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Abstract

We introduce a new method for detecting intrusions
based on the temporal behavior of applications. It builds
on an existing method of application intrusion detection
developed at the University of New Mexico that uses a
system call sequence as a signature.  Intrusions are
detected by comparing the signature of the intrusion and
that of the normal application. But when the system call
sequences generated by the intrusion and the normal
application are sufficiently similar, this method cannot
work. By extending system call signature to incorporate
temporal information related to the application, we form
a richer signature. Analysis shows that the temporal
behavior for many applications is relatively stable. We
exclude high variance data when creating a normal
database to characterize an application with a temporal
signature.  It can then be the basis for future comparisons
in an intrusion detection system. This paper discusses
experiments that test the effectiveness of the temporal
signature on different applications, alternative intrusions,
and in various environments. The results show that by
choosing appropriate analysis methods and
experimentally adjusting the parameters, intrusions are
readily detected. Finally, we give some comparisons
between the temporal signature method and the system
call method.

Keywords:  security, application intrusion detection,
temporal signature

1. Introduction

Modern computer systems are vulnerable to numerous
intrusions. Both the long standing UNIX buffer overflow
flaw and the recently successful denial of services attacks
illustrate that applications and operating systems harbor
many security flaws. The use of Intrusion Detection
Systems (IDS) to assure security is based on the
assumption that a system will not be secure, but that
violations of security policy (intrusions) can be detected
by analyzing system behavior [1]. Anomaly detection
techniques assume that all intrusive activities are
necessarily anomalous. This means that given a "normal
activity profile" for a system, intrusion attempts produce

behavior that varies from the established profile by
statistically significant amounts [2, 3].

An anomaly detection method created at the University
of New Mexico defines sequences of system calls created
by a particular application to be its signature [1, 4].
Anomalous behavior of that application, hopefully,
produces system call sequences that are different from
those of the normally executing application.  Of course, if
all system call sequences produced by an intrusion are a
subset of those of the application executing normally,
then the intrusion cannot be detected.

The University of New Mexico method depends on the
creation of a database for each application that consists of
call sequences that reflect normal activity of that
application. To detect intrusions, sequences in this normal
database are compared with the system call sequences
generated by monitored runs of the application.

Hamming distance, which is a measure of the distance
or difference between two system call sequences, is used
as the criteria for determining abnormal from normal
signatures.

2. Temporal signature introduced

Our work builds on the University of New Mexico
method; we use sequences of system calls, but also
incorporate timing properties to create signatures that
more richly and uniquely related to the application.  We
have experimented with four different time measure
definitions.   In this paper, we discuss the measure that we
consider the most straightforward and most effective.
That measure is the time duration between sequence calls.
Time measurements are on a per process basis and are
made so that only the time duration (between calls) that
the process is actually executing is measured.  Context
swap and process sleep time are elided.   For convenience,
we will denote this time measurement as r.

The elapsed time between two system calls can vary
because the path through the application code can vary.
So, we take a number of measurements for each unique
sequence.  We compute time distributions for each time
interval between two calls in a unique sequence. Then we
build the normal database containing signatures that are –
in effect – summaries of multiple measurements.
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3. Building the raw database

In this section we describe how a raw database is
constructed, and in the next section we describe how to
refine it to be a normal database that can be considered a
signature representative of the application.  Our
discussion will focus on the construction of a single
element in the database.

We monitor application execution multiple times either
in a production environment, or when synthetically
stimulating the application, with a variety of inputs.  That
execution generates a sequence of system calls.  Given a
sequence length k, we can pass a window across the
recorded sequence and detect all unique sub-sequences of
length k.  We will develop a database element for each
such k-length sequence.

 In the following explanation, we use an illustrative
system call sequence of length 6:

         open, fstat, seteuid, socket, setsockopt, bind.
During the time that the database measurements are taken,
there are typically many cases in which this unique
sequence of calls is detected.   We collect the multiple
cases of time measurements related to the unique call
sequence into groups called sequence clusters. Each case
is a sequence of time interval measurements.

Table 1 illustrates one sequence cluster. The first row
representing the system call sequence is called the title of
the cluster. All other rows represent one time interval
sequence or case. Table 1 has a total of twelve cases, i.e.
the sequence in the title was measured 12 times.

The raw temporal signature database is defined as a
collection of sequence clusters, or clusters. There is a
different database of temporal signatures for each
application.

Table 1. Illustration of one sequence cluster
composed of one title and 12 cases.

System

interval  calls

sequence

open fstat seteuid socket setsockopt bind

Case 1 108 24 22 43 21 27

Case 2 84 23 23 37 21 27

Case 3 84 23 22 37 23 27

Case 4 84 24 22 38 21 27

Case 5 116 25 23 41 22 28

Case 6 85 23 23 40 23 28

Case 7 87 25 23 41 23 29

Case 8 87 24 24 42 23 29

Case 9 114 24 23 43 22 28

Case 10 83 23 23 41 24 27

Case 11 120 24 50 40 22 27

Case 12    98 23      23   41       22  27

The database of an application might be large or
relatively small. Usually, the signature of an application is
generated by one or more executions of the application.
Sometimes, several sequence clusters for an application
are created at different times. Two clusters for the same
application can be merged to create a new cluster. The
new cluster is the union of all the clusters that share a
common title. Two clusters can be merged only if their
sequence lengths are identical.

Next we consider the time elapsed between two system
adjacent calls in a cluster.  Figure 1 illustrates that the

Figure 1. The frequency distribution of the time intervals associated with a
particular pair of adjacent system calls.
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time intervals corresponding to the interval between fstat
and getpid in a particular cluster, i.e. one column of a
sequence cluster.   In Figure 1, the x axis indicates the
time interval duration, measured in µs, between the two
successive system calls. The y axis is the number of the
occurrences of each value of a particular time interval
value. So, for about 400 times, the interval measured was
61(µs).  Figure 1 depicts 2832 time interval measures.
Note that the time intervals between the pair of calls
deviate from one another very little.  We found this to be
typical.

However, in some situations we observed distributions
with multiple peaks.   Figure 2 shows two clear peaks,
and both of them are similar to normal distributions. We
observed multiple peaks (usually two) in only 3-10% of
the cases.

The reason for such two-peak distribution of time
intervals is likely because two different execution paths
through the application code that exhibits the same system
call sequence.

Because some time intervals exhibit large deviations
and are not well distributed, the raw cluster summaries
should not be used directly. High variance data should be
removed. The next step is to reduce the raw sequence
cluster data illustrated by Table 1 to a summary form  We
refer to the process as qualifying the database.

3. Qualification of cluster summaries and
derivation of the normal database

First, we calculate an initial summary of the time
interval sequences.   We define a cluster summary to be
the combination of the title of the sequence cluster, the
mean vector of all the cases, and the standard deviation
vector of all the cases.
   In Table 2, the initial cluster summary appears at the
bottom of the table. The row labeled m is the vector of
mean values. The row labeled s is the vector of standard
deviations.

In Table 2, most standard deviations are small because
most case values are quite close to their associated mean
values. However, note that four time intervals diverge
greatly from their corresponding mean.  Three are
associated with system call open: 116, 114, 120 (cases 5,
9, 11, respectively), and also the value 50 for case 11 and
system call seteuid. Analysis shows that most such high
variance data are due to I/O related system calls, as is the
case here with open. Basically this occurs for I/O devices
whose actions rely on (slow) mechanical components.
However, not all I/O related system calls would result in
high variance time intervals.

Figure 2. The frequency distribution of the time intervals with two peaks.
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Table 2. Time intervals in a cluster, m is the mean of
time intervals in each column, s is the standard

deviation of these time intervals

System
interval calls

sequence
open fstat seteuid socket setsockopt bind

Case 1 108 24 22 43 21 27
Case 2 84 23 23 37 21 27
Case 3 84 23 23 37 21 27
Case 4 84 24 22 38 21 27
Case 5 116 25 23 41 22 28
Case 6 85 23 23 40 23 28
Case 7 87 25 23 41 23 29
Case 8 87 24 24 42 23 29
Case 9 114 24 23 43 22 28

Case 10 83 23 23 41 24 27
Case 11 120 24 50 40 22 27
Case 12 98 23 23 41 22 27

m (mean) 95.8 23.8 25.2 40.3 22.1 27.6

s 14.6 0.75 7.84 2.06 0.996 0.793

3.1 Removing high variance (unusable) data

We want to remove high variance.  Based on the
normal distribution assumption of the time intervals, we
develop a quantitative method for the exclusion of high
variance data.  We use three steps:  remove high variance
cases,  exclude data for high variance system calls, and
mark unusable clusters.

3.1.1 Removing high variance cases.    First, we remove
high variance cases. Consider case 11 that has the single
divergent time measure associated with seteuid   that
varies greatly from the mean.  Based on the normal
distribution assumption of time intervals, the probability
of high variance time intervals is low, therefore to remove
the high variance value, we exclude the entire case 11 so
that it does not contribute to the cluster summary.
   To determine criteria for excluding such data, we use a
common notation for the variance of each interval, called
the z-score [13]. It is the number of standard deviations
that an interval is from its corresponding mean. Let ti, mi,
and si represent the time interval, mean, and standard
deviation of the ith system call.  Then the z-score can be
expressed as:

zi = (ti-mi)/si

The z-score is a balanced and normalized time interval.
It will satisfy the standard normal distribution, which is
the normal distribution with a mean of zero and standard

deviation of one. The z-scores can thus be compared to
each other. Furthermore, given a certain probability
criteria of being normal or abnormal, there is a
corresponding value, which can be compared with the z-
scores. For example, if we regard all data that will appear
with probability less than 5% as abnormal, then we can
compare the z-score with 2.33 which is the maximum
permitted z value with 5% abnormal cases. If the z-score
of a time interval is larger than 2.33, it will be regarded as
abnormal. Because the time intervals within one case are
related to each other, whenever one time interval is
excluded, the whole case will be excluded.

Table 3 shows the mean vector, the standard deviation
vector and the max z-score for each case. The gray cell
(for seteuid case 11) is unusable data (because the z-score
z is large) and case 11 will be removed in the next
iteration.

Table 3. Given mean m and standard deviation s,
each interval in a column has a corresponding z-
score, which is supposed to satisfy the standard

normal distribution.

System
interval  calls

sequence open fstat seteuid socket setsockop bind z

Case 1 108 24 22 43 21 27 1.29

Case 2 84 23 23 37 21 27 1.62

Case 3 84 23 23 37 21 27 1.62

Case 4 84 24 22 38 21 27 1.13

Case 5 116 25 23 41 22 28 1.66

Case 6 85 23 23 40 23 28 0.99

Case 7 87 25 23 41 23 29 1.79

Case 8 87 24 24 42 23 29 1.79

  Case 9  114 24 23 43    22  28    1.29

    Case 10 83 23 23 41    24  27    1.92

    Case 11  120 24 50 40    22  27 3.17

    Case 12 98 23 23 41    22  27 0.99

m 95.8 23.8 25.2 40.3 22.1 27.6 0

s 14.6 0.75 7.84 2.06 0.996 0.793 N/a

The mean and standard deviation for each column will
change after exclusions are made. So, m s and z-score are
recalculated. It is possible that this recalculation will need
to be performed several times because additional intervals
might satisfy the criteria of high variance intervals. Such
exclusions should be performed iteratively, until no case
is to be excluded. Typically, two or three iterations will be
sufficient to exclude all the high variance cases. In our
example, one iteration is sufficient.

3.1.2 Excluding data of high variance system calls.
After excluding high variance cases the possibility of high
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variance systems call data should be considered. The
standard deviation of the open column in Table 3 remains
high. Again, I/O (disk access) is typically the source of
high variance (columns). Network operations and, in rare
cases, code algorithms may exhibit high variance.
(Timing of such system calls should not be used as the
basis of the comparison because their high variance.) So
we remove the timing values of such system calls entirely
from the cluster summary.

Although we do not want the high variance timing data
to contribute to the cluster summary, we do not remove
the system call, open, from the title in order to maintain a
single sequence length for all clusters.
   Because experimental data shows that the standard
deviation is usually higher when the mean is higher, we
compute a normalized standard deviation. We define Cs
to be a threshold that s/m cannot exceed. Cs is called the
criteria of high variance system calls. Any system call
with normalized standard deviation larger than Cs will be
regarded as a high variance system call. This model is
experimentally based and Cs is an adjustable parameter.
Typically, Cs takes a value in the range of .1 to .3 based
on experimental observation.
   Table 4 shows the final values for m’, s’, s’/m’, and z-
score after all the high variance cases have been removed.
The column for open in Table 4 has been shaded gray to
show a high variance system call values that will be
elided.

Table 4. High variance case 11 has been removed.
m, s, s/m are recomputed.

Using Cs as a criterion is a simple method for
determining what system call time measures to exclude.
There are more formal and strict statistical methods to
check whether the distribution of a sample is a normal
distribution or not, for example, using the equation
W=Σ(tj-m)2/n which observes the chi-square distribution.
We did not use this approach, however, because our
model does not satisfy all the assumptions required to
apply such methods. Instead of the strict methods, we
used the relatively simple model and empirical criteria.

The exclusion of the timing information of high
variance system calls will not affect the calculation of
mean and deviation for other system calls, so they do not
need to be recalculated. Note that the high variance cases
must be excluded before the exclusion of high variance
system calls. If we exclude the high variance system calls
first, those columns with just one or several abnormal
time intervals in the columns will be excluded as high
variance system calls, while typically such columns are
still usable.

3.1.3 Mark unusable clusters.  Our experiments have
shown that typically, only a small percentage of the total
cases and system calls are excluded. However, it is
necessary to check whether exclusions have made the
whole cluster unusable because of insufficient valid data.
    We define the percentage of valid cases for a cluster to
be cluster Pv, i.e. the percentage of cases remaining after
high variance cases are excluded. We can also compute a
similar Pv value for an entire database or for a comparison
between clusters and a normal database. The database Pv
is the percentage of valid cases in a normal database
compared to the total number of cases in the raw
database. The comparison Pv is the percentage of valid
cases in a monitored behavior of an application compared
to the number in the normal database of the application.
Whenever the cluster Pv is lower than a threshold due to
the above exclusions, we mark the cluster as unusable.
We call this threshold as Tv.   It is empirically defined.

3.2 Put it all together

After all high variance exclusions are made, the cluster
is typically found to be usable. It is referred to as being a
qualified cluster summary. The normal database consists
of all qualified cluster summaries for the application.
Recall that each cluster summary has a distinct title. Each
database is then characterized by the following
parameters:

-    set of unique titles
- sequence length characterizing the database
- database Pv
- Cs, criteria for excluding invalid cases

Table 5 shows three different example cluster summaries
for wu.ftpd.  The annotation, “*”, on open indicates that

System
interval

calls
sequence

open fstat seteuid socket setsockopt bind z΄

Case1 108    24  22  43     21 27 1.69

Case 2 84 23 23 37 21 27 1.56

Case 3 84 23 23 37 21 27 1.69

Case 4 84 24 22 38 21 27 1.69

Case 5 116 25 23 41 22 28 1.62

Case 6  85 23 23 40 23 28 0.92

Case 7  87 25 23 41 23 29 1.69

Case 8  87 24 24 42 23 29 2.02

Case 9 114 24 23 43 22 28 1.22

 Case 10  83 23 23 41 24 27 1.83

Case12 98 23 23 41 22 27 0.92

m΄ 93.6 23.7 22.9 40.4 22.1 27.6 0

s΄ 13.02 0.786 0.539 2.16 1.044 0.809 n/a

s΄/m΄ 0.139 0.033 0.024 0.053 0.047 0.029 n/a
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the system call open is a high variance system call.
During intrusion detection no comparisons will be made
to the mean and standard deviation values for open in the
summary; they are non-numeric. The third summary
shows the cluster for a cluster that has been marked
unusable.  Note that the title of the unusable cluster is
maintained for comparison purposes.

Table 5. Three cluster summaries from the normal
database for application wu.ftpd.

system calls open* fstat seteuid socket setsockopt bind

m x 23.7 23.7 40.4 22.1 27.6

s x 0.786 0.539 2.16 1.044 0.809

Table 6 shows a summary of the properties that
characterize four different normal databases for the
application wu.ftpd.  We used different z-scores and
sequence lengths.  The database  Pv  values indicate that
fewer high variances are encountered when the z-score  is
larger and when sequence lengths are shorter.

Table 6. Summary of a normal database for
application wu.ftpd.

Sequence length za

Time
interval

class

Database
Pv

6 2.33 r 93.4%
10 2.33 r 78.8%
6 2.58 r 95.1%

10 2.58 r 84.2%

4. Intrusion detection systems

At this point we have defined the temporal signature
and described in detail how the normal database might be
constructed to be a robust, usable signature for the
application. We next experimented with database
construction and then with building an experimental
intrusion detection system (IDS) in order to test its
efficacy in detecting intrusions using the temporal
signature.

The IDS consists of two major parts: the normal
database builder and the run-time monitor. The normal
database builder creates the normal database for future
comparison as described earlier. The run-time monitor
observes the execution of the application much in the
same way that the application was monitored in order to
build the normal database.  When it finds a sequence of
length k with the associated inter-call timing
measurements, the monitor has (effectively) a case.   It
compares the case to the database to see if there exists a
sequence summary whose title is the same as the k-length
sequence.  For the full or partial title match, the monitor
computes the difference between the monitored case and
the most relevant cluster summary.   Based on that
comparison, it makes a decision whether or not
anomalistic behavior is occurring.  We will discuss the
details of this comparison in the context of
experimentation.

5. Experiments and results

The major objective of our experiments is to validate
the hypotheses stated in previous sections: we can build a
normal temporal signature database; and we can detect
intrusions. We also discuss the effects of the environment
on our experiments, the effectiveness of our system, and
the selection of parameter settings.

The first step is to actually construct the normal
database. There are two construction methods: “synthetic”
normal and “real” [12]. A “synthetic” normal database is
generated by exercising the application in as many normal
modes as possible while tracing its behavior. A “real”
normal database is generated by tracing the normal
behavior of the application in a live user environment
[12].

A synthetic normal database is quite useful when there
is a need to replicate results and to compare performance
using different parameter settings. A real normal database
is more problematic to collect and evaluate because of the
difficulties of avoiding abnormal sequences (intrusions
during construction) and determining if the traced
behavior is sufficiently comprehensive. However, we
need a real normal database to determine how our system
is likely to perform in realistic environments.

Our experiments were performed using FreeBSD. We
built both synthetic and real normal databases. We
experimented with the following applications: wu-ftpd, a
server implementing FTP, the File Transfer Protocol;
popper, a mail server implementing POP3, the Post Office
Protocol; delegate, a proxy server; and htdig, a html
search engine.

In our experiments, we must select settings for the
following adjustable parameters:

- Tv, threshold of the percentage of valid cases in a
cluster.

system
calls seteuid read read fstat write fcntl

m 32.3 23.7 22.5 30.4 52.1 22.8
s 1.02 1.786 1.539 0.16 2.02 0.34

system
calls*

msgg
et read sbrk write open dup

m x x x x x x
s x x x x x x
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- Cs, criteria of high variance system call.
- z-score, criteria for the high variance cases.
- sequence length, the length of the sequence cut

from the stream of system calls.
Database Pv serves as an indicator whether our

database is acceptable for IDS use. Because no other
criterion is available at this time, we judge the goodness
of a normal database based on empirical analysis. Besides
these parameters, we also measured the database Pv when
we build the normal database and then use it as the
criterion for intrusion detection

All these parameters were defined and discussed in
detail in previous sections. Typical settings of the
parameters are:

- Tv,:  85%;
- Cs:  0.1~0.3;
- z-score:  2.33 or 2.58
- sequence length: 6~10;
The first parameter value was determined based on the

experiments we performed. The z-score was determined
based on our assumption that no more than 5%-10% high
variance data was to be allowed.   That is, we assumed
that less than 5% (for z-score 2.33) or 10% (for z-score
2.58) high variance data deviate from the mean by this
value (after database normalization).

The selection of sequence length is also an important
issue. Some early works showed that sequence lengths of
6 to 10 are effective choices [2, 17]. We adopted these
suggestions and develop our own preference in following
sections.

5.1 Results of building normal databases

We built both the “synthetic” normal database and the
“real” normal database for the applications, wu-ftpd and
popper. We generated the synthetic normal databases by
building a script that invoked every command that the
application defines. Each command is invoked multiple
times with parameters designed to exercise the full
functionality of the application. wu-ftpd has 23 commands
and popper has 10 commands. The summaries for the
several generated normal databases for wu-ftpd and
popper are discussed in detail in the next section.

5.1.1 Building normal databases in a synthetic
environment.  Table 7 summarizes the qualities of four
slightly different normal databases for wu-ftpd. As
mentioned earlier we timed different kinds of time
intervals – e.g. between system calls and within system
calls.  All data in this paper are for the measurements of r,
between system calls.  All were generated using the same
(synthetic) script. Each line in the table represents a
database using different parameter settings.   Database  Pv
values are higher for the shorter sequence length, and
when the z-score is higher and admits more case variance.

The database Pv’s are the percentage of retained cases
after the qualification of cluster summaries. High Pv
values indicate the quality of the databases.  Database Pv’s
using time interval class r were higher than when
measuring time elapsed during system calls.

Table 7.  Synthetic normal database of wu-ftpd using
time interval classes r, Cs = 2.0, Tv = 85%.

Sequence
length za

Time interval
class

Database
Pv

6 2.33 r 93.4%
10 2.33 r 78.8%
6 2.58 r 95.1%
10 2.58 r 84.2%

Our second set of database construction experiments
involves the application popper. It runs as a daemon.
popper (based on POP3, the Post Office Protocol)
performs many fewer commands than those of the wu-
ftpd. However, each command has a variety of
parameters. To explore all the commands with different
parameters, we use two kinds of clients, MS Outlook and
Netscape Messenger, to logon, quit, receive, retrieve
attachment, list, and delete mail on the server. The
following list suggests the ranges of parameter settings:

- mail size: less than 10bytes – 1Mbytes;
- with/without attachment;
- with/without subject;
- amount of mail on the server: 0-1000;
- delete/keep the mail when retrieving;
- correct/incorrect logon on the server.
Table 8 describes the qualities of 4 different synthetic

databases for popper. Each line in the table represents a
database. Again we explored all time interval classes
although they are not shown here.

Table 8. Synthetic normal database for popper using
time interval class r, Cs = 2.0, and Tv = 85%

Sequence
length za

Time interval
class

Database
Pv

6 2.33 r 90.1%
10 2.33 r 80.8%
6 2.58 r 96.4%
10 2.58 r 88.2%

The results in Table 8 are similar to those for wu-ftpd;
all the Pv’s  in Table 8 show a good quality normal
database.

5.1.2 Building normal databases in a real environment.   
We generated the “real” normal databases for the
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application wu-ftpd by executing the application in an
actual, open environment (the computing environment in
the Computer Science Department, University of
Virginia), while monitoring the environment carefully to
ensure that no intrusions occurred during our data
collection.

Table 9. Statistics for four real normal database of
wu-ftpd using time interval class r, Cs = 2.0, andTv =

85%

Sequence
length za

Time interval
class

Database
Pv

6 2.33 r 95.4%
10 2.33 r 82.8%
6 2.58 r 93.1%
10 2.58 r 85.2%

Table 10. Statistics for four real normal database of
popper using time interval class r, Cs = 2.0, and Tv =

85%

Sequence
length za

Time interval
class

Database
Pv

6 2.33 r 93.9%
10 2.33 r 85.1%
6 2.58 r 92.5%
10 2.58 r 84.6%

Results in Table 9 and Table 10 illustrate results that
are similar to those for the synthetic normal databases. All
the Pv’s in Table 9 and Table 10 show a good quality
database. We can also see that in both normal databases,
using sequence length 6 is better than sequence length 10.

There is an argument in favor of using longer sequence
lengths.  Assume that we measure r, the duration of
application code execution between system calls.
Consider two application code sequences, A and B, that
invoke the same sequence of three system calls, C1, C2,
and C3 followed in one case by C4 and in the other by
C5.  Assume that in Figure 3 the length of the horizontal
line between calls indicates the measured execution time
interval between calls.

A: C1---------C2---------------C3------C4
B: C1---------C2---------------------------------C3--
---------------------C5

Figure 3.

If the sequence length is 4, then the titles for A and B
are different and they are in different clusters.   However,
if the sequence length is 3, then A and B have the same
title: C1-C2-C3.   The time interval between C2 and C3 is
differs greatly for A and B.  Therefore, the shorter
sequence length results in combining cases that may lead
to higher standard deviation.   And that may cause cases
to be excluded because of high variance.  That in turn
lowers Pv.  Hence, this argues in favor of longer sequence
lengths.

In contrast there is an argument in favor of using
shorter sequence lengths with fewer system calls.  There
is less probability that one interval measure will result in a
case being removed for high variance.   This argues that
shorter sequence lengths should yield higher Pv values.

Actual experimental evidence leads us to conclude that
short sequences are better. So we used only a sequence
length of 6 for experiment in the intrusion detection
experiments that are described next.

5.2 Intrusion detection

To determine how effective our method is in actually
detecting intrusion, we build a prototype IDS of the form
described in section 4. The monitor generated cases for
the application and compared each case to relevant cluster
summaries. We used the same criteria for high variance
cases to decide whether a case matched or mismatched
the cluster summary in the normal database. We define
Pm to be the percentage of matched cases. We define
anomaly to be detected when Pm << Pv.

We detected intrusions for the applications wu-ftpd,
popper, and delegate and compared the results of the first
two applications with the University of New Mexico’s
system call results. We also performed an intrusion
detection experiment to show that our method is not
applicable to some applications.

5.2.1 Detecting intrusion into wu-ftpd.  Because of
improper bounds checking, it is possible for an intruder to
overwrite static memory in certain configurations of the
wu-ftpd daemon. The overflow occurs in the
MAPPING_CHDIR portion of the source code and is
caused by creating directories with carefully chosen
names [14]. We exploited the flaw in order to time
intruding codes which will try to decrypt the password in
the /etc/shadow file.

We performed the comparison between the signatures
of the intrusion behavior and those in the real normal
database of wu-ftpd. That real normal database was
generated using the following parameters: sequence
length: 6; time interval class: r;  Cs = 2.0;  and Tv = 85%.
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Table 11. Intrusion detection using two real normal
databases for wu-ftpd

Sequence
length za

Time interval
class

Database
Pv

Pm

6 2.33 r 93.4% 82.7%
6 2.58 r 95.1% 79.2%

Table 11 shows the Pm value for the intrusion behavior
compared to Pv value determined when the database was
constructed. The Pm values in Table 11 are much lower
than the corresponding database Pv’s. This indicates that
intrusion is detected

5.2.2 Detecting intrusion into popper.  There is a buffer
overflow flaw in the popper [16]. We performed a
intrusion similar to the above and constructed two real
normal databases for popper using the same parameters as
for wu-ftpd database construction.

Table 12. Intrusion detection using two real normal
databases for popper

Sequence
length za

Time
interval
class

Database
Pv

Pm

6 2.33 r 93.9% 84.7%
6 2.58 r 92.5% 81.2%

Table 12 shows two Pm values are significantly lower
than corresponding Pv values. This indicates intrusion.
We also performed the same intrusion and used the
system call method [12].

Table 13. Intrusion detection fails for
the system call method

Application popper wu-ftpd
Normal 0.8% 1.3%
Buffer overflow 1.1% 1.0%

The sequence length used in the experiment is 6. The
percentages are the ratio of the number of mismatched
sequences to the total sequences in the normal database of
system call sequences. In Table 13, the percentages for
normal behavior of the applications and the behavior
under buffer overflow attack exhibit little difference. We
can see that in this case the system call method cannot
detect the intrusion effectively. This is because that the
intrusion did not launch any abnormal system calls; it
generated mostly cases that matched the cluster
summaries in the normal databases.

5.2.3 Detecting intrusion into delegate.  delegate is a
versatile application-level proxy, including the http proxy.
For our delegate experiment, we built the normal database
by monitoring two days of regular use of the proxy server,
including the http and ftp, in the Computer Science
department at the University of Virginia. We employed a
buffer overflow attack to successfully intrude into
delegate. We caused an input buffer of delegate’s strcpy
to overflow. Again, we inserted code that performed
simple intensive calculation.

Table 14. Intrusion detection using two normal
databases for delegate

Sequence
length

za
Time interval

class
Database

Pv
Pm

6 2.33 r 91.5% 71.7%
6 2.58 r 95.4% 73.3%

Table 14 shows the Pm value for the intrusion behavior
compared to Pv value determined when the database was
constructed. The Pm values in Table 14 are much lower
than the corresponding database Pv’s. Therefore, intrusion
is detected.  This demonstrates an example intrusion in
which the system calls alone are an insufficient signature
to detect the intrusion, but the temporal signature can be
used to detect intrusion.

5.2.4  Detecting intrusion into htdig.  There are also
some intrusions our method cannot detect. When an
intrusion does not incur any time intensive computation,
the temporal signature when the intrusion occurs will not
be different – from the point of view of timing –  from the
normal database. An intrusion on htdig, a small html
search engine, provides such an example.

The program htdig was set up to allow for file
inclusion from configuration files. Any string surrounded
by the opening single quote character ( ` ) is interpreted as
a path to a file for inclusion. Htdig will also allow
included files to be specified via the form input method in
the http protocol. Therefore, any file can be specified for
inclusion into a variable by any web user and that file will
thus be shown on the web page. As a result, the client can
read any file on the server, which can be read by the
invoker of Apache [15].

Table 15. Comparison without intrusion.

Sequence
length za

Time interval
class

Database
Pv

Pm

6 2.33 r 95.0% 93.5%
6 2.58 r 90.1% 91.3%
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Table 16. Comparison with intrusion into the
arbitrary file inclusion vulnerability.

Sequence
length za

Time interval
class

Databas
e Pv

Pm

6 2.33 r 94.8% 92.7%
6 2.58 r 91.3% 94.3%

The intrusion does not issue any abnormal system
calls, so the intrusion cannot be detected. Therefore, Pm
does not substantially differ from Pv.

6.  Summary and conclusion

We presented a method for anomaly intrusion
detection using the timing information of the monitored
application, a temporal signature. The idea comes from
the observation that after removing various effects of the
environment, most of the time intervals between or within
system calls are uniformly distributed. We can reasonably
assume the normal distribution of the time intervals,
remove high variance data based on this assumption, and
build a qualified normal database. Then, we can compare
the timing behavior of an application with that database.

Our method is empirical, using adjustable parameters.
There are many factors affecting the timing behavior of
an application. The distribution of the time intervals is not
strictly a normal distribution. In practice, adjusting the
parameters individually for different applications will be
more effective than using fixed parameters.

Our method builds on the system call method of
Forrest [12]. Moreover, our method expanded the system
call method so that it will work well when the observed
application has the same system sequences as those in the
normal database, as shown experimentally. We believe
that our temporal signature method provides an effective
approach to the detecting anomalistic behaviors.
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