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Abstract

In this paper, the problem of preemptively scheduling a set of periodic
tasks on a multiprocessor is considered. Three dynamic algorithms are proposed,
and their performance is studied. These algorithms are Rate-M onotonic-Next-
Fit-WC (RMNF-WC), Rate-Monotonic-First-Fit-WC (RMFF-WC), and Rate-
Monotonic-Best-Fit-WC (RMBF-WC), and their worst-case performance is
shown to be tightly bounded by 2.88, 2.33, and 2.33, respectively. The major
contributions of this papers are (1) These algorithms are the few truly dynamic
algorithms for scheduling periodic tasks on a multiprocessor system, and they
are the few algorithms, the worst-case performance of which is investigated. (2)
The worst-case performance bound is shown to be tight. (3) The worst-case per-
formance bound of RMFF-WC is as good as that of its static counterpart [
RMFF studied by Dhall and Liu. (4) A new scheduling heuristic ] RMBF-WC
is proposed and its worst-case performance investigated.

|. Introduction

The problem of preemptively scheduling a set of periodic tasks with hard deadlines equal to
the task periods on a single processor was first solved by Liu and Layland[10], and Serlin[12]. In
the case of fixed priority assignment, the rate-monotonic algorithm [10] or [12] was proven to be
optimal. In the case of dynamic priority assignment, the earliest deadline first (EDF) algorithm
[10] was optimal. The rate-monotonic algorithm assigns priorities to tasks according to their peri-
ods, where the priority of atask isin inverse relationship to its period. Rate-monotonic algorithm
has recently gained alot of recognition since it can be used as a backbone algorithm for designing
predictable real-time systems. Many significant results have been obtained within the framework
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of rate-monotonic scheduling, for example, the scheduling of tasks which need to be synchro-
nized, the scheduling of real-time tasks that are “imprecise”, the scheduling of aperiodic and spo-
radic tasks, and the scheduling support to overcome transient overload.

In this paper, we consider the problem of scheduling a set of periodic tasks on a multipro-
cessor system. Since this problem is proven thiBard [9], for practical purpose, scheduling
heuristics need to be devised to obtain approximate solutions. Although there may be potentially
numerous scheduling heuristics to solve this problem, we focus our studies on a particular class of
scheduling heuristics, which uses rate-monotonic algorithm to schedule the set (or subset with
respect to the whole task set) of tasks assigned on each individual processor. This approach was
also pursued by a number of other researchers [5] [3] [4]. There are a number of reasons that jus-
tify this study: First, in some cases, due to heavy computing demands, multiprocessor support can
be the best, perhaps the only, means of providing sufficient processing power to meet critical real-
time deadlines. Secondly, rate-monotonic algorithm is optimal for fixed-priority assignment of
periodic tasks on a processor. The reason to use fixed-priority assignment is for practical pur-
poses, such as the ease of implementation and minimal scheduling overhead involved. Finally,
since rate-monotonic scheduling is used to schedule tasks on a processor, many extant results con
cerning rate-monotonic scheduling of real-time tasks on a single processor can be readily adapted
to accommodate more practical needs of real-time systems, such as, the scheduling of sporadic
tasks and soft-deadline tasks, and the scheduling of tasks which need to be synchronized or have
resource requirements.

Dhall and Liu [5] first proposed two heuristic algorithms to solve this problem, and ana-
lyzed their performance. These two heuristics are called the Rate-Monotonic-NdRWRIEY
algorithm and Rate-Monotonic-First-FRNIFF) algorithm. These two algorithms are based on
the assumption that tasks are assigned to processors in the order of non-decreasing task periods
The performance dRMNF andRMFF was proven to be upper bounded by 2.76 and 2.23, and
lower bounded by 2.4 and 2.0, respectively. Recently, Oh and Son [11] proved that the perfor-
mance oRMNF was tightly bounded by 2.76, aRVIFF by 2.33, correcting an error existing in
[5]1. These two algorithms, however, require apriori knowledge about the tasks to be scheduled,
and hence they are static algorithms.

Davari and Dhall [3] [4] later studied two other scheduling heuristics: the First-Fit-Decreas-
ing-Utilization-Factor FFDUF) andNEXT-FIT-M. The FFDUF algorithm sorts the set of tasks
in non-increasing order of utilization factor and assigns the tasks to processors in that order. The
NEXT-FIT-M algorithm classifies tasks intd classes with respect to their utilizations. Proces-
sors are also classified inM groups, so that a processorkigroup executes tasks kaclass

1.Readers can convince themselves of the existence of errors in [5] by reading theorem 4.2, since
the worst-case examples given in the theorem are also the worst-case exanshes-tdf
interested, see [11] for details.



exclusively. The performance &FDUF is tightly bounded by 2, while the performance of
NEXT-FIT-M is upper bounded by a numl&j, which is a function of the pre-selected number
M. TheFFDUEF is obviously an static algorithm. In the general sense\NEX&-FIT-M algorithm

is a dynamic algorithm, but its performance depends on the pre-seledilcanaf hencefortlsy,,
where§, is a decreasing function bf, e.g.,5, = 2.34 forM = 4, andS, = 2.28 forM — oo.

Since real-time systems often operate in dynamic and complex environments, many sched-
uling decisions have to be made dynamically, and hence dynamic scheduling algorithms are
essential in implementing these decisions. In the following, we propose three dynamic algorithms
to solve the same scheduling problem. These three scheduling algorithms are all based on some
bin-packing heuristics, but also differ significantly from them in some other aspects. The reason
to choose bin-packing heuristics is because assigning tasks on processors bears many similarity to
packing items into bins. The key difference in this case, however, is that bins in bin-packing have
unitary size, while the “size” or utilization of a processor in scheduling tasks on a multiprocessor
changes dynamically according to some pre-defined functions.

We first study two dynamic scheduling algorithrh$ Rate-Monotonic-Next-Fit-WC
(worst-case) oRMNF-WC, and Rate-Monotonic-First-Fit-WC (worst-case RMFF-WC. These
two algorithms are based on bin-packing heuristics, and Liu and Layland’s worst-case bounds are
used as the schedulability conditi®NF-WC is studied because of its simplicity, while the rea-
son to studRMFF-WC is because First-Fit is one of the best heuristics for bin-packing. The way
that these two algorithms are so called is to distinguish them from the other two algatdithms
RMNF andRMFF studied by Dhall and Liu [5]. The key difference between these two algorithms
[J RMNF-WC andRMFF-WC andRMNF andRMFF is thatRMNF-WC andRMFF-WC are truly
dynamic algorithms, whilRMNF andRMFF are static algorithms. The worst-case performance
of RMFF-WC is shown to be tightly bounded by 2.33, which is surprisingly the same performance
bound offered byRMFF and to some extent, INEXT-FIT-M.

In an attempt to find more efficient algorithms, we then propose a new dynamic algorithm
[] Rate-Monotonic-Best-Fit-WC (worst-case) RMBF-WC, and study its performance. This
new algorithm, which is also based on one of the bin-packing heufisti®est-Fit, tries to
assign tasks on processors in such a manner as to maximize the utilization of a piRIgESor.
WC is intrinsically more complex thaRMFF-WC, and is expected to have better performance in
assigning tasks to processors. However, the performa®dBF-WC is, to our surprise, no bet-
ter than that oRMFF-WC.

This paper is organized as follows. In the next section, the scheduling problem is formally
defined. The performance BMNF-WC is proven to be tightly bounded By (In2) in Section
lll. The RMFF-WC algorithm is presented, and its performance analyzed in Section IV, while the
performance oRMBF-WC is given in Section V. Finally, we conclude in Section VI and indicate
the remaining problems.



1. Problem Definition

The problem of scheduling a set of periodic tasks on a multiprocessor is defined as follows:
Given a set oh tasks2 = {14, T, ..., T,;}, where each task; is characterized by its computation
time C; and its periodj, i.e.,Tj = (G;, T;), what is the minimum number of processors needed to
execute the task set such thatahsks can be guaranteed to meet their deadlines? The deadline
of a task is assumed to be equal to its period, and the tasks are independent. The preemptive
scheduling discipline is also assumed.

To solve this problem, a heuristic approach which consists of two steps is usually adopted: a
heuristic algorithm is first employed to assign tasks to processors, and then the rate-monotonic
algorithm is used to schedule tasks on each individual processor. The problem of assigning tasks
onto a minimal number of processors very much resembles the bin-packing problem, in which
items of variable sizes are packed into as few bins as possible. Therefore, many of the bin-packing
heuristics can be used to assign tasks onto processors. However, there is a key difference betweer
bin-packing and the scheduling of periodic tasks on a multiprocessor: the “size” of a bin, which
corresponds to the utilization of a processor, is not always unitary, but rather it is a variable whose
values are determined by some pre-defined functions. These functions are refersebetiks
bility conditions.

When a task is assigned to a processor, the scheduler must make sure that the addition of the
task to the processor should not jeopardize the schedulability of those tasks that have already been
assigned to it. To accomplish this goal, the following schedulability condition can be used.

Condition WC: If a set ofm tasks is scheduled according to the rate-monotonic scheduling algo-
rithm, then the minimum achievable utilization factomig2’™-1). As m
approaches infinity, the minimum utilization factor approat¢h2s

This schedulability condition was first given by Liu and Layland [10]. It implies that a task
set can be scheduled to meet their deadlines if the total utilization factor of the tasks is less than a
threshold number, which is given by(2/™- 1) , wherem is the number of tasks to be sched-
uled. This condition is a worst-case condition, and therefore it is referredCaondgion WC.
The functionf (m) = m (21/m — 1) is a strictly decreasing function with regardsritdahe number
of tasks on a processor. In studying the performanB®dfF andRMFF, Dhall and Liu [5] used
a different schedulability condition, which is stated as follows:

Condition IP: Let T Ty T be a set ofm tasks with periodsT; <T,<...<T_. Let
u=YyMlC/T< (m-1) Y (™D 1) 1fC /TS 2(1+ ulf (mr1)) (™
D - 1, then the set can be feasibly scheduled by the rate-monotonic scheduling
algorithm. Asm approaches infinity, the minimum utilization factor of
approaches 2¢- 1.



This schedulability condition requires that the tasks be sorted in the order of non-decreasing
period, thus implying that the task set should be known beforehand. Some of the task sets that can
not be scheduled by using Condition WC can be scheduled by using this condition, since this con-
dition takes advantage of the fact that tasks are ordered against non-decreasing periods. This con-
dition is referred to as Condition I P (Increasing Period). The function f (u, m) = 2(1 + uw/(m-1))
MmD _1isa strictly decreasing function with regards to both u and m. Both Condition WC and
Condition I P can be easily used to test the schedulability of atask set, since the only parameters
involved are the total utilization of tasks and the number of tasks. Another schedulability condi-
tion, which was given by Lehoczky et a [8], takes into account both the computation time and the
period of atask when atask is scheduled. It is called Condition IFF (IF and only iF) sinceitisa
sufficient and necessary condition.

Condition IFF: Given aset of periodic tasks 2 ={Tq, T, ..., T},

1. T; can be scheduled for all task phasings using the rate monotonic algorithm if
andonly if L = min{ms} (W (1)) /t) =1,

2. The entire task set is schedulable for all task phasings using the rate monotonic
agorithmif andonly if L =max;; .j .y Li =1

where § ={KTj [j =1, ...,i; k=1, ..., (Ti/Tﬂ}, W (t) = Z}=1Cj“/Tﬂ’

L, (1) =W, (t)/t, L, = min{ms} L, (1) .

For scheduling a set of periodic tasks in the order of non-decreasing periods on asingle pro-
cessor, the following relation obviously holds: Condition WC [ Condition I P ] Condition I FF.
However, this relation does not imply that using the same heuristic for assigning tasks on proces-
sors, but under different schedulability conditions, similar relation on the number of processors
allocated in the worst case will aso hold. In the case of Condition WC vs Condition |IP, the
worst-case performance bounds for using the different heuristics exhibit different relationships. In
some other cases, trying to maximize the utilization of a processor locally does not automatically
lead to the minimization of the number of processors used. As an example, RMBF-WC tries to
maximize the utilization of a processor, yet the overal performance of RMBF-WC is no better
than that of RMFF-WC. It is, therefore, quite interesting to investigate how good each bin-pack-
ing heuristic, combined with different schedulability condition, perform in the worst-case. Among
a number of bin-packing heuristics, Next-Fit, First-Fit, and Best-Fit are of particular interest to
not only computer scientists, but also researchersin other fields.

Notations: Let Ng and N(A) be the number of processors used by an optimal agorithm and
the number of processors used by a heuristic algorithm A, respectively. Then, the guaranteed per-
formance bound of the algorithm A, denoted as [1(A), is defined as

0@ = Jim N(A

Processors are numbered in the order consistent with that of allocating them. P and Q are



used to denote Processors.T, | denotes the Ith task that is assigned on the xth processor. u, |
denotes the utilization of task T, |. T; is used to denote the ith task where there is no confusion. u;
denotes the utilization of the ith task on a processor or in atask set. T = (X, y) characterizes a task
T, where x and y are the computation time and the period of task T.

[11. Tight Bound for Rate-M onotonic-Next-Fit-WC
The Rate-Monotonic-Next-Fit-WC algorithm is given as follows:

Algorithm RMNF-WC:

1. Seti=j=1/*idenotestheithtask, j the number of processors allocated */

2. Assign task T, to processor P; if this task together with the tasks that have been
assigned to P; can be feasibly scheduled on P, according to Condition WC. If not,
assigntask T; to Pii1 andsetj=j+ L

3. Ifi<n,thenseti =1+ 1andgo to step 2 else stop.

When the algorithm finishes, the valueinj is the number of processors required to execute a
given task set. In order to obtain the tight bound of its worst-case performance, we first prove its
upper bound, as given in Theorem 3.1, and then, for a given number of processors in the optimal
schedule, atask set which can achieve the worst-case upper bound under Algorithm RMNF-WC
is constructed. The later is given in Theorem 3.2.

Theorem3.1:  For al setsof tasks, N< (2/ (In2) ) N, + 1 = 2.88N, + 1, where Ny is the min-
imum number of processors required to feasibly schedule the same set of tasks,
and N is the number of processors obtained by Algorithm RMNF-WC.

Proof: For a processor j, let T, T, ..., T, be the tasks that have already assigned to processor j,

and 1, , bethefirst task assigned to processor j+1. According to Condition WC, we have

> k=1t Ugyq > In2. (E.Q1)

Let U= 5y u, for1<j<N.

Since U, 1 2Ug, g, U;+ U, >In2 from (E.Q.1), where 1< j<N-1.

Summing up the N - 1 equations yields sz_lu Ui -Un>(N-1)In2. In other words,
221_ > (N=-1)In2.

Since N = ZJ 1Y N< (27 (In2) ) Ny + 1. QED.

Theorem 3.2:  Let N be the number of processors required to feasibly schedule a set of tasks by
Algorithm RMNF-WC, and N, the minimum number of processors required to
feasibly schedule the same set of tasks. Then lim N/N, > 2.87. Together with
Theorem 3.1, it is concluded that 0 (RMNF) D”zf?l n2).

Proof: Let K be apositive integer divisible by 7, i.e.,, K= 7*m, where mis a natural number, and

let O be avery small positive number and & = ne, where nisavery large positive integer and € is



a very small positive number. The relationship between n and € is given as follows. Given any
small number 3, n is chosen large enough and € small enough such that In2 + ne = n (2" - 1)
and O = ne.

The set of tasks consists of two set of groups of tasks, with the numbers of groups equal to
20K/7 in the first set, and | ( (14K) /7)/20] in the second set, where 0 = 1 - 5(In2 - 1/2) =
0.034264. In terms of m, the numbers of task groups are equal to 20m in the first set, and
| (2m) /20| in the second set. In the first set of groups of tasks, it consists of 10m pairs of task
groups, each of which has (n + 1) tasks. Note that in the (x, y) notation, x and y denote the compu-
tation time and the period of atask, respectively. A pair of task groupsis given by

In the second set of groups, it has | (2m) /20| groups, each of which has 20 tasks, as given
by

895808 Yoy AR
20
In the RMNF-WC schedule, the first set of task groups uses 20m processors, since In2 - 1/2
+ ne + 12 > n(2¥"-1), as illustrated in Figure 1. The second set of task groups uses
| (2m) /20| processors in total, since 20(a —100) + (a —100) = 0.719 - 2106 > 20 *
(21721 — 1) =0.705, for small d.

In the optimal schedule, the 10m tasks with utilization factor of (1/2, 1) can be scheduled
using 5m processors. The 10m tasks with utilization factor of (In2 - 1/2, 1) and the 20mn tasks
with utilization factor of € can be scheduled on 2m processors, with a total utilization of
2m(a — 109) left unused. Thisamount of utilization, i.e., 2m(a — 100), is used to execute the task
groups in the second set, since | (2m) /20| * (a —108) * 20 < 2m(a - 109).

Therefore, the total number of processors used in the optimal scheduleisNg = 5m+ 2m =
7m, while the total number of processors used inthe RMNF scheduleisN = 20m+ | (2m) /20].

The performance bound is thus given by
lim N = 20m+12m/20]  , g7,
m - °°NO m
Since N< (27 (In2)) Ny + 1 from Theorem 3.1, it is concluded that
0= lim N =2/n2). QED.
m- oN
Note that the number of processors required to execute the same task sets given in Theorem

3.2 will not be the same if the schedulability condition used is Condition IP. On all processors




each with a utilization equal to u = In2 - 0.5 + 9, 2e'Y - 1 = 0.648, which implies that those tasks
each with a utilization of 0.5 would not have been assigned to the next processor had Condition
| P been used.

a
n2-0.5
= e n2-0.5
-10

a a n2-0.5

Pe) P} L

05 05 05 n2-0.p

In2-0|5 In2-0l5 _ 50k
(3) RMNF-WC Schedule (b) Optimal Schedule

Figure 1: RMNF-WC vs Optimal

V. Tight Bound for Rate-Monotonic-First-Fit-WC

In assigning tasks to processors, Algorithm RMNF-WC only checks the current processor
to see whether a task together with those tasks that have already been assigned to that processor
can be feasibly scheduled or not. If not, the task has to be scheduled on an idle processor, even
though the task may be scheduled on those processors used earlier. To overcome this waste of
processor utilization, the RMFF-WC Algorithm always starts to check the schedulability of atask
on processors with lower indexes, i.e., those processors where some tasks have been assigned.
This algorithm is given as follows:

Algorithm RMFF-WC: Let the processors be indexed as P4, P, ..., with each initially in
theidle state, i.e., with zero utilization. Thetasks Ty, Ty, ..., T, Will be scheduled in that order. To
schedule T;, find the least j such that task T;, together with all the tasks that have been assigned to
processor Pj, can be feasibly scheduled according to Condition WC for a single processor, and
assign task Tj to P;.

Algorithm RMFF-WC can be described in amore agorithmic format as follows:
Algorithm RMFF-WC (Input: task set ) ; Output: m)
1. Seti=1and m= 1. /* i denotestheith task, mthe number of processors allocated*/
2. (@) Setj=1./* ] denotesthejth processor */

) 1F U+ < (k+1) (278D -1), assigntesk T to Py, set ks =k + Land U,
=U; +u;, and set m=j if j < m, where kj and U denote the number of tasks
already assigned to processor P; and the total utilization of the kj tasks, respec-



tively, and u; denotes the utilization of task T;. Otherwise, incrementj = j + 1 and
go to step 2(b).

3. Ifi>n,i.e, al tasks have been assigned, then return m. Otherwise incrementi =i + 1
and go to step 2(a).

When the algorithm returns, the value in mis the number of processors required to execute
agiven set of tasks. Since an idle processor will not be used until all the processors with some uti-
lizations can not execute an incoming task, it is therefore expected that Algorithm RMFF-WC
would have better performance than that of Algorithm RMNF-WC, which is indeed the case as
shown by Theorem 4.1. Before proving the upper bound, however, a number of lemmas need to
be established.

Lemma 4.1 If m tasks can not be feasibly scheduled on m—1 processors according to the
RMFF-WC Algorithm, then the utilization factor of the m tasks is greater than
m2¥?%-1).

Proof: The proof is by induction. u; isthe utilization of task i, for 1L <i<m.

() m=2,u; +u,>2(22-1) = m(2¥2-1) . Therefore, the lemmais true.
(2) Supposethe Lemmaistruefor m = k, i.e,,

z:‘: LU > k(2Y2-1) (E.Q.2)

When m = k+ 1, the (k + 1)th task can not be scheduled on any of the k processors, i.e.
U + Uy, >2 (22~ 1), where 1 <i < k. Summing up the k equations yields

S Fo bt KU > 2k(2Y2- 1) (E.Q.3)
Multiplying k -1 on both sides of equation (E.Q.2) yields
(k-1) Z:‘: LU > (k-1) k(22 -1) (E.Q.4)

Adding up equations (E.Q.3) and (E.Q.4) and dividing the new equation on both sides by k
yields z:‘:iu, > (k+1) (22 - 1) . Therefore Lemma4.1 is proven. Q.E.D.

Lemma 4.2: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which one task is assigned, there is at most one pro-
cessor for which the utilization factor of the task is less than or equal to (2”2-1).
Proof: Thislemmais proven by contradiction. The contrary is supposed to be true, i.e., there are
at least two processors, each of which has a utilization less than or equal to (21/ 2-1). Let T be the
task awith utilization equal to u, that is assigned to processor Pj, and T, be the task with a utili-
zation equal to u,, that is assigned to processor Py, with j < k, such that
u < (2Y%-1) and u, < (2Y2-1)
Summing up these two inequalities yields
u + u, < 22122
Thisimplies that tasks T and T, are assigned on a single processor, which is a contradic-
tion to the assumption. Q.E.D.



Lemma 4.3: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which two tasks are assigned, there is at most one
processor for which the utilization factor of the set of the two tasks is less than or
equal to 2(21/3-1).

Proof: Thislemmais proven by contradiction. Suppose that the contrary istrue. Let T and T2

be the two tasks assigned to processor Pj, and Ty 1 and L be the two tasks assigned to processor

Py with j < k, such that

U 3+ U, < 2(2Y%1) and
Uy 1 + Uy o S 2(2Y3-0), (E.Q5)

where u, | denotes the utilization of task T, |. There are three cases to consider.

Case 1. Tasks Ty 1 and Ty, were assigned to processor Py after task T had been
assigned to processor P;. According to RMFF-WC, we must have

U+ U+ > 3(2Y3-1) and
Ut U o+ U o> 3(2Y3-1).
Summing up these two inequalities, we have
U 1 + U o > 6(213-1) - 2u, 5 +u, ) > 2(2Y3-1)

which isacontradiction to (E.Q.5).

Case 2. Tasks Ty 1 and T, were assigned to processor Py after task T had been
assigned to processor Pj, but before task T o According to RMFF-WC, we must have

Ug+ U > 2(2Y2-1) and
U g+ U o >2(2Y%0).
Summing up these two inequalities, we have
Ug 1+ Uy o > 4(2Y21) - 20, | > 42V%0) - 4213-1) > 2(2Y5.1)
which isagain a contradiction to (E.Q.5).

Case 3: Task Ty Was assigned to processor Py after task T had been assigned to pro-
cessor Pj, and task Ty o Was assigned to Py after task T had been assigned to Pj. According to
RMFF-WC, we must have

Upq+ U g > 2(2Y2-1) and
U+t U+ U > 3(2Y3-1).
Summing up these two inequalities, we have
Ug 1+ Uy o > 3Q2Y31) + 22Y2-1) - (u  + Uy ) - Uy 4
’ > 3(213-1) + 2(2Y2-1) - 4(213.1) > 2(213.1)

which isagain a contradiction to (E.Q.5). Q.E.D.

Actually, a more generalized result is obtained for the case where the number of tasks
assigned to a processor is arbitrary. The proof of the following lemmais given in the appendix.

Lemma 4.4. If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which n tasks are assigned, there is at most one pro-
cessor for which the utilization factor of the set of the n tasksis less than or equal to
nY(1) 1) lim VD 1) = n2



Theorem4.1: Let N be the number of processors required to feasibly schedule a set of tasks by
the Algorithm RMFF-WC, and N,, the minimum number of processors required
to feasibly schedule the same set of tasks. Then lim N/N, < 2+ (3-2%2) |

(2(2Y3-1)) =233, No =
In order to prove the above bound, we define a function that maps the utilization of tasks

into the real interval [0, 1] as follows:
u/ (2(2Y3-1)) Osu<2(2V3-1)

f(u) =
(W {1 2(2Y3-1) <us<1
or
/ O<ux<
fuy = {2 U=8 Wherea=2(2Y3-1).
1 asus<l "
Let GoTa T be k; tasks assigned to processor Pj, and let Zijzluj,i = U;. The
f(uk
1.0
2 |
0 >

a=0.52 1 u
Figure 2: Mapping Function for RMFF-WC and RMBF-WC

deficiency Bﬁg)f processor P; is defined as Uz (k+1) 2V (k+1) N
o = [
"o+ @Y% -1 U, Otherwise

The coarseness O of processor P; is defined as
0 j=1

a. = {maxlsisj—léi ji>1

]

Lemma 4.5: For Algorithm RMFF-WC, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-
idle processor.

(2) If aprocessor P has a coarseness of O, then the utilization of each task that was
assigned to P exceeds Q.

- 10-



Proof: For Algorithm RMFF-WC, properties (1) and (2) hold according to its definition. Q.E.D.

Lemma 4.6: If a processor is assigned a number of tasks 1,,T,, ..., T, With utilizations

U, Uy, ..., U, then Zm f(u) <1/a, wherea= 2(21/3 1) .
Proof: Without lose of generdlity, It is assumed that up =2 up, 2 .. m- 1T up = a thenuy, <a,

sincea = 0.52. zm JFu) =f(up + Zm f(u)—1+(z ui)/a£1+(1-a)/a:1/a.
Otherwise (u; < a), then Zl_lf(ui) = Z u/a<l/a QE.D.

i=1"

Lemma 4.7: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness 0 = a/ 3 isassigned m = 3 tasks, then ZI -, f(u) =21,
where ug, Uy, ..., U, are utilizations of themtasks 1, 1, ..., T that are assigned to
it.

Proof: According to Lemma4.5, u; > =2 a/ 3for 1<i<m. If one of the tasks has a utilization

grester than a, then zlmz f(u) 2 1. Otherwise, Zlmz fw) = Zlmz U lazm(a/3) lax1,

sincem= 3. Q.E.D.

Lemma 4.8: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness0 < a/ 3isassigned m2 3tasks 1., T, ..., T, with utili-
zations uy, U,, ..., m,and% WU 2In2-a, then 0 f(u) 21,

Proof: If one of the tasks 1, T, ... as autlllzanon greater than a, then z

Otherwise, Z|—1f(ui) = Z.—l I/a>(|n2 a)/a=(In2-a/3)/a=1. Q.E.D.

Lemma 4.9: Suppose tasks are assigned to processors according to RMFF-WC Algorithm. If a
processor with coarseness O is assigned m 2 1 tasks 1., T,, ..., T, with utilizations
Ug, Uy, ..., Uy, and 5L, f(u) =1 — B where 3 >0, then
()m=1landu;, <aor

m f(u)21.

(22m=2and u; +u, <aor
(3y m=3and 2 LU <In2-a-af.
Proof: (1) If m= 1and u; 2 a, then Z|m= 1f(u) 21, whichisacontradiction.

(2 If m=2and u; +u, 24, then Z.m f(u;) =21, whichisagain acontradiction.

(3) If properties (1) and (2) do not hold, thenm= 3. Since ZI —,f(u) <1, a must beless
than a/ 3 and z = 1Y, <In2 - a according to Lemma 4.7 and Lemma 4.8. Let ZI Z U =1In2-
O -y, wherey > 0. To find out the relationship between y and [3, et us replace the first three tasks

T,, and T, by three new tasks with utilizations U4, Up, and Ug, such that Ug + Up + Uz =uy +
up +uz+VY,Uy2ug, Uy 21Uy Uz 2uz and g <a, Up<a, Uz<a According to Lemma4.8,
(L) +1(U2) + (L) + F L ,F () 2 1. Sincef(Vy) + (Vo) +F(Ug) = f(uy) + f(up) +F(ug) + f(Y)
=f(up) +f(uy) +f(uz) + Y/a y/a+1-PB=1y=aP. Therefore, Z <In2-a - af.
Q.E.D.

Proof of Theorem 4.1: Let 2 = {1, T,, ..., T} be aset of mtasks, with their utilizations
Uy, Uy, .. respectively, and @ = z f(ui) . By Lemma 4.6, W < Ny / a, where a =

—1|

" m’
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2(2¥3-1).
Suppose that among the N processors that are used by RMFF-WC Algorithm to schedule a

given set 2 of tasks, L of them has zjf () = 1-B; with Bi > 0, wherej ranges over all tasksin
processor i among the L processors. Let us divide these processors into three different classes.

(1) Processors that only one task is assigned. Let n; denote the number of processorsin this
class.

(2) Processors that two tasks are assigned. Let n, denote the number of processors in this
class. According to Lemma 4.3, there is at most one processor whose utilization in the
RMFF-WC scheduleiis less than or equal toa = 2 (2Y3 - 1) . Thereforen, =0 or 1.

(3) Processors that at least three tasks are assigned. Let ng denote the number of processors
inthis class.

Obviously, L = ny + ny, + ng. For each of therest N - L processors, ij (uj) 2 1, where|j
ranges over all tasksin a processor.

For the processors in class (1), zlnlz U > (21/2 - 1) according to Lemma 4.1. Since
zinl: f(u) <1,y <a, and therefore zlnl: f(u) >ny (2Y2- 1) / a Moreover, according to
Lemma 4.2, there is a most one task whose utilization is less than or equal to (21/2 - 1). In the
optimal assignment of these tasks, the optimal number N of processors used can not be less than
Ny /2,1.e.,, Ng 2 ny /2, since possibly with one exception, any three tasks among these tasks can not

be scheduled on one processor.

For the processorsin class (3), let Qq, Qo, ...... , Qn3 denote the n3 processorsin this class,
and a, be the coarseness of processor Q;, and Z:(iz f(u) =1-Bjwith3;>0, for 1<i < ng. For
processor Q;, U; <1In2- a, - af3; according to Lemma 4.9.

According to the definition of coarseness, o, , , 2 &, 21In2- U;. Thereforea, , , 2 a; +

a3;, for 1 <i <ng. Summing up these (n3 - 1) equations yields
ng—1

n,—1 .
aziil iSO(ns-O(1<a/3,|.e., zizl B <1l/3.

3Ly f(u) 2ng-1- 58 > g 473,

Now we are ready to find out the relationship between N and Ng.

w= 3, f(w) >(N-L)+n (2Y2-1)/a+n3-4/3
=N-n -ny-ng+n; 2Y2-1)/a+ng-4/3
=N-ny(1-(2Y2-1)/a)-n,-4/3
>N-2Ng(1-(2Y2-1)/a)-n,-4/3, wherea=2(2Y3-1).

SinceW < Ny / a by Lemma4.6,

Ng/a=N-2Ng(1- (2Y2-1)/a)-ny-4/3 2N-2Ng(1- (2Y2-1)/a)-7/3.
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Therefore, N/ Np < (2a+ 1- 2(2Y2- 1)) / a+ 7/(3Np).
lim N/N, <(2a+ 1-2(2Y2-1))/a=2.33. QE.D.

Ny - o
Having proven the upper bound, we are now ready to construct a number of task sets which
indeed require the upper-bounded number of processors according to RMFF-WC Algorithm.

Theorem 4.2:  Let N be the number of processors required to feasibly schedule a set of tasks by
RMFF-WC Algorithm, and N, the minimum number of processors required to
feasibly schedule the same set of tasks. Then lim N/Ny>2.3.

Proof: Inorder to find thebound L1 = lim N/N,, we proceeH"bX/ Findi ng the maximum number

of processors needed to schedule a cert’a\li(’n*sgi of tasks using RMFF-WC Algorithm, given that the
optimal number of processors required to schedule the same set of tasks is known. In the process,
the desired set of tasks is constructed. Note that this process is exactly opposite to how a set of
tasks is scheduled.

Let N, = m, where mis anatura number. A set of tasks, which uses exactly N, number of
processors in the optimal schedule, is to be specified in the following. Without generality, all
tasks are assumed to have a period of 1. This set of tasks consists of a theoreticaly infinite
regions, given that N, is sufficiently large. The regions of tasks are given asfollows. Note that the
regions specified first are scheduled last in the RMFF-WC Algorithm, in other words, they
appear last in the task set.

Region 1: There are 2N, number of tasks, each of which hasa utilization of u; = (21/2 -1+
€, where € isaarbitrary small number. These 2N, tasks will utilize 2N, number of processorsin
the RMFF-WC schedule, while requires only N, number of processors in the processors in the
optimal schedule. If N < 2, then we have found L] = 2.

Region 2: If 3< N, <5, there are N, tasks, each of which has a utilization of u, = (2“5 -1).
These N, tasks utilize one processors in the RMFF-WC schedule, while requires no extra proces-
sor in the optimal schedule, only to fill part of the utilization left by tasksin region 1, i.e,, (21/5 -
H<1- 2*((21/ 2. 1) + €). Note that tasksin region 1 can not be scheduled on this processor, since
Up +3up > 4(2Y4-1). N = 2N, + 1. Thebound isgiven by L1 = 2N, / Ny + 1/ N,.

Region 3: If 6 < Ny < 9, the tasks in regions 1 and 2 are included. Furthermore, there are
three more tasks each having a utilization of (21/ o 1) and six tasks each having a utilization of ug
=1-2* ((2“2 -1)+¢€)- (2115 - 1) - €. These nine tasks use one processor in the RMFF-WC sched-
ule, while requires no extra processor in the optimal schedule, only to fill part or al of the utiliza-
tion left by tasks in regions 1 and 2. Note that since 10(21/ 10. 1) - (3uy + 6ug) < Uy, the tasks in
region 2 can not be scheduled on the processor occupied by tasksin thisregion. N = 2N, + 2, and
the bound is therefore given by L1 = 2N, / Ny + 2/ Nj,.

Region 4: If 10< N, < 12, thetasksin regions 1, 2, and 3 are included. Furthermore, there
are four more tasks each having a utilization of (2”5 - 1), except the last one with a utilization of
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(21/ 5. 1) + €, where € is an arbitrary small number. These four tasks are placed in one processor
in the RMFF-WC schedule, while requires no extra processor in the optimal schedule, only to fill
part of the space left by tasksinregions 1, 2, and 3. Note that these tasks do not appear first in the
task, rather they follow after the nine tasks in region 3, but before the three tasks each having a
utilization of (2° - 1). Since 5(2Y° - 1) - 4u, < u,. The last three tasks in region 3 can not be
scheduled on the processor occupied by tasksin thisregion. N = 2N, + 3, and the bound is there-
foregivenby LJ = 2N, / Ny + 2/ N,.

This process continues until the largest value of N is found for agiven N, asillustrated by
Figure 3. Note that the value u; is determined by finding the smallest k such that u; = (2VK - 1) and
u<1- Z:;llul,fori =2

+) +) +1) £+0) E+H) 4141

B0x0.p0263 P551¥0.00263 BOx0.0226  P5x0,56527

F0..693238  F0.67088 F0.678343  F0.545275
Ux0.1487 [Bx0.1487  p.4141
=0.5948 [0.4461 4141
Direction of 1 | (Ng-25)/30] 1 | (Ny-3)/4] 1 2N, N,
allocating processors
(&) RMFF-WC Schedule (b) Optimal Schedule

Figure 3: RMFF-WC vs Optimal

Foragiven Ng, N=2Ny +1+| (Ng—=3)/4| +1+| (Ng—25)/30] + ...... The bound
isgiven by
2Nqa+1+| (Ny—3)/4[+1+| (N,—25)/30| +......
D:lL\'z ot 1+ (No=3) /74 - L (No~25)730) ~2.30. (E.Q6)
0 0

For example, given N, = 27, we construct a set of tasks which, according to RMFF-WC
Algorithm, requires N = 62 number of processors.

There are 2N, = 54 number of tasks with utilization (21/2 - 1) + €, where € is a arbitrary
small number. There is one processor occupied by three tasks each with a utilization of u, = (2” 5
- 1). Thereare | (Ny—3) /4| = 6 number of processors occupied by 6*4 tasks each with a utili-
zation of (2” > 1). Thereisfinally a processor occupied by 25 tasks each with a utilization of us
=1- 2*((21/2 -1)+€)- (21/5 - 1) - €. The set of tasksis given asfollows. Note that the total num-
ber of tasksis 106.

T, = (ug, 1), for1<i<25.

T, = (up, 1) for 26 <i < 52 except i =29, 33, 37, 41, 45, 49, where T, = (up + €, 1),

T, =(up, 1) for 53<i < 106.
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According toRMFF-WC Algorithm, The first 25 tasks are scheduled on the first processor.
Since 253 +u, = 0.571863 - 76+ (21/5 -1) =0.720561 > 2(1?(1/26 - 1) = 0.702469, the 26th task
is scheduled on the second processor. The 29th task can not be scheduled on the second processc
since 41, + U, + € = 525 - 1) + £ > 525 - 1). Proceeding in this fashion, the 23 successive
tasks occupy 6 processors. The 53th task have to be scheduled on the 8th processer;taigce 3
= 0.446095 +1ﬂ2 -1)+€> 4(2”4 - 1). The rest of the 53 tasks occupies 53 processors, one task
for a processor, sinc@1(2 - +e+ (21/2 -1)+e> 2(21/2 - 1). The total number of processors

required is thusl = 62. The bound is given iy = N = 2.30.
0

Table 1. Performance of RMFF-WC (and also RMBF-WC)

No [1(RMFF-WQ) No [1(RMFF-WQ)
2 2 10 2.30
3 2.33 11 2.29
4 2.25 12 2.25
5 2.20 13 2.31
6 2.33 17 2.29
7 2.29 20 2.30
8 2.25 27 2.30
9 2.22 48 2.29

The exact performance bounds for several given optimal number of processors are given in
Table 1. We conjecture that the above formula (E.Q.6) giveBXAET tight bound foRMFF-
WC Algorithm. Q.E.D.

Note that the number of processors required to execute the same task sets as given in proof
of the above theorem are the same for algoritRii$&F (Liu and Layland’s) andRMFF-WC.
This result is seemingly counter-intuitive, since the static algorithrRMFF takes advantages
of fact that tasks are ordered according to their periods. Yet on a close inspection, we find that
there is not much difference between the available utilization on a processor retu@wuliby
tion IP and that byCondition WC when that processor is quite occupied, i.e., with a reasonably
high utilization. The difference is significant only when the processor is very lightly utilized.
However, this difference is offset by the manner in wiRbhFF-WC schedules tasks.

V. Tight Bound for Rate-M onotonic-Best-Fit-WC
When Algorithm RMFF-WC schedules a task, it always assigns it to the lowest indexed
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processor on which the task can be scheduled. This strategy may not be optimal in some cases.
For example, the lowest indexed processor on which atask is scheduled may be the one with the
largest available utilization among all those busy (non-idle) processors. This processor could have
been used to execute a future task with large enough utilization so that it could not be scheduled
on any busy processors, had it not been assigned atask with asmall utilization earlier on. In order
to overcome these likely disadvantages, anew algorithm is designed as follows, which isbased on
the Best-Fit bin-packing algorithm.

Algorithm RMBF-WC: Let the processors be indexed as P4, P, ..., with each initialy in
theidle state, i.e., with zero utilization. Thetasks Ty, Ty, ..., T, Will be scheduled in that order. To
schedule T;, find the least j such that task T;, together with all the tasks that have been assigned to
processor PJ can be feasibly scheduled according to Condition WC for a single processor, and

(k+1) (27" -1) - (U; + u)) be as small as possible, and assign task T; to P}, where k
and U j are the number of tasks already assigned to processor P; and the total utilization of the kj
tasks, respectively, and u; isthe utilization of task T;.

Surprisingly, even with this modification in assigning tasks to processors, the RMBF-WC
Algorithm does not outperform Algorithm RMFF-WC in the worst-case, as shown by Theorem
5.1 and Theorem 5.2. Before we prove the tight bound for RMBF-WC, the following definition is
needed, which is key to the proof of Theorem 5.1.

Definition 1: For all the processors required to schedule a given set of tasks by the RMBF-WC
Algorithm, they are divided into two types of processors:
T, m With utilizations u, 4, Uy o, ..., U

Type (1): For al the tasks T Ty e s Uy m
that were assigned to a processor Py in the completed RMBF-WC schedule, there
exists at least onetask 1, . withi = 2 that was assigned to Py, not because it could
not be assigned on any procr Py with lower index, i.e., y < X, but because
i(2V'-1) - |—1x|<(” +1)(21/(n+1) 1) - I_1y|,whereny|s

the number of tasks assigned to processor Py. Processor Py is called a Type (1) pro-

cessor. Such atask T, ; is, for convenience, referred to asa Type (1) task.

Type (I1): They consist of all the processors that do not belong to Type (I).

Lemma 5.1: For Algorithm RMBF-WC, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-
idle processor.

Proof: For Algorithm RMBF-WC, properties (1) istrue according to its definition. Q.E.D.

Lemma 5.2: If m tasks can not be feasibly scheduled on m— 1 processors according to the
RMBF-WC Algorithm, then the utilization factor of the set of tasks is greater than
m(2Y?-1).
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Proof: The proof of this lemma is similar to that of Lemma 4.1. Q.E.D.
The two lemmas given below follow directly from Lemma 4.3 and Lemma 4.4.

Lemma 5.3: In the complete®RMBF-WC schedule, among all processors of Type (ll), to each of
which two tasks are assigned, there is at most one processor for which the total utili-
zation factor of the set of the two tasks is less than or quéﬂj’(é-l).

Lemma 5.4: In the complete@®MBF-WC schedule, among all processors of Type (ll), to each of
which n tasks are assigned, there is at most one processor for which the total utiliza-
tion factor of the set of then tasks is less than or equal t[QZ”(”+1)-1).

limn2Y ™Y —1y = n2.

Lemma 5.5: Ihthe complete®RMBF-WC schedule, if the second task on any of the Type (I) pro-
cessors has Type (I) property, then the first task on that processor has a utilization
greater than2l/2-1).

Proof: Let T 1 andtk, , be the first and second tasks assigned to procegsbype (1), andPy,

with y < k, is one of the processors on whigh, could have been scheduled, B@Y?-1) - Uy ¢

1/ (n,+1) n ' . . '

< (ny+ 2"y 7 -1 - Z' LUy whereny is the number of tasks assigned to processor

Py, and wherey, | is the utiIiz?/tiganrolf) task, . ]

Sinceuy ; > (n,+1) (27 7Y 7 -1) - gly: 1Uy, | (note that this is true even though,

is assigned to procesd®y before some of tasks among thpetasks are assigned to proced3gr

U q > (ny+ 1) (21/(ny+1) -1) - zlnyzluy,, > 2(2”2-1) - U, ;. Thereforeu, ; > (21/2-1).

Q.E.D.

Lemma 5.6: In the complete®RMBF-WC schedule, if thenth task on any of the Type (1) proces-
sors has Type () property, whare= 3, then the total utilization of the firgtn{1)
tasks on that processor is greater t(mri)(21/ m.1).

The proof of this lemma is given in the appendix. The following lemma is key to the proof

of tight bound foRMBF-WC Algorithm.

Lemma 5.7: In the completedRMBF-WC schedule, among the processors of Type (I) on which
the second task has Type (I) property, there are at most three of them, each of which
has a total utilization less tharﬁé’@-l).

Proof: This lemma is proven by contradiction. It Pj, P, andP, be the four processors, each

of which has a total utilization less thar?¥¢-1) withi < j < k<1, i.e.,
n, n.
S p=1lix <2@71), S <2@V%),
n n
S re 1l <2@Q71), S <2@)
wheren; 2 2,n; 2 2,n 2 2, andn; 2 2 are the number of tasks assigned to proceBgors
Pj, Pk, andPy, respectively.

Let's defineu; ; andy; , to be the utilizations of the first tagk ; and second tasks ,
assigned to processBy, u; ; andy; , to be the utilizations of the first task ; and second tasks
T; , assigned to process®y u, , anduy ,, U, anduy , are similarly defined. We further
assume than, is the number of tasks which have been assigned to pro&gsaden the second
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task on processor P; is assigned. Notethat i < jand 1 < n,<n.

There are three cases to consider.

Case 1. Tasks T and T2 are assigned to processor P; after task T; ,, isassigned to proces-
sor P;. Since task T2 isaType (1) task, the following inequality must hold

1/ 1

22Y21) -y y < (ny + )27 P -1 FH U

Note that n, 2 2, i.e, other tasks may have been assigned to processor P; after task T; ,, but
before Ti1 is assigned to processor P;.

since (n, + (2" ™Y -1)- Ty, <3(YED) - (U, + Uy ) <3 @Y -y 4,

2(2Y%-1) -y, <3(2%31) - u; ;.

Case 2: Tasks T and T2 are assigned to processor P; after task T; , isassigned to proces-
sor P; but before task T , Isassigned to processor P;.

This case|S|mpossbIeW|th RMBF-WC scheduling. Since Z _ Uiy < 2(2Y3-1) and Ui 1
> (2Y2-1) according to Lemma 55, u; , < 2(2Y3-1) - (2Y2-1) = 0.1056. Since task T, 08
assigned to processor P; before task T, , is assigned to processor Pj, and task T , isaType(l)
task, 2(2Y2-1) - u; >2(21’2 1)-u i e

U g < U g (E.Q.7)

Sincetask T, , isalso aType (1) task, it must be true according to the definition that

2(2Y2-1) - u g <(n, + 1Y "D ). « = 1Yj, x» Wwhere n, isthe number of tasks that
have been assigned to processor P; but before task T, , is assigned to processor P;. Also note that
there may conceivably be other tasks assigned to processor P; after task T but before task T; ,,
is assigned to processor P;.

Since 2(2Y2-1) - u, , < (n, +1)(2
Thisis acontradiction to equation (E.Q.7).

1/ (n,+1 n,
( ) _ 1) - szlujlx <2(21/2_1) - uj,l’ ul,l > Uj’l

Case 3: Task Ti1 is assigned to processor P; after task T, ; is assigned to processor P;, and
task T2 is assigned to processor P; after task T, , is assigned to processor P;. Since task To isa
Type (1) task, the following inequality must hold

1/ 1
202Y21) -y y <(n + )27 P -1)- T

Note that n, =2, i.e., other tasks may have been assigned to processor P; after task T, , but

before T2 is assigned to processor P;.
since (n, + (27 P -1)- Ty, <3V - (u, +u ) <3@BY -y,
2(2Y2-1) - uy ; <3(2¥31) - u, ;.

Therefore for processors Pj and Pj, we have
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2(2Y%-1) -y, <3(2%31) - u; ;. (E.Q.8)
For the tasks assigned on processors P; and Py, and Py and P, it can be similarly proven that
2(2Y2-1) - uy , <3(2¥31) -y 4 (E.Q.9)
2(2Y2-1) -y <3(2¥31) -y, (E.Q.10)

Summing up equations (E.Q.8), (E.Q.9), and (E.Q.10) yields u, ; > 3(2(213-1) -3 (213.1))
+u; ;. Since u; ; > (2Y2-1) according to Lemma5.5, u, ; > 0.5342 > 2(213-1). Thisresultsin a
contradictionto ' J'_ vy < 2(2%-1). QED.

Theorem5.1: Let N be the number of processors required to feasibly schedule a set of tasks by
the RMBF-WC Algorithm, and N, the minimum number of processors required
to feasbly schedule the same set of tasks. Then |lim N/N; <
2+ (3-2%2)/a=233 wherea=2(2"3-1). No e

In order to prove the above bound, we define a function that maps the utilization of tasks
into thereal interval [0, 1] asit isdone in the previous section. The function isthe same as the one
used for RMFF-WC Algorithm.

For a processor Pj, its deficiency 6j and its coarseness 0 are similarly defined as those for
RMFF-WC Algorithm. Also note that Lemma 4.7, Lemma 4.8, and Lemma 4.9 aso hold for
those processors of Type (I1) in the RMBF-WC schedule. The following lemmalis also true.

Lemma 5.8: If a processor is assigned a number of tasks 1,,T,, ..., T, With utilizations

U, Uy, ..., U, then §Mf(u;) <1/a, wherea=2(2"3-1).
Proof of Theorem 5.1: Let 2 = {1, T,, ..., T} be aset of mtasks, with their utilizations
Uy, Uy, ..., Uy, respectively, and T = Z:m: .f(u). By Lemma 5.8, W < Ny / a, where a =

2(2Y3-1).

Suppose that among the N processors that are used by RMBF-WC Algorithm to schedule a
given set 2 of tasks, M4 of them belong to the processors of Type (1). Since all processors of Type
(1) must be assigned at |east two tasks, there exists for each processor at |east an number mwith m
2 2 such that the mth task is a Type (1) task. For all the processors of Type (1) on each of which
the mth task is a Type (1) task withm = 3, zjf (uj) > 1 since Zj u > 2(21/3 - 1) according to
Lemma5.6.

When m = 2, there are at most three of them, each of which has a total utilization less than
2(21/ 3_ 1). Therefore, for all the processors of Type (1), there are at most three processors whose
ij (u;) islessthan 1inthe RMBF-WC schedule.

Now let L = nq + ny + ng be defined similarly asin Section IV, except that they are for pro-
cessors of Type (I1). All theresults derived in Section 1V are applicableto the set of Type (1) pro-
cessorsin the RMBF-WC schedule

Now we are ready to find out the relationship between N and Ny,
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=3, () 2(N- L-3)+n (2Y2-1)/a+ng-4/3
:N-nl-nz-n3+n1(21/2-1)/a+n3-13/3
>N-2Ng(1-(2Y2-1)/a)-n,-13/3, wherea= 2(2V3-1).
SinceW<Ny/a, Ng/a=N-2Ng(1- (21/2- 1)/a)-ny-13/3
Therefore, N/ Ng < (2a+ 1 - 2(2Y2 - 1)) / a + 16/(3Np).
Niiian/NO < (2a+ 1-2(2Y2-1))/a=233.Q.ED.
Theorem 5.2: Let N be the number of processors required to feasibly schedule a set of tasks by
RMBF-WC Algorithm, and N, the minimum number of processors required to

feasibly schedule the same set of tasks. Then lim N/N,=2.3.
Proof: The proof of Theorem 4.2 is applicable to the proc')\%'J of this theorem. Q.E.D.

Table 2: Performance of Several Multiprocessor Scheduling Algorithms

Condition WC | Condition IP | Condition IFF
Next-Fit 2.88 2.67 2.88
First-Fit 2.33 2.33[11] ?
Best-Fit 2.33 2.33[11] ?
FFDUF 20 ? ?

V1. Concluding Remarks

In this paper, we investigate the problem of scheduling a set of periodic tasks on a multipro-
cessor system so as to minimize the number of processors used. Three scheduling algorithms [
RMNF-WC, RMFF-WC, and RMBF-WC, which use Condition WC as schedulability condition,
are proposed, and their worst-case performance investigated. Since Condition WC does not
require any apriori knowledge about an incoming task, the three algorithms are dynamic algo-
rithms. Surprisingly, except for RMNF-WC, the dynamic algorithms have the same worst-case
performance bounds as their static counterparts using Condition IP. As a summary, the perfor-
mance of several scheduling heuristics is presented in Table 2, where ? represents an open prob-
lem.

Our future work will focus on the investigation of the scheduling heuristics under the neces-
sary and sufficient condition -- Condition | FF. Even though we have proven (not presented here)
that the performance of Rate-Monotonic-Next-Fit does no better under Condition | FF than Con-
dition WC, we have reasons to believe that Rate-Monotonic-First-Fit and Rate-M onotonic-Best-
Fit will perform better under Condition | FF than Condition WC or Condition | P.
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Appendix

Lemma 4.4: If tasks are assigned to the processors according to the RMFF-WC Algorithm,
among all processors to each of which n tasks are assigned, there is at most one pro-
cessor for which the utilization factor of the set of the n tasksis less than n(21/(”+ 1.
1). limn YD _qy = n2

Proof: Thislemmaholds when nisequal to 1or 2 according to Lemma4.2 and Lemma 4.3. Now
suppose that the lemma holds for n < k. Thelemmais proven to be true for n = k+ 1 by contradic-
tion. Letn=k+ 1, and P; and P; withi < j be the two processors on each of which exactly n tasks
are assigned, such that the total utilization of the n tasks on each processor satisfies

Ir<n+ 11 | o< (k + 1)(21/(k+2) 1) < k(21l(k+1) 1) (EQll)
and Z:,(n-'- 11 J m < (k + 1)(21/(k+2)_1) < k(21/(k+1) - l) (EQ].Z)

Since processors P; and P; are each assigned n = k + 1 tasks, we must have
Ef 11u. < (k+ DEUR1) ang
+1 j o< (k + 1)(21/(k+1) 1)

Assumethat Al = S X1y andAl= S K1y

m=1Y m m= 1Yj, m Among the n tasks which are assigned
to processor Pj, task Tj  Isthefirst task that is assigned to processor P; immediately after task T;,
k+1 Was assigned to processor Pi, 1 < x < k+1. We will consider the boundary condition where
task Tj, +1 isassigned to processor Pj before task Tj, k+1 is assigned to processor P;.
Case1: 1< x < k+1. Since A +u 5> (k+2) (2VK+2.g),
,>(k+2) (21/(k+2) 1) - AI > (K + 2) (21/(k+2) 1) - (k + 1) (21/(k+2) 1)
= 2V(+2) _ 1 for x < z< k+1, and
A Ui ket U, 72> (K + 1) (21/(k+1) 1), for1<z<x.
4> (k4 1) (VD1 - A by o > (ke 1) @YD) -+ 1) (V421
= (k +1)(21/(k+1) 2U(k+2)y 5 DUk+2) ¢
N = Zm 1uj m ¥ er(n+ 1x U m~ (k+1)(2Y(+2).1),
which 1s a contradiction to equation (E.Q.12).
Case 2: The boundary condition where task T; .1 is assigned to processor P; before task
T; k+1 IS assigned to processor P;.
A Up g1+ Ui, o> (k+2) (2YKD1) for 1< z< kel
;> (k+ 1) (21/('<+1) 1) - A+ U g > (k+2) @YK7y - (k + 1) (2YK+2)9)
— (k+1)(21/(k+1) 21/(k+2)) S 21/(k+2) 1
N = Zﬁ: U m > (k+1)(2YV(+2).7),
which 1s a contradiction to equation (E.Q.12). Q.E.D.
Lemma 5.6: In the completed RMBF-WC schedule, if the mth task on any of the Type (1) proces-

sors has Type (I) property, where m = 3, then the total utilization of the first (m-1)
tasks on that processor is greater than (ml)(21/ m.1).

-21-



Proof: Let T T o Temet be the tasks that were assigned a procd3sof Type (I), and
Py, withy < k, is one of the processors on which could have been scheduled, mqrzl/m-l) -

ij:'lluk'j < (ny+ 1) (21/(ny+1) - " wheren,, is the number of tasks assigned

1) EV Uy, |, y

L1=1
to processoPy, and whereu, His the utilization of task, ,.

Sinceu,; > (n, +1) (2 AR glny: LUy, (note that this is true even thoug,
is assigned to procesd®y before some of tasks among thvetasks are assigned to proced3gr
fori<i<m-1,u. > (n+1) 2V ™Y -1 g >mEYmyy - g™ty S
orlsism-1, ug; > (n+1)( ) - leluyll m(2~""-1) - Zj:luk’j. um-
ming up thesém - 1) inequalities yields

Ml > (m)m(2Ym.1) - (rn-l)zjm:_lluk i Therefore,zjmz_lluk’ | > (m1)Yma),

h

Q.E.D.
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