Author's Address:

Form-Oriented Interface Abstractions
in Reusable Software

Steven P, Wartik

Computer Science Report No. TR-86-18
July 3, 1986

Department of Computer Science

Thornton Hall
The University of Virginia

Charlottesville, Virginia 22903

804-924-1034
CSnet: spw@virginia

Abstract

Research in form-oriented wuser interfaces has produced many popular
software systems., However, it has not adequately considered some of the
fundamental concepts underlying a form abstraction. As a result, forms
have not lived up to their potential. Forms should be an independent
abstraction containing all the advantages of their paper equivalent, and a sys-
tem supporting them should contain reusable software that aids tool builders
in creating user interfaces.

In this paper we discuss what we believe is necessary to support a form
abstraction properly. We discuss forms as objects independent of any data
storage mechanism, and we show the utility of reusable software components
centered around form-oriented interfaces. We illustrate our points through
FILLIN, a reusable software package supporting forms, and we cover some
recent extensions to FILLIN thai show what reusable software requires to
support forms. We present our experience with these extensions, and discuss
our directions for future research.

1. INTRODUCTION

Forms are a popular abstraction in computer systems today. The concept of a form is
simple and easily undersiood: everyone knows, from their day-to-day experiences, what it
means to fill in a form. Researchers have alse discovered that forms extend naturally into
computer applications. They have been used successfully as database interfaces [11] and as
database design tools [8]. Conversely, they have been used for command interfaces, as an
aid to command construction [S]. They bave also found application in tool integration and

software reuse [16].

Forms are most useful in handling data that can be treated as a set of ordered N-tuples
[15]. In a relational database, for example, each tuple in a relation can be mapped to an
instance of a form by mapping each domain to one field in the form. In a network data-
base, each record can be mapped to a form in a similar manner. For a command interface,
a command and its arguments provide a similar, albeit less well defined, structure. More
importantly, from a wuser's perspective, many applications map easily to a form-oriented
structure. In automated office environments, forms can model addresses, employee history,
phone books, appointment calendars, etc. In software development environments, forms can

be used for problem reports, project status reports, design specification reports, ete.

Because many forms map easily to database structures, DBMS vendors typically supply a
forms management package fm'r querying databases and generating reports. While a DBMS
is often a convenient storage manager for a set of forms, forms are not inherently related
to databases. Indeed. from the user's perspective, a form is a convenient abstraction guite
independent of a DBMS. Users perceive forms in two ways: as an object being manipulated
by their computer system, and as a user interface style for data entry and modification.
Because a system typically deals with a set of forms, a DBMS is frequently used to store
the forms in the first case. For the second case, however, applications often work with a
single form, not a large set, and the user does not think of a database being involved.

That is, forms and databases are distinct entities, and, while forms are often conveniently

mapped to databases, forms have other important uses as well. Thus there is a need to

separate a data storage mechanism—DBMS or otherwise—and its man-machine interface.

This idea has been explored in the FILLIN package [16], a set of tools for manipulating
forms independent of any back-end application. As explained elsewhere [2,10], it was
developed as part of the Software Productivity System (SPS) to provide a uniform interface
to a wide variety of tools, including tools for such software development tasks as software
problem reports and unit development folders, and tools for such automated office functions
as calendar management and interoffice correspondences. Moreover, it served as reusable
software [14}: SPS required a uniform interface that could be useful to novices after
minimal training and yet amenable to sophisticated expert use. A form-oriented interface
seemed a reasonable approach, and, given the project’s resources, software reuse was the

only feasible solution [1].

Hence, FILLIN gave many of the advantages of form-oriented DBMS interfaces, yet was
independent of a DBMS. SPS tools cc_)uld. when needed. provide the bridge between FILLIN
and a DBMS; some of the aforementioned tools worked in this fashion. Tool builders
therefore have the best of all worlds: the power of a DBMS, the sophistication of a form-

oriented interface. and the freedom to easily access any part of the host O/S environment.

However, FILLIN lacked some features typically provided by a DBMS form-oriented
interface. For example, SPS implemented a “query-by-forms” tool for data retrieval from a
central database of forms. FILLIN could not provide interactive review of the retrieved set
of forms; a user had to exit the tool and use another to scan through the forms. The user
had to learn two tools instead of one; also, there was an undesirable context switch from

the interactive form-oriented retrieval to thé non-interactive data scan.

This and other problems discussed below led us to examine the concept of a form-
oriented interface in more detail. The resulting extensions to FILLIN form the subject of
this paper. We treat these extensions from the point of view of form-oriented interfaces as

reusable software components. Section 2 gives an overview of FILLIN. Section 3 covers

the problem area in detail. Section 4 presents our solutions. Section 5 discusses our con-

clusions, and the state towards which FILLIN is evolving.

2. AN OVERVIEW OF FILLIN

In this section we give a brief overview of FILLIN. It is a tool package implemented on
the Unix! operating system [6], concerned primarily with user interfaces. It presents users
with a form-oriented view of data, allowing them to enter and modify data by “filling-in-
the-blanks” of a form, displayed as a two-dimensional image on a CRT screen. This is a

general-purpose interface style that is adaptable to a wide range of tools.

FILLIN operates on forms, where a form is a linear collection of data, together with for-
matting information. The formatting information determines the layout of the data on a
form image, which is the visual representation of a form—i.e., what users view when deal-
ing with forms. Users perceive a form image as consisting of two parts: the areas where
they enter data, called form data fields, and surrounding text that identifies the data areas,
| called #rim. Form data fields contain textual data—anything that can be represented on a
CRT screen. They can be single-line or multi-line. Single-line fields contain exactly one
line of text, of a fixed width (hence a fixed maximum size). Multi-line fields, as their
name implies, may contain any number of text lines; however, since a form provides a
specific area for each datum, not all of this information is shown if more exists than will
fit on the screen. Both single-line and multi-line data fields have a data type, such as
“integer”, that defines the syntax of data in the field. Data types are given as regular
expressions. They prevent most common input errors; as explained in Section 4. a more

sophisticated method of error detection is available.

The purpose of FILLIN is to present the above concepts to a user, through a user inter-

face with commands for creating, editing, and presenting (displaying for review or printing)

1. Unix is a registered trademark of AT&T Bell Laboratories.

a form image. To a user, FILLIN provides a view of data that corresponds to what he or
she expects to do with an ordinary paper form. To a tool builder, FILLIN provides a set
of abstractions (data types together with operations) for manipulating instances of forms.
While it can deal with collections of form instances if necessary, its algorithms for storing
and retrieving form instances are deliberately simple. Tools use FILLIN when they need to
collect from a user input that is conveniently entered as a form, or when they need to
manipulate form-iike objects. Applications that require storing and retrieving many forms
provide their own DBMS, and establish an interface between the DBMS and FILLIN. Appli-
cations that deal with only a few forms generally use FILLIN's slower but simpler form
storage mechanism. For example, the SPS forms management system [10], which was
designed to be able to handle a large project’s needs, uses the IDM/500 database machine
[3). The SPS calendar management system, designed for maintaining a personal appointment
schedule, uses FILLIN's capabilities, storing form instances as ordinary files in the Unix

directory hierarchy.

Figure 1 shows an example of a form image, similar to that used by the SPS library
management system. This form is used to catalogue documents in the library, giving their
location {as a folder in a set of filing cabinets) and cross-listing them under a set of key-
words for reference and indexed retrieval? This form has several multi-line data fields:
title, author, and keywords. The other fields are single-line, some with data types. For

example, the year is a four-digit integer.

The library management system uses FILLIN for several tasks. First, new references are
recorded by filling in a copy of the above form. Second, existing references are modified
by editing the form through FILLIN. Third, users search the library database by filling

fields of the above form, using a “query-by-forms” (QBF) style [11]. In each case, FILLIN

2. In the examples, the areas where users enter data (the form data fields) are underlined; when using the tool,
this is obvious by context.

DOCUMENT REFERENCE FORM

Title: A Unified Design Langugge for
Software Specification ond Implementation

Author(s): J. Reed Keywords: Ada
R. Yeh software specification
data flow

Document Type: Technical Report

Publisher: University of Maryland Year: 1984
Available for:

Copies

Loan [X]

Consultation [X]
Location: 33 Number of Copies: 1

Figure 1. Library Management System Form Image

supplies form-oriented portion of the user interface. For example, the tool that enters new
references works by invoking FILLIN with an instance for the reference form. FILLIN then
places a form image of this instance on the screen, and the user enters the desired informa-
tion. When he or she exits FILLIN. the library tool is given access, through a set of
FILLIN routines, to the data the user entered in the form. It then takes this data and

stores it in the database.

FILLIN therefore serves as reusable software for user interfaces. It provides a set of
procedures, functions and data types that support an object-oriented view of software 4L
The principle objects are forms, data fields, and the terminal’s screen. Using the technique
outlined in the last paragraph with variations that depend on such issues as where the data
is to be stored, whether data is being created or modified, what sort of error checking is

needed, etc., tools achieve a sophisticated interface with minimal effort.

FILLIN also provides reusability in another way. All functions available through the
subroutine library are also available at the Unix shell level, through a set of command-
level application tools. In Unix, the shell language is often used for rapid prototyping [12%
the Unix pipe mechanism and the rich tool package make construction of many applications
straightforward, if somewhat slow and not always robust [7]. FILLIN's tools provide access

to this capability. More importantly, the rapid prototypes that are built through FILLIN

are usually similar in design to the eventual implementation. Therefore, FILLIN also sup-
ports reusability of design components [9] the prototype's structure can (but need not)
drive the software’s design. Because the same abstractions exist at both the shell and C
levels, the transformation of the user interface from prototype to implementation is almost

immediate.

3. REQUIREMENTS FOR A COMPLETE FORM ABSTRACTION

The version of FILLIN as described in the previous section was valuable in providing a
consistent user interface; also, it integrated easily into the SPS environment. However,
FILLIN did not provide a complete form abstraction. The paradigm discussed in the previ-
ous section required that FILLIN be in complete control during the time when a user filled
a form; the tool using FILLIN did not regain control until the user indicated he or she was
finished. This introduceci two user interface context swiiches, from the tool's to FILLIN's
back to the tool's. As a result, several important functions could not be performed within

a form-oriented context:

1. Form Validation. FILLIN could handle simple syntactic validation of data entered for
an individual data field (requiring that a field is a positive integer, for instance) but
could do nothing beyond that. It could not require that one data field's be filled in

only if another is (e.g., first name makes no sense unless a last name is given).

2. Review a Set of Forms. This operation is analogous to flipping through a stack of paper
forms. It can be done for N forms by invoking FILLIN N times, but the continual

context switch is irritating.

3. Query Processing. QBE (Query-by-Example) [18] and QBF [11] are popular query
styles; IDE's TBE [17] uses a similar style to help a user browse through relations in
a database. The SPS forms management system had a query facility similar in func-
tionality to QBF. It was clumsier, however, because FILLIN required a context switch

to the command level after the fields of a form were filled.

4, Apply a Command to a Form Instance. While commands could be applied to individual
fields, it was not possible, when filling the form, to apply a command to the entire

form at once.

5. Form-Specific Commands. Different forms being used for different ends, it is desirable
to permit application-builders to embed commands within FILLIN that may be applied

only to specific forms.

All these problems are rooted in context switching. Other tools can implement solutions,
at the price of constant context switches. Arguably, certain functions in a forms-
management system should not be performed in a form-oriented style: in the SPS forms
management system, such operations as assigning permissions to folders of forms, deleting a
set of forms, and listing the names of all forms (each form in the SPS forms management
system has an associated name that is not necessarily in one of its data fields) are imple-
mented, quite reasonably, through command-oriented interaction. However, in certain con-
texts a form-oriented interface is preferable, and switches from the context should be

delayed until a command-oriented interface is needed.

Although existing DBMS' and their form-oriented interfaces would bave solved the prob-
lems for certain tools, a form-oriented interface was required for software that could not
use a DBMS. We accordingly studied the form-oriented abstraction to determine the addi-
tional characteristics necessary for creating reusable software that can perform the above
functions. Such a package could, as discussed in Section 2, be used with or without a

DBMS, thereby satisfying everyone’s needs. The next section explains our approach.

4. AN EXTENDED FORM ABSTRACTION

Several factors guided the enhancements to FILLIN. All specifications, design and imple-

mentation decisions were viewed in light of the following:

1. Interface Consistency. FILLIN's uniform interface had to be preserved across all tools

that relied on it. Tools with extendible command sets. such as the EMACS text editor

[13], are powerful but notorious for the problems they cause when one user attempts

1o try another’s remapped command seguences.

2. Tool Integration. Much of the power in building tools on Unix stems from easy access
to existing tools. We wished to expand. not reduce, the contexts where FILLIN could

be used.

3. Keep the User Interface Separate from Tool Functionality. FILLIN designers bave, over the
years. resisted many attempts to add features that are not related to user interface.
For example, FILLIN forms are linear, but hierarchically-structured information is
sometimes advantageous. However, we have found it difficult to implement such
structure without incorporating the nuances of a particular application that demands it.
In the interests of Kkeeping the FILLIN and the interface it presents simple—both to the

user and the tool-builder—we have avoided including such features.

4. Provide Similar Capabilities at the Shell and C Levels. As discussed in Section 2, FILLIN's
software development paradigm requires that any function in the FILLIN library should
be available to shell-level writers as well, and preferably simpler to write (albeit

slower to execute).

5. Create Reusable Software. Extensions had to be done in a way that preserved FILLIN's
role as a reusable tool, so that the concept of a form could appear in many tools.
Little duplicate software exists in the tools that use FILLIN (for those portions con-

cerned with user interfaces, at least), an indication that FILLIN offers good reusability.

For each of the requirements, it was necessary to consider what operations should be pro-
vided to implement them. We sought common solutions, to keep the tool simple. Two
schemes were sufficient to solve all the requirements: one for form validation, and another

for the other four. We now discuss each.

4.1 Form Validation

A form instance is valid if it meets a predefined set of conditions. Conditions may
apply to any instance of the form type, or may be application-dependent. Examples of
conditions include syntactic checks on data field values, requirements that certain fields be
filled (e.g., in the reference form of Figure 1, a title, document type, location and number
of copies must be given; all other values are optional), relationships between data field
values within the form instance (e.g., a book must come from a publishing company, not a
university), and relationships between data field values and values outside the form instance
(e.g., the location must be in an existing folder or a new folder that fits into some pre-

established numbering scheme, perhaps located in a database).

The diversity of these conditions illustrates the difficulty of implementing form wvalida-
tion. The ideal solution is a language that can express constraints such as the above.
Unfortunately, the few examples given above show the inherent complexity involved. Our
experience has shown that a candidate language, to be useful, needs the power of a small
programming language, and must be able to communicate with a DBMS, file system, and
host environment. Implementing such a language would be a huge task, and would create
software dependent on a particular DBMS. Furthermore, the language would probably
duplicate features of a DBMS, and would certainly duplicate features of a programming
language: therefore, from the standpoint of reusing software, designing and implementing
such a language is a poor approach. Even implementing the language through a DBMS’
integrity system has its drawbacks; such a system would be easy to write, but many
DBMS integrity systems are incomplete. Moreover, one can always conceive of an integrity
constraint that cannot be satisfied by a DBMS' facilities because it involves data outside the
database {e.g., the form is invalid if a particular user is logged on, but log records are not

stored in the database).

A better approach is to express validation conditions in the application languages used to

write the tools that invoke FILLIN—in this case, C and the Unix shell. This reuses existing

- 10 -

software, including important aids such as interpreters and debuggers. Such tocls already
exist on Unix for C and the shell. Moreovér. one can still talk to a DBMS, or any other

part of the host environment, in the usual way.

Another issue is when to validate user input data. There are two possibilities. First,
each datum can be checked as it is entered. Second, an entire form may be validated en
masse when a user indicates he or she has finished filling it. The latter seems friendlier; it
lets users discover and correct errors without continual interruptions of error messages.
Moreover, forms can legitimately be in a temporarily inconsistent state (e.g., for the exam-
ple with names given above, one should be able to enter the first name before the last).

Therefore, we choose to validate only complete forms.

Validation proceeds as follows. FILLIN classifies a form, in a manner explained below,
as either valid or invalid. If it is valid, then FILLIN exits. If the form is invalid, the
validation process should display the reason why. If the reason can be explained tersely, it
can be made to fit on a single line at the bottom of the screen. Otherwise, it may disrupt
the display (by scrolling the screen or placing text at arbitrary positions, for instance); if
so, the form image must be redrawn. Three possible “exit statuses” are thus defined: valid,
invalid, and invalid needing redisplay. Validation cannot change the form’s data fields; it

may only determine the correctness of the form.

Validation may be done with equal facility at the shell or C interface level. In C, the
tool-builder gives, as an argument to a FILLIN routine, the name of a routine to call when
the user issues the exit command. The routine is called just before switching from full-
screen to command-oriented context, and is passed as an argument the current form
instance. Through projection operations provided by FILLIN, the validation routine checks
the values in the form data fields and either returns a value indicating that the form is
valid (in which case FILLIN exits) or displays an error message and returns a value indicat-

ing that the form is invalid, and must not be accepted in its current state.

- 11 -

At the shell level, the tool-builder provides not a routine, but a shell command. The
Unix shell is a self-contained programming language: in fact, its string-manipulation facilities
are superior to those found in most conventional programming languages. and are excellent
for the types of comparisons that validation often involves. This command has access to
all the data field values through a mechanism that will be explained shortly. If the com-
mand exits with a status of zero, the form is presumed valid; if it exits with a non-zero
status, the form is presumed invalid, and FILLIN refuses to exit. The following validation

script requires that a last name be given, displaying an error message if one is not:

if ["fleldvalue ftf §t lastname™ l= "9] : then exit @ ; fi
echo You must give a last name,
exit 1

This works as follows. The above is given as an argument to FILLIN when it is invoked,
along with the form template file stored in a file named ftf, which describes the form
instance’s data content. When the user types the quit command, the above is executed,
after first replacing all instances of “{}” with the name of a form data file containing the
data currently in the form. fieldvalue is a command that prints, on the standard output,
the value of the named data field in the form template file—here, “lastname”. The Unix

+ LS

shell notation means to execuie the command between the quotes and substitute its

output for the quoted text. Therefore, if the data field is filled, 2 non-empty string x will
be substituted, and the test “*x* 1= **” will succeed, causing the command to exit with

zero status. Otherwise, echo prints an error message, and the command exits with a non-

Zero status.

Form walidation applies only to the form instance. Applications could reference other
data areas if needed. For example, one tool that uses FILLIN and INGRIES must determine
if a name that is entered in a form instance exists in a relation. It uses the INGRES shell
command printr to retrieve the pertinent relation, and the Unix wutility grep to search for
the name. This technigue is application-specific, and the form does not depend on it in any

way.

- 12 -

4.2 Form Scanning, Querying, and Command Extension

To achieve a reusable form-oriented interface that can satisfy the other requirements, we
focus on context switches. Consider scanning: a user should be able to scan through a set
of electronic forms with the ease of flipping through a stack of paper forms. Desirable
operations, then, include “flip to next form,” “flip to previous form,” and “flip to a random

point in the set of forms” (useful for a set of lexicographically-ordered forms).

Querying uses a similar style. The common technique in QBE-oriented DB interfaces is
to present the user with a blank form image {or relation schema). The user then fills in
the data areas corresponding to desired values, and instructs the system to retrieve the set
of tuples corresponding to the filled-in values. The tuples are retrieved and shown to the

user.

Context is important in these tasks. The SPS software required many context switches
to perform the above functions, and, while better suited to the particular level of abstrac-
tion for the problem than the equivalent DBMS software, was not as convenient to use.
For instance, scanning required generating a synopsis of each form (expressed as a few key
fields) in a command-oriented style. To review all data fields of a set of forms involved a
separate Unix shell command for each form. Thus there was a continual switch between
command-oriented and form-oriented context. The switches had no functional purpose other

than that mandated by the structure of the software.

The above discussion tacitly assumes that FILLIN commands are available to invoke the
operations. By default, they are not. Such commands are application-dependent; scanning
commands are only necessary for applications dealing with a set of forms. Since many
FILLIN applications use only one form at a time (e.g., in the SPS calendar management tool
a user gives one “create” command per appointment to be scheduled) the operations for
manipulating multiple forms would sometimes be semantically meaningless, and such opera-
tions introduce potential user confusion. Also, there is an important user interface distinc-

tion between the commands “scan next tuple in database” and “scan next appointment in

-13 -

today’s calendar” that a generic “scan next” command does not express. For these reasons,

we sought to avoid built-in knowledge of what it means to work with a set of forms.

Our solution therefore uses command extension as the basis for implementing all the
above operations. All the above operations, in addition to many others. may be introduced
through command extension in a manner explained presently. The technique is extremely
powerful from the tool builder's point of view. There is one problem: much of FILLIN's
ease of use stems from the simple interface, consistent across all applications. The basic
interface remains unchanged, but added commands require knowledge of what commands
relate to what tool; moreover, tool builders can use different key sequences to invoke simi-
lar commands across tools, or give the same key sequence different meanings across tools.
Projects must impose standards to correct this, a disadvantage as by default FILLIN'
automatically provides an identical interface. However, we have not as yet found this to

be troublesome.

An extended command consists of three parts: a key sequence to invoke it, an action to
be performed when the key is depressed. and a help message describing the command. To
keep the interface simple, the key sequence is always two characters, the first of which is
the ASCII key ESC, and the second of which is any ASCII character ¢ such that ESC-c is

not already a FILLIN command. A tool may have as many commands as there are keys.

As with validation, an extended command may be specified at either the C level or the
shell level, where the action is a C subroutine or a Unix shell command, respectively.
Pressing the two-key sequence causes the action. It is given the current form instance as a

parameter.

An action can have many effects (including none). It may communicate with the user,
if more information is needed to complete the action. It may also communicate with other
parts of the system, sending the current values in the form instance to whatever data
storage mechanism is being used. Conversely, it can fetch new data field values, altering

the form image.

- 14 -

Two types of support are provided to implement the above. First, operators are avail-
able to effect the communication with a user without switching from the form-oriented con-
text; this is done by using the screen’s bottom line as a data entry window. A one-line
dizlogue is wusually sufficient, but an action may wuse any type desired for more complex

interaction. Usually, this corrupts the screen, requiring a special exit status (see below).

Second, as with wvalidation, the action must provide an exit status that indicates the

effect. Four exit statuses are defined:

1. An action may have no effect.

2. An action may change data field values, requiring redisplay of the form image with
the new values.

3. An action may bhave no effect on the data field values but may alter the form image,
requiring redisplay of the original form image.

4. An action may change both data field values and the form image. requiring redisplay

of the form image with the new values.
FILLIN provides four corresponding status values that an action may return.

The following example illustrates these concepts. Suppose we are developing a tool to
scan a set of forms of the type shown in Figure 1. This might require the following com-

mands:

¢ Determine the set of forms (perhaps identifying some relation in a database, mapping
tuples to form instances) and retrieve the first one in the set, placing a form image con-

taining it on the screen.

e Retrieve the next form instance in the set, and replace the current form image with the
new form instance; or, if the end of the set has been reached, issue an appropriate diag-

nostic.

The “action” for the first command is to change the form data fields, which requires a

change to the form image; therefore, the status is “Fields but not screen changed.” This

- 15 -

would be implemented by the following steps:

a. Locate the set of forms to be scanned.
b. Retrieve the first form from the data store.
¢. Create a form instance whose data field values are taken from the retrieved form.

d. Exit, with status indicating that the data fields were altered.

The first two steps are purely database operations, and involve no FILLIN primitives. The

last two steps cause FILLIN to create the appropriate form image.

For the second command, if more forms are in the set, the action again changes the
form data fields, requiring the same status. The algorithm for implementing this is similar
to the above, except that step a) is unnecessary and step b) retrieves the next rather than
the first data form. If, on the other hand, no forms remain, a diagnostic message should
be printed. The change to the screen might require that the original form image be

redrawn.

The reader should note that again only the interface is being considered. The “action”
may obtain the data from any source, and may place it in any source. A relational data-
base has been used for simplicity, but tools using FILLIN have used many data management

schemes, from INGRES to the standard Unix directory structure.
4.3 Experience

The extended form abstraction has been used in several new toois. One, an INGRES
database browser, is discussed below. Several are extensions to existing tool environments
that already use FILLIN. For example, the reference tool had no easy way to modify
existing references. Forms had to be selected through command-oriented context, then
medified through form-oriented context. Using extended commands, we implemented a

QBF-style modification tool for selecting and editing a reference.

Validation has also proven useful. An annoying feature of the original reference tool

was that it could not verify that a title was given until after FILLIN had exited. Switches

- 16 -

occurred from form-oriented context, to command-oriented, then back to form-oriented, each
time the title was missing. While the user did not have to type any commands, the form
needed to be redisplayed for each switch to form-oriented context. which looked unnatural.
The new reference tool validates wusing a script similar to the one on page 11, without

requiring the screen to be redrawn.

We conclude this section by discussing, briefly, the INGRES browsing tool. It is imple-
mented using algorithms similar to those given at the end of the last section. The tool
consists of nine shell scripts, averaging 25 lines. The tool can browse through any relation
in a given database. It can scan in either direction, either sequentially or searching for the

next (or previous) tuple whose values match a given pattern.

With one exception, all interaction is done through forms. The exception is in selecting
the pattern when searching for the next form, which is done in a line-oriented style (but
without disturbing the form image, so no context switch occurs). Commands are imple-
mented as selection in forms, essentially a menu-oriented style. For example, a user selects
a particular relation through which to browse by using a form such as that shown in Fig-
ure 2. Moving to the appropriate data field, typing a “y”, and then pressing the extended
command ESC-S, switches one to a form for browsing through a relation. Such a form is

shown in Figure 3.

The browser was a prototype tool, to experiment with the concepts discussed in this
paper. implementation time was about two hours. FEven so, it is fairly robust. Since
FILLIN handles most of the user interface, users must enter data in a form-oriented style,

which structures the data and makes error detection straightforward.

5. CONCLUSIONS

This paper has discussed reusable software for applications hat can benefit from form-
oriented user interfaces. It has covered the original concept of form abstraction in FILLIN,

and has shown what was needed to extend the concept into something that much more

- 17 -

RELATIONS IN “supplier—parts" DATABASE

Mark a "y" by the relation through which you want to browse,
then type ESC~S to select it.

suppliers: __

parts: —
sp: —

Figure 2: Selecting a Relation for Browsing

closely models the better features of paper forms. The extensions have allowed solutions to

be constructed for the problems we encountered.

Many of the solutions found in FILLIN are taken from those implemented in database
management systems, v&hose interface styles have proven popular and wseful. The impor-
tant contribution of this paper is the isolation of these ideas: the consideration of forms
independent from a DBMS or any other facet of a programming environment. Therefore,
they can be reused by any application, database or otherwise. Form-oriented data can be
treated not as a relation, but as a form, which is often a better abstraction for an applica-

tion.

We have attempted to construct general-purpose solutions, avoiding task-specific ones
when possible. For example, the most common type of validation is to verify that a data
field has been assigned a value. Some people have suggested adding an option to FILLIN
that requires users to fill certain fields before exiting. The option would be useful but
difficult to implement such that a tool's abstract view of data is preserved. Generic error
messages such as “you must fill field x” do not tell a user much. The example on page 11
requires a filled field and can report any message desired. In any event, filled fields are

only one type of validation that may be needed.

FILLIN's model has been paper forms, and its user interface is derived from the opera-
tions one would expect to perform on them. A reviewer once suggested associating actions
with data fields., and automatically invoking the action when a data fields are filled. This

construct clearly has no analogy with paper forms, which is of course not a sufficient rea-

- 18 -

RELATION "suppliers” IN “"supplier—parts"
18@ tuples.

Type ESC-N to select the next tuple,
ESC~P to select the previous one,
ESC~F to search forward,

ESC-B to search backward.

Attribute Type Value

sne c3 S1

sname cld Smith
status iz 20

city ¢15 New York

Figure 3. Browsing through a Relation

son to reject it. So far, however, we have not found a situation where it is absolutely
necessary; usually it is needed for validation of a data field, which we feel is currently
handled in an acceptable manner. In other situations, extended commands can often per-
form the same task. One situation where it would be better than what currently exists in
FILLIN is in the INGRES browser. Selecting a relation could be done by placing an “y” in
the appropriate data field, which is easier than the current scenario of entering a “y” and

then typing ESC-S.

We can conclude, then, that an automated form-oriented interface has more to offer over
a paper form than just the ease of data storage and retrieval. Productivity gains through
form-oriented interfaces will come about through re-thinking the concept of a form, and
determining what interface features an automated form can lend that a paper form cannot.

Through FILLIN, we are currently studying this question.

[1]
[2]

[3]
[4]

[5]
(6]
[7]
[8]

[9l

[10]
[11]
[12]

f13]

[14]

[15]
[16]

- 19 -

REFERENCES

B. Boehm, Software Engineering Fconomics, Prentice Hall, Englewood Cliffs, NJ, 1981.

B. Boehm, M. Penedo, A. Pyster, E. Stuckle and R. Williams, “A Software Develop-
ment Environment for Improving Productivity.” Computer 17, 6 (June 1984), pp. 30-44.

IDM/500 Reference Manual, Britton-Lee, Inc., Los Gatos, CA, 1981.

B. Cox, Object Oriented Programming: An Evolutionary Approach, Addison Wesley, Read-
ing, MA, 1986.

P. Hayes and P. Szekely, “Graceful Interaction through the COUSIN Command Inter-
face,” International Journal of Man-Machine Studies 19, 3 (Sep. 1983), pp. 285-305.

B, Kernighan and J. Mashey, “The UNIX Programming Environment,” Computer 14, 4
(Apr. 1981), pp. 12-24.

R. Manis and M. Meyer, The Unix Shell Frogramming Language, Howard W. Sams & Co.,
Indianapolis, IN, 1986.

M. Mannine and J. Choobineh, “Research on Form Driven Database Design and Global
View Design,” IEEE Computer Society Technical Committee on Database Engineering 7, 4
(Dec. 1984), pp. 58-63.

Y. Matsumoto, “Some Experience in Promoting Reusable Software: Presentation in
Higher Abstract Levels,” JEEE Trans. on Software Eng. SE-10, 5 (Sep. 1984), pp. 502-512.

M. Penedo and 8. Wartik, “Reusable Tools for Software Engineering Environments,”
Proc. ATAA'85, Long Beach, CA, Oct. 1985.

INGRES VIFRED (Visual Forms Editor) User's Guide, Relational Technology Inc., Berkeley,
CA, 1982,

8. Squires (ed), “Special Issue on Rapid Prototyping,” Software Eng. Notes 7, 5 (Dec.
1982).

R. Stallman, “EMACS, the Extensible, Customizable Self-Documenting Display Editor,”
Froc. ACM SIGPLAN Notices SIGOA Symposium on Text Manipulation, Portland, OR, June
1981, pp. 147-156.

T. Standish, “An Essay on Software Reuse,” IEEE Trans. on Software Eng. SE-10, 5 (Sep.
1984), pp. 494-497.

D. Tsichritzis, “Form Management,” Comm. ACM 25, 7 (July 1982), pp. 453-478.

S. Wartik and M. Penedo, “Form-Oriented Software Development,” IEEE Software 3, 2
(Mar. 1986), pp. 61-69.

[17] A. Wasserman, “The Unified Support Environment: Tool Support for the User Software

Engineering Methodology.” Proc. Softfair, Washington, D.C., June 1983, pp. 145-153.

[18] M. Zloof, “Query-by-Example: A Data Base Language,” IBM Systems Journal 16, 4

(1977), pp. 324-343.

