
Page 1

Basic Fortran Support in Legion

Adam J Ferrari and Andrew S. Grimshaw
Department of Computer Science, University of Virginia

Technical Report CS-98-11
March 4, 1998

Abstract

Fortran is the most widely used programming language for high-performance
scientific computing applications, yet in the past the Legion system has not supported
objects implemented in Fortran. This paper describes the design and interface of the
Legion Basic Fortran Support (BFS) system. This system consists of compiler and
runtime library that allow the description of Legion object interfaces in a Fortran-like
Interface Description Language (IDL), and the implementation of Legion objects using
Fortran. The system also supports remote method invocations on Legion objects through
the use of pseudo-comments: Legion BFS directives embedded in normal Fortran
comment lines. These method invocations are processed using a macro-dataflow model
similar to that provided by the Mentat Programming Language, thus allowing both
inter- and intra-method parallelism.

1. Introduction

Fortran is the most widely used programming language for high-performance scientific computing
applications. In the high-performance computing community it has received more attention than any
other single language. Indeed, many parallel Fortran dialects exist, ranging from Fortran M to Fortran 90
and HPF. In the past the Legion project has not attempted to support Fortran in its native form, opting
instead to concentrate on object-oriented languages more closely matched to the Legion programming
model. The effort to provide similar compiler support for Fortran that we provide for C++ was beyond
the scope of the project.

An alternative to full-fledged compiler support has been under discussion in the Legion project for
some time and is now available. This alternative, which we callBasic Fortran Support or BFS, is a
compromise between full-fledged compiler support and essentially no support. The basic idea is simple
and harks back to the pseudo-comments used in early parallelizing Fortran compilers such as Paraphrase
[4]. Rather than creating an extended Fortran dialect that includes coarse-grain objects and attempting to
parse and perform data-dependence analysis on Fortran programs, we provide a set of Legion directives
that can be embedded in Fortran code in the form of pseudo-comment lines. The programmer uses these
embedded pseudo-comments to call member functions on Legion objects and to obtain the results of
these member functions. The pseudo-comment syntax is intentionally similar to Fortran, and is easy for
Fortran programmers to learn.

The pseudo-comments are translated by a simple preprocessor,legion_bfs, into calls to a BFS
support library, which in turn directly invokes the Legion run-time system. The pseudo-comments direct
the preprocessor to invoke member functions on Legion objects. Keywords in the pseudo-comments
indicate whether the invocation is a subroutine-style invocation or a function, whether the call should be
made synchronously or asynchronously, and whether the call is to a stateless object or to stateful object.
The execution model is that of Legion—each “remote” member function invocation executes in a
separate address space. Thus, all communication between the caller and callee is via parameters and

Page 2

returns values—there is no global memory. In the case of stateless objects, the back-end run-time system
will create new object instances to service function invocations as needed.

In addition to invocations on Legion objects, the Fortran program can define Fortran-based Legion
objects using a Fortran-likeinterface description language (IDL) [5]. The IDL is translated by the
legion_bfs filter, which generates Fortran skeletons that can be linked to Fortran code in order to
implement the object interface. The Fortran implementation code may itself be the output of the
legion_bfs preprocessor, allowing Fortran code to act as both client and server in a Legion system.

This document is designed to give the reader a basic overview of Legion BFS and to permit the
reader to begin using the features of the “language” rapidly. In Section2 we describe the BFS
programming interface. In Section3 and Section4 we provide two simple example programs that
illustrate the BFS programming model. In Section5 we discuss the current status of the BFS
implementation and enumerate some of the limitations of the current implementation as a guide to
possible future development of the system. In Section6 we include a partial grammar for the BFS IDL
and directives as an aid to understanding the language.

2. Programming Interface

The Legion BFS programming interface consists of two basic parts: client-side method invocation
through pseudo-comment directives, and server-side object development through the BFS IDL. In
“client” code (i.e. Fortran code that will invoke methods on Legion objects) pseudo-comments are used
to describe method invocations. These pseudo-comments are translated into calls to a BFS support
library, which in turn uses the services provided by the Legion system to support method invocation (see
Figure 1). Fortran code that will be used to implement Legion objects (i.e. Fortran code that will be
called through a Legion member function interface) must be described by programmer-supplied BFS
IDL interfaces. These IDL interfaces are translated by thelegion_bfs filter, which generates Mentat
Programming Language (MPL) [1] skeleton code. This skeleton code is compiled using the
legion_mplc compiler and linked to Fortran implementation code (see Figure 2).

It is certainly possible that “server” code—code that will be called through Legion member
functions—may need to call the methods of other Legion objects. In such cases, the server
implementation code includes the appropriate BFS pseudo-comment directives, is translated by
legion_bfs, and is then linked to the appropriate IDL (also translated by BFS), as depicted in Figure
3. Thus, a single Fortran subroutine or function might both be called through Legion, and call other
objects through Legion. In the following two sections, we examine the server and client programming
interfaces in more detail. The combination of these two (as depicted in Figure 3) is straightforward, and
is thus left to the reader.

Translated
Client

Fortran

legion_bfs f77

Legion
Library

Executable
Client

FIGURE 1. Creation of a Legion client program using BFS. The client Fortran code, with
embedded pseudo-comments describing Legion method invocations, is translated to standard

Client
BFS/Fortran

Code
Code

BFS
Library

Performs Legion
method calls

Legion Program

Page 3

2.1 Server-side Programming

We first consider the problem of implementing Legion objects in Fortran—that is, the process of
taking subroutines and functions defined in Fortran and making them available as Legion methods.
Fortran code wrapped in this manner can be called in parallel from anywhere in a Legion network. In
Section2.2 we examine the programming interface used to invoke functions on Legion objects—i.e. the
client side interface.

2.1.1 Class Styles
BFS supports the definition of two basic kinds of Legion objects: stateless and stateful. Stateless

objects are useful for making purely functional services available. Stateless objects support methods
whose outputs are pure functions of their inputs—the operation of a stateless object is not affected by
previous method invocations or evolving object state. Because of this, methods invoked on stateless
objects are automatically load-balanced among all available instances of the given stateless class, thus
allowing good performance in variably loaded or heterogeneous networks. Despite this advantage, it is
often more natural to deal with objects that maintain state between method invocations. To enable this
programming style, BFS supports stateful classes. Instances of these classes have normal method

MPL
Server

Skeleton

BFS
IDL

Fortran
Server
Code

legion_bfs

f77

Legion
Library

Executable
Legion Object

Implementation

FIGURE 2. Creation of a Legion object using BFS. The object’s interface, described in an IDL file, is
translated by thelegion_bfs filter to create MPL skeleton code. This skeleton code, together with

Accepts Legion
method calls

legion_mplc

MPL
Server

Skeleton

BFS
IDL

Fortran
Server
Code

legion_bfs legion_mplc

f77

Executable
Legion Object

Implementation

FIGURE 3. Creation of a Legion object that performs Legion method invocations. Creation of
such objects involves a combination of the “client” and “server” mechanisms.

Translated
Server

Fortran

legion_bfsServer
BFS/Fortran

Code
Code

Legion
Library

BFS
Library

Accepts Legion
method calls

Performs Legion
method calls

Page 4

invocation semantics: methods are invoked on a specific object, and the object “remembers” its state
from one invocation to the next.

2.1.2 Mechanics
To make Fortran subroutines and functions available in the form of a Legion object, we must “wrap”

the Fortran code that implements the functions in a C++/MPL skeleton, invoke the MPL compiler, and
link the generated MPL objects with the Fortran implementation code provided by the user. This process
is automated through the use of a simple IDL that follows the same form as the caller-side specification
of the function (discussed in Section 2.2). The user specifies the name and parameters of all functions in
an interface specification (i.e. IDL) file. The legion_bfs filter parses this interface specification file
and generates an MPL program that matches the interface. The user then compiles and links the program
using legion_mplc. No changes to the Fortran code, nor any C++ or MPL programming on the part
of the user is required.

Suppose we wish to make a Fortran module containing a function called function1 and a
subroutine called subroutn1 available in the form of a stateless Legion object. The following IDL
interface specification file would be used:

C Comments allowed
LEGION STATELESS CLASS my_class

real function1(integer)
subroutn1(INOUT integer I, INOUT real dimension (*,*))

CLASS END

The syntax for stateful objects is similar. For example:

LEGION CLASS my_class
mysub(inout integer I)
initialize(integer I, character path)

CLASS END

There should be exactly one class specification in each input file. BFS IDL files require a “.bfs” suffix.

2.1.3 Compilation
To compile an object, first translate the IDL file using legion_bfs. Given a file with a “.bfs”

suffix, legion_bfs will generate a “.c” and a “.h” MPL file. The resulting MPL file should be compiled
using legion_mplc. The object file containing the Fortran implementation code should be specified
on the legion_mplc link line. For example:

$ legion_bfs my_class.bfs
 Parsing class my_class
$ f77 -c my_class_impl.f
$ legion_mplc my_class.c my_class_impl.o -o my_class

2.2 Client-side Programming

In this section, we examine the client-side (i.e. method invocation) programming interface. The client-
side programming interface is based on the use of pseudo-comments. The programmer embeds BFS
directives into normal Fortran code using comments that begin with the prefix LEGION. This
“annotated” Fortran code is then translated by the legion_bfs filter, which generates standard Fortran
code. This resulting code is then compiled and linked against a BFS support library and the Legion
library.

2.2.1 Include Files
Before methods can be invoked on objects of a given class, the BFS translator must have a

Page 5

description of the class’s interface. This interface description will be used bylegion_bfs to generate
the appropriate calls to the Legion run-time system. The mechanism for communicating object interfaces
to the translator is theINCLUDE directive, which is used to “include” BFS IDL files in BFS Fortran
code. For example, the following statement

C LEGION INCLUDE my_class.bfs

should precede any methods called on instances of the classmy_class.

2.2.2 Method Invocation
In this section we cover the BFS syntax used to invoke methods. We start with a very simple

example: a blocking remote method invocation that takes a single parameter and returns a single result.
To call remote methodfunction1 defined by stateless classmy_class, which takes an integer
parameter and returns a real result, the following syntax could be used:

C LEGION SYNCH FUNCTION real X = (my_class)function1(integer I)

This would perform a blocking remote procedure call (RPC) on an instance ofmy_class: calling
function1, passing the integer parameterI as an input, and placing the real return value in the
variableX. Note that the complete method invocation is contained within a single Fortran comment line.
Note also that this method is invoked on a stateless Legion class, whose instances are therefore pure
functional units. Thus, this method will be serviced not by a specific named object but by any available
(or newly created) instance ofmy_class.

The above example performs a standard,blocking RPC on a Legion object. To achieve parallelism
between remote method invocations, a non-blocking RPC mechanism is necessary. In BFS, non-blocking
RPCs are achieved through the use of theASYNCH specifier.

C LEGION ASYNCH FUNCTION real X = (my_class)function1(integer I)

This statement causes the same function to be executed but does not wait for the return value to be placed
in X. When this statement is executed, the methodfunction1 begins to be processed at the remote
object, and the caller immediately proceeds. The caller can later block for the result using the statement:

C LEGION BLOCK real X

Since the variableX was previously named as the result of an asynchronous method invocation, when
this statement is encountered the caller blocks for the result and assigns it toX. The use of asynchronous
method calls allows methods to execute in parallel. For example, iffunction1 is time consuming, a
caller of this function might perform other work in parallel before blocking for the result. This parallel
work could include the invocation of other Legion methods, such as additional calls tofunction1.

Unlike Fortran, which uses call-by-reference parameter passing, the default BFS parameter passing
convention is call-by-value. So, if the variableI in the above example is modified byfunction1, that
change would not be propagated back to the caller. Other parameter-passing semantics are supported
through the use of the key wordsIN, OUT, andINOUT. For example:

C LEGION ASYNCH FUNCTION real X = (my_class)function2(INOUT integer I)

This specifies that the variableI is call-by-value-result. The value ofI is passed to the function, and
when the function terminates the new value ofI will be copied from the callee to the caller.

The above examples demonstrate functions—methods that produce a return value. Standard Fortran
subroutines are also supported. For example:

c LEGION SUBROUTINE (my_class)subroutn1(INOUT integer I)

Page 6

The analogous asynchronous call is:

C LEGION ASYNCH SUBROUTINE (my_class)subroutn1(INOUT integer I)
C LEGION BLOCK integer I

So far, we have only considered scalar parameters However, routines of interest often deal with
arrays. To pass the array A into a method subroutn2, the following syntax is used:

C LEGION SUBROUTINE (my_class)subroutn2(INOUT integer dimension(10,10) A)

The effect is to pass the array A into subroutn2, and, when the method completes, to copy the array
back to the caller. The maximum number of dimensions is not fixed, though the user should be aware
that there must be adequate memory to copy parameters, and that large parameters require more
communication time.

To this point, we have only demonstrated calls on stateless objects. As described in Section 2.1, BFS
also supports stateful objects—objects that maintain state between method invocations. Unlike stateless
invocations, which are performed on any object of a given class, stateful invocations must be performed
on a specific, named object instance. In BFS, Legion objects are identified by integer OIDs (Object
IDentifiers) that are only valid in the local address space. OIDs are obtained in two ways: as the result of
object creation requests, and as the result of looking up object names in Legion context space [3].

Object creation is supported through the CREATE directive. For example:

C LEGION CREATE OBJ = NEW my_stateful_class

This statement will cause the creation of a new object my_class. An OID that refers to the new object
is stored into the integer variable OBJ. In addition to creating new objects, BFS programs can bind to
existing objects. An OID for an existing object, which is named in Legion context space, can be obtained
using the LOOKUP directive:

C LEGION LOOKUP OLDOBJ = my_object

This statement will look up the existing object named “my_object” in Legion context space, and store
an OID that refers to “my_object” in OLDOBJ.

The syntax for invoking methods on stateful objects is similar to that used with stateless objects, but
introduces the need to specify a target object using an OID. For example:

C Legion SUBROUTINE OBJ->subroutn1(parameter list)

If your program is using multiple classes with methods of the same name, you must specify the class
explicitly to disambiguate method invocations. For example:

C Legion SUBROUTINE (my_stateful_class)OBJ->subroutn1(parameter list)

This more verbose syntax is always acceptable, and will generally lead to easier to read, safer code.
Unlike memory that is declared within a program, stateful objects can persist indefinitely beyond the

lifetime of the program that creates them. To avoid creating “garbage” objects—objects that are no
longer needed by any programs but are still consuming system resources—BFS programs must clean up
its stateful objects before terminating. Stateful objects may be deleted using the DESTROY directive.

C LEGION DESTROY OBJ

This statement will destroy the object referred to by the OID OBJ.

Page 7

2.2.3 Compilation
Fortran code containing the pseudo-comment directives discussed in this section must first be

preprocessed by the legion_bfs translator. Given a file with a “.f” suffix, the translator will produce
a new Fortran source file with the suffix “.trans.f”. This resulting file should be compiled by a
standard Fortran compiler, and linked against the Legion libraries using the following flags (assuming
your primary C++ compiler is g++):

-L$LEGION/lib/$LEGION_ARCH/g++ -lLegion -lLegionBFS

3. Example Program: Stateful Objects

In this section, we present a simple but complete program using stateful objects. Consider the Fortran
code depicted in Figure 4. To make this code available in the form of a Legion object, we define an
object interface for it using the IDL depicted in Figure 5. Note that since the Fortran code in Figure 4
depends on state that is maintained between method invocations (i.e. the common block variable A), we
use a stateful Legion object to wrap the code.

Once the IDL depicted in Figure 5 has been translated by legion_bfs, compiled by
legion_mplc, and linked to the object code resulting from a Fortran compilation of the code in Figure
4, programs can create objects of the class “my_class” and invoke methods on them. In Figure 6 we
depict a simple BFS Fortran main program that demonstrates object creation, a remote subroutine call, a
remote function call, and object deletion. Note that the integer variable OID is used as a local reference
to the Legion object created in the program. Also note that in this simple example we use synchronous
method invocation, since no parallelism was possible between the two method invocations. In Section 4
we consider the use of asynchronous methods and stateless objects, both of which have the potential to
offer improved performance.

The output of the program depicted in Figure 6 will be:

1 + 2 + 2 = 5

C File: my_class_impl.f
subroutine sub(I)

integer I,A
common A
A = I
I = I + 1

end

integer function func(I,J)
integer I,J,A
common A
func = I + J + A
return

end

FIGURE 4. Example Fortran code that we wish to make available in the form of a

C File: my_class.bfs
LEGION CLASS my_class

sub(inout integer i)
integer func(integer i, integer j)

CLASS END

FIGURE 5. BFS IDL suitable for wrapping the Fortran code depicted in Figure 4 in

Page 8

4. Example Program: Stateless Objects

The previous example used stateful objects, since the wrapped Fortran code maintained state from
one method invocation to the next. However, consider the code depicted in Figure 7.

Both of the functions defined in this file are purely functional—they are free of side effects, and do
not rely on state set by previous methods in producing their results. Because of these features, this
Fortran module can be wrapped in a stateless Legion object, and thus benefit from improved performance
through automatic load balancing. The BFS IDL required to wrap this code is depicted in Figure 8.

Figure 9 depicts a simple Fortran main program that uses the stateless class “dprod_object ”.
This example performs two dot product operations and computes the sum of their results. Note that the
two dot product operations are completely independent of one another—they operate on entirely disjoint
data. Thus, we use ASYNCH methods to allow the functions to proceed in parallel. A further benefit of
using ASYNCH methods comes from data dependence analysis performed by BFS: since the results of the

C File: example1.f
program example1
implicit none
integer OID,I,J,K
I = 1
J = 2

call legion_fortran_setup()
C LEGION INCLUDE my_class.bfs
C LEGION CREATE OID = NEW my_class
C LEGION SYNCH SUBROUTINE (my_class)OID->sub(INOUT integer I)
C LEGION SYNCH FUNCTION integer K=(my_class)OID->func(integer I, integer J)

write(*,*) (I-1), ' +', I,' +', J,' =', K

C LEGION DESTROY OID
call legion_fortran_cleanup()
stop
end

FIGURE 6. A BFS Fortran program that uses the object interface defined by the IDL in

C File: dprod.f
real function dprod(X, Y, N)

real X(*), Y(*)
integer N, I
dprod = 0.0
do I=1,N

dprod = dprod + X(I)*Y(I)
end do
return

end

real function add(A, B)
real A, B
add = A + B
return

end

FIGURE 7. Example Fortran code that we wish to make available in the form of a
Legion object. Note, both functions neither rely on state set up by previous calls nor

Page 9

dot product operations are needed to perform the sum operation, the results of these methods are
forwarded directly to the object that will perform the sum operation. Direct forwarding of results, as
afforded byASYNCH methods, improves performance by reducing communication. Instead of the results
D1 andD2 being sent first to the main program and then to the sum operation, the parameters can skip
the middle hop and go directly to the sum operation. This optimization is especially important when
array parameters are used, as they consume the most communication resources.

The output of the program depicted in Figure 9 is:

SUM = 12.

5. Current Status and Limitations

The BFS compiler and interface described in Section2 is currently available as a standard part of the
Legion distribution. BFS is available on all supported platforms, but use of the system requires the
availability of a Fortran compiler.

The implementation currently has some practical limitations:
• The BFS type system is currently very limited: only REAL, INTEGER, LOGICAL, COMPLEX, and

C File: dprod_object.bfs
LEGION STATELESS CLASS dprod_object

real dprod(real dimension(*) X, real dimension(*) Y, integer N)
real add(real A, real B)

CLASS END

FIGURE 8. BFS IDL suitable for wrapping the Fortran code depicted in Figure 7 in

C File: example2.f
program example2
implicit none
integer I
real X1(3), Y1(3), X2(3), Y2(3), D1, D2, SUM

C LEGION INCLUDE dprod_object.bfs
call legion_fortran_setup()
do I = 1,3

X1(I) = 1.0
Y1(I) = 2.0
X2(I) = 0.5
Y2(I) = 4.0

end do

C LEGION ASYNCH FUNCTION REAL D1 = dprod(REAL DIMENSION(3) X1,
REAL DIMENSION(3) Y1, INTEGER 3)

C LEGION ASYNCH FUNCTION REAL D2 = dprod(REAL DIMENSION(3) X2,
REAL DIMENSION(3) Y2, INTEGER 3)

C LEGION SYNCH FUNCTION REAL SUM = add(REAL D1, REAL D2)
C LEGION FREE D1
C LEGION FREE D2

write(*,*) 'SUM =',SUM

call legion_fortran_cleanup()
stop
end

FIGURE 9. A BFS Fortran program that uses the object interface defined by the IDL

Note, each call to dprod
is on a single line

Page 10

CHARACTER are supported. Types such as DOUBLE PRECISION and sized types such as
INTEGER*8 are not yet available.

• The BFS IDL translator (legion_bfs) currently translates “.bfs” files to MPL files. Since
legion_mplc does not currently support “OUT” or “INOUT” parameters, at most one “OUT” or
“INOUT” parameter can be specified for any single BFS subroutine, and no “OUT” or “INOUT”
parameters may be specified for BFS functions.

6. BFS syntax

This grammar is provided as an aid to understanding the BFS syntax, and as a guide to implementing
the syntax. It is neither complete nor suitable for automatic processing.

<stmt> := LEGION <stmt body>
<stmt body> := <method> | <block> | <free> | <create> | <destroy> | <lookup>

<method> := <methodstart> <method name> <param list> |
<methodstart> <OID>-><method name> <param list>

<methodstart> :=<synch> <subroutine> | <synch> <function>
<sync> := ASYNCH | SYNCH
<method name> := <id>
<subroutine> := SUBROUTINE (<class>) | SUBROUTINE
<class> := <id>
<function> := FUNCTION <var> = (<class>) | FUNCTION <var> =
<OID> := <int expr>
<param list> := (<params>)
<params> := <param>, <params> | <param>
<param> := <mode> <type> <var> | <type> <var> |

INTEGER <int> | REAL <real>
<mode> := IN | OUT | INOUT

<block> := BLOCK <type> <var>
<free> := FREE <var>
<create> := CREATE <var> = NEW <class>
<destroy> := DESTROY <var>
<lookup> := LOOKUP <var> = <id>

<var> := <id> | <id> <indeces>
<indeces> := (<index list>)
<index list> := <int expr>, <index list> | <int expr>
<type> := <scalar type> | <vector type>
<scalar type> := REAL | INTEGER | LOGICAL | COMPLEX | CHARACTER
<vector type> := <scalar type> <dim>
<dim> := DIMENSION (<dims>)
<dims> := <int> | * | <int>, <dims> | *, <dims>
<int> := any integer literal
<int expr> := any valid fortran expression that evaluates to type INTEGER
<real> := any real literal
<id> := any valid fortran identifier

Page 11

References
[1] Grimshaw, A.S., “Easy-to-use object-oriented parallel processing with Mentat,” IEEE Computer, pp.

39-51, May 1993.

[2] A. S. Grimshaw, J. B. Weissman, and W. T. Strayer, “Portable Run-Time Support for Dynamic Object-
Oriented Parallel Processing,” ACM Transactions on Computer Systems, Vol. 14, No. 2, May 1996.

[3] Legion Research Group, Legion 1.0 Basic User Manual, 1998. Available from: http://legion.vir-
ginia.edu.

[4] Kuck, D. Lawrie, R. Cytron, A. Sameh and D. Gajski, “The Architecture and Programming of the
Cedar System,” Cedar Document no. 21, University of Illinois at Urbana-Champaign, Department of
Computer Science, August, 1983.

[5] Object Management Group, “The Common Object Request Broker: Architecture and Specification,”
Revision 2.0, July 1995 (updated July 1996).

