
Portability and Performance:
Mentat Applications on Diverse Architectures

Padmini Narayan,
Sherry Smoot,
Ambar Sarkar,
Emily West,

Andrew Grimshaw,
Timothy Strayer

Technical Report No. CS-92-22

This work was supported in part by grants from the National Science
Foundation, CDA-8922545-01, the National Aeronautics and Space
Administration, NAG-1-1181, and the National Laboratory of Medi-
cine LM04969.

1

Portability and Performance:
Mentat Applications on Diverse Architectures

Padmini Narayan
Sherry Smoot
Ambar Sarkar

Emily West
Andrew Grimshaw

Timothy Strayer
University of Virginia

Charlottesville, Virginia
pn8f@virginia.edu

grimshaw@virginia.edu
July 22, 1992

Abstract

Parallel programs are complex, especially when the communication,
synchronization, and scheduling issues must be managed by the
programmer. Considerable amounts of time and effort are put into
developing a parallel program for a particular application, yet once
written for one architecture, it may be prohibitively difficult to port
the code to another architecture. Mentat is an object-oriented parallel
processing system designed for the development of parallel
programs where the underlying architecture is an abstraction.
Mentat masks the complex aspects of communication,
synchronization, and scheduling from the programmer. This
facilitates both ease of use and portability.

Here we present several applications that have been implemented
within the Mentat environment running on three different platforms.
For each application we describe the major aspects of its
implementation within Mentat, and present performance
comparisons of the Mentat implementation against a serial
implementation of the application.

2

1. Introduction

Two problems plague programming on MIMD architectures. First, writing

parallel programs by hand is very difficult since the programmer must manage

communication, synchronization, and scheduling of potentially thousands of

independent processes. The burden of correctly managing the environment often

overwhelms programmers, and requires a considerable investment of time and

energy. Second, once implemented on a particular MIMD architecture, the

resulting code is usually not usable on other MIMD architectures; the tools,

techniques, and library facilities used to parallelize the application are specific to a

particular platform. Consequently, porting the application to a new architecture

requires considerable effort. Given the plethora of new architectures and the rapid

obsolescence of existing ones, communities are reluctant to commit to a single

platform for their applications.

Mentat [1] has been developed to directly address the difficulty of

developing architecture-independent programs. The three primary design

objectives of Mentat are to provide easy-to-use parallelism, to achieve high

performance via parallel execution, and to facilitate the portability of applications

across a wide range of platforms. Mentat is based on the premise that writing

programs for parallel machines does not have to be hard; rather, it is the lack of

appropriate abstractions that has kept parallel architectures difficult to program

and, hence, inaccessible to mainstream, production system programmers.

The Mentat approach exploits the object-oriented paradigm to provide

high-level abstractions that mask the complex aspects of parallel programming,

communication, synchronization, and scheduling, from the programmer [2, 3].

Instead of managing these details, the programmer concentrates on the

3

application. The programmer uses application domain knowledge to specify those

object classes that are of sufficient computational complexity to warrant parallel

execution. The parallelization of these complex tasks is handled by Mentat.

In this report we present a set of diverse applications. We show that these

applications have straight-forward implementations within Mentat, and that these

implementations are easily ported to various MIMD platforms. In particular, we

have developed and ported these applications to two loosely-coupled networks of

Sun workstations (one of only Sun 3/60s, and one of only Sparc IPCs), and to a

tightly-coupled Intel iPSC/2 hypercube. Among the applications presented here

are:

• An in-core matrix multiplication implementation
• A Gaussian elimination method of solving linear systems
• An image processing application
• A DNA sequence decomposition application
• A process pipeline example

Ease of implementation and portability are important aspects of the Mentat

approach [2], but these benefits are moot if there is no performance advantage as

well. Since Mentat provides a framework within which the programmer and

compiler cooperate to parallelize applications, performance gains through parallel

execution are realized. We use the applications listed above to demonstrate the

relative speed-up from a well-optimized serial implementation to an

implementation within Mentat.

Applications other than the ones presented here are also being developed

within Mentat, and experience with these applications will appear in subsequent

reports. Also, we are constantly increasing the number of platforms on which

Mentat applications can be run. In addition to the architectures described here,

Mentat is also supported on the Silicon Graphics’ Iris and the Intel iPSC/860 and

4

ports are underway for the Intel Paragon, the IBM RS/6000 and the TMC-CM5

machines.

2. Test Environment

We conducted experiments on three different platforms, a network of Sun

3/60s, a network of Sparc IPCs, and an Intel iPSC/2 hypercube. These three

platforms are distinguished by their processor computational capabilities and

their interconnection network characteristics. The network of Sun 3/60s and the

network of Sparc IPCs differ by processor but not by interconnect. The Sparcs and

the Intel iPSC/2 have processors of similar capacity but the interconnect is

different.

One platform is a local area network of eight Sun 3/60 workstations, each

with 8 Mbytes of memory and a math coprocessor, and served by a Sun 3/280 file

server. Another is a local area network of eight Sparc IPCs, each with 16 Mbytes of

memory, served by a Sun 4/260 file server. Both of these networks use Ethernet as

their interconnection medium.

The third platform is an Intel iPSC/2 hypercube configured with thirty-two

nodes (five dimensions). Each node has 4 Mbytes of physical memory and an 80387

math co-processor. The hypercube also has a 1.5 Gbyte Concurrent File System for

its four I/O nodes. The NX/2 operating system provided with the iPSC/2 does not

support virtual memory; this, coupled with the amount of memory dedicated to

the operating system, limits the size of the problems that can be run on the iPSC/2.

3. Performance of Primitive Operations

The performance of Mentat, and of the Mentat approach, hinges on the

speed with which primitive operations can be performed. In particular, the

5

communication latencies, the time to detect data dependencies, and the time

required to construct program graphs all contribute to the overhead. This

overhead must be reduced so that parallelism can provide gains in performance.

Table 1 shows the communication and Mentat processing overheads incurred for

a Null RPC.1 The one-way message latencies for the Sun 3/60s and the Sparc IPCs

are due to the characteristics of UDP and Ethernet, and also include the host

operating system scheduling and task switch overhead. This latency is of course

significantly reduced for the Intel iPSC/2 since the interconnection network is so

tightly coupled. The Mentat overhead is computed by subtracting twice the

message transport cost (once for request and once for reply) from the Single Null

RPC time.

1. A Null RPC is a remote procedure call with one integer argument and one integer result,
but no computation is performed in the body. Hence, the service time is zero, and only the
communication and Mentat overheads are observed. This serves as a baseline
measurement.

Function
Time

Sun 3/60 Sparc IPC Intel iPSC/2

Single Null RPC

Double Null RPC

Mentat Overhead

Message Latency
(one way) 5.6 ms

14.3 ms

3.1 ms

20.1 ms

2.8 ms

6.9 ms

1.9 ms

9.2 ms

0.8 ms

3.9 ms

2.3 ms

5.3 ms

Table 1. Communication and Mentat Overhead for Various platforms

6

Table 1 also shows the effect of overlapping communication with processing

overhead when two Null RPCs are performed back-to-back. The code segments for

a single Null RPC and a double Null RPC are given in Figure 1. The only

requirement of an RPC is that the result of the RPC be available when used in some

future code segment. In the double Null RPC case, the communication involved

when node2.one_arg() is called, is overlapped with the computation of k.

4. Applications

In this section we briefly describe each of the five applications listed earlier.

For each of these applications, we give the class definitions and pseudo-code for

the implementation. The class definitions show how the applications were

decomposed. The pseudo-code shows the implementation of the class member

functions in more detail. Once implemented, these applications were run on the

various platforms, and execution time measurements were made. In each case the

performance of the Mentat version of the application is compared with the

performance of an equivalent sequential C++ implementation. Rather than

constraining the Mentat implementation to run on a single processor, we used a

timer.start();
for (i = 0; i < iterations;
i++)
 {

int j, k,l;
j = node1.one_arg(0);
k = j+1;

 }
timer.stop();

timer.start();
for (i = 0; i < iterations;
i++)
 {

int j, k,l;
j = node1.one_arg(0);
l = node2.one_arg(0);
k = j+1;
k = l+1;

 }
timer.stop();

Single Null RPC Code Double Null RPC Code

Figure 1. RPC Timing Code

7

C++ implementation for our comparisons, because the latter does not incur the

communication overhead inherent with any parallel implementation. We have

been very careful to use the same level of hand optimization of inner loops, and the

same level of compiler optimization for both the C++ and Mentat versions. In this

way we make the fairest possible comparison.

Unless otherwise specified, all times are carriage return to complete times,

i.e., all overhead including loading of object executables and data distribution have

been included. The best times and not averages are used to calculate the speed-ups

for each application and architecture. This is done to demonstrate the capabilities

of Mentat. Some of the irregularities seen in the graphs are due to the Random

algorithm used by the scheduler [4]. We observe that the scheduler does not

perform well at high loads or when the number of available processors is less than

the number of processes resulting from the decomposition of the application.

4.1. In-core Matrix Multiplication

This matrix multiplication utility operates on any two matrices already in

memory. For the multiplication of matrices A and B, the user of this utility specifies

how to partition the problem so that pieces of the matrices can be distributed

among the various processors. If the user requests that the problem is to be divided

into k pieces, then the B matrix is split into floor(sqrt(k)) vertical slices, and the A

matrix is split into floor(k/floor(sqrt(k))) horizontal slices. The actual number of

worker processes created, w, is floor(sqrt(k)) × floor(k/floor(sqrt(k))), and is less

than or equal to k. Each of the workers gets the appropriate piece of A and B to

multiply. The results of the workers are merged together and the final result is

made available to the user of this utility.

8

4.1.1. Class Definitions

The two Mentat class definitions that are used to implement this utility are:

regular mentat class matrix_class {
public:

DD_floatarray* mult_mat(DD_floatarray* mat1,
DD_floatarray* mat2,
int pieces);

}

persistent mentat class work_class {
public:

DD_floatarray* mult_work(DD_floatarray* mat1,
 DD_floatarray* mat2);

}

The matrix_class is the primary class; it creates the workers which are instances of

work_class. Multiplication member functions are defined for both classes. The

member function matrix_class.mult_mat() is invoked by the user which in turn

invokes work_class.mult_work() to perform the actual multiplication. A

diagrammatic representation of this utility is shown in Figure 2.

 The pseudo-code for the member functions of the two classes are:

Figure 2. Two-Matrix Multiplication

=×a_pieces

b_
pi

ec
es

Matrix A Matrix B Result Matrix

x_pieces vertical blocks

W0

W2

W1

W3

W5

W4

W6

W8

W7

y_
pi

ec
es

 h
or

iz
on

ta
l b

lo
ck

s

9

matrix_class::mult_mat():

1. Create w workers
2. Let x_pieces = floor(sqrt(k))

Let y_pieces = floor(k/floor(sqrt(k)))
3. For each x_pieces do

Give each worker a vertical piece of B, b_pieces
For each y_pieces do

Give each worker the correct horizontal piece from A, a_pieces
Perform multiplication in each worker.

4. Reassemble all parts of the workers’ results and return resulting matrix

work_class::mult_work():

1. Perform the multiplication:
Let result = a_pieces × b_pieces

2. Return result to manager process

4.1.2. Communication and Computation Complexity:

Since each worker receives one block of each of the two input matrices, and

returns the resultant submatrix to the controlling object, there are a total of three

messages to or from each worker. Hence the total number of messages generated

during the execution of this problem is 3w. The amount of data that is actually

moved around is (x_pieces+y_pieces+1) × n. The computation complexity is O(n3).

4.1.3. Performance

Figure 3. shows the performance improvements from a serial

implementation to the parallel Mentat implementation, of a matrix multiplication

for each of the platforms in our study. These speed-ups are given with respect to

matrix size and the number of pieces into which the matrix is partitioned. It is

interesting to note the effect that the number of pieces has on the speed-up. In the

graphs for Sun3/60s and Sparcs, partitioning of the problem into six pieces

provided the best performance, even though there were eight processors available

on each of the networks. This is because both the main program and the manager

10

object matrix_class required a processor each, leaving six processors for the

workers. If the problem is partitioned into a number of pieces greater than six,

some objects are made to share a processor. On the Intel iPSC/2, where there are

32 nodes available, no two objects are scheduled on the same processor, and so

this effect is not observed.

(a) 8-processor Sun 3/60 network (b) 8-processor Sparc IPC network

(c) 32-processor Intel iPSC/2

Figure 3. speed-up for matrix multiply.

11

Since the problem is actually partitioned into w workers instead of the

requested k, there will be some values for the number of workers requested that

will have the same performance as for fewer number of workers requested. For

example, if five workers are requested, then w is four, and the performance for both

k = 4 and k = 5 will be the same. This happens for k = 6 and k = 7 as well.

The speed-up on the Sparcs is not as good as that on the Sun3’s for small size

problems as the granularity of these problems is very fine. The Sparcs are

approximately ten times faster than the Sun3’s, making the amount of

computation smaller for the same amount of communication.

4.2. Gaussian Elimination with Partial Pivoting2

Many algorithms have been developed to solve systems of linear equations

by operating on matrix systems. The algorithm we have implemented here is the

Gaussian Elimination method with partial pivoting. This algorithm primarily

consists of two phases, a forward elimination phase and a back substitution phase.

4.2.1. Class Definitions

The following are the two Mentat class definitions that are used to

implement this algorithm.

regular mentat class matrix_ops{
public:

DD_floatarray* solve(DD_floatarray* mat,
DD_floatarray* vector,
int pieces);

}

2. Other iterative methods like the Choleski method are available to solve systems of linear
equations. The Choleski method has inherently fewer synchronization points than
Gaussian Elimination and may result in better speed-ups.

12

persistent mentat class sblock{
public:

int initialize(DD_floatarray* the_block);
DD_floatarray* get_max(int for_col);
DD_floatarray* reduce(DD_floatarray* by_row);

}

An instance of the matrix_ops class, which is the controlling object, partitions

the matrix, into k strips and distributes each strip into an instance of an sblock.

Then, for each row, the reduce operator is called for each sblock using the partial

pivot calculated at the end of the previous iteration. The reduce operation of the

sblock reduces the sblock by the vector, selects a new candidate partial pivot, and

forwards the candidate row to the controlling object for use in the next iteration.

Once this is done for each row, back substitution is performed by the matrix_ops

object. This algorithm results in frequent communication and synchronization. The

pseudo-code shown outlines the implementation.

matrix_ops::solve():

1. In the controlling function, create k workers, where k is the number of
blocks into which the matrix is divided.

2. Initialize workers with the appropriate block of the matrix.
3. For each worker, get candidate pivot row.
4. For each column:

Get row with largest absolute value in the first column from among
the candidate pivot rows. This is the new pivot row.
Distribute pivot row to all workers.
Make workers “reduce” submatrix and return next candidate pivot.

5. Go to last row and do back substitution to get result.

sblock::reduce():

1. Find candidate pivot by reducing appropriate column in submatrix.
2. Find row with largest entry in the same column.
3. Reduce that row.
4. Return that row to matrix_ops.
5. Reduce rest of the rows in the submatrix.3

13

4.2.2. Communication and Computation Complexity:

Let k be the number of workers and m be the matrix size. Then the

communication complexity is of the order of O(3km2). This is because for each

column of the matrix, we initialize k workers, do the reduction on each of them and

get back the result from each of them.

4.2.3. Performance

The effect of frequent synchronization in the algorithm can be clearly seen

when the speed-up results for Gaussian Elimination in Figure 4. are compared to

the results for matrix multiplication. The speed-up obtained is lower for Gaussian

Elimination. As expected, speed-up on the Sparcs is not as good as that on the

Sun3s for small problems.

4.3. Image Convolution

Image convolution is a common technique used in image processing. It is an

instance of a class of algorithms called stencil algorithms, other examples of which

include the Jacobi iterative method. Convolution is used to filter out distortion from

images and obtain progressively better images. It is a computationally intense

application and has relatively few synchronization points.

3. Note: Steps 4 and 5 permit overlapping much of the communication with computation.

14

The input image can be regarded as an p × q matrix, f, of pixels. Let us

consider a filter, h, of size m × n. Then, according to the convolution algorithm, each

pixel in the resultant matrix (image), g, is calculated as follows:

(a) 8-processor Sun 3/60 network

(c) 32-processor Intel iPSC/2

(b) 13-processor Sparc IPC network

Figure 4. speed-up for Gaussian elimination.

15

(Eq 1)

4.3.1. Class Definitions

Given below are the two Mentat class definitions that have been used to

implement this algorithm.

persistent mentat class Convolver{
public:

void initialize();
void setSource(string *file_name);
int convolve();

}

persistent mentat class convolver{
public:

int convolve(DD_chararray* filter);
void set_top(DD_chararray *top);
void set_bottom(DD_chararray* bottom);
DD_chararray get_top();
DD_chararray get_bottom();

}

An instance of the Convolver class is the controlling object in this

implementation. It creates k instances of the convolver class and distributes

appropriate parts of the input file to eachconvolver object. Boundary information

is exchanged between neighboring convolver objects, as shown in Figure 5., using

the convolver.get_bottom() and convolver.get_top() member functions. The actual

convolver.convolve() function is performed in each convolver object and results are

returned to the Convolver object. The pseudo-code for this implementation is

outlined below:

g i j,[]
f i m j n+,+[] h m n,[]×

m n×
n

q
2

−=

q
2

∑
m

p
2

−=

p
2

∑=

16

Convolver::convolve():

1. In the controlling object, create k workers, where k is the number of
horizontal blocks the source file is divided into.

2. Distribute a block to each worker.
3. For each filter do:

Tell workers to exchange boundaries with neighbors:
i.e. for each worker, i do:

convolver[i].set_top(worker[i-1].get_bottom())
convolver[i].set_bottom(worker[i+1].get_top())

Tell workers to convolve.
4. Tell workers to store results in target file.

4.3.2. Communication and Computation Complexities

Let us consider a source image file, which is basically an n× n matrix that

needs to be convolved, and a sequence of filters of dimensionfsi, 1 < i< m. If k is the

number of pieces to divide the input image file into (number ofconvolver objects),

communication complexity is given by:

(Eq 2)

If fsi is a constant, the communication complexity is solely dependent on the

number of workers for a fixed size matrix. The computation complexity is given

by:

Block 1

Block 2

Block 3

Boundary

Region

Figure 5. Boundary exchange between convolver objects.

fsi

21 i m< <
∑ n k 1−() 2

17

(Eq 3)

4.3.3. Performance

All the speed-ups for this application shown in Figure 6. are for two filters

of size 9. This means that for the image convolution, the filter used was a 9× 9

1
k

n2 fsi
2

1 i m< <
∑

(a) 8-processor Sun 3/60 network (b) 8-processor Sparc IPC network

Figure 6. speed-up for Convolver.

(c) 32-processor Intel iPSC/2

18

matrix and two such filters were used (i.e., step 3 of the Convolver pseudo-code

was executed twice before getting the performance numbers). For the Sun3s, the

speed-up falls rapidly for a 2Kbytes image size because of the fact that these

machines have only 8Mbytes of memory and the entire problem does not fit into

memory. This results in frequent page faults, which in turn leads to poor

performance. On the Sparcs and on the Intel iPSC/2, we see better speed-ups for

large size problems. On the Intel iPSC/2, the speed-up is close to linear for the 2K

× 2K image. But once again, for the Sparcs the speed-up decreases rapidly if the

input file is partitioned into greater than six pieces. This is again due to the poor

decisions made by the scheduler at high load.

4.4. DNA Sequence Comparison

With the advances in DNA cloning and sequencing technologies, biologists

today can determine the sequence of a protein more easily than they can determine

its structure. The current technique used for determining the structure of new

proteins is to compare their DNA sequences with those of known proteins. DNA

and protein sequence comparison involves comparing a single query sequence (for

the unknown protein) against a library of sequences to determine the evolutionary

history of the query sequence. In addition, this comparison can identify related

sequences in the library. Since the DNA and protein sequences are represented as

strings of characters, the problem reduces to one of pattern matching. Several

algorithms, including Smith-Waterman, FASTA, and Profile, are used to compare

the query sequence against the library. Among these algorithms, the Smith-

Waterman algorithm is the most rigorous and time-consuming. FASTA, which is

based on heuristics, is about 20 to 100 times faster. Apart from speed, these

methods vary in their accuracy as well. As each comparison between entries in the

19

sequence library and the query sequence is completely independent, these

algorithms are ideally suited for parallelization.

4.4.1. Class Definitions

Given below is the Mentat class defined for this application.

regular mentat class worker{
public:

result_list* dowork(sequence, libinfo, pstruct);
}

This application requires the definition of a single Mentat class for its

implementation. The input file is partitioned intok blocks and distributed to k

workers. The query sequence is also passed to the workers, who then perform the

comparison by invoking either the Smith-Waterman, FASTA or Profile

algorithms.The pseudo-code for this implementation is outlined.

main():

1. In the controlling object get query sequence from input file
2. Determine size of library file and parcel it into k blocks.
3. Fire each of k workers by distributing block information along with the

query sequence.
4. For k results

compute statistics.
5. Generate output scores and statistics.

worker::dowork():

1. Open library file.
2. Initialize comparison sequence.
3. For each comparison sequence in library parcel,

Get sequence from library file
Compute similarity score to query sequence.(scoring technique
used is either Smith-Waterman, FASTA or Profile)
Append score to result list

4. Return result list.
5. Close library file.

20

4.4.2. Communication and Computation Complexities

The computation complexity of the comparison algorithms is O(nm) where

n is the length of the query sequence and m is the length of the longest library

sequence. The communication complexity is small for these algorithms. It includes

transporting a copy of the query sequence for each worker which in turn send a

result structure back to the manager program. The length of a typical query

sequence is 25 - 3500 bytes and the total number of results generated is equal to the

length of the library in sequences, where each result is at most 5 -10 bytes. A typical

library size is in the range of ten to twenty thousand sequences.

4.4.3. Performance

The performance speed-ups for this application and observations on them

are given in [5]. As can be seen in Figure 7., the speed-up is almost linear for Smith-

Waterman on both architectures. FASTA on the iPSC/2 and Sparcs suffers from

very small computation granularity. This is quite apparent as speed-up ceases to

improve with additional processors. The irregularities of the curves for both

algorithms run on the Sparcs are due to poor scheduling decisions made by the

scheduler at high loads. Maximum speed-up depends on the size of the search

sequence and architecture.

4.5. Pipeline example

This example illustrates the construction of a simple pipeline process. It is

presented to illustrate the fact that even if the time spent within the pipe stages

increases, the time to execute the entire process does not increase appreciably.

21

4.5.1. Class Definitions

The following are the Mentat classes defined for this example.

regular mentat class gfilter{
public:

int one_arg(int arg1);
}

persistant mentat class generic{
public:

int one_arg(int arg1);
}

 The member functions gfilter.one_arg() and generic.one_arg() each execute for

some period of time. Consider the following code fragment:

(b) Smith-Waterman on the Intel iPSC/2

Figure 7. speed-up for DNA Sequence Comparison.

(a) Smith-Waterman on the Sparc IPCs

(c) FASTA on the Sparc IPCs (d) FASTA on the Intel iPSC/2

22

generic node1, node2;
gfilter filter;
node1.create();
node2.create();
int i;
 for (i=0; i < MAX_ITERATIONS; i++) {

int j;
j = node1.one_arg(delay);
j = filter.one_arg(j);
j = filter.one_arg(j);
j = node2.one_arg(j);
j = 0;

}

This code fragment executes each of the four function calls in a loop. Note that the

variable j is a temporary variable used as a conduit through which information

passes between the filters.

In a traditional RPC system, this fragment would execute sequentially.

Suppose that each member function execution takes 10 time units, and that each

communication takes 5 time units. Then the time required to execute an iteration

of the loop in a sequential RPC system is the sum of four times the member

function execution time (due to the four member function calls), plus seven times

the communication time (because all parameters and results must be

communicated from/to the caller). Thus the total time required is 75 time units.

The average time per iteration for the Mentat version is considerably less,

just over 10 time units. We arrive at this result by first observing that the time for a

single iteration is four times the communication time, or 20 time units, plus four

times the execution time, or 40 time units, for a total of 60 time units. Next, consider

that the reads, the two filter operations, and the writes can be executed in a

pipelined fashion with each operation executing on a separate processor as shown

in Figure 8.

23

 Under these circumstances each of the four member function invocations,

and all of the communication, can be performed concurrently. The communication

for the ith iteration can be overlapped with the computation of the (i+1)th iteration.

(We assume that communication is asynchronous and that sufficient

communication resources exist.)

Using a standard pipe equation

TAll = time for all iterations
TStage = time for longest stage = 10 time units
T1 = time for first iteration = 60 time units
TAvg = average time per iteration
TAll= T1+ TStage × (MAX_ITERATIONS-1)
TAll = 60 + 10 × (MAX_ITERATIONS-1)
TAvg = (60 + 10 × (MAX_ITERATIONS-1))/MAX_ITERATIONS

When MAX_ITERATIONS is one, the time to complete is 60 time units, with

an average of 60 time units. This is faster than a pure RPC (75 time units) because

we don’t send intermediate results to the caller. However, as MAX_ITERATIONS

increases, the average time per iteration drops, and approaches 10 time units.

There are five points to note from this example. First, the variable filter is an

instance of a regular Mentat class. So the system is free to instantiate new instances

at will. At any given time there will be two instances executing. Second, the main

loop may have executed to completion (all MAX_ITERATIONS iterations) before

node1.one_arg node2.one_argfilter.one_argfilter.one_arg

processor 1 processor 2 processor 3 processor 4

unfiltered j filtered j filtered j

Figure 8. Program Execution Graph for the Pipeline Example.

24

the first write has completed. Third, suppose our “caller” (the main loop) was itself

a server servicing requests for clients. Once the main loop has completed the caller

may begin servicing other requests while the first request is still being completed.

Fourth, the order of execution of the different stages of the different iterations can

vary from a straight sequential ordering, e.g., the last iteration may “complete”

before earlier iterations. This can happen, for example, if the different iterations

require different amounts of filter processing. This additional asynchrony is

possible because the run-time system guarantees that all parameters for all

invocations are correctly matched, and that member functions receive the correct

arguments. The additional asynchrony permits additional concurrency in those

cases where execution in strict order would prevent later iterations from executing

even when all of their synchronization and data criteria have been met. Finally, in

addition to the automatic detection of inter-object concurrency, we may also have

intra-object parallelism encapsulation, where each of the invoked member

functions may be internally parallel. Thus we obtain even more parallelism.

Now consider the effect of quadrupling the time to execute the filter from

10 to 40 time units. The time to execute the traditional RPC version goes from 75 to

135 time units. But the time per iteration for the Mentat version remains

unchanged at 10 time units if there are sufficient computation resources. To see

why, consider the regular Mentat class gfilter. This means that the system may

instantiate new instances of this class at will to meet demand. As a result, there

would be eight instances of the gfilter class active at a time, four performing the first

filter, and four performing the second filter.

25

4.5.2. Communication and Computation Complexities

The communication complexity in terms of the number of messages

transmitted is four times the number of iterations.

4.5.3. Performance

The speed-ups obtained on the Sparc IPC’s and the Intel iPSC/2 are shown

in Figure 9. As the number of worker units increase, the start-up costs become

more apparent as fall off from the optimal. To completely amortize the start-up cost

(as in the optimal case), the value of MAX_ITERATIONS has to be large(i.e., tend

to infinity for best results). In the above experiment MAX_ITERATIONS was set to

10 for experimental purposes.

5. Conclusion

Mentat provides a common environment within which diverse applications

can be implemented on a wide-range of MIMD platforms. There are three

advantages to using Mentat for developing programs on parallel machines: (1) the

Figure 9. speed-up for the pipeline example.

(b) Pipelining on the Intel iPSC/2(a) Pipelining on the Sparc IPCs

26

user is relieved of managing the complex details of communication,

synchronization, and scheduling, (2) the resultant code is portable across various

MIMD platforms, and (3) the implementation can exploit the underlying parallel

architecture to improve performance. In this report we have used several

applications to prove these points by example.

Mentat supports an object-oriented parallel programming approach. As a

consequence, the decomposition of the problem results in objects that may be

executed concurrently with other objects. Mentat detects such opportunities, and

also detects when operations within an object may be made concurrent. Mentat

then makes all of the communication and synchronization transparent to the user,

and handles the scheduling of the various tasks onto the processors.

In addition to aiding the programmer in organizing an implementation of a

problem and supporting concurrency, the object-oriented approach by its nature

abstracts out the details of underlying structures. Each of the application examples

were implemented on the three platforms currently in our testbed. As a result of

this abstraction the application programs were ported between the various

platforms with only minor changes to the compile directives.

Mentat provides the best performance improvements to applications that

can be decomposed into medium-grain parallel tasks. The DNA sequence

comparison and the Image Convolution applications are well-suited for this type

of implementation, as evidenced by their near-linear speed-up as the application

used more processors. Applications such as the Process Pipeline, where

communications between workers can be overlapped, show dramatic

performance increases. However, applications that require frequent

27

synchronization, and hence have fine grain, do not demonstrate the same

performance increase when increasing the number of processors.

6. References

[1] A. S. Grimshaw, “The Mentat Run-Time System: Support for Medium
Grain Parallel Computation,” Proceedings of the Fifth Distributed Memory
Computing Conference, pp. 1064-1073, Charleston, SC., April 9-12, 1990.

[2] A. S. Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat Programming
Language (MPL) Reference Manual,” University of V irginia, Computer
Science TR 91-32, 1991.

[3] A. S. Grimshaw, “An Introduction to Parallel Object-Oriented
Programming with Mentat,” TR-91-07, Department of Computer Science,
University of Virginia, April, 1991.

[4] A. S. Grimshaw, V. E. Vivas, “FALCON: A Distributed Scheduler for
MIMD Architectures,” Proceedings of the Symposium on Experiences with
Distributed and Multiprocessor Systems, pp. 149-163, Atlanta, GA, March,
1991.

[5] A. S. Grimshaw, E. West and W. R. Pearson, “No Pain and Gain! -
Experiences with Mentat on a Biological Application,” to appear in
Proceedings of Symposium on High Performance Distributed Computing,
Syracuse, NY, September 1992.

