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Reliability is an important factor to consider when designing and deploying
SSDs in storage systems. Both the endurance and the retention time of flash
memory are a↵ected by the history of low-level stress and recovery patterns
in flash cells, which are determined by the workload characteristics, the time
during which the workload utilizes the SSD, and the FTL algorithms. Accu-
rately assessing SSD reliability requires simulating several years’ of workload
behavior, which is time-consuming. This paper presents a methodology that
uses snapshot-based sampling and clustering techniques to reduce the simu-
lation time while maintaining high accuracy. The methodology leverages the
key insight that most of the large changes in retention time occur early in
the lifetime of the SSD, whereas most of the simulation time is spent in its
later stages. This allows simulation acceleration to focus on the later stages
without significant loss of accuracy. We show that our approach provides an
average speedup of 12X relative to detailed simulation with an error of 3.21%
in the estimated mean and 6.42% in the estimated standard deviation of the
retention times of the blocks in the SSD.

1 Introduction

Flash memory based solid-state drives (SSD) have gained tremendous popularity in
recent years. SSDs are widely used in a variety of computing devices, from phones
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and tablets to desktops and servers. SSDs o↵er several advantages over hard disk drives
(HDDs), including higher performance, lower power, improved acoustics, and ruggedness.
Despite these positives, a major concern with SSDs is that the underlying flash memory
technology has a limited lifetime, which a↵ects both the number of writes that can be
reliably done to flash, referred to as endurance and quantified in terms of program/erase
(P/E) cycles, and the retention time of stored data. The retention time is period of time
during which data written to a flash memory cell can be read reliably [1]. The retention
time decreases with the number of P/E cycles. These reliability concerns are paramount
in data centers, where workloads are I/O-intense, data integrity requirements are high,
and SSD replacement costs can be significant [2].
Accurate estimation of SSD reliability is important in data centers for several reasons.

One of the key factors that determines the total cost of ownership (TCO) of a data center
is the cost of the IT equipment. Typically, hardware refresh cycles span a period of 3-5
years during which the computing equipment is expected to operate reliably. Having an
accurate means of estimating SSD reliability for the workloads to be hosted in a data
center is essential for calculating TCO. Because the data retention time decreases with
cycling, knowledge of how the retention time of an SSD changes overtime allows the
storage system designer to make informed choices about how best to use the SSD over
its lifetime – as long-term storage or as a cache for short-term storage.
There has been prior work on reducing the number of P/E cycles to ensure high

endurance and long data retention times [3][4][5]. While reducing cycling is beneficial,
it has been shown that merely counting the number of P/E cycles is insu�cient to
accurately model endurance and retention time accurately [1][6][7]. Both endurance and
retention time are determined by stresses (P/E cycles) to the flash memory cells as
well as a recovery process wherein the cell has the ability to partially heal itself during
idle times between stresses. Several recent publications have proposed reliability and
performance enhancements that leverage this observation [8][9][10][11].
While SSD performance can be evaluated using relatively short workload traces, accu-

rate reliability assessments require capturing the impact of the workload access patterns
on flash memory during an extended period, typically on the order of years of simulated
time. This is because the reliability of flash memory cells depends on the history of
stresses and recovery over time. Existing SSD simulators focus on performance model-
ing and use relatively simplistic approaches to quantifying endurance, such as counting
the number of P/E cycles [12][13]. Also, all of the prior works that attempt to quantify
lifetime more accurately by using the physically realistic reliability models simulate a
workload for only a very short interval of time or use simplistic extrapolation of the re-
sults from a short simulation to a longer duration [14][1]. Because reliability is a↵ected
by the interplay of the workload behavior, the flash-translation layer (FTL) algorithms
for page mapping, wear-leveling, garbage collection, and the distribution of stress and
recovery events, any simplistic extrapolation of a short-duration simulation over a longer
timescale is inherently error-prone. On the other hand, simulating a workload over a
long time-scale is time-consuming. Having the means to perform reliability assessments
of SSDs for di↵erent workloads with low turnaround time can help reduce the costs of
capacity planning for deploying the storage systems.
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Table 1: Simulation time of enterprise workloads for 5 years

Workload MSNFS EXCHANGE DAPPS RADIUS
Simulation Time 185.93 127.51 86.52 49.31

(hours)

Table 1 shows the simulation time of several data center workload traces [15] during
a 5-year timescale in the DiskSim simulator [16] with the SSD extension [12]. These

simulations were run on an 8-CPU quad-core 2.3 GHz Intel Xeon
TM

machine with 48
GB of RAM. We choose a 5-year timescale because it represents the typical hardware
refresh interval in a data center [11]. We simulate 5 years worth of activity by repeatedly
replaying the I/O traces, each of which capture one representative day’s I/O tra�c. As
the table indicates, detailed simulation of years of workloads is very expensive in terms
of time. In this paper, we develop a methodology for reducing this simulation time.
Accelerating simulation time has been studied in the field of computer architecture for

processor simulation [17][18]. However, these prior techniques cannot be applied directly
to SSD reliability simulation. Architecture performance metrics, such as IPC, depend
more on the instantaneous behavior of a workload running on a given microarchitec-
ture whereas SSD reliability metrics depend on the history of the utilization patterns.
Moreover, as mentioned previously, retention time is a complex function of the work-
load, FTL, stress distributions, etc. As a result of these di↵erences, direct application
of techniques such as workload reduction or sampling can lead to large inaccuracies.
In this paper, we present an acceleration framework to accurately measure SSD relia-

bility by performing sampling over time on carefully trimmed workloads. Our method-
ology is generic and can be used for any workload or SSD architecture, thereby allowing
for flexible design-space exploration studies. This paper makes the following specific
contributions:

• We study the history patterns of retention time and characterize its behavior on an
SSD during its entire lifetime. We show that data retention time changes rapidly
early in the lifetime and tends to stabilize afterward, changing very slowly.

• We exploit this trend in retention time variation by developing a sampling-based
approach to accelerate the simulation.

• We characterize the spatial and temporal stress characteristics of the workloads
and identify further opportunities to decrease simulation time by reducing the
size of the workload to be simulated. We develop and evaluate a clustering-based
approach to trim down the workload size. Overall, we find that using sampling and
clustering provides a 12X speed-up on average compared to detailed simulation,
with errors in the estimated mean and standard deviation of 3.21% and 6.42%,
respectively.

In the rest of this paper, Section 2 provides an overview of SSDs and flash mem-
ory reliability and Section 3 describes the experimental setup. Section 4 characterizes
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the variation in the retention time during a multi-year timescale and motivates the
sampling-based acceleration approach. Section 5 describes our simulation acceleration
methodology and Section 6 presents the experimental evaluation of the accerlation and
accuracy of our approach. Section 7 concludes the paper.

2 Background of SSD Architecture and Flash Reliability

A typical SSD consists of a host interface logic (e.g., PCI Express, SATA), a flash memory
controller, an internal bu↵er, and several flash memory packages that are connected to
the controller via multiple channels [12]. A flash package is organized into one or more
flash elements. Each element is composed of multiple planes, usually 4 or 8. Each
plane contains a large number of blocks (e.g., 8K). Each block in turn consists of 64
or 128 flash pages that store data. An SSD has very di↵erent internal mechanisms
compared to a HDD. To hide these di↵erences from the upper layers of the system,
SSDs implement a software layer called the flash-translation layer (FTL) to abstract the
low-level implementation details [19].
Because NAND flash does not support e�cient in-place writes, the FTL must maintain

some mechanism that translates logical page addresses (LPA) to physical page addresses
(PPA)[12]. In general, there are two mapping strategies: static mapping and dynamic
mapping. Static mapping maps an LPA to a fixed PPA. Dynamic mapping does not pre-
determine the mapping between LPA and PPA; instead, when handling a write request,
the FTL computes the corresponding physical position in flash on the fly according to
the wear-leveling logic that takes into account the current wear-out conditions across
the flash memory packages. In practice, a typical hybrid FTL design often combines the
two strategies by first mapping a portion of the LPA statically to a fixed pre-determined
pool of flash memory, which is referred to as the allocation pool[12], and then mapping
the non-static portion of LPA dynamically to some physical address inside this specific
allocation pool. Therefore, for an incoming write request, its associated physical address
is allocated from a fixed allocation pool, which can be as small as a flash plane or as
large as several flash packages, based on the specific implementation. Because the hybrid
mapping policy is used most widely in practice, our simulations use this policy.
In this paper, we focus on data retention time to characterize flash reliability. We use

the model developed by Mohan et al. [11] to calculate the data retention time:
Data retention time, t

retention

, can be calculated by the following equation:

t
retention

=
(Q

th,spread

�C·�V
th

)
J

SILC

(1)

where Q
th,spread

is the total charge stored in the FGT corresponding to a logical bit, C
is the capacitance between the control gate and the floating gate of a FGT, and �V

th

is
the threshold voltage shift due to stress events. C · �V

th

can be viewed as the amount of
charge trapped in the insulators. J

SILC

is the leakage current. Therefore, data retention
time t

retention

is the amount of time taken for the charge to leak from the FGT. J
SILC

can be approximated as a constant value over time [11]. As a consequence, the threshold
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Table 2: Configuration of the simulated SSD

Elements per package 16
Planes per element 8
Blocks per plane 1024
Pages per block 128
Page size 4KB
Over-provisioning 10%
Cleaning threshold 5%

voltage shift �V
th

, which determines the amount of charges trapped in the insulators,
dominates the variation of retention time.
Mohan et al. [1] present a model to calculate the threshold voltage shift �V

th

. Ac-
cording to their model, �V

th

increases with charge-trapping in the insulators, which is
a↵ected by the accumulation of stress events and decreases with charge de-trapping
which is caused by the recovery process. Therefore, �V

th

can be expressed as follows:

�V
th

= �V
th,s

��V
th,r

(2)

where �V
th,s

and �V
th,r

are the threshold voltage shifts due to charge trapping and
detrapping respectively.
Their study also shows �V

th,s

has a power-law relationship with the number of P/E
cycles and �V

th,r

is a↵ected logarithmically by the length of the recovery time. �V
th

is a
monotonically increasing function. [1] and [11] include more details about flash memory
reliability.

3 Experimental Setup

We carried out our simulations using Disksim[16] with the SSD extension module devel-
oped by Microsoft Research[12]. We modified Disksim to record statistics that impact re-
liability, such as the recovery time between successive stresses to flash, and augmented it
with reliability models to calculate the retention time [1][11]. We simulate an enterprise-
class 64GB 2-bit MLC SSD, whose characteristics are given in Table 2. The FTL of this
SSD uses a greedy-based garbage collection approach with wear-leveling aware heuris-
tics and cold data migration to distribute stress events evenly across all blocks [12]. The
FTL uses a hybrid page-mapping policy that combines static and dynamic mapping
mechanisms, with an allocation pool that operates at the granularity of a flash element.
Although we use Disksim to model a specific SSD in this paper, our statistical accelera-
tion methodology is generic enough to be applied to other FTLs, SSD organizations, and
potentially other simulators.
To the best of our knowledge, there are no recent publicly available workload traces

that span multiple years of activity. Cello [20] is the longest trace that we know of; it
spans one year. However, it is relatively old and its I/O activity might not be represen-
tative of modern data center workloads. The workloads we choose in this paper consist
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Table 3: Properties of enterprise workloads used for evaluation[11].

Workload Trace Total Write Request
Duration I/Os Tra�c Inter-arrival
(hours) (millions) (GBs/day) average(ms)

Display Ads
24 1.09 44.06 79.63Platform Payload

Server (DAPPS)
Exchange Server

24 5.50 75.86 15.79
(Exchange)
MSN File

6 2.22 83.21 9.78
Server (MSNFS)

Radius
15 2.21 30.83 24.90Authentication

Server (RADIUS)

of four enterprise-class block I/O traces captured from modern Microsoft’s data centers
[15]. The key characteristics of these workloads are given in Table 3. Because each trace
spans only between 6 hours and 1 day of representative I/O activity, we repeatedly replay
each I/O trace until the simulation time reaches 5 years, which aligns with the typical
hardware refresh period in a data center. This approach of replaying I/O traces for long
timescales is also used by those in prior work on reliability simulation [1][8][11][14]. We
believe that this approach is reasonable because prior research has shown that disk I/O
tra�c exhibits spatial and temporal self-similarity characteristics [21][15].

4 The Opportunity for Simulation Acceleration

In this section, we study history patterns of data retention time and present an analysis
of how the distribution of retention time across flash memory blocks in an SSD vary
with time. We use this analysis to formulate a sampling-based approach to decrease the
simulation time.
The retention time of the flash memory cells is a↵ected by the pattern of stresses

and recovery periods over time. These patterns are governed by the workload, page-
mapping, wear-leveling, and cleaning operations in the FTL. In our simulator, we track
the retention times at the granularity of individual flash memory blocks. We simulate
each of our workloads using the methodology described in Section 3 for a 5-year period
and take snapshots of the entire system state, including all metrics related to retention
time, every 15 days of simulated time. The histograms of the retention times over each
15-day period for each of the four workloads are shown in Figure 1. Each curve in the
graph shows the histogram of the number of blocks in the SSD with a given retention
time value at each 15-day interval. The x-axis in the graph is retention time. As noted
in Section 1, retention time decreases as P/E cycles increase, so the curves on the right
represent retention time histograms early in the lifetime of an SSD.
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Figure 1: Retention Time Histograms during 5 Years of Simulated Time
Curves on the right represent retention time histograms early in the lifetime
of an SSD.
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Figure 2: Ratio of Simulation Time between Phase I and Phase II of the Retention Time
Variation

For all four workloads, the retention times of the blocks decrease rapidly early in the
lifetime (denoted as Phase I in the figures) and then the retention times decrease at a
much slower rate afterward (designated as Phase II). The Phase I and Phase II markers
in Figure 1 are not the actual duration of these phases; rather, they show when the
retention time distributions show a marked change in trends. The key reason for this
trend is that �V

th,s

has a power-law relationship with the number of P/E cycles [1]:

�V
th,s

=
(A.cycle0.62 +B.cycle0.3).q

C
ox

(3)

where A and B are constants, cycle is the number of P/E cycles, q is the charge of an
electron, and C

ox

is the oxide capacitance. Therefore, the rate of change of the retention
time decreases with cycling. The ratio of the total simulated time in the two phases is
shown in Figure 2.
The graphs highlight two key trends that directly influence the ability to accelerate

the simulation:

• It is important to simulate in detail the activity during Phase I. Otherwise, even
small inaccuracies in the reliability estimation potentially can accumulate into large
errors in the result.

• The bulk of the simulation time is spent in Phase II, where potential opportu-
nity exists to skip regions of the simulation and extrapolate the behavior without
resulting in large errors.

The RADIUS workload exhibits a di↵erent trend; Phase I dominates the overall simu-
lation time because this workload is not write-intense and therefore does not stress the
flash memory cells to the same extent as the others and also requires far less simulation
time, as shown in Table 1.
We use these two observations to develop a sampling-based approach to accelerate the

simulation. This approach consists of two simulation modes: a detailed mode and a fast-
forward functional mode in which the change in the reliability metrics are approximated.
This bifurcated simulation approach is similar to those used for accelerating processor
simulations [17][18]. Detailed simulation is performed only during certain intervals,
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which we refer to as sampling units, whereas functional simulation is performed between
the sampling units.

5 Acceleration Methodology

This section explains how we decrease the time required for reliability simulations using a
sampling-based approach, leveraging the insights from the Section 4 about how retention
time varies over time. We first present an overview of our approach and then discuss
each step of the simulation acceleration methodology in detail.

5.1 Overview of our Methodology

As mentioned in Section 4, our sampling-based simulation approach consists of two
modes: a detailed mode and a fast-forward functional mode in which the change in the
reliability metrics are approximated. To obtain high accuracy, sampling is performed
only in Phase II of a simulation, where the changes in the retention time stabilize.
To decrease simulation time further, we augment our sampling-based approach with a
snapshot-based clustering technique to reduce the size of the workload so that only a
subset of requests are simulated during the detailed simulation mode. We will show that
our trimmed workload is representative of the original workload in terms of its stress
behavior and impact on SSD reliability.

Figure 3: Overview of the Acceleration Framework

The overall simulation acceleration framework is shown in Figure 3. The framework
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consists of three major components: simulator, workload trimmer and snapshots an-
alyzer. The simulator, integrated with reliability models, performs simulation in the
detailed and fast-forward modes. It takes workloads as inputs and periodically dumps
snapshots to track the reliability-related characteristics. The simulation flow is also de-
picted in Figure 3. The simulation begins with detailed mode on the full workload (the
dotted region) with no acceleration techniques applied. The stress behavior collector in
the workload trimmer collects information about the stress patterns of the full workload
as the simulation runs. As soon as su�cient information is collected, the clustering
analyzer in the workload trimmer is triggered to perform a clustering-based analysis on
the information collected and reduce the size of the workload by selecting representative
requests from the full workload. The rest of the simulation takes trimmed workload as
inputs. During simulation, the simulator consults the phase-transition decider inside the
snapshots analyzer periodically to see whether the simulation has entered Phase II and
whether sampling can be performed. The snapshots analyzer is also responsible for in-
terpreting the snapshots to report the reliability metrics. Except for the beginning of the
simulation (dotted region), the bulk of the simulation flow alternates between detailed
simulation on the trimmed workload (striped region) and the fast-forward functional
simulation (blank region), which speeds up the original simulation.
We now discuss our approach in detail, including how we quantify the transition from

Phase I to Phase II, how we perform functional simulation, and how our snapshot-based
clustering algorithm works.

5.2 Quantifying the Phase Transition

To develop a sampling-based technique, we first require a way to quantify the distance
between the retention time histograms. We use earth mover’s distance (EMD) as the
metric to quantify this, which gives a measure of distance between histograms. We
choose EMD because it captures the shift along the x-axis of two histograms and their
di↵erence in shape. A precise mathematical definition of EMD between two histograms
can be found in [22]. We calculate the EMD between every pair of adjacent data re-
tention histograms for each workload, which gives a way to quantify the amount of
variation in retention time distribution for every 15-day simulation interval. The EMD
results for EXCHANGE are presented in Figure 4. We present only the EMD results
for EXCHANGE here because other workloads share similar trends. The x-axis plots
time in terms of the ID of the each 15-day snapshot and the EMD between the given
snapshot and its following adjacent snapshot.
We can see that the EMD value is high early in the lifetime of the SSD and drops

to a very low value later, which captures the two phases of behavior shown in Figure
1. Therefore, we can choose a threshold value of EMD, T

EMD

, to distinguish between
Phase I and Phase II in an automated manner and use this threshold to decide when to
begin sampling the simulation. The choice of T

EMD

value provides a tradeo↵ between
simulation acceleration and accuracy.
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Figure 4: EMD between Two Adjacent Data Retention Histograms for EXCHANGE
The K

th

dot in the graph denotes EMD between the (K � 1)
th

and the K
th

Histograms

5.3 Sampling Strategy

Our acceleration framework consists of two simulation modes: a detailed simulation
mode that simulates wear-leveling and garbage collection in the FTL, and a fast-forward
mode that performs functional simulation. The detailed mode essentially runs full-
fledged Disksim, whereas the fast-forward mode only updates flash reliability related
statistics, such as the number of stress events and the timestamp of the last stress to a
block, and does not change other FTL parameters such as the mapping between LPAs
and PPAs over time. Compared to the detailed mode, the fast-forward mode attempts
to estimate the stress behavior instead of simulating the complex FTL algorithm and
requires far less simulation time.
Our sampling strategy works as follows:

• We first start with detailed simulation and take snapshots to record reliability
related characteristics at the granularity of blocks at short time intervals during the
course of simulation. We calculate the EMD between two adjacent data retention
histograms from the information in the snapshots.

• If the EMD between two adjacent snapshots drops below a predetermined EMD
threshold, T

EMD

, we consider it to be the entry point into Phase II and sampling is
performed. In Phase II, detailed simulation is performed only in chosen sampling
units and fast-forward simulation is performed between the sampling units. We
use a systematic sampling approach[17] in which simulation repeatedly alternates
between d rounds of the detailed mode and f rounds of the fast-forward mode. In
our experiments, we set the d to f ratio to be 1 : 10.

5.3.1 Characterizing the detailed simulation mode behavior for fast-forwarding

While fast-forwarding can decrease simulation time, care needs to be taken to design it
to minimize inaccuracies. In general, the fast-forward mode needs to consider two key
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aspects of the stress behavior: spatial behavior, which is the distribution of stress events
across various blocks in the SSD, and temporal behavior, which is the distribution of
recovery times corresponding to individual blocks. While prior work has also pointed
out the need to model these two aspects [1], their approach has been to use simplistic
extrapolation techniques to estimate reliability.
We sub-divide the SSD, which has M blocks, into m contiguous regions in which

each region has M

m

blocks. We also sub-divide the simulation time into n intervals. We
compute a stress distribution matrix, S

mn

(sizem⇥n), of the spatial and temporal access
patterns as follows. The ith row of S

mn

corresponds to the spatial memory region, which
contains blocks numbered in the range [M

m

· (i� 1), M
m

· i). Each row in S
mn

is a vector
of length n, which we call the temporal vector, which characterizes the temporal stress
distribution of the associated sub-portion of flash memory. Assume T is the simulation
time duration which S

mn

is collected and t corresponds to the start time of this duration;
the entry S

i,j

in the stress distribution matrix is the number of stress events that fall into
the sub-memory portion that contains blocks numbered from [M

m

· (i� 1), M
m

· i) within
time interval [t+ T

n

· (j � 1), t+ T

n

· j).
In the detailed simulation mode, we construct the S

mn

for the sampling unit by record-
ing the stress into each memory region at each n time interval to capture the history
of spatial and temporal access patterns over that sampling unit. In the fast-forward
mode, instead of simulating the operation of the FTL algorithm with the workload, we
use the stress distribution matrix from the immediately prior detailed-mode simulation
interval to extrapolate/predict the workload’s stress behavior. Inside each entry of S

mn

(i.e., for the blocks within each flash sub-region), we assume an uniform distribution
for the stress behavior, similar to [1]. In this way, the fast-forward mode estimates the
reliability-related characteristics with information collected from the most recent de-
tailed simulation. In our experiments, we take snapshots every 15 days and choose a
T
EMD

value of 0.1.

5.4 Using Clustering to Further Decrease Simulation Time

The systematic sampling technique discussed in the previous section can decrease sim-
ulation time by avoiding the execution of the entire second phase of a workload in the
detailed mode. We now explore further opportunities to accelerate the simulation. We
conduct a detailed analysis of the stress behavior of the workloads, in terms of both their
spatial and temporal characteristics. We carry out this analysis by recording the stress
distribution matrix of the detailed simulation of each day’s worth of simulation. From
these stress distribution matrices, we characterize the spatial stress behavior by generat-
ing a histogram of the number of stress events to various regions of flash memory in the
SSD. The frequency of the ith bin of the histogram, which corresponds to the number
of stresses that fall into the ith contiguous region of flash, is calculated by summing up
all the stress numbers across the ith row of the stress distribution matrix. Similarly,
we characterize the temporal stress behavior by generating a histogram of the number
of stress events to di↵erent time intervals within the simulation time during which the
data is collected, where the frequency of each bin is calculated by summing up all the
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Figure 5: Spatial Stress Distribution of DAPPS after 15 Days of Simulation

stress numbers down the corresponding column in the Stress Distribution Matrix. We
base our stress behavior analysis for each workload on the study of the corresponding
15-day stress distribution matrix generated by running the detailed simulation for 15
days and summing the stress distribution matrices for each trace-day. We choose to
analyze the accumulated stress behavior of 15 days for two reasons: 15 days is the time
duration between any two snapshots, and we find that the data collected for 15 days is
su�cient to capture the overall stress patterns of the workloads. We present results for
one workload - DAPPS. The trends for the other workloads are similar to DAPPS and
we omit those graphs due to space reasons.
Figure 5 shows the spatial stress distribution during 15 days of simulation, where the

x-axis is the block number in the SSD and the y-axis is the number of stress events. Each
region of a specific color corresponds to the stress distribution for each flash element in
the SSD. If we examine the spatial stress distribution for DAPPS in the graph, we observe
similarities in stress behavior between certain elements. We can cluster the elements into
five groups according to their similarity in stress behavior: Group 1 contains Elements
0-5, 10-12, 14, and 15; Group 2 contains Element 6; Group 3 contains Element 7; Group
4 contains Elements 8 and 9; and Group 5 contains Element 13.
If we look at the temporal stress distribution in Figure 6, we again observe similar

clusters. The x-axis of Figure 6 is the sub-divided time intervals within the simulation
time during which the workload is analyzed and the value in y-axis corresponds to the
number of stress events that fall into the associated time domain. Each line in the graph
corresponds to the temporal stress behavior of each element in the SSD. The temporal
stress behavior of the workload again shows trends similar to the spatial stress patterns.
This analysis shows that elements in the SSD can be sub-divided into groups in which

elements in each group share similar spatial and temporal stress behavior. Another
important observation we make here is that at the element level, the short-term stress
behavior in Figures 5 and 6 lines up closely with the long-term reliability behavior of
SSD, which we show in Figure 7. Figure 7 shows the mean and standard deviation of
the retention time on a per-flash element basis after 5 years of simulated time. We can
see that Element 13 in DAPPS has a distinct reliability compared to other elements,
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Figure 6: Temporal Stress Distribution of DAPPS after 15 Days of Simulation

Figure 7: Mean and Standard Deviation of the Retention Time per Element after 5 years
Simulation for DAPPS

which is quite similar to the 15-day trend.
The short-term behavior of the workloads correlates well with the longer term trend

because the SSD uses a hybrid FTL in which an incoming write request from the work-
load is statically mapped to a specific allocation pool. Because the allocation pool is
maintained at the granularity of flash elements and the longer timescale simulation is
performed by repeatedly replaying the same trace, there is an inherent periodicity in
the workload access patterns to each element. We exploit this observation to further
accelerate the simulation by introducing a snapshot-based clustering algorithm to reduce
the total workload size that is simulated. We can divide allocation pools into di↵erent
clusters according to their stress behaviors during a short-term of detailed simulation
and choose one allocation pool to be the representative allocation pool in each cluster. By
simulating only requests that fall into the representative allocation pool, the workload
is trimmed e�ciently while still guaranteeing accuracy. We now describe our algorithm.

5.4.1 Snapshot-based clustering algorithm

Based on the preceding analysis, we develop the following workload trimming algorithm:

1. We run the detailed simulation for several trace days to collect the stress distribu-
tion matrix S

mn

, which is a matrix of m temporal vectors of length n.
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2. We apply the k-means clustering algorithm on the stress distribution matrix to
classify the temporal vectors into k

optimal

clusters.

3. We extract a signature vector, Sig, for each allocation pool based on the cluster-
ing result of the second step. The signature vector provides a compact way to
characterize the stress behavior of each allocation pool.

4. We run a hierarchical clustering algorithm [23] on the signature vectors of various
allocation pools. This divides the allocation pools into several clusters. Within
each cluster, allocation pools share similar stress behaviors. We choose the alloca-
tion pool with the smallest index value as the representative allocation pool.

5. The workload is trimmed by preserving only requests that fall in the representative
Allocation Pool chosen in Step 4. The reliability metrics of the allocation pools that
are not chosen are approximated with the result of the representative allocation
pool in the associated cluster.

We now discuss each of these steps in detail.

Classifying temporal vectors using k-means: In order to classify the temporal
vectors in the stress distribution matrix, we quantify the similarity and di↵erence of
two temporal vectors using the Manhattan distance. The Manhattan distance between
temporal vectors p and q is defined as follows:

ManhattanDistance =
nP

i=1
|p

i

� q
i

|, (4)

where n is the dimension of the temporal vector.
One problem that a↵ects the quality of clustering of the k-means algorithm is the

choice of the k value, which is the number of clusters. We apply the technique in [18] to
calculate the optimal value of k valu k

optimal

. In this approach, the k-means algorithm
is tried with various k values, from 1 to the largest expected number of clusters (which
is chosen to be 8 in our analysis, where 16 is the total number of elements in the SSD),
resulting in a di↵erent clustering in each trial. To compare between di↵erent cluster-
ing approaches, the Bayesian information criterion (BIC) is used, which measures the
”goodness of fit” of the clustering to the original data. The clustering with the smallest
k value whose BIC exceeds 90% of the largest BIC value of all clusterings is chosen as the
optimal clustering, and its associated k value is regarded as k

optimal

. Our analysis shows
that k = 7 is a suitable value for various workloads. Note that each temporal vector
characterizes the temporal stress behavior for each region of flash memory. The clus-
tering approach divides the memory regions into k

optimal

categories according to their
temporal stress behavior.

Extracting signature vector for allocation pools: In Step 2, temporal vectors are
grouped into k

optimal

clusters C1, C2, ..., C
k

optimal

. We extract a signature vector, which
is of length k

optimal

, for each allocation pool based on the clustering result from the
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previous step. The signature vector for allocation pool r Sig
r

is computed as follows.
The ith entry in Sig

r

is the number of temporal vectors in cluster C
i

whose associated
memory region is contained in allocation pool r. A signature vector denotes how much
a region of memory in the allocation pool exhibits certain types of temporal stress be-
havior. Therefore, a signature vector can be viewed as a compact way to characterize
the spatial and temporal stress behavior of each allocation pool. The allocation pools
with similar signature vectors tend to share similar stress behaviors.

Clustering allocation pools using a hierarchical clustering algorithm: Finally,
we need a way to divide allocation pools into several clusters according to the similarity
and di↵erence of their signature vectors. Similar to temporal vectors, the distance be-
tween two signature vectors is quantified using Manhattan distance as the metric. We
choose the agglomerative hierarchical clustering algorithm because it is flexible and pro-
duces good results. The hierarchical clustering algorithm works in a bottom-up manner,
where each allocation pool starts in its own cluster and pairs of clusters are merged as
we move up the hierarchy [23]. The merging terminates if the distance between all the
stand-alone clusters exceeds a pre-determined threshold, which we set to be 20% of the
maximum distance between two signature vectors in our analysis.

6 Evaluation of the Acceleration Framework

In this section, we evaluate the accuracy of our acceleration techniques and the speed-
up achieved in the simulation time. We evaluate accuracy by comparing the histograms
of the data retention times of the all the blocks in the SSD after a simulation period
of 5 years for the accelerated variants to the base detailed simulation runs. The only
exception is the EXCHANGE workload, which we simulate for only 3.5 years because
this workload experiences block retention failures that exceed the capacity of the over-
provisioning space of the SSD with the FTL algorithm we exploit. As mentioned earlier,
we simulate the multi-year timescale by repeatedly playing back the workload trace. We
call each such repetition simulation round.
Our acceleration framework allows the user to input five parameters: detailed simula-

tion rounds (sampling unit size) d, functional simulation rounds f , earth mover distance
threshold which denotes the workload phase transition T

EMD

, size of stress distribution
matrix m and n. As discussed in Section 5, the ratio of d to f provides a tradeo↵ be-
tween simulation speed and estimation accuracy. The choice of m and n determines how
accurately a stress distribution matrix can capture the stress behavior in the detailed
simulation mode. In our evaluation, we set T

EMD

to be 0.1, d : f ratio to be 1:10, and m
and n to 131,072 (the total number of blocks in our simulated SSD) and 96, respectively.
We now discuss how to choose the appropriate sampling unit size (d).

6.1 Choosing Appropriate Sampling Unit Size

In our sampling-based approach, detailed simulation is performed during sampling units,
during which stress behavior of the given workload is captured using a stress distribution
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Figure 8: Error Percentage in Mean of Retention Times across Blocks after 5 Years of
Simulated Time

matrix. In functional mode, stress behavior is approximated using the information
collected from the sampling units. The sampling unit size can influence the simulation
speed and accuracy. A small sampling unit size can reduce the required number of
rounds of detailed-mode simulation. However, too small a sampling unit size might not
be su�cient to capture the characteristics of the stress behavior and thus result in a
larger estimation error during functional simulation. Figures 8 and 9 shows the error
percentage with respect to the detailed simulation mode in the estimated retention times
across all the blocks during 5 years of simulated time in terms of the mean and standard
deviation. The analysis is based on the trimmed workload. We vary the sampling unit
size from 1 to 64 simulation rounds. We can see that the choice of sampling unit size has
greater impact on standard deviation than on mean. For standard deviation estimation,
the error is high when sampling unit size is small, then drops and stabilizes afterwards.
MSNFS is an exception; the error keeps falling and fails to stabilize within the range of
sampling unit size in our analysis. After analyzing the spatial stress behavior of MSNFS
at the flash-plane level for consecutive sampling units, we observe that the stress patterns
between the two sampling units do not show any stable repetitive trend, whereas we do
find a repetitive trend for the other workloads. This inherent complexity and instability
in the stress behavior makes accurate approximation in the functional mode challenging
for MSNFS at this sampling unit size. The downward slope of the standard deviation
curve for MSNFS in Figure 9 suggests that it might possible to increase the accuracy
with a larger sampling unit size. In the experiments that follow, we use d = 8, because
the majority of the workloads stabilize at this value.

6.2 Evaluation of Accuracy and Speedup

Figure 10 compares the retention time distribution across blocks after 5 years of simu-
lated time among the detailed-simulation mode, sampling-simulation mode on full work-
loads, sampling-simulation mode on trimmed workloads. We compare these to a simplis-
tic extrapolation of retention time after detailed simulation phase (the approach used in
[1]). Our simulation framework generates estimates much closer to detailed simulation

17



Figure 9: Error Percentage in Standard Deviation of Retention Times across the Blocks
after 5 Years Simulation

compared to the simplistic extrapolation in terms of the position, shape and height of
the retention time distribution. The histograms of the accelerated versions are very
similar to the detailed simulation versions for DAPPS, EXCHANGE, and RADIUS. For
MSNFS, the shape of the estimated distribution diverges with the original simulation
due to the estimation bias in functional simulation, as already discussed. On average,
our acceleration framework achieves a mean estimation error of 3.21% and a standard
deviation estimation error of 6.42%.
Figure 11 shows the speed-up of sampling simulation mode on the full workload and

trimmed workload with respect to the detailed simulation mode. Significant accelera-
tion is achieved for all workloads except RADIUS. RADIUS is not write-intensive and
does not incur as large a simulation time as the other workloads. With our sampling
framework on the trimmed workload, an average of 12X speed-up is achieved.

7 Conclusion

Accurate estimation of SSD reliability is important for data centers. However, accu-
rately measuring the reliability of SSD requires capturing the impact of workload access
patterns on flash memory over timescales that span several years, which requires long
simulation times. Simplistic extrapolation of reliability from short simulations is in-
herently error-prone and can lead to incorrect conclusions, and consequently, adversely
a↵ect system availability and TCO. To address this problem, we present a framework
to accelerate SSD reliability simulation. This framework uses sampling and clustering
techniques to significantly reduce the simulation overheads while still providing high
accuracy.
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Figure 10: Comparison of Retention Time Histograms between Detailed-Simulation
Mode, Sampling-Simulation Mode, Sampling-Simulation Mode on the
Trimmed Workloads and Simplistic Extrapolation
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Figure 11: Speedup of Sampling-Simulation Mode and Sampling-Simulation Mode on
Trimmed Workload Compared to Detailed-Simulation Mode
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