(R@R)
—tpfiay - (R R} xR — (R~ R)
__-}-pf(m__i(RMR)X(R%R)@(R%R)

intToReal 1 7. — R

intToReal O = Og
infToReal 1 == lg
Vx,v:Z e intToRealx = intToRealy & x =y

We introduce type definitions for functions that operate on real numbers and functions of real numbers,
abstracting the definitions. We first declare addition and division as an infix functions from pairs of reals to
reals. Next we define the “distributed summation” operator, which computes the sum of a finite set of reals.
We then define four operators for performing the distributed summation and product of both total and partial
functions on reals. The function intToReal is used to map integers to reals, similar to a cast in programming
languages.

Boolean ::= True | False
We define a Boolean type.

Probability == {p R |0 <ep <a luep}

We define a probability as a real number between the values of 0 and [inclusive.
Rate == {r:R|r>gOger}

We define a rate as a real number greater than or equal to 0.
Time == {1:R|1 >3 0z 0t}

We define time to be a real number greater than 0.

5 Abstract Syntax of Fault Trees

5.1 Event Identifiers and Events
[Event]

Event is a given type that represents faifures or event occurrences in the fault tree.

3.2 Basic Events

BasicFEvents
rbasicEvents - F Event

The basic events of a system are represented as a finite set of events.

5.3 Gates

In this section we specify the abstract syntax of the gates of a dynamic fault tree.

.. Gates
andGates - F Event
orGates : ¥ Event
thresholdGates : T Event
pandGates : F Event
spareGates : ¥ Event

gates : T Event

thresholds : Event -+ N

{andGates,orGates, thresholdGates, pandGates, spareGates) (5.1)
partition gates
dom thresholds = thresholdGates (5.2)

This schema defines the gates of a fault tree as finite sets of events, one set for each type of gate. Line
5.1 states that these sets partition the set of all gates in the fault tree. As stated on line 5.2, each threshold
gate has an associated non-zero natural number that represents the threshold value. A threshold gate occurs
if the number of occurred input replicates is greater than or equal to the threshold value.

5.4 Constrainis

InputSequence === iseq Event

We define an input sequence as simply a sequence of events which does not contain repeated elements.
This definition will be used in the definition of the inputs of gates and in the definition of the constraints.

Constraints
|fseqs : F InputSequence

fdeps : Event «» InputSequence

The schema above defines a sequence enforcer as an constraint over non-empty sequences of events. A
functional dependency is a partial function from events to non-empty sequences of events. In the predicate
we overspecify by defining the dependent events as a sequence instead of a set. We do this to improve
readability later in the specification.

5.5 Tault Trees

Having specified the basic events, gates, and constraints, in this section we present the full specification of
the fault tree abstract syntax.

InputsMap == Event -+ InputSequence

First we define a type for mapping a gate to its inputs. This function is partial because basic events are
events, but do not have inputs.

IsDirectlylnputTo ...« P(Event x Event x InputsMap)

Y from, to : Event; inputs - InputsMap | to € dominputs e
IsDirectlylnputTo(from, to, inputs) <> from € ran{inputsito)

IsInputDirectlyTo is true if the “from” event is in the inputs list of the “to’ event. The three arguments
for this function are the “from” event, the “to” event, and the partial function mapping gates to their inputs.

IstnputTo_. : P(Event x Event X InputsMap)

X from,to : Event; inputs . InputsMap | to € dominputs e
IsinputTo{from,to, inputs) <>
IsDirectlylnputTo(from, to, inputs) V
(3¢ : dominputs « from € ran{inputs g) A IsinputTo(g. 10, inputs))

IsInputTo is true if either the from event is directly input to the to event, or if there is some gate to which
from is an input and which is an input (recursively) to to. The three arguments for this function are the “from”
event, the “to” event, and the partial function mapping gates to their inputs.

ReplicationMap == Event — Ny
We also define a replication function which maps events to their replications.

NumberOfReplicatesininputs - InputSequence » ReplicationMap — N

Yis : InputSequence; rs : ReplicationMap e
NumberOfReplicatesinlnputs(is, rs) =
ifis = () then 0
else rs(head is) -+ NumberOfReplicatesIninputs({tailis), s}

This helper function, given a sequence of events and a replication mapping, determines the total number
of event replicates in the sequence.

_ Faultlree
BasicEvents
Guates

Constraints

events : If Event
inputs @ InputsMap
replications : ReplicationMap

{(basicEvents, gates) partition events (5.3)

dom inputs = gates (5.4}
Vg : gates » ran(inputs g) € events
Ve : gates & — IslnputTo(g, g, inputs)

Vsg : spareGates o ran{inputssg) C basicEvents (5.5)
Vsg : spareGates; be : basicEvents | IsDirectlylnputTo{be, sg,inputs)
~ (3¢ : gates\ spareGates ® IsDirectlylnputTo(be, g, inputs))

Vs seqs e tans C events (5.6)

domfdeps C events (5.7)
dom replications = events

V¢ domfdeps » replicationst = |

Vis: ranfdeps ¢ ranis C basicEvents

Vg gates e replicationsg = 1 (5.8)

The FaultTree schema defines the syntactic structure of a fault tree. The events set is the set of all events
in the fault tree. inputs is a mapping for the inputs of each gate in the fault tree, and replications is a similar
mapping for the replications of the basic events.

The constraints state the following:

e (5.3) An event is either a basic event, an AND gate, an OR gate, a threshold gate, a PAND gate, or a
spare gate.

(5.4) Only gates can have inputs, the inputs must be one of the events in the fault tree, and no gate can
be input to itself (directly or indirectly).

(5.5) The inputs to spare gates are only basic events. Basic events that are inputs to spare gates can not
be inputs for other types of gates (but they can be inputs to constraints).

(5.6) Sequence enforcers must operate over the events of the fault tree.

*

(5.7) Functional dependencies must be triggered by some event in the fault tree, every gate and basic
event has a replication, the trigger must have a replication of I, and only basic events can be dependent
inputs.

e (5.8) All gates must have a replication of 1.

Note that full connectivity is not required by our specification—although all gates must have 1 or more
inputs and must be input to the system level event, some of the basic events in the fault tree may not be inputs
to any gate. This generality does not affect the semantics of dynamic fault trees, and will be useful in later
spectfications that build upon this one.

6 Failure Automata

In this section we specify the domain of failure automata.

6.1 Stiates of Events and Histories

StateQfEvents == FEvent — N

StateOfEvents represents the state of all the events for a fault tree. Note that this does not capture the
entire state of the fault tree; in particular, the aflocation of spares to spare gates is not modeied.

History === { h : iseq StateOfEvents |
R () A(Yij:domh e dom(hi) = dom{hj)} e h}

A History is specified as a non-repeating sequence of StateOfEvents that represents the changing state of
the fault tree over a set of discrete time steps. Every step in the history has the same set of events, although

the event states can change.

6.2 Failure Automaton State

SparelnUse == { siu : Event -~ Event | siu € F(Event x Event) siu}

We declare Sparesinl/se as a finite partial function from Event to Event. The domain represents a subset
of the spare gates in the fault tree, and the range is the spare being used by the spare gate (if any).

__ FailureAutomatonState
stateQfEvents : StateOfEvents
history : History

sparelnlse : SparelnUse
systemFailedUncovered : Boolean

stateQfEvents = last history

The state of a fault tree consists of the state of the events, the history, the spare allocation, and the
uncovered failure status. The stateQfEvents must be equal to the Jast state of events in the history.

6.3 Failure Automaton Transitions

__ FailureAutomatonTransition
from : FailureAutomatonState
fo : FailureAutomatonState
causalBasicEvent : Event

to.history = from.history {to.stateOfEvents)
causalBasicEvent € domfrom. stateOfEvents
from.stateOfEvents causalBasicEvent < to.stateOfEvents causalBasicEvent

A transition between states consists of a from state, a to state, and an associated causal basic event. The
destination state extends the history of the source state by one set of event states. The causal basic event

10

must be one of the events in the event state, and it must be the case that additional replicate failures of the
basic event occur in the transition between states.

6.4 Failure Automata
In this section we provide the complete specification of a failure automaton.
... FailureAutomaton

states F FaillureAutomatonState
transitions : F FaillureAutomatonTransition

states = | J{ t - transitions e {1.from,t.to} }

A failure automaton consists of a finite set of states and transitions. The predicate constrains the transi-
tions to be between the states of the failure automaton.

11

7 Semantics of Fault Trees in Terms of Failure Automata

In this section we specify the semantics of dynamic fault trees in terms of failure automata by establishing a
correspondence between the two domains.

7.1 Number of Replicates, Event Occurrences

In this section we define functions for determining the number of replicates of an event that have occurred,
the number of inputs to a gate that have occurred, and the notion of “in order” occurrence of inputs.

NumberOfOccurredReplicatesininputs : InputSequence x StateQfEvents -+ N

dom NumberQfOccurredReplicatesininputs =
{is : InputSequence; soe : StareOfEvents | ranis C domsoe e (is,soe) }
Vis . InputSequence; soe : StateOfEvents |
(is,soe) € dom NumberOfOccurredReplicatesininputs »
NumberQfOccurredReplicatesininputs(is, soe) =
if is = () then 0
else soe(head is) + NumberOfOccurredReplicatesininputs{{tailis), soe)

Given a sequence of inputs and a set of event states, this function determines the number of replicates
that have occurred for all the input events.

OccursinTimeStep .. P(History % Event x N)

Vh: History, e: Event; t: Ny |t <#h A e € dom(hl) e
QccursinTimeStep(h, e, 1) <
t=1Ahte>0VI>1Ahte>h{t~1)e

This function determines whether an event had a replicate that occurred in a given time step. We allow
events to occur in the initial state. (In fact, spare contention in the initial state can cause multiple nondeter-
ministic initial states.)

FirstQccurrencelime = History x Event - N

dom FirstOccurrenceTime = { h : History; e: Event | e € dom(h 1) e (h,e) }
Y h: History, e Event; t: Ny | (h,e) € dom FirstOccurrenceTime o
FirstOccurrenceTime(h, e) =
if OccursinTimeStep(h,e, 1) A
(Viy: Ny |tz < t @ = OccursinTimeStep(h, e, 7))
then else O

This function determines the time step in which the first replicate of an event occurs. A value of O
indicates that no replicate has failed.

12

FirstFullOccurrenceTime : History x Event x N + N

dom FirstFullOccurrencelime =
{h: History; e : Event; r:N|e&dom(hi) e (her)}
Yh: History, e : Evenr; r: N; 1: Ny |
t&domh A (h,e,r) € dom FirstFullOccurrencelime »
FirsiFullOccurrenceTime(h,e,r) =
if hte = r A OccursinTimeStep(h, e, t) then t else O

This function computes the history position in which the final replicate of an event occurs. It returns 0 if
the first replicate of an event has not occurred (i.e. the number operational is greater than O throughout the
history).

InputsOccurredAndinOrder _ - P(InputSequence » History x ReplicationMap)

Yis : InputSequence; h: History, rs: ReplicationMap | ranis C dom{hl) e
InputsOccurredAndinOrder{is h,rs) ¢

NumberOfOccurredReplicatesininputs(is, lasth) = (7.1)
NumberOfReplicatesinlnputs(is,rs) A
(Vi,j:domis|i<je (7.2)

FirstFullOccurrenceTime(h,isi,rs(isi)) # O A

FirstOccurrenceTime(h,isj) # 0 A

FirstFullOccurrenceTime(h,isi,rs{ist)} <
FirstOccurrenceTime{h, isj))

Given a history and a sequence of events, the value of the InputsOccurredAndinQrder function is true if
the replicates in each position fail before or at the same time as the replicates in later positions. Predicate 7.1
states that all the inputs must be fully occurred, and predicate 7.2 states that the event at position 7 must be
fully occurred at or before the time at which the first replicate at position i + | occurs.

NewlyOccurredBasicEvents : FaultTree x History -+ [F Event

domNewlyOccurredBasicEvents =
{ft: FaultTree; h: History | ft.events = dom{(h 1) e (ft,h) }
Y ft: FaultTree, h : History | (ft,h) € domNewlyOccurredBasicEvents o
NewlyOccurredBasicEvents{ft, h} =
{e: Event | ¢ € ft.basicEvents A
e € dom(lasth) A OccursinTimeStep(h, e, #h) e ¢ }

This helper function computes the set of basic events that occurred in the last history step.

7.2 Semantics of AND Gates
FaultTreeAndFailureAutomatonEventsMatch . B(FaultTree » FailureAutomaton)

Yt . FaultTree; fa . FailureAutomaton e
FanliTreeAndFailureAutomatonEventsMatch{fi.fa) &
(Vfas : FailureAutomatonState | fas € fa.states »
ft.events = domfas.stateOfEvents)

In order to ensure the correct behavior of events in a fault tree with respect to the failure automaton, it

13

must be the case that the events in the fault tree have corresponding states in the failure automaton. This
function ensures that this condition is satisfied.

ANDSemantics _: B(Faultlree x FailureAutomaton,

Vft: FaultTree, fu : FailureAutomaton |
FaultTreeAnd FailureAutomatonEventsMatch(ft, fa) o
ANDSemantics(ft,fa) <
(Vg : fr.andGates; fas : FailureAutomatonState | fas € fa.states
NumberOfOccurredReplicatesIninputs(ft inputs g, fas.stateOfEvents) =
NumberOfReplicatesinlnputs(ft inputs g, ft.replications) =»
Jas.stateQOfEventsg = 1 A
NumberOQfOccurredReplicatesininputs(ft.inputs g, fas stateOfEvents}
NumberOfReplicatesininputs(fi.inputs g, ft.replications) =
fas.stateOfEvents g = 0)

Every AND gate in the fault tree is an event whose individual state in all of the failure automaton states
is defined by this schema. The first predicate specifies that the event associated with the gate occurs if all
the inputs have occurred (i.e. the number of occurred input replicates is equal to the total number of input
replicates). The second predicate specifies that the event associated with the gate does not occur if it is not
the case that all the input replicates have occurred.

7.3 Semantics of OR Gates
ORSemantics_: P(FaultTree x FailureAutomaton)

Y ft : FaultTree; fo : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch(ft, fa) »
ORSemantics{ft,fa) <
(Vg : frorGates; fas: FailureAutomatonState | fas € fa.states o
NumberOfOccurredReplicatesininputs(ft inputs g, fas.stateOfEvents) # 0
= fas.stateOfEvents g == 1 A
NumberQfOccurredReplicatesininputs(fi.inputs g, fas stateOfEvents) = 0
= fas.stateOfEvents g = 0)

This schema defines the semantics of alt of the OR gates in a fault tree. The OR gate’s associated event
occurs if any of the input events have occurred. Otherwise, the associated event does not occur.

7.4 Semantics of Threshold Gates
ThresholdSemantics . P(FaultTree x FailureAutomaton)

Y ft - FaultTree, fa : FailureAutomaton |
FaultTreeAndFuailureAutomatonEventsMatch{ft fa)
ThresholdSemantics(fi, fa) <
(Vg : fi.thresholdGates; fas : FailureAutomatonState | fas € fa.states
NumberOfOccurredReplicatesInInputs(ft.inputs g, fas stateQfEvents) 2
ft.thresholds g = fas.stateOfEvents g = 1 A
NumberQfOccurredReplicatesIninputs(fi.inputs g, fas.stateOfEvents) <
ft.thresholds g = fas.stateOfEvents g = 0)

14

Like the spectfications for the AND and OR gates, the threshold gate specification is based on the number
of input replicates that have occurred. In this case, the event associated with the threshold gate occurs only
if the number of occurred inputs is greater than or equal to the threshold gate’s k value.

7.5 Semantics of PAND Gates
PANDSemantics .. : P(FauliTree X FailureAutomaton)

Yft: FaultTree; fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMarch(ft, fa) o
PANDSemantics(ft, fa) <
(Vg fr.pandGates; fas : FailureAutomatonState | fas € fa states »
InputsOccurredAndInOrder(ft.inputs g, fas history, ft .replications)
= fus.stateOfFvents g = 1 A
= InputsQccurredAndInOrder (ft.inputs g, fas.history, ft replications)
= fas.stateOfEvents g = Q)

A PAND gate’s event occurs if all the inputs have occurred in order, and does not occur otherwise.

7.6 Semantics of Spare Gates

In this section we present the specification of spare gates. Spare gates are easily the most semantically rich
construct in the DFT modeling language. We will present the specification in two parts in order to simplify
the complexity: the state semantics which describe allocation of spares for a spare gate, and the transition
semantics which describe the reallocation of spares resulting from the occurrence of a basic event.

NumberOfSpareGatesUsingSpare : SparelnUse x Event — N

Vsiu: SparelnUse; ¢ : Event
NumberOfSpareGatesUsingSpare(siu, e) = #(siut> {e})

NumberOfSpareGatesUsingSpare determines the number of spare gates that have a particular event al-
located to them. The predicate states that the value of the function is defined as the size of the result of
restricting the spares in use relation to only those spare gates that use event e.

FaultTreeAndFailureAutomatonSGsMaich _ - P(FaultTree X FailureAutomaton)

Yft . FauliTree; fa : FailureAutomaton e
FaultTreeAndFailureAutomatonSGsMatch(ft fu) <
(Vfas : FailureAutomatonState | fas € fa.states
domfas.sparelnlse < ft.spareGates A ranfas.spareinUse C ft.basicEvents)

In order to ensure the correct behavior of spare gates in a fault tree with respect to the failure automaton,
it must be the case that the events referenced in the spare in use relation must correspond to events in the
fault tree. This function ensures that this condition is satisfied.

5

SpareinUselsAninput . . P{FaultTree x FailureAutomaton)

¥ft: FaultTree, fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMarch(ft, fa) A
FaultTreeAndFailureAutomatonSGsMatch{ft fa)
SparelnUselsAninput(ft,fa) <>
(Vfas : FailureAutomatonState; sgus : Event |
fas € fa.states A sgus € domfas.sparelnlse
fas.sparelnlse sgus € van(ft.inputs sgus))

This function ensures that any spare being used is an input to the spare gate using it.

ReplicatesNotOverused - P(FauliTree x FailureAutomaton)

Y ft: FaultTree; fa FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch(ft, fa) A
FauliTreeAndFailureAutomatonSGsMarch(ft, fa) o

ReplicatesNotOverused(ft fa) <
(Vfas : FailureAutomatonState; sp : Event |
fas € fa.states N\ sp € ranfas.sparelnUse o
NumberOfSpareGatesUsingSpare (fas.sparelnUse, sp) <
ft.replications sp — fas.stateOfEvents sp)

This function ensures that the number of spare gates using a replicate of a spare never exceeds the number
of available rephicates of the spare.

PreviousSparesUnavailable . P(FauliTree x FailureAutomaton)

Vi« FaultTree; fa : FailureAutomaton |
FauliTreeAndFailureAutomatonEventsMatch(ft, fa) A
FaultTreeAndFailureAutomatonSGsMuatch(ft, fa) »

PreviousSparesUnavailable(ft, fa) <
(¥ fas . FailureAutomatonState;, sgus : Event; i : Ny |
fas € fa.states N sgus & domfas.sparelnlise A
i &€ dom{ft.inputssgus) A fas.sparelnUse sgus = ft.inputssgusi o
(Vj:1..i—1; be: Event | be = ft.inputssgusj e
NumberOfSpareGatesUsingSpare(fas.sparelnUse, be) =
Jr.replications be — fas. stateQfEvents be))

This function ensures that if a spare is being used, all the previous spares in the spare gate’s sequence of
inputs have no available spare replicates.

16

NoSparesinUseOnlylfNoneAvailable _ : P(FaultTree x FailureAutomaton;

Yfi : FaultTree, fa: FailureAutomaton |
FaultTreeAndFailureAntomatonEventsMatch(ft, fa) A
FaultTreeAndFailureAutomatonSGsMatch(ft, fu) o

NoSparesinUseOnlylfNoneAvailable(ft, fu) <
(¥ fas : FailureAutomatonState; sgnus : Event |
fas € fa.states A sgnus ¢ domfas.sparelnlUse A sgnus € domfi.inputs e
(Vbe : Event | be € ran{ft.inputssgnus) e
NumberOfSpareGaiesUsingSpare(fas sparelnUse be} =
ft.replications be — fas.stateOfEvents be))

This function ensures that a spare gate uses a spare if one is available.

SpareGateStateSemantics .. : P(FaultTree x FailureAutomaton)

Y ft : FaultTree, fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch{ft, fa) A
FaultTreeAndFailureAutomatonSGsMarch(ft fu) o
SpareGateStateSemantics(fi fa) <

SparelnUselsAnlnput(ft fa} A
ReplicatesNotOverused(ft,fa) A
PreviousSparesUnavailable(ft, fa) A
NoSparesinUseOnlylfNoneAvailable(ft, fa) N
(Vsg : Event; fas : FailureAutomatonState |
sg € ft.spareGates N fas € fa.states o
(sg € domjas.sparelnUse = fas.stateOfEventssg = 0) A
(sg & domfus.sparelnUse = fus.stateOfEventssg = 1))

IsUsingSpare_ : P{Event x FailureAutomatonState)

Vsg @ Event; fas : FailureAutomatonState e
Ist/singSpare(sg,fas) < sg € domfas.sparelnlse

This helper function determines whether a spare gate is using a spare.

SpareBeingUsed : Event X FailureAutomatonState -+ Event

domSpareBeing Used =
{sg: Event; fas: FailureAutomatonState | IsUsingSpare(sg, fas) » (sg.fas) }
Vsg : Bvent; fas: FailureAutomatonState | (sg.fas) € domSpareBeingUsed »
SpareBeingUsed(sg.fus) = fas.sparelnUse sg

This is a helper function that computes the spare that a spare gate is using in a given fault tree.

17

SpareGateStaysFailed . . P{FaultTree x FailureAutomaton)

Yfi : FauliTree; fa: FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch(ft, fa) A
FauliTreeAndFailureAutomatonSGsMatch(ft fa) »
SpareGateStaysFailed{ft, fa) <

(Vsg : Evenr; fat : FailureAutomatonTransition |
sg € fi.spareGates A fat € fa.transitions e
— IsUsingSpare{sg. fat from) = — IsUsingSpare(sg, fat 10))

This function ensures that a spare gate that is not using a spare (is failed) remains so.

SpareGateContinuesUsingOperationalSpare .. : P(FaultTree X FailureAutomaion)

Vi« FaultTree; fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch{ft, fa) A
FaultTreeAndFailureAuiomatonSGsMatch(fi, fa}
SpareGateContinuesUsingOperationalSpare(ft, fa) <

(Vsg : Event; fat : FailureAutomatonTransition |
sg € ft.spareGates A fat € fa.transifions e
IsUsingSpare(sg, fat from) A SpareBeingUsed(sg, fat from) ¢
NewlyQccurredBasicEvents{ft, fat 10 history) =
IsUsingSpare(sg, fat.10) A
SpareBeingUsed(sg, fat.to) = SpareBeingUsed(sg. fat from))

This function ensures that a spate gate that is using a spare which has not failed continues to use the

same spare.

SpareGateUsesAvailableSpare _ : P{FaultTree x FailureAutomaton)

Y ft : FaultTree; fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch(ft, fa) A
FaultTreeAndFailureAutomatonSGsMatch(ft, fa) »
SpareGatelsesAvailableSpare(ft,fa) <

(Vsg : Event; fat : FailureAutomatonTransition |
sg € fr.spareGates A fur € fa.transitions e
IsUsingSpare(sg, fat from) A SpareBeingUsed(sg, fat from) €
NewlyQccurredBasicEvenis{ft,fat.to history) =
~ IsUsingSpare(sg, fat.to) V
IsUsingSpare(sg, fat.to) A
(Fi,j: Ny |i € dom(fr.inputssg) A j € dom(ft.inputssg) A
SpareBeing Used{sg, fat from) = ft.inputssgi A
SpareBeingUsed(sg, fat.to) = f.inputssgj e i < j))

If a spare is being used in the first fault tree, then either no spare is used in the second, or a later spare is

used.

18

SpareGateTransitionSemantics... - P(FaultTree x FailureAutomaton)

Yt - FaultTree; fa: FailureAutomaton |

FaultTreeAndFailureAutomatonEventsMatch(ft, fa) A
FandtTreeAndFuailiureAutomatonSGsMatch(ft, fu) o
SpareGateTransitionSemantics(f,fa) <
(Vsg: ft.spareGates; fat - FailureAutomatonTransition i
sg € ft.spareGates A fut € fa.transitions e
SpareGateStaysFailed(ft,fa) A
SpareGateContinuesUsingOperationalSpare(ft, fa) A
SpareGatelsesAvailableSpare(ft,fa)}

This schema specifies the semantics of sparing as the state of the fault tree changes. It ensures that the
spare allocation is consistent across a state transition from the far from state of a transition fat to the fat.io

state.

SpareGateSemantics . : P(FauliTree x FailureAutomaton)

Vi : FaultTree; fa : FailureAutomaton |

FaultTreeAndFailureAutomatonEventsMatch(ft, fa) A
FaultTreeAndFailureAutomatonSGsMatch({ft fa) &
SpareGateSemantics(ft.fa) <

SpareGateStateSemantics(ft,fa) A SpareGateTransitionSemantics(ft. fa)

The complete spare gate semantics is the conjunction of the state and transition semantics.

7.7 Semantics of Sequence Enforcing Constraints

SEQSemantics...: P(FaultTree x FailureAutomaton)

Vft : FaultTree; fa: FailureAutomaton |

FauliTreeAndFailureAutomatonEventsMatch(ft fa)
SEQSemantics(ft,fu) <>
(¥ seq - InputSequence; fas : FailureAutomatonState |
seq € ft.seqs A fas € fa.states »
Yi:l..#seq|fas.stateOfEvents(seqi) >0 »
(Wj:1..i—1e
fas stateOfEvents(seqj) =
ft.replications(seqj) A
FirstFullOccurrenceTime(fas history, seqj, fr replications(seq)
< FirstOccurrenceTime{fas history,seqi)))

A sequence enforcing gate disallows certain sequences of events from occurring. The SEQ gate has the
same ordering semantics as the PAND gate with respect to simultaneous occurrence and replicated inputs.

7.8 Semantics of Functional Dependency Constraints

19

FDEPSemantics .« P(FauleTree x FailureAutomaton)

Y ft . FaultTree; fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch{ft, fa)
FDEPSemantics(ft,fa) <

(Vir: Event, ds: InputSequence; fas FailureAutomatonState; t: Ny |
fas € fa.states A (tr,ds) € fi fdeps A L <t < #(fas history) e
fas.stateOfEventstr =1 =
NumberOfOccurredReplicatesininputs{(ds, (fas historyt)) =
NumberOfReplicatesininputs{ds, ft.replications))

For a given history, if the trigger event occurs in a time step of the history, then all the replicates of all
the dependent events (ds) also occur.

7.9 Uncovered Failure Semantics

UncoveredFailureSemantics _ : B(FailureAutomaton,)

Y fa - FailureAutomaton e
UncoveredFailureSemantics(fa) <
(Vfat : FailureAutomatonTransition e
fat from.systemFailedUncovered = True =
fat.to.systemFailedUncovered = True)

This function ensures that failure automaton states which are failed uncovered remain failed uncovered.

7.10 Causal Basic Event Semantics

In this section we specify the relationship between the causal basic event and the change in fault tree state.

CausalBasicEventSemantics_ : P(FaultTree x FailureAutomaton)

Vfi 1 FaultTree; fa : FailureAutomaton |
FaultTreeAndFailureAutomatonEventsMatch(ft, fa)
CausalBasicEventSemantics{ft,fa) <

(Vfat : fa.transitions » (7.3}
far.causalBasicEvent € ft.basicEvents) A
(Vfas : FailureAutomatonState; be : Event |
fas € fa.states A be € ft.basicEvents »
(fas.stateOfEvents be < ft.replications be =
(fat : fa.transitions fat from = fas A fat.causalBasicEvent = be)))

In this function, we ensure that the causal basic event of a failure automaton transition is a basic event of
the fault tree, and that every basic event that can fail in a given state does.

7.11 Complete Fault Tree Semantics in terms of Failure Automata

20

FaultTreeSemantics : FaultTree — FaillureAutomaton

Yt . FaultTree; fa : FailureAutomaton e

FaultTreeSemantics(ft) = fa <
FaultTreeAndFailureAutomatonEventsMatch{ft, fa) A
FaultTreeAndFailureAutomatonSGsMatch(ft, fa) A
Causal BasicEventSemantics(ft, fa) A UncoveredFailureSemantics(fa) A
ANDSemantics(ft, fa) A ORSemantics{ft,fa) A
ThresholdSemantics{ft, fa) A PANDSemantics(ft, fa) A
SpareGateSemantics(ft, fay A SEQSemantics(ft, fa) A
FDEPSemantics(ft,fa)

The complete fault tree semantics, expressed in terms of failure automata, is the conjunction of the gate,
constraint, causal event, and system failure semantics. -

21

8 Markov Models
In this section we provide an abstract definition of Markov models.
[(MarkovModelStatel D)
A Markov state identifier is used to distinguish Markov states.

MarkovModelState
id : MarkovModelStatelD
initial Probability : Probability
finalProbability : Probability

A Markov state has an associated initial and final state probability.
TransitionRateFunction == Time — Rate

A transition rate function is a function of time that computes a rate.

MarkovModelTransition
from : MarkovMeodelState

fo : MarkovModelState

transitionRate Function : TransitionRate Function

A Markov transition consists of a from and to state, and a transition rate function.

. MarkovModel
states 1 F MarkovModelState
transitions | B MarkovModelTransition

states = | J{ ¢ : transitions & {t from,t.10} }
Ais : F MarkovModelState |
is = { st : states | = (Ztr : MarkovModelTransition |
tr € transitions st = tr.to} ® st} A
#is>0w
Y st : states o st.initialProbability =
if st € is then g /g intToReal(#is) else Oy

A Markov model comprises a set of states and a set of transitions between states. The first predicate
states that the transitions must be over the particular set of states srates. The second predicate assigns the
state probability to 0 if the state is not an initial state, and otherwise distributes the overall probability of I
across the initial states. The semantics of the Markov model are incomplete—we have not specified how the
final state probabilitics are computed from the transition rates and the initial state probabilities. However,
Markov models are well enough understood that we are willing to elide the details.

22

9 Basic Event Models

We now shift our attention to one of the parameters of the semantics of FAs in terms of MMs—the basic event
models associated with the basic events of the fault tree.

_ CoverageModel
singlePointFailureProbability : Probability
coveredFailure Probability : Probability
restorationProbability : Probability

singlePointFailure Probability -y coveredFailure Probability-+g
restorationProbability = 1

The restorationProbability is the probability that the component masks an internal failure. The
coveredFailureProbability is the probability that a component fails in a way that can be detected by the
system. The singlePointFailureProbability is the probability that the component fails and brings down the
system. The sum of these three parameters must be one.

[Distribution)

We introduce the general Distribution type, from which we will define subtypes with associated failure
parameters.

constantDistributions : IF Distribution
probabilities : Distribution ++ Probability

domprobabilities = constantDistributions

The constantDistributions are a subset of Distribution. Fach constant distribution has an associated
probability. The definition of this and other distributions is axiomatic.

exponential Distributions : ¥ Distribution
exponentialRates : Distribution ++ Rate

domexponentialRates = exponential Distributions

The exponentialDistributions are a subset of Distriburion. Each exponential distribution has an associ-
ated rate.

WeibullShape == {r R |r >z Oz e r}
The Weibull shape is greater than or equal to 0.

weibullDistributions « F Distribution
weibullRates © Distribution - Rate
weibullShapes ; Distribution + WeibullShape

domweibuliRates == welbullDistributions
domweibullShapes = weibull Distributions

The weibull Distributions are a subset of Distribution. Each Weibul! distribution has an associated rate

23

and shape.

LogNormalMean == {r:R|r >z Ox o1}
LogNormalStdDey == {r :R{r>z 0z o r}

The lognormal mean and standard distribution must be greater than or equal to 0.

logNormalDistributions : ¥ Distribution
logNormalMeans : Distribution - LogNormalMean
logNormalStdDevs : Distribution -+ LogNormalStdDev

domlogNormalMeans = logNormalDistributions
domlogNormalStdDevs = logNormal Distributions

The logNormalDistributions are a subset of Distribution. Each lognormal distribution has an associated
mean and standard deviation.

Dormancy == {r R |0g <gr>plper}

disjoint (constantDistributions, exponential Distributions, weibull Distributions,
logNormalDistributions)

The various types of distributions are disjoint.

BasicEventModel
distribution : Distribution
coverageModel : CoverageModel
dormancy : Dormancy

A BasicEventModel describes the stochastic behavior of a basic event. The dormancy must be between
O and 1 inclusive.

BasicEventModel Function == Event -~ BasicEventModel

A basic event model function maps basic events to their associated models.

24

10 Semantics of Fault Tree Automata in Terms of Markov Chains

We now specify the semantics of failure automata in terms of Markov models.

10.1 Structural Correspondence Between Failure Automata and Markov Models

In this section we establish the structural correspondence between failure automata and Markov models.
StateCorrespondence == FailureAutomatonState —» MarkovModelState
There is a bijection between states in the faijure automaton and the Markov model.

TransitionCorrespondence ==
FailureAutomatonTransition - MarkovModelTransition

A transition correspondence is a mapping from failure automaton transitions to Markov model transi-
tions. It is not a bijection because multiple FA transitions can map to the same MM transition.

StructuralCorrespondenceExists... . P{FailureAutomaton x MarkovModel)

Y fa : FailureAutomaton; mm : MarkovModel »
StructuralCorrespondenceExists(fa,mm) <
(Afas2mms : StateCorrespondence; far2mmt : TransitionCorrespondence ®

domfas2mms = fa.states A ranfas2mms = mm.states A

dom fat2mmt = fa.transitions A ranfatZmmt = mm.transitions A\

(Vfat : FailureAutomatonTransition | fat € fa.transitions
(fus2mms fat from = (fat2mmt fut) from A
fas2mmsfat.to = (fat2mmitfat).10)))

Corresponding transitions in the failure automaton and Markov model must map from and to correspond-
ing states.

GetStructuralCorrespondence : FailureAutomaton x MarkovModel +
StateCorrespondence x TransitionCorrespondence

dom GetStructuralCorrespondence =
{fa : FailureAutomaton; mm : MarkovModel |
(3 fas2mms : StateCorrespondence; fat2mmi - TransitionCorrespondence
StructuralCorrespondenceExists{fa, mm)} (fa,mm) }
Y fa : FailureAutomaton, mm : MarkovModel,
fas2mms : StateCorrespondence; far2mmt : TransitionCorrespondence I
(fa,mm} € dom GetStructuralCorrespondence /\
domfas2mms = fa.states N ranfasZmms = mm.states /\
dom far2mmt = fa.transitions /\ ranfat2mmi = mm transitions A\
(¥ fat : FailureAutomatonTransition | fat € fa.transitions e
{fus2mms fat from = (fat2mmtfat) from A
fas2mms fat.10 = (far2mmefat).to))
GetStructuralCorrespondence(fa,mm) = (fas2mms, far2mm)

This helper function computes the correspondence between a failure automaton and its assoclated
Markov model.

25

10.2 Markov Model Transition Rate Functions

In this section we specify the transition rate functions for the Markov model transitions in terms of the
transitions in the failure automaton. The basis for this transition rate function is the “hazard function” of the

distribution associated with the causal basic event.

GetNonDeterministieTransitions . FailureAutomatonTransition <
FailureAuwtomaton - F FailureAutomatonTransition

dom GetNonDeterministicTransitions =

{ fat - FailureAutomatonTransition; fa: FailureAutomaton |

fat € fa.transitions {fat,fa) }
¥ fat : FailureAutomatonTransition; fa : FailureAutomaton |

{fat,fa) € dom GetNonDeterministicTransitions «

GetNonDeterministicTransitions(fat, fa) =
{t: FailureAutomaronTransition | t € fa.transitions A\
t.causalBasicEvent = fat.causalBasicEvent o t }

GetCausal iventsBetweenStates computes the set of causal events for the transitions between two states

in the fa.
SparingScaleFactor : FailureAutomatonTransition x FailureAutomaton -+ R

domSparingScaleFacior =
{ fat : FailureAutomatonTransition; fa : FailureAutomaton |
fat € fa.transitions (fat,fa) }
¥ fat « FailureAutomatonTransition; fa : FailureAutomaton |
(fat,fa) & dom SparingScaleFactor e
SparingScaleFactor{fat,fa) =
13 /wintToReal{(#(GetNonDeterministicTransitions(fat fa)})

The sparing scale factor is equal to the inverse of the number of nondeterministic next states that have
the same set of causal basic events as between the from and to states.

CoverageScaleFactor : FailureAutomatonTransitionx
BasicEventModel Function -+ R

dom CoverageScaleFactor =
{ fat - FailureAutomatonTransition; bemf - BasicEventModel Function |

fat.causalBasicEvent € dombemf o (fat,bemf) }
Yfat : FailureAutomatonTransition; bemf . BasicEventModelF unction |
(fat,bemf} € dom CoverageScaleFactor e

CoverageScaleFactor{fut, bemf) =
if far from.systemFailedUncovered = False N\
fat 1o .systemFailedUncovered = True

then
{bemf fat .causalBasicEvent).coverageModel singlePoint FatlureProbability
else

(bemf fat.causalBasicEvent).coverageModel.coveredFailureProbability

This function determines the coverage factor that should be applied to the transition rate function de-

26

pending on whether the state is failed uncovered.

NumberOfReplsinUse : Event x FailureAutomatonState — N

Ve : Event; fas : FailureAutomatonState e
NumberOfReplsinUse{e, fas) = #(fas.sparelnUse > {e})

The number of replicates of a basic event that are in use for a given FA state is the number of mappings
from spare gates to spares such that the spares are restricted to be equal to the basic event.

NumberOfOperReplsNotinUse : Event x FailureAutomatonState X
ReplicationMap -+ N

dom NumberOfOperReplsNotinUse =
{e: Event; fas: FuilureAutomatonState; rs : ReplicationMap |
e € domfas.stateOfEvenis (e,fas,rs) }

Ve Event; fus : FailureAutomatonState; rs : ReplicationMap |
(e,fas,rs) € domNumberOfOperReplsNotinUse o
NumberOfOperReplsNotinUse(e, fas, rs) =

rse ~ fas.stateQfEvents e — NumberOfReplsinUse(e, fas)

The number of replicates of a basic event that are operational but not in use for a given FA state is the
replication less the number of replicates that have already occurred less the number of replicates in use by

spare gates.

DormancyReplicationScale Factor
FailureAutomatonTransition x FailureAutomaion X
BasicEventModel Function x ReplicationMap -+ R

dom DormancyReplicationScaleFactor =
{ fat - FailureAutomatonTransition; fa - FailureAutomaton;
bemf : BasicEventModel Function; rs : ReplicationMap |
fat € fa.transitions A fat.cansalBasicEvent € dombemf o
(fat,fa,bemf ,rs) }
Y fat : FailureAutomatonTransition; fa : FaillureAutomaton;
bemf : BasicEventModelFunction; rs : ReplicationMap |
{fat, fa, bemf ,rs) € dom DormancyReplicationScaleFacior e
DormancyReplicationScaleFacior{fat, fa,bemf , rs) =
intToReal(NumberOfReplsinUse{fat causalBasicEvent, fat from))+
intToReal{NumberOfOperReplsNotinUse(fat .causalBasicEvent,
fat from, rs)) %z (bemf fat.causalBasicEvent).dormancy

The dormancy/replication scale factor is the number of replicates of the causal basic event that are in use
by spare gates, plus the number of operationa] replicates that are not in use multiplied by the dormancy.

HeazardFunction == Time — Rate

A hazard function is a function of time, and is based on the distribution. We do not specify the details of
the hazard function.

27

ComputeHazardFunction : Distribution -+ HazardFunction

dom ComputeHazardFunction =
{d : Distribution | d € exponential Distributions V
d € weibullDistributions e d }
¥d : Distribution; hf : HazardFunction |
d € dom ComputeHazardFunction »
hf = ComputeHazardFunctiond

ComputeHazardFunction computes the hazard function associated with a distribution. We abstract the
details of this computation in this specification, However, an important constraint is that the hazard function
can only be computed for exponential and Weibult distributions. This effectively constraints the fault trees
whose corresponding failure automata semantics can be expressed in terms Markov models to the set of
exponential or Weibull fault trees.

ScaledTransitionRateFunction . FailureAutomatonTransition
FailureAutomaton »x BasicEventModel Function X
ReplicationMap - TransitionRate Function

domScaledTransitionRate Function =
{ fat : FailureAutomatonTransition; fa FailureAutomaron,
bemf : BasicEventModelFunction; rs : ReplicationMap |
fat € fa.transitions A fat.causalBasicEvent € dombemf o
(fat,fa,bemf,rs)}
Y fat . FailureAutomatonTransition; fa : FailureAutomaton;
bemf : BasicEventModelFunction; d : Distribution; rs : ReplicationMap |
{fat,fa, bemf ,rs) € dom ScaledTransitionRateFunction A
d = (bemf fat.causalBasicEvent) distribution A
d € dom ComputeHazardFunction «
ScaledTransitionRateFunction(fat, fa,bemf ,rs) =
ComputeHazardFunctiond sy, CoverageScaleFactor(fat, bemf Y kg
DormancyReplicationScaleFactor(fat, fa, bemf , rs) #q
SparingScaleFactor(fat, fu)

A scaled transition rate function is the hazard function scaled by the various scale factors.

28

SumScaledTransitionRate Functions
F FailureAutomatonTransition X FallureAutomalon x
BasicEventModelFunction x ReplicationMap — TransitionRateFunction

domSumScaledTransitionRateFunctions =
{ fats : F FailureAutomatonTransition; fa - FailureAutomator;
bemf : BasicEventModel Function; rs : ReplicationMap |
fats < fa.transitions N\
(Vfat : FuilureAuwtomatonTransition | fat € fats
{fat.causalBasicEvent € dombemf)) o
(fats,fa,bemf rs)}
Y fat . FailureAutomatonTransition; fa . FailureAutomaton;
fats - F FailureAutomatonTransition; bemf : Event - BasicEventModel,
rs : ReplicationMap | (fats U {far},fa, bemf ,rs) € dom
SumScaledTransitionRateFunctions »
SumScaledTransitionRate Functions({fat}, fa, bemf,rs) =
ScaledTransitionRate Function(fat, fa, bemf ,rs) A
SumScaledTransitionRate Functions({fat} U fats, fa,bemf ,rs) =
ScaledTransitionRate Function(fat, fa, bemf , r8) +ppz
SumScaledTransitionRate Functions(fars, fa, bemf , rs)

The sum of the scaled transition rate functions is computed from a set of failure automaton transitions

recursively.

ComputeTransitionRate Function
FailureAutomatonTransition x FuilureAutomaton X
BasicEventModel Function x ReplicationMap - TransitionRate Function

dom ComputeTransitionRateFunction =
{ fat « FailureAutomatonTransition, fa : FailureAutomaton;
bemf : BasicEventModelFunction; rs : ReplicationMap |
fat € fa.transitions A fat.causalBasicEvent € dombemf A
(Vfuty : FailureAutomatonTransition |
faty from = fat.from A faty to = fat.to e
(faty.causalBasicEvent € dombemf)) o
(fat,fa,bemf ,rs) }
Y fat : FailureAutomatonTransition; fu : FailureAutomaton;
fats : B FailureAufomatonTransition;
bemf : BasicEventModel Function, rs : ReplicationMap |
(fat,fa,bemf , rs) € dom ComputeTransitionRateFunction N
fats = {t : fa.transitions | tfrom = fat from At.1o =fat10e t} ®
ComputeTransitionRateFunction(far fa, bemf rs) =
SumScaledTransitionRate Functions(fats, fa, bemf , rs)

The transition rate function for a Markov model transition is the sum of the scaled transition rate func-

tions.

10.3 Complete Failure Automaton Semantics in terms of Markov Models

29

FailureAutomatonSemantics -
FailureAutomaton x BasicEventModel Functionx
ReplicationMap - MarkovModel

dom FailureAutomatonSemantics =
{ fa : FailureAutomaton; bemf : BasicEventModelFunction; rs : ReplicationMap |
{ far : FailureAutomatonTransition | fat € fa.transitions
fat.causalBasicEvent } C dombemf o (fa, bemf,rs) }
Y fa : FailureAutomaton, bemf © BasicEventModel Function;
mm : MarkovModel; rs - ReplicationMap |
(fa,bemf,rs) € dom FailureAutomatonSemantics e
FailureAutomatonSemantics{fa, bemf . rs) = mm <
StructuralCorrespondenceExists(fa,mm) A
(3fus2mms : StateCorrespondence; fat2mmt . TransitionCorrespondence |
(fas2mms, far2mmt) = GetStructuralCorrespondence(fa,mm) o
(Vfat : FailureAutomatonTransition | fat € fa.transitions e
(fat2mmi far}.transitionRate Function =
ComputeTransitionRate Function(fat, fa, bemf ,rs)))

The complete failure automaton semantics is specified as a correspondence between states and transi-
tions, and the computation of the transition rate function from the basic event model functions, the replica-
tions, and the transitions in the models.

30

11 Analyses

A common analysis for fault trees is the determination of overall system unreliability. In this section we
present a formal specification of that analysis.

IsSystemFailedState .. : P(MarkovModelState x Eventx
FailureAutomaton x StateCorrespondence)

Vs : MarkovModelState; se : Event; fa . FailureAutomaton;,
fas2mms : StateCorrespondence; fas : FailureAutomatonState |
se & domfas.stateQfEvents A ms = fas2mmsfas o
IsSystemFuailedState(ms, se,fa, fas2mms) <
fas.stateOfEvents se > OV fas.systemFailedUncovered = True

This helper function determines whether a particular state in the Markov model is a system failed state.

SvstemUnreliability . FaultTree x Eveni x
BasicEventModelFunction x Time — Probability

¥ft . FaultTree, se : Event; bemf : BasicEventModelFunction; t: Time »
Ifa : FailureAutomaton; mm : MarkovModel |
fa = FaultTreeSemantics(ft) A
mm = FailureAutomatonSemantics(fa, bemf , ft.replications) A
{ far : FailureAutomatonTransition |
fat & fa.transitions e fat.causalBasicEvent } C dombemf o
Afas2mms : StateCorrespondence; fat2mmt : TransitionCorrespondence |
(fas2mms, far2mmt) = GetStructuralCorrespondence(fa,mm} o
SystemUnreliability(ft, se, bemf 1) =
+/a{ms : MarkovModelState |
ms € mm.states A IsSystemFailedState(ms, se, fa, fas2mms) o
ms.finalProbability }

The system unreliability can be computed from a given fault tree ff, an identified “system level event”, the
basic event models, and a mission time. The overall system unreliability is the sum of the final probabilities
of all Markov states that correspond to fault tree states that are failed. The failure automaton semantics will
only be valid if the basic event models have distributions that have the Markov property.

3}

Acknowledgements

This work was supported in part by the National Science Foundation under grant CCR-9804078 (Kevin
Suilivan, principal investigator).

32

A Fault Tree Subtypes

Each of these sub-classes of fault trees correspond to particular sub-classes of fatlure automata via the
FaultTreeToFailureAutomaton relation. We now formalize these sub-classes of fault trees.

__StaricFaultTree
FaultTree

pandGates = @ A fdeps = @ A spareGates = & A seqs = &

Static fauit trees have no order-dependent constructs,
DynamicFaultTree = — StaticFaultTree

Dynamic fault trees have one or more dynamic constructs.

33

B Bibliography

[1] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer
Science, 2nd edition, 1992,

34

