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Abstract

In this paper, the problem of preemptively scheduling a set of periodic

tasks on a multiprocessor is considered. Three dynamic algorithms are proposed,

and their performance is studied. These algorithms are Rate-Monotonic-Next-

Fit-WC (RMNF-WC), Rate-Monotonic-First-Fit-WC (RMFF-WC), and Rate-

Monotonic-Best-Fit-WC (RMBF-WC), and their worst-case performance is

shown to be tightly bounded by 2.88, 2.33, and 2.33, respectively. The major

contributions of this papers are (1) These algorithms are the few truly dynamic

algorithms for scheduling periodic tasks on a multiprocessor system, and they

are the few algorithms, the worst-case performance of which is investigated. (2)

The worst-case performance bound is shown to be tight. (3) The worst-case per-

formance bound of RMFF-WC is as good as that of its static counterpart 
RMFF studied by Dhall and Liu. (4) A new scheduling heuristic  RMBF-WC
is proposed and its worst-case performance investigated.

I. Introduction
The problem of preemptively scheduling a set of periodic tasks with hard deadlines equal to

the task periods on a single processor was first solved by Liu and Layland[10], and Serlin[12]. In

the case of fixed priority assignment, the rate-monotonic algorithm [10] or [12] was proven to be

optimal. In the case of dynamic priority assignment, the earliest deadline first (EDF) algorithm

[10] was optimal. The rate-monotonic algorithm assigns priorities to tasks according to their peri-

ods, where the priority of a task is in inverse relationship to its period. Rate-monotonic algorithm

has recently gained a lot of recognition since it can be used as a backbone algorithm for designing

predictable real-time systems. Many significant results have been obtained within the framework
___________________________________
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of rate-monotonic scheduling, for example, the scheduling of tasks which need to be synchro-

nized, the scheduling of real-time tasks that are “imprecise”, the scheduling of aperiodic and spo-

radic tasks, and the scheduling support to overcome transient overload.

In this paper, we consider the problem of scheduling a set of periodic tasks on a multipro-

cessor system. Since this problem is proven to beNP-hard [9], for practical purpose, scheduling

heuristics need to be devised to obtain approximate solutions. Although there may be potentially

numerous scheduling heuristics to solve this problem, we focus our studies on a particular class of

scheduling heuristics, which uses rate-monotonic algorithm to schedule the set (or subset with

respect to the whole task set) of tasks assigned on each individual processor. This approach was

also pursued by a number of other researchers [5] [3] [4]. There are a number of reasons that jus-

tify this study: First, in some cases, due to heavy computing demands, multiprocessor support can

be the best, perhaps the only, means of providing sufficient processing power to meet critical real-

time deadlines. Secondly, rate-monotonic algorithm is optimal for fixed-priority assignment of

periodic tasks on a processor. The reason to use fixed-priority assignment is for practical pur-

poses, such as the ease of implementation and minimal scheduling overhead involved. Finally,

since rate-monotonic scheduling is used to schedule tasks on a processor, many extant results con-

cerning rate-monotonic scheduling of real-time tasks on a single processor can be readily adapted

to accommodate more practical needs of real-time systems, such as, the scheduling of sporadic

tasks and soft-deadline tasks, and the scheduling of tasks which need to be synchronized or have

resource requirements.

Dhall and Liu [5] first proposed two heuristic algorithms to solve this problem, and ana-

lyzed their performance. These two heuristics are called the Rate-Monotonic-Next-Fit (RMNF)

algorithm and Rate-Monotonic-First-Fit (RMFF) algorithm. These two algorithms are based on

the assumption that tasks are assigned to processors in the order of non-decreasing task periods.

The performance ofRMNF andRMFF was proven to be upper bounded by 2.76 and 2.23, and

lower bounded by 2.4 and 2.0, respectively. Recently, Oh and Son [11] proved that the perfor-

mance ofRMNF was tightly bounded by 2.76, andRMFF by 2.33, correcting an error existing in

[5]1. These two algorithms, however, require apriori knowledge about the tasks to be scheduled,

and hence they are static algorithms.

Davari and Dhall [3] [4] later studied two other scheduling heuristics: the First-Fit-Decreas-

ing-Utilization-Factor (FFDUF) andNEXT-FIT-M. TheFFDUF algorithm sorts the set of tasks

in non-increasing order of utilization factor and assigns the tasks to processors in that order. The

NEXT-FIT-M algorithm classifies tasks intoM classes with respect to their utilizations. Proces-

sors are also classified intoM groups, so that a processor ink-group executes tasks ink-class

1. Readers can convince themselves of the existence of errors in [5] by reading theorem 4.2, since
the worst-case examples given in the theorem are also the worst-case examples forRMFF. If
interested, see [11] for details.
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exclusively. The performance ofFFDUF is tightly bounded by 2, while the performance of

NEXT-FIT-M is upper bounded by a numberSM, which is a function of the pre-selected number

M. TheFFDUF is obviously an static algorithm. In the general sense, theNEXT-FIT-M algorithm

is a dynamic algorithm, but its performance depends on the pre-selection ofM and henceforthSM,

where SM is a decreasing function ofM, e.g.,SM = 2.34 forM = 4, andSM = 2.28 for M → ∞.

Since real-time systems often operate in dynamic and complex environments, many sched-

uling decisions have to be made dynamically, and hence dynamic scheduling algorithms are

essential in implementing these decisions. In the following, we propose three dynamic algorithms

to solve the same scheduling problem. These three scheduling algorithms are all based on some

bin-packing heuristics, but also differ significantly from them in some other aspects. The reason

to choose bin-packing heuristics is because assigning tasks on processors bears many similarity to

packing items into bins. The key difference in this case, however, is that bins in bin-packing have

unitary size, while the “size” or utilization of a processor in scheduling tasks on a multiprocessor

changes dynamically according to some pre-defined functions.

We first study two dynamic scheduling algorithms Rate-Monotonic-Next-Fit-WC

(worst-case) orRMNF-WC, and Rate-Monotonic-First-Fit-WC (worst-case) orRMFF-WC. These

two algorithms are based on bin-packing heuristics, and Liu and Layland’s worst-case bounds are

used as the schedulability condition.RMNF-WC is studied because of its simplicity, while the rea-

son to studyRMFF-WC is because First-Fit is one of the best heuristics for bin-packing. The way

that these two algorithms are so called is to distinguish them from the other two algorithms
RMNF andRMFF studied by Dhall and Liu [5]. The key difference between these two algorithms

 RMNF-WC andRMFF-WC andRMNF andRMFF is thatRMNF-WC andRMFF-WC are truly

dynamic algorithms, whileRMNF andRMFF are static algorithms. The worst-case performance

of RMFF-WC is shown to be tightly bounded by 2.33, which is surprisingly the same performance

bound offered byRMFF and to some extent, byNEXT-FIT-M.

In an attempt to find more efficient algorithms, we then propose a new dynamic algorithm

 Rate-Monotonic-Best-Fit-WC (worst-case) orRMBF-WC, and study its performance. This

new algorithm, which is also based on one of the bin-packing heuristics Best-Fit, tries to

assign tasks on processors in such a manner as to maximize the utilization of a processor.RMBF-

WC is intrinsically more complex thanRMFF-WC, and is expected to have better performance in

assigning tasks to processors. However, the performance ofRMBF-WC is, to our surprise, no bet-

ter than that ofRMFF-WC.

This paper is organized as follows. In the next section, the scheduling problem is formally

defined. The performance ofRMNF-WC is proven to be tightly bounded by2 / (ln2) in Section

III. The RMFF-WC algorithm is presented, and its performance analyzed in Section IV, while the

performance ofRMBF-WC is given in Section V. Finally, we conclude in Section VI and indicate

the remaining problems.
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II. Problem Definition
The problem of scheduling a set of periodic tasks on a multiprocessor is defined as follows:

Given a set ofn tasks Σ = {τ1, τ2, …, τn}, where each taskτi is characterized by its computation

time Ci and its periodTi, i.e.,τi = (Ci, Ti), what is the minimum number of processors needed to

execute the task set such that alln tasks can be guaranteed to meet their deadlines? The deadline

of a task is assumed to be equal to its period, and the tasks are independent. The preemptive

scheduling discipline is also assumed.

To solve this problem, a heuristic approach which consists of two steps is usually adopted: a

heuristic algorithm is first employed to assign tasks to processors, and then the rate-monotonic

algorithm is used to schedule tasks on each individual processor. The problem of assigning tasks

onto a minimal number of processors very much resembles the bin-packing problem, in which

items of variable sizes are packed into as few bins as possible. Therefore, many of the bin-packing

heuristics can be used to assign tasks onto processors. However, there is a key difference between

bin-packing and the scheduling of periodic tasks on a multiprocessor: the “size” of a bin, which

corresponds to the utilization of a processor, is not always unitary, but rather it is a variable whose

values are determined by some pre-defined functions. These functions are referred to asschedula-

bility conditions.

When a task is assigned to a processor, the scheduler must make sure that the addition of the

task to the processor should not jeopardize the schedulability of those tasks that have already been

assigned to it. To accomplish this goal, the following schedulability condition can be used.

Condition WC:  If a set of  tasks is scheduled according to the rate-monotonic scheduling algo-

rithm, then the minimum achievable utilization factor is . As m

approaches infinity, the minimum utilization factor approachesln2.

This schedulability condition was first given by Liu and Layland [10]. It implies that a task

set can be scheduled to meet their deadlines if the total utilization factor of the tasks is less than a

threshold number, which is given by , wherem is the number of tasks to be sched-

uled. This condition is a worst-case condition, and therefore it is referred to asCondition WC.

The functionf (m) =  is a strictly decreasing function with regards tom, the number

of tasks on a processor. In studying the performance ofRMNF andRMFF, Dhall and Liu [5] used

a different schedulability condition, which is stated as follows:

Condition IP: Let  be a set of  tasks with periods . Let

. If Cm / Tm ≤ 2(1 + u / (m-1))-(m-

1) - 1, then the set can be feasibly scheduled by the rate-monotonic scheduling

algorithm. As m approaches infinity, the minimum utilization factor of

approaches 2e-u - 1.

m

m 21 m⁄ 1−( )

m 21 m⁄ 1−( )

m 21 m⁄ 1−( )

τ1 τ2 … τm, , , m T1 T2 … Tm≤ ≤ ≤
u Ci Ti⁄i 1=

m 1−∑ m 1−( )≤= 21 m 1−( )⁄ 1−( )

τm
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This schedulability condition requires that the tasks be sorted in the order of non-decreasing

period, thus implying that the task set should be known beforehand. Some of the task sets that can

not be scheduled by using Condition WC can be scheduled by using this condition, since this con-

dition takes advantage of the fact that tasks are ordered against non-decreasing periods. This con-

dition is referred to as Condition IP (Increasing Period). The function f (u, m) = 2(1 + u/(m-1))-

(m-1) - 1 is a strictly decreasing function with regards to both u and m. Both Condition WC and

Condition IP can be easily used to test the schedulability of a task set, since the only parameters

involved are the total utilization of tasks and the number of tasks. Another schedulability condi-

tion, which was given by Lehoczky et al [8], takes into account both the computation time and the

period of a task when a task is scheduled. It is called Condition IFF (IF and only iF) since it is a

sufficient and necessary condition.

Condition IFF: Given a set of periodic tasks Σ = {τ1, τ2, …, τn},

1. τi can be scheduled for all task phasings using the rate monotonic algorithm if

and only if Li = ≤ 1;

2. The entire task set is schedulable for all task phasings using the rate monotonic

algorithm if and only if L = ≤ 1;

where Si = {kTj | j = 1, …, i; k = 1, …, },  = ,

 = ,  = .

For scheduling a set of periodic tasks in the order of non-decreasing periods on a single pro-

cessor, the following relation obviously holds: Condition WC ⊂ Condition IP ⊂ Condition IFF.

However, this relation does not imply that using the same heuristic for assigning tasks on proces-

sors, but under different schedulability conditions, similar relation on the number of processors

allocated in the worst case will also hold. In the case of Condition WC vs Condition IP, the

worst-case performance bounds for using the different heuristics exhibit different relationships. In

some other cases, trying to maximize the utilization of a processor locally does not automatically

lead to the minimization of the number of processors used. As an example, RMBF-WC tries to

maximize the utilization of a processor, yet the overall performance of RMBF-WC is no better

than that of RMFF-WC. It is, therefore, quite interesting to investigate how good each bin-pack-

ing heuristic, combined with different schedulability condition, perform in the worst-case. Among

a number of bin-packing heuristics, Next-Fit, First-Fit, and Best-Fit are of particular interest to

not only computer scientists, but also researchers in other fields.

Notations: Let N0 and N(A) be the number of processors used by an optimal algorithm and

the number of processors used by a heuristic algorithm A, respectively. Then, the guaranteed per-

formance bound of the algorithm A, denoted as ℜ(A), is defined as

ℜ(A) =

Processors are numbered in the order consistent with that of allocating them. P and Q are

min t Si∈{ } Wi t( )( ) t⁄( )

max 1 i m≤ ≤{ } Li

Ti Tj⁄ Wi t( ) Cj t Tj⁄j 1=
i∑

Li t( ) Wi t( ) t⁄ Li min t Si∈{ } Li t( )

N A( )
N0N0 ∞→

lim
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used to denote processors.  denotes the lth task that is assigned on the xth processor.

denotes the utilization of task .  is used to denote the ith task where there is no confusion.

denotes the utilization of the ith task on a processor or in a task set. τ = (x, y) characterizes a task

τ, where x and y are the computation time and the period of task τ.

III. Tight Bound for Rate-Monotonic-Next-Fit-WC
The Rate-Monotonic-Next-Fit-WC algorithm is given as follows:

Algorithm RMNF-WC:

1. Set i = j = 1. /* i denotes the ith task, j the number of processors allocated */

2. Assign task  to processor  if this task together with the tasks that have been
assigned to  can be feasibly scheduled on  according to Condition WC. If not,
assign task  to  and set j = j + 1.

3. If i < n, then set i = i + 1 and go to step 2 else stop.

When the algorithm finishes, the value in j is the number of processors required to execute a
given task set. In order to obtain the tight bound of its worst-case performance, we first prove its
upper bound, as given in Theorem 3.1, and then, for a given number of processors in the optimal
schedule, a task set which can achieve the worst-case upper bound under Algorithm RMNF-WC
is constructed. The later is given in Theorem 3.2.

Theorem 3.1: For all sets of tasks, ≈ , where N0 is the min-
imum number of processors required to feasibly schedule the same set of tasks,
and N is the number of processors obtained by Algorithm RMNF-WC.

Proof: For a processor j, let  be the tasks that have already assigned to processor j,

and  be the first task assigned to processor j+1. According to Condition WC, we have

 + > ln2. (E.Q.1)

Let  = , for .

Since ,  from (E.Q.1), where .

Summing up the N - 1 equations yields  - U1 - UN > (N - 1) ln2. In other words,

.

Since , . Q.E.D.

Theorem 3.2: Let  be the number of processors required to feasibly schedule a set of tasks by
Algorithm RMNF-WC, and  the minimum number of processors required to
feasibly schedule the same set of tasks. Then . Together with
Theorem 3.1, it is concluded that  = 2/(ln2).

Proof: Let K be a positive integer divisible by 7, i.e., K = 7*m, where m is a natural number, and

let δ be a very small positive number and δ = , where n is a very large positive integer and ε is

τx l, ux l,
τx l, τi ui

τi Pj
Pj Pj
τi Pj 1+

N 2 ln2( )⁄( ) N0 1+≤ 2.88N0 1+

τ1 τ2 … τs, , ,
τs 1+

ukk 1=
s∑ us 1+

Uj ukk 1=
s∑ 1 j N≤ ≤

Uj 1+ us 1+≥ Uj Uj 1++ ln2> 1 j N 1−≤ ≤

2 Ujj 1=
N∑

2 Ujj 1=
N∑ N 1−( ) ln2>

N0 Ujj 1=
N∑≥ N 2 ln2( )⁄( ) N0 1+≤

N
N0

N N0⁄
N0 ∞→

lim 2.87≥
ℜ RMNF( )

nε
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a very small positive number. The relationship between n and ε is given as follows: Given any

small number δ, n is chosen large enough and ε small enough such that ln2 + ≥
and δ = .

The set of tasks consists of two set of groups of tasks, with the numbers of groups equal to

20K/7 in the first set, and  in the second set, where α = 1 - 5(ln2 - 1/2) =

0.034264. In terms of m, the numbers of task groups are equal to 20m in the first set, and

 in the second set. In the first set of groups of tasks, it consists of 10m pairs of task

groups, each of which has (n + 1) tasks. Note that in the (x, y) notation, x and y denote the compu-

tation time and the period of a task, respectively. A pair of task groups is given by

(ln2 - 1/2, 1), ,

n

(1/2, 1), .

n

In the second set of groups, it has  groups, each of which has 20 tasks, as given

by

,

20

In the RMNF-WC schedule, the first set of task groups uses 20m processors, since ln2 - 1/2

+  + 1/2 > , as illustrated in Figure 1. The second set of task groups uses

 processors in total, since 20( ) + ( ) ≈ 0.719 -  > 20 *

≈ 0.705, for small δ.

In the optimal schedule, the 10m tasks with utilization factor of (1/2, 1) can be scheduled

using 5m processors. The 10m tasks with utilization factor of (ln2 - 1/2, 1) and the 20mn tasks

with utilization factor of ε can be scheduled on 2m processors, with a total utilization of

2m( ) left unused. This amount of utilization, i.e., 2m( ), is used to execute the task

groups in the second set, since  * ( ) * 20 < 2m( ).

Therefore, the total number of processors used in the optimal schedule is N0 = 5m + 2m =

7m, while the total number of processors used in the RMNF schedule is N = 20m + .

The performance bound is thus given by

 = ≥ 2.87.

Since  from Theorem 3.1, it is concluded that

ℜ =  = 2/(ln2). Q.E.D.

Note that the number of processors required to execute the same task sets given in Theorem

3.2 will not be the same if the schedulability condition used is Condition IP. On all processors

nε n 21 n⁄ 1−( )
nε

14K( ) 7⁄( ) 20⁄

2m( ) 20⁄

ε 1,( ) ……, ε 1,( ),

        

ε 1,( ) ……, ε 1,( ),

        

2m( ) 20⁄

α 10δ− 1,( ) …… α 10δ− 1,( ), ,

              

nε n 21 n⁄ 1−( )
2m( ) 20⁄ α 10δ− α 10δ− 210δ

21 21⁄ 1−( )

α 10δ− α 10δ−
2m( ) 20⁄ α 10δ− α 10δ−

2m( ) 20⁄

N
N0m ∞→

lim
20m 2m 20⁄+

7m
N 2 ln2( )⁄( ) N0 1+≤

N
N0m ∞→

lim
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each with a utilization equal to u = ln2 - 0.5 + δ, 2e-u - 1 ≈ 0.648, which implies that those tasks

each with a utilization of 0.5 would not have been assigned to the next processor had Condition
IP been used.

IV. Tight Bound for Rate-Monotonic-First-Fit-WC

In assigning tasks to processors, Algorithm RMNF-WC only checks the current processor

to see whether a task together with those tasks that have already been assigned to that processor

can be feasibly scheduled or not. If not, the task has to be scheduled on an idle processor, even

though the task may be scheduled on those processors used earlier. To overcome this waste of

processor utilization, the RMFF-WC Algorithm always starts to check the schedulability of a task

on processors with lower indexes, i.e., those processors where some tasks have been assigned.

This algorithm is given as follows:

Algorithm RMFF-WC: Let the processors be indexed as P1, P2, …, with each initially in

the idle state, i.e., with zero utilization. The tasks τ1, τ2, …, τn will be scheduled in that order. To

schedule τi, find the least j such that task τi, together with all the tasks that have been assigned to

processor Pj, can be feasibly scheduled according to Condition WC for a single processor, and

assign task τi to Pj.

Algorithm RMFF-WC can be described in a more algorithmic format as follows:

Algorithm RMFF-WC (Input: task set ∑; Output: m)

1. Set i = 1 and m = 1. /* i denotes the ith task, m the number of processors allocated*/

2. (a) Set j = 1. /* j denotes the jth processor */

(b)  If  + ≤ , assign task τi to Pj, set  =  + 1 and

=  + , and set m = j if j < m, where  and  denote the number of tasks

already assigned to processor Pj and the total utilization of the  tasks, respec-

δ

Figure 1: RMNF-WC vs Optimal

δ

ln2−0.5

δ

0.5

0.50.50.5
δ

ln2−0.5 ln2−0.5

(a) RMNF-WC Schedule

α

ln2−0.5

ln2−0.5

ln2−0.5

ln2−0.5

(b) Optimal Schedule

α−10δ

α−10δ

Uj ui kj 1+( ) 2
1 kj 1+( )⁄

1−( ) kj kj Uj

Uj ui kj Uj

kj
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tively, and  denotes the utilization of task τi. Otherwise, increment j = j + 1 and

go to step 2(b).

3. If i > n, i.e., all tasks have been assigned, then return m. Otherwise increment i = i + 1

and go to step 2(a).

When the algorithm returns, the value in m is the number of processors required to execute

a given set of tasks. Since an idle processor will not be used until all the processors with some uti-

lizations can not execute an incoming task, it is therefore expected that Algorithm RMFF-WC

would have better performance than that of Algorithm RMNF-WC, which is indeed the case as

shown by Theorem 4.1. Before proving the upper bound, however, a number of lemmas need to

be established.

Lemma 4.1: If  tasks can not be feasibly scheduled on  processors according to the
RMFF-WC Algorithm, then the utilization factor of the  tasks is greater than

.
Proof: The proof is by induction. ui is the utilization of task i, for 1 ≤ i ≤ m.

(1)  = 2, . Therefore, the lemma is true.

(2) Suppose the Lemma is true for , i.e.,

 > (E.Q.2)

When , the (k + 1)th task can not be scheduled on any of the k processors, i.e.
, where . Summing up the k equations yields

 +  > (E.Q.3)

Multiplying k -1 on both sides of equation (E.Q.2) yields

(k -1)  > (k - 1) (E.Q.4)

Adding up equations (E.Q.3) and (E.Q.4) and dividing the new equation on both sides by k
yields  > . Therefore Lemma 4.1 is proven. Q.E.D.

Lemma 4.2: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which one task is assigned, there is at most one pro-
cessor for which the utilization factor of the task is less than or equal to (21/2-1).

Proof: This lemma is proven by contradiction. The contrary is supposed to be true, i.e., there are
at least two processors, each of which has a utilization less than or equal to (21/2-1). Let  be the
task a with utilization equal to , that is assigned to processor Pj, and  be the task with a utili-
zation equal to , that is assigned to processor Pk, with j < k, such that

≤ (21/2-1) and  ≤ (21/2-1)
Summing up these two inequalities yields

 +  ≤ 2(21/2-1)
This implies that tasks  and  are assigned on a single processor, which is a contradic-

tion to the assumption. Q.E.D.

ui

m m 1−
m

m 21 2⁄ 1−( )

m u1 u2+ 2 21 2⁄ 1−( )> m 21 2⁄ 1−( )=

m k=

uii 1=
k∑ k 21 2⁄ 1−( )

m k 1+=
ui uk 1+ 2 21 2⁄ 1−( )>+ 1 i k≤ ≤

uii 1=
k∑ kuk 1+ 2k 21 2⁄ 1−( )

uii 1=
k∑ k 21 2⁄ 1−( )

uii 1=
k 1+∑ k 1+( ) 21 2⁄ 1−( )

τj
uj τk

uk
uj uk

uj uk
τj τk
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Lemma 4.3: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which two tasks are assigned, there is at most one
processor for which the utilization factor of the set of the two tasks is less than or
equal to 2(21/3-1).

Proof: This lemma is proven by contradiction. Suppose that the contrary is true. Let  and
be the two tasks assigned to processor Pj, and  and  be the two tasks assigned to processor
Pk with j < k, such that

 + ≤ 2(21/3-1) and
 + ≤ 2(21/3-1), (E.Q.5)

where  denotes the utilization of task . There are three cases to consider.
Case 1: Tasks  and  were assigned to processor Pk after task  had been

assigned to processor Pj. According to RMFF-WC, we must have
 +  +  > 3(21/3-1) and
 +  +  > 3(21/3-1).

Summing up these two inequalities, we have
 +  > 6(21/3-1) - 2(  + ) > 2(21/3-1)

which is a contradiction to (E.Q.5).
Case 2: Tasks  and  were assigned to processor Pk after task  had been

assigned to processor Pj, but before task . According to RMFF-WC, we must have
 +  > 2(21/2-1) and
 +  > 2(21/2-1).

Summing up these two inequalities, we have
 +  > 4(21/2-1) - 2  > 4(21/2-1) - 4(21/3-1) > 2(21/3-1)

which is again a contradiction to (E.Q.5).
Case 3: Task  was assigned to processor Pk after task  had been assigned to pro-

cessor Pj, and task  was assigned to Pk after task  had been assigned to Pj. According to
RMFF-WC, we must have

 +  > 2(21/2-1) and
 +  +  > 3(21/3-1).

Summing up these two inequalities, we have
 +  > 3(21/3-1) + 2(21/2-1) - (  + ) -

> 3(21/3-1) + 2(21/2-1) - 4(21/3-1) > 2(21/3-1)
which is again a contradiction to (E.Q.5). Q.E.D.

Actually, a more generalized result is obtained for the case where the number of tasks

assigned to a processor is arbitrary. The proof of the following lemma is given in the appendix.

Lemma 4.4: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which n tasks are assigned, there is at most one pro-
cessor for which the utilization factor of the set of the n tasks is less than or equal to
n(21/(n+1)-1).
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Theorem 4.1: Let  be the number of processors required to feasibly schedule a set of tasks by
the Algorithm RMFF-WC, and  the minimum number of processors required
to feasibly schedule the same set of tasks. Then ≤  /

 ≈ 2.33.
In order to prove the above bound, we define a function that maps the utilization of tasks

into the real interval [0, 1] as follows:

or

, where a = .

Let  be kj tasks assigned to processor Pj, and let . The

deficiency δj of processor Pj is defined as

The coarseness αj of processor Pj is defined as

Lemma 4.5: For Algorithm RMFF-WC, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-

idle processor.

(2) If a processor P has a coarseness of α, then the utilization of each task that was

assigned to P exceeds α.

N
N0

N N0⁄
N0 ∞→

lim 2 3 23 2⁄−( )+
2 21 3⁄ 1−( )( )

f u( )
u 2 21 3⁄ 1−( )( )⁄ 0 u 2 21 3⁄ 1−( )<≤

1 2 21 3⁄ 1−( ) u 1≤ ≤
{=

f u( )
u a⁄ 0 u a<≤
1 a u 1≤ ≤

{= 2 21 3⁄ 1−( )

u

f(u)

1.0

1/2

0
1

Figure 2: Mapping Function for RMFF-WC and RMBF-WC
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
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Proof: For Algorithm RMFF-WC, properties (1) and (2) hold according to its definition. Q.E.D.

Lemma 4.6: If a processor is assigned a number of tasks , with utilizations
, then , where a = .

Proof: Without lose of generality, it is assumed that u1 ≥ u2 ≥ … ≥ um. If u1 ≥ a, then u2 < a,

since a ≈ 0.52.  = f(u1) +  = 1 + ( ) / a ≤ 1 + (1 - a) / a = 1 / a.

Otherwise (u1 < a), then  =  / a ≤ 1 / a. Q.E.D.

Lemma 4.7: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness α ≥ a / 3 is assigned m ≥ 3 tasks, then ,
where  are utilizations of the m tasks  that are assigned to
it.

Proof: According to Lemma 4.5,  > α ≥ a / 3 for . If one of the tasks has a utilization

greater than a, then . Otherwise,  =  / a ≥  / a ≥ 1,

since m ≥ 3. Q.E.D.

Lemma 4.8: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness α < a / 3 is assigned m ≥ 3 tasks  with utili-
zations , and ≥ ln2 - α, then .

Proof: If one of the tasks  has a utilization greater than a, then .

Otherwise,  =  / a ≥ (ln2 - α) / a ≥ (ln2 - a /3) / a ≥ 1. Q.E.D.

Lemma 4.9: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness α is assigned m ≥ 1 tasks  with utilizations

, and = 1 − β where β > 0, then
(1) m = 1 and < a or

(2) m = 2 and  + < a or

(3) m ≥ 3 and ≤ ln2 - α - aβ.
Proof: (1) If m = 1 and ≥ a, then ≥ 1, which is a contradiction.

(2) If m = 2 and  + ≥ a, then ≥ 1, which is again a contradiction.

(3) If properties (1) and (2) do not hold, then m ≥ 3. Since  < 1, α must be less

than a / 3 and < ln2 - α according to Lemma 4.7 and Lemma 4.8. Let  = ln2 -

α - γ, where γ > 0. To find out the relationship between γ and β, let us replace the first three tasks

, and  by three new tasks with utilizations υ1, υ2, and υ3, such that υ1 + υ2 + υ3 = u1 +
u2 + u3 + γ, υ1 ≥ u1, υ2 ≥ u2, υ3 ≥ u3, and υ1 < a, υ2 < a, υ3 < a. According to Lemma 4.8,

f(υ1) + f(υ2) + f(υ3) + ≥ 1. Since f(υ1) + f(υ2) + f(υ3) = f(u1) + f(u2) + f(u3) + f(γ)

= f(u1) + f(u2) + f(u3) + γ / a, γ / a + 1 - β ≥ 1. γ ≥ aβ. Therefore, ≤ ln2 - α - aβ.

Q.E.D.

Proof of Theorem 4.1: Let Σ = { } be a set of m tasks, with their utilizations

, respectively, and ϖ = . By Lemma 4.6, ϖ ≤ N0 / a, where a =

τ1 τ2 … τm, , ,
u1 u2 … um, , , f ui( )i 1=

m∑ 1 a⁄≤ 2 21 3⁄ 1−( )
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m∑ f ui( )i 2=

m∑ uii 2=
m∑

f ui( )i 1=
m∑ uii 1=

m∑

f ui( )i 1=
m∑ 1≥

u1 u2 … um, , , τ1 τ2 … τm, , ,

ui 1 i m≤ ≤
f ui( )i 1=

m∑ 1≥ f ui( )i 1=
m∑ uii 1=

m∑ m a 3⁄( )

τ1 τ2 … τm, , ,
u1 u2 … um, , , uii 1=

m∑ f ui( )i 1=
m∑ 1≥

τ1 τ2 … τm, , , f ui( )i 1=
m∑ 1≥

f ui( )i 1=
m∑ uii 1=

m∑

τ1 τ2 … τm, , ,
u1 u2 … um, , , f ui( )i 1=

m∑
u1

u1 u2

uii 1=
m∑

u1 f ui( )i 1=
m∑

u1 u2 f ui( )i 1=
m∑

f ui( )i 1=
m∑

uii 1=
m∑ uii 1=

m∑

τ1 τ2, τ3

f ui( )i 4=
m∑
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.

Suppose that among the N processors that are used by RMFF-WC Algorithm to schedule a

given set Σ of tasks, L of them has  with βi > 0, where j ranges over all tasks in

processor i among the L processors. Let us divide these processors into three different classes:

(1) Processors that only one task is assigned. Let n1 denote the number of processors in this

class.

(2) Processors that two tasks are assigned. Let n2 denote the number of processors in this

class. According to Lemma 4.3, there is at most one processor whose utilization in the

RMFF-WC schedule is less than or equal to a = . Therefore n2 = 0 or 1.

(3) Processors that at least three tasks are assigned. Let n3 denote the number of processors

in this class.

Obviously, L = n1 + n2 + n3. For each of the rest N - L processors, ≥ 1, where j

ranges over all tasks in a processor.

For the processors in class (1),  > n1 (21/2 - 1) according to Lemma 4.1. Since

 < 1,  < a, and therefore  > n1 (21/2 - 1) / a. Moreover, according to

Lemma 4.2, there is at most one task whose utilization is less than or equal to (21/2 - 1). In the

optimal assignment of these tasks, the optimal number N0 of processors used can not be less than

n1 /2, i.e., N0 ≥ n1 /2, since possibly with one exception, any three tasks among these tasks can not

be scheduled on one processor.

For the processors in class (3), let Q1, Q2, ……,  denote the n3 processors in this class,

and  be the coarseness of processor , and  = 1 - βi with βi > 0, for 1 ≤ i ≤ n3. For

processor Qi, ≤ ln2 -  - aβi according to Lemma 4.9.

According to the definition of coarseness, ≥ ≥ ln2 - . Therefore ≥  +

aβi, for 1 ≤ i < n3. Summing up these (n3 - 1) equations yields

≤  -  < a / 3, i.e.,  < 1 / 3.

≥ n3 - 1 -  > n3 - 4 / 3.

Now we are ready to find out the relationship between N and N0.

ϖ = ≥ (N - L) + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1 - n2 - n3 + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1(1 - (21/2 - 1) / a) - n2 - 4 / 3

≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 4 / 3, where a = .

Since ϖ ≤ N0 / a by Lemma 4.6,

N0 / a ≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 4 / 3 ≥ N - 2N0(1 - (21/2 - 1) / a) - 7 / 3.

2 21 3⁄ 1−( )

f uj( )j∑ 1 βi−=

2 21 3⁄ 1−( )

f uj( )j∑
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ki∑i 1=
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Therefore, N / N0 ≤ (2a + 1 - 2(21/2 - 1)) / a + 7/(3N0).

≤ (2a + 1 - 2(21/2 - 1)) / a ≈ 2.33. Q.E.D.

Having proven the upper bound, we are now ready to construct a number of task sets which

indeed require the upper-bounded number of processors according to RMFF-WC Algorithm.

Theorem 4.2: Let  be the number of processors required to feasibly schedule a set of tasks by
RMFF-WC Algorithm, and  the minimum number of processors required to
feasibly schedule the same set of tasks. Then .

Proof: In order to find the bound ℜ = , we proceed by finding the maximum number

of processors needed to schedule a certain set of tasks using RMFF-WC Algorithm, given that the

optimal number of processors required to schedule the same set of tasks is known. In the process,

the desired set of tasks is constructed. Note that this process is exactly opposite to how a set of

tasks is scheduled.

Let  = m, where m is a natural number. A set of tasks, which uses exactly  number of

processors in the optimal schedule, is to be specified in the following. Without generality, all

tasks are assumed to have a period of 1. This set of tasks consists of a theoretically infinite

regions, given that  is sufficiently large. The regions of tasks are given as follows. Note that the

regions specified first are scheduled last in the RMFF-WC Algorithm, in other words, they

appear last in the task set.

Region 1: There are 2  number of tasks, each of which has a utilization of u1 = (21/2 - 1) +

ε, where ε is a arbitrary small number. These 2  tasks will utilize 2  number of processors in

the RMFF-WC schedule, while requires only  number of processors in the processors in the

optimal schedule. If ≤ 2, then we have found ℜ = 2.

Region 2: If 3 ≤ ≤ 5, there are  tasks, each of which has a utilization of u2 = (21/5 - 1).

These  tasks utilize one processors in the RMFF-WC schedule, while requires no extra proces-

sor in the optimal schedule, only to fill part of the utilization left by tasks in region 1, i.e., (21/5 -

1) < 1 - 2*((21/2 - 1) + ε). Note that tasks in region 1 can not be scheduled on this processor, since

u1 + 3u2 > 4(21/4 - 1). N = 2  + 1. The bound is given by ℜ = 2  /  + 1 / .

Region 3: If 6 ≤ ≤ 9, the tasks in regions 1 and 2 are included. Furthermore, there are

three more tasks each having a utilization of (21/5 - 1) and six tasks each having a utilization of u3

= 1 - 2*((21/2 - 1) + ε) - (21/5 - 1) - ε. These nine tasks use one processor in the RMFF-WC sched-

ule, while requires no extra processor in the optimal schedule, only to fill part or all of the utiliza-

tion left by tasks in regions 1 and 2. Note that since 10(21/10 - 1) - (3u2 + 6u3) < u2, the tasks in

region 2 can not be scheduled on the processor occupied by tasks in this region. N = 2  + 2, and

the bound is therefore given by ℜ = 2  /  + 2 / .

Region 4: If 10 ≤ ≤ 12, the tasks in regions 1, 2, and 3 are included. Furthermore, there

are four more tasks each having a utilization of (21/5 - 1), except the last one with a utilization of

N N0⁄
N0 ∞→

lim

N
N0

N N0⁄
N0 ∞→

lim 2.3≥
N N0⁄

N0 ∞→
lim
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N0 N0
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N0
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(21/5 - 1) + ε, where ε is an arbitrary small number. These four tasks are placed in one processor

in the RMFF-WC schedule, while requires no extra processor in the optimal schedule, only to fill

part of the space left by tasks in regions 1, 2, and 3. Note that these tasks do not appear first in the

task, rather they follow after the nine tasks in region 3, but before the three tasks each having a

utilization of (21/5 - 1). Since 5(21/5 - 1) - 4u2 < u2. The last three tasks in region 3 can not be

scheduled on the processor occupied by tasks in this region. N = 2  + 3, and the bound is there-

fore given by ℜ = 2  /  + 2 / .

This process continues until the largest value of N is found for a given , as illustrated by

Figure 3. Note that the value ui is determined by finding the smallest k such that ui = (21/k - 1) and

ui ≤ 1 - , for i ≥ 2.

For a given , N = 2  + 1 +  + 1 +  + …… The bound

is given by

ℜ =  = ≈ 2.30. (E.Q.6)

For example, given  = 27, we construct a set of tasks which, according to RMFF-WC
Algorithm, requires N = 62 number of processors.

There are 2  = 54 number of tasks with utilization (21/2 - 1) + ε, where ε is a arbitrary

small number. There is one processor occupied by three tasks each with a utilization of u2 = (21/5

- 1). There are  = 6 number of processors occupied by 6*4 tasks each with a utili-

zation of (21/5 - 1). There is finally a processor occupied by 25 tasks each with a utilization of u3

= 1 - 2*((21/2 - 1) + ε) - (21/5 - 1) - ε. The set of tasks is given as follows. Note that the total num-

ber of tasks is 106.

 = (u3, 1), for 1 ≤ i ≤ 25.

 = (u2, 1) for 26 ≤ i ≤ 52 except i = 29, 33, 37, 41, 45, 49, where  = (u2 + ε, 1).

 = (u1, 1) for 53 ≤ i ≤ 106.
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According toRMFF-WC Algorithm, The first 25 tasks are scheduled on the first processor.

Since 25u3 + u2 = 0.571863 - 75ε + (21/5 - 1) = 0.720561 > 26(21/26 - 1) = 0.702469, the 26th task

is scheduled on the second processor. The 29th task can not be scheduled on the second processor,

since 4u2 + u2 + ε = 5(21/5 - 1) + ε > 5(21/5 - 1). Proceeding in this fashion, the 23 successive

tasks occupy 6 processors. The 53th task have to be scheduled on the 8th processor, since 3u2 + u1

= 0.446095 + (21/2 - 1) + ε > 4(21/4 - 1). The rest of the 53 tasks occupies 53 processors, one task

for a processor, since (21/2 - 1) + ε + (21/2 - 1) + ε > 2(21/2 - 1). The total number of processors

required is thusN = 62. The bound is given byℜ = ≈ 2.30.

The exact performance bounds for several given optimal number of processors are given in

Table 1. We conjecture that the above formula (E.Q.6) gives theEXACT tight bound forRMFF-
WC Algorithm. Q.E.D.

Note that the number of processors required to execute the same task sets as given in proof

of the above theorem are the same for algorithmsRMFF (Liu and Layland’s) andRMFF-WC.

This result is seemingly counter-intuitive, since the static algorithm RMFF takes advantages

of fact that tasks are ordered according to their periods. Yet on a close inspection, we find that

there is not much difference between the available utilization on a processor returned byCondi-
tion IP and that byCondition WC when that processor is quite occupied, i.e., with a reasonably

high utilization. The difference is significant only when the processor is very lightly utilized.

However, this difference is offset by the manner in whichRMFF-WC schedules tasks.

V. Tight Bound for Rate-Monotonic-Best-Fit-WC
WhenAlgorithm RMFF-WC schedules a task, it always assigns it to the lowest indexed

Table 1: Performance of RMFF-WC (and also RMBF-WC)

N0 ℜ(RMFF-WC) N0 ℜ(RMFF-WC)

2 2 10 2.30

3 2.33 11 2.29

4 2.25 12 2.25

5 2.20 13 2.31

6 2.33 17 2.29

7 2.29 20 2.30

8 2.25 27 2.30

9 2.22 48 2.29

N
N0
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processor on which the task can be scheduled. This strategy may not be optimal in some cases.

For example, the lowest indexed processor on which a task is scheduled may be the one with the

largest available utilization among all those busy (non-idle) processors. This processor could have

been used to execute a future task with large enough utilization so that it could not be scheduled

on any busy processors, had it not been assigned a task with a small utilization earlier on. In order

to overcome these likely disadvantages, a new algorithm is designed as follows, which is based on

the Best-Fit bin-packing algorithm.

Algorithm RMBF-WC: Let the processors be indexed as P1, P2, …, with each initially in

the idle state, i.e., with zero utilization. The tasks τ1, τ2, …, τn will be scheduled in that order. To

schedule τi, find the least j such that task τi, together with all the tasks that have been assigned to

processor Pj can be feasibly scheduled according to Condition WC for a single processor, and

 - (  + ) be as small as possible, and assign task τi to Pj, where

and  are the number of tasks already assigned to processor Pj and the total utilization of the

tasks, respectively, and  is the utilization of task τi.

Surprisingly, even with this modification in assigning tasks to processors, the RMBF-WC

Algorithm does not outperform Algorithm RMFF-WC in the worst-case, as shown by Theorem

5.1 and Theorem 5.2. Before we prove the tight bound for RMBF-WC, the following definition is

needed, which is key to the proof of Theorem 5.1.

Definition 1: For all the processors required to schedule a given set of tasks by the RMBF-WC
Algorithm, they are divided into two types of processors:

Type (I): For all the tasks  with utilizations

that were assigned to a processor Px in the completed RMBF-WC schedule, there

exists at least one task  with i ≥ 2 that was assigned to Px, not because it could

not be assigned on any processor Py with lower index, i.e., y < x, but because

 -  <  - , where  is

the number of tasks assigned to processor Py. Processor Px is called a Type (I) pro-

cessor. Such a task  is, for convenience, referred to as a Type (I) task.

Type (II): They consist of all the processors that do not belong to Type (I).

Lemma 5.1: For Algorithm RMBF-WC, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-

idle processor.

Proof: For Algorithm RMBF-WC, properties (1) is true according to its definition. Q.E.D.

Lemma 5.2: If  tasks can not be feasibly scheduled on  processors according to the
RMBF-WC Algorithm, then the utilization factor of the set of tasks is greater than

.
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Proof: The proof of this lemma is similar to that of Lemma 4.1. Q.E.D.

The two lemmas given below follow directly from Lemma 4.3 and Lemma 4.4.

Lemma 5.3: In the completedRMBF-WC schedule, among all processors of Type (II), to each of
which two tasks are assigned, there is at most one processor for which the total utili-
zation factor of the set of the two tasks is less than or equal to2(21/3-1).

Lemma 5.4: In the completedRMBF-WC schedule, among all processors of Type (II), to each of
which n tasks are assigned, there is at most one processor for which the total utiliza-
tion factor of the set of then tasks is less than or equal ton(21/(n+1)-1).

.
Lemma 5.5: In the completedRMBF-WC schedule, if the second task on any of the Type (I) pro-

cessors has Type (I) property, then the first task on that processor has a utilization
greater than (21/2-1).

Proof: Let  and  be the first and second tasks assigned to processorPk of Type (I), andPy,
with y < k, is one of the processors on which  could have been scheduled, but2(21/2-1) -
<  - , where  is the number of tasks assigned to processor
Py, and where  is the utilization of task .

Since  >  -  (note that this is true even though
is assigned to processorPk before some of tasks among the tasks are assigned to processorPy),

 >  -  > 2(21/2-1) - . Therefore  > (21/2-1).
Q.E.D.
Lemma 5.6: In the completedRMBF-WC schedule, if themth task on any of the Type (I) proces-

sors has Type (I) property, wherem ≥ 3, then the total utilization of the first (m-1)
tasks on that processor is greater than(m-1)(21/m-1).

The proof of this lemma is given in the appendix. The following lemma is key to the proof

of tight bound forRMBF-WC Algorithm.

Lemma 5.7: In the completedRMBF-WC schedule, among the processors of Type (I) on which
the second task has Type (I) property, there are at most three of them, each of which
has a total utilization less than 2(21/3-1).

Proof: This lemma is proven by contradiction. LetPi, Pj, Pk, andPl be the four processors, each

of which has a total utilization less than 2(21/3-1) with i < j < k < l, i.e.,

 < 2(21/3-1),  < 2(21/3-1),

 < 2(21/3-1),  < 2(21/3-1)

whereni ≥ 2, nj ≥ 2, nk ≥ 2, andnl ≥ 2 are the number of tasks assigned to processorsPi,

Pj, Pk, andPl, respectively.

Let’s define  and  to be the utilizations of the first task  and second tasks

assigned to processorPi,  and  to be the utilizations of the first task  and second tasks

 assigned to processorPj.  and ,  and  are similarly defined. We further

assume that  is the number of tasks which have been assigned to processorPi, when the second
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task on processor Pj is assigned. Note that i < j and 1 ≤ ≤ nj.

There are three cases to consider.

Case 1: Tasks  and  are assigned to processor Pj after task  is assigned to proces-

sor Pi. Since task  is a Type (I) task, the following inequality must hold

2(21/2-1) -  < (  + 1)( ) - .

Note that ≥ 2, i.e., other tasks may have been assigned to processor Pi after task  but

before  is assigned to processor Pj.

Since (  + 1)( ) - ≤ 3 (21/3-1) - (  + ) < 3 (21/3-1) - ,

2(21/2-1) -  < 3 (21/3-1) - .

Case 2: Tasks  and  are assigned to processor Pj after task  is assigned to proces-

sor Pi but before task  is assigned to processor Pi.

This case is impossible with RMBF-WC scheduling. Since  < 2(21/3-1) and

> (21/2-1) according to Lemma 5.5,  < 2(21/3-1) - (21/2-1) ≈ 0.1056. Since task  is

assigned to processor Pj before task  is assigned to processor Pi, and task  is a Type (I)

task, 2(21/2-1) -  > 2(21/2-1) - , i.e.,

 < . (E.Q.7)

Since task  is also a Type (I) task, it must be true according to the definition that

2(21/2-1) -  < (  + 1)( ) - , where  is the number of tasks that

have been assigned to processor Pj but before task  is assigned to processor Pi. Also note that

there may conceivably be other tasks assigned to processor Pj after task  but before task

is assigned to processor Pi.

Since 2(21/2-1) -  < (  + 1)( ) -  < 2(21/2-1) - ,  > .

This is a contradiction to equation (E.Q.7).

Case 3: Task  is assigned to processor Pj after task  is assigned to processor Pi, and

task  is assigned to processor Pj after task  is assigned to processor Pi. Since task  is a

Type (I) task, the following inequality must hold

2(21/2-1) -  < (  + 1)( ) - .

Note that ≥ 2, i.e., other tasks may have been assigned to processor Pi after task  but

before  is assigned to processor Pj.

Since (  + 1)( ) - ≤ 3 (21/3-1) - (  + ) < 3 (21/3-1) - ,

2(21/2-1) -  < 3 (21/3-1) - .

Therefore for processors Pi and Pj, we have
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2(21/2-1) -  < 3 (21/3-1) - . (E.Q.8)

For the tasks assigned on processors Pj and Pk, and Pk and Pl, it can be similarly proven that

2(21/2-1) -  < 3 (21/3-1) - (E.Q.9)

2(21/2-1) -  < 3 (21/3-1) - (E.Q.10)

Summing up equations (E.Q.8), (E.Q.9), and (E.Q.10) yields  > 3(2(21/3-1) -3 (21/3-1))

+ . Since  > (21/2-1) according to Lemma 5.5,  > 0.5342 > 2(21/3-1). This results in a

contradiction to  < 2(21/3-1). Q.E.D.

Theorem 5.1: Let  be the number of processors required to feasibly schedule a set of tasks by
the RMBF-WC Algorithm, and  the minimum number of processors required
to feasibly schedule the same set of tasks. Then ≤

≈ 2.33, where a = .
In order to prove the above bound, we define a function that maps the utilization of tasks

into the real interval [0, 1] as it is done in the previous section. The function is the same as the one

used for RMFF-WC Algorithm.

For a processor Pj, its deficiency δj and its coarseness αj are similarly defined as those for

RMFF-WC Algorithm. Also note that Lemma 4.7, Lemma 4.8, and Lemma 4.9 also hold for

those processors of Type (II) in the RMBF-WC schedule. The following lemma is also true.

Lemma 5.8: If a processor is assigned a number of tasks , with utilizations
, then , where a = .

Proof of Theorem 5.1: Let Σ = { } be a set of m tasks, with their utilizations

, respectively, and ϖ = . By Lemma 5.8, ϖ ≤ N0 / a, where a =

.

Suppose that among the N processors that are used by RMBF-WC Algorithm to schedule a

given set Σ of tasks, M1 of them belong to the processors of Type (I). Since all processors of Type

(I) must be assigned at least two tasks, there exists for each processor at least an number m with m

≥ 2 such that the mth task is a Type (I) task. For all the processors of Type (I) on each of which

the mth task is a Type (I) task with m ≥ 3,  > 1 since  > 2(21/3 - 1) according to

Lemma 5.6.

When m = 2, there are at most three of them, each of which has a total utilization less than

2(21/3 - 1). Therefore, for all the processors of Type (I), there are at most three processors whose

 is less than 1 in the RMBF-WC schedule.

Now let L = n1 + n2 + n3 be defined similarly as in Section IV, except that they are for pro-

cessors of Type (II). All the results derived in Section IV are applicable to the set of Type (II) pro-

cessors in the RMBF-WC schedule

Now we are ready to find out the relationship between N and N0.
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ϖ = ≥ (N - L - 3) + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1 - n2 - n3 + n1 (21/2 - 1) / a + n3 - 13 / 3

≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 13 / 3, where a = .

Since ϖ ≤ N0 / a, N0 / a ≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 13 / 3

Therefore, N / N0 ≤ (2a + 1 - 2(21/2 - 1)) / a + 16/(3N0).

≤ (2a + 1 - 2(21/2 - 1)) / a ≈ 2.33. Q.E.D.

Theorem 5.2: Let  be the number of processors required to feasibly schedule a set of tasks by
RMBF-WC Algorithm, and  the minimum number of processors required to
feasibly schedule the same set of tasks. Then .

Proof: The proof of Theorem 4.2 is applicable to the proof of this theorem. Q.E.D.

VI. Concluding Remarks
In this paper, we investigate the problem of scheduling a set of periodic tasks on a multipro-

cessor system so as to minimize the number of processors used. Three scheduling algorithms 
RMNF-WC, RMFF-WC, and RMBF-WC, which use Condition WC as schedulability condition,

are proposed, and their worst-case performance investigated. Since Condition WC does not

require any apriori knowledge about an incoming task, the three algorithms are dynamic algo-

rithms. Surprisingly, except for RMNF-WC, the dynamic algorithms have the same worst-case

performance bounds as their static counterparts using Condition IP. As a summary, the perfor-

mance of several scheduling heuristics is presented in Table 2, where ? represents an open prob-

lem.

Our future work will focus on the investigation of the scheduling heuristics under the neces-

sary and sufficient condition -- Condition IFF. Even though we have proven (not presented here)

that the performance of Rate-Monotonic-Next-Fit does no better under Condition IFF than Con-
dition WC, we have reasons to believe that Rate-Monotonic-First-Fit and Rate-Monotonic-Best-

Fit will perform better under Condition IFF than Condition WC or Condition IP.

Table 2: Performance of Several Multiprocessor Scheduling Algorithms

Condition WC Condition IP Condition IFF

Next-Fit 2.88 2.67 2.88

First-Fit 2.33 2.33 [11] ?

Best-Fit 2.33 2.33 [11] ?

FFDUF 2.0 ? ?
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lim

N
N0

N N0⁄
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lim 2.3≥
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Appendix

Lemma 4.4: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which n tasks are assigned, there is at most one pro-
cessor for which the utilization factor of the set of the n tasks is less than n(21/(n+1)-
1).

Proof: This lemma holds when n is equal to 1or 2 according to Lemma 4.2 and Lemma 4.3. Now
suppose that the lemma holds for n ≤ k. The lemma is proven to be true for n = k + 1 by contradic-
tion. Let n = k + 1, and Pi and Pj with i < j be the two processors on each of which exactly n tasks
are assigned, such that the total utilization of the n tasks on each processor satisfies

 < (k + 1)(21/(k+2)-1) < k(21/(k+1) - 1) (E.Q.11)

and  < (k + 1)(21/(k+2)-1) < k(21/(k+1) - 1). (E.Q.12)

Since processors Pi and Pj are each assigned n = k + 1 tasks, we must have
≤ (k + 1)(21/(k+1)-1) and
≤ (k + 1)(21/(k+1)-1)

Assume that ∆i =  and ∆j = . Among the n tasks which are assigned
to processor Pj, task τj, x is the first task that is assigned to processor Pj immediately after task τi,

k+1 was assigned to processor Pi, 1 ≤ x ≤ k+1. We will consider the boundary condition where
task τj, k+1 is assigned to processor Pj before task τi, k+1 is assigned to processor Pi.

Case 1: 1 ≤ x ≤ k+1. Since ∆i + uj, z > (k + 2) (21/(k+2)-1),
uj, z > (k + 2) (21/(k+2)-1) - ∆i > (k + 2) (21/(k+2)-1) - (k + 1) (21/(k+2)-1)

= 21/(k+2) - 1, for x ≤ z ≤ k+1, and
∆i - ui, k+1 + uj, z > (k + 1) (21/(k+1)-1), for 1 ≤ z < x.
uj, z > (k + 1) (21/(k+1)-1) - ∆i + ui, k+1 > (k + 1) (21/(k+1)-1) - (k + 1) (21/(k+2)-1)

= (k+1)(21/(k+1) - 21/(k+2)) > 21/(k+2) -1
∆j =  +  > (k+1)(21/(k+2)-1),
which is a contradiction to equation (E.Q.12).
Case 2: The boundary condition where task τj, k+1 is assigned to processor Pj before task

τi, k+1 is assigned to processor Pi.
∆i - ui, k+1 + uj, z > (k + 1) (21/(k+1)-1), for 1 ≤ z ≤ k+1.
uj, z > (k + 1) (21/(k+1)-1) - ∆i + ui, k+1 > (k + 1) (21/(k+1)-1) - (k + 1) (21/(k+2)-1)

= (k+1)(21/(k+1) - 21/(k+2)) > 21/(k+2) -1
∆j =  > (k+1)(21/(k+2)-1),
which is a contradiction to equation (E.Q.12). Q.E.D.

Lemma 5.6: In the completed RMBF-WC schedule, if the mth task on any of the Type (I) proces-

sors has Type (I) property, where m ≥ 3, then the total utilization of the first (m-1)

tasks on that processor is greater than (m-1)(21/m-1).
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Proof: Let  be the tasks that were assigned a processorPk of Type (I), and
Py, with y < k, is one of the processors on which could have been scheduled, butm(21/m-1) -

 <  - , where  is the number of tasks assigned
to processorPy, and where  is the utilization of task .

Since  >  -  (note that this is true even though
is assigned to processorPk before some of tasks among the tasks are assigned to processorPy),
for 1 ≤ i ≤ m - 1,  >  -  > m(21/m-1) - . Sum-
ming up these(m - 1) inequalities yields

 > (m-1)m(21/m-1) - (m-1) . Therefore,  > (m-1)(21/m-1).
Q.E.D.
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