Submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1993.

Optimal Rectilinear Steiner Tree Routing
in the Presence of Obstacles

Joseph L. Ganley and James P. Cohoon
Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903

Abstract—This paper presents a new model for
VLSI routing in the presence of obstacles, that
transforms any routing instance from a geomet-
It is the
first model that allows computation of optimal

ric problem into a graph problem.

obstacle-avoiding rectilinear Steiner trees in time
corresponding to the instance size (the number
of terminals and obstacle border segments) rather
than the size of the routing area. For the most
common multi-terminal critical nets—those with
three or four terminals—we observe that opti-
mal trees can be computed as efficiently as good
heuristic trees, and present algorithms that do so.
For nets with five or more terminals, we present
algorithms that heuristically compute obstacle-
avoiding Steiner trees. Analysis and experimental
results demonstrate that the model and algorithms
work well in both theory and practice. Also pre-
sented are several theoretical results: a derivation
of the Steiner ratio for obstacle-avoiding rectilin-
ear Steiner trees, and complexity results for two
special cases of the problem.

1 Introduction

In VLSI design automation, a fundamental task is
routing a net. Typically, this routing is performed in
the presence of obstacles that the wires of the net must
not intersect, such as logic cells and wires in previ-
ously routed nets. This problem has been well-studied
for the case of two-terminal nets. TInitially, Lee [17]
and Moore [21] independently devised the technique of
maze routing for optimally routing two-terminal nets
in what were then reasonably-sized problem instances.
The major drawback of maze routing is that its time
and space demands are a function of the size of the
routing area, rather than the size of the actual prob-
lem instance (the number of terminals and obstacle

border segments). At the time, these demands were
reasonable, but presently the routing area of typical
VLST instances is quite large. Later, Hightower [15]
devised a technique called line search routing (LSR)
with much lower space demands, but LSR is a heuris-
tic, 1.e. 1t produces suboptimal solutions. Later still,
Cohoon and Richards [5] devised the first algorithm
that optimally routes two-terminal nets in the pres-
ence of obstacles, in time corresponding to the size of
the routing instance rather than to the routing area.
Lee, Yang, and Wong [18] survey algorithms for two-
terminal routing in the presence of obstacles.

The problem of routing a multi-terminal net in the
presence of obstacles has received substantially less
attention. As a result, a VLSI designer is forced to
use a multi-terminal variant of a maze routing algo-
rithm, which incurs the same space demands as the
two-terminal variety, and often compute solutions that
are far from optimal. Other variants can produce opti-
mal routing solutions, but still require time and space
corresponding to the size of the routing area.

Even 1n the absence of obstacles, multi-terminal
routing corresponds to the rectilinear Steiner tree
(RST) problem, which is NP-complete [10]. This
suggests that no polynomial-time algorithm can solve
the RST problem exactly. Nonetheless, exponential-
time algorithms have been devised that can solve the
RST problem exactly for small instances in reasonable
time [9, 23, 25], as have many efficient polynomial-time
heuristics (see Hwang, Richards, and Winter [16]) that
produce good suboptimal solutions. The time com-
plexity of the vast majority of these algorithms is a
function of size of the instance, not of the routing
area as in maze routing algorithms. No such algo-
rithms have existed previously for computing RSTs
in the presence of obstacles, a problem that we re-
fer to as the obstacle-avoiding rectilinear Steiner tree
(OARST) problem. Here, we present a theorem, anal-
ogous to Hanan’s theorem [13] for the standard RST

Figure 1: The escape graph (see text).

a generalization of the line search escape segments
used by Hightower’s line search routing heuristic [15].

To describe the escape graph, we appeal to an anal-
ogy to interstate highway travel. An obstacle corre-
sponds to a city. On every side of an obstacle, we
generate an escape segment that forms a portion of
the obstacle’s ‘beltway.” For the instance depicted in
Figure 1(a), these are the dashed segments of Fig-
ure 1(b). To enable connections between obstacles,
each beltway escape segment is extended to also form
a ‘highway’ escape segment. A highway escape seg-
ment 1s a maximal segment with respect to the routing
region, i.e. 1t ends with its abutment to either an ob-
stacle border segment or the internal perimeter of the
routing region. Finally, we introduce segments that
extend from the terminals in all unobstructed direc-
tions. These segments are also maximal in a manner
similar to the highway escape segments. The dashed
segments shown in Figure 1(c) are the escape segments
for the instance depicted in Figure 1(a).

It has been shown that escape segments suffice for
optimal routing of two-terminal nets [5]. We now
proceed to show that there is an optimal routing for
any net with £ > 2 terminals, that uses only escape
segments’.

Theorem 1 If an instance of the OARST problem 1s
solvable, then there is an optimal solution composed
only of escape segments.

Proof: Suppose there exists a k-terminal problem in-
stance I, with k¥ > 2, such that all optimal Steiner
trees for I contain at least one segment that is not an
escape segment. We will show that this supposition
leads to a contradiction.

Let 7 be an optimal Steiner tree for 7 that contains
a minimal number of non-escape segments among op-
timal Steiner trees for I. Let segment s be a routing
segment in 7 that is not an escape segment. Without
loss of generality, assume that s is horizontal.

Obviously, s has two endpoints a and b beyond
which no further colinear segment is incident. There
may be segments incident and orthogonal to s. In
fact, there must be orthogonal segments incident to a
and b. If either @ or b did not have an orthogonal
segment incident to it, then it would be a terminal,
contradicting the assumption that s is not an escape
segment.

Let u be the number of orthogonal segments inci-
dent to s from above, and let d similarly be the number

I Throughout the paper, we use the term escape segment in-
terchangeably to mean either a complete escape segment or a
subsegment of a complete escape segment.

of orthogonal segments incident from below. Colinear
segments that are incident to s both from above and
below are considered two distinct segments separated
by s.

If u 1s equal to d, then slide s up until it is colinear
with some escape segment. We know there is room
to slide, as s 1s not an escape segment. An escape
segment above s must exist, since the routing region
perimeter is itself inscribed by escape segments. Since
the length of the segments above s decreases by ex-
actly the amount that the length of the segments be-
low s increases, the tree resulting from this maneuver
has the same length as 7; hence, it is optimal. In ad-
dition, any vertical segment incident to s that was an
escape segment remains an escape segment. In fact, all
segments that were escape segments before the slide
remain so. Thus, the tree resulting from this sliding
maneuver contradicts our assumption that 7 contains
a minimal number of non-escape segments.

Tf instead, u is greater than (less than) d, then we
may slide s up (down), decreasing the length of the
tree and contradicting its optimality. We again know
there 1s room to slide, since s is not an escape segment.

This completes the case analysis. We have shown
that every solvable instance of the OARST problem
has an optimal solution composed only of escape seg-
ments. O

Theorem 1 can be used similarly to Hanan’s well-
known theorem [13] for the standard RST problem, to
construct a graph representation of a routing instance
from its geometric description. The vertices of the
graph are the terminals and the points at which the
escape segments intersect (which are potential Steiner
points). An edge exists between two vertices if they
lie on the same escape segment, and if no other vertex
lies between them on that same escape segment. The
weight of an edge is simply the rectilinear distance
between its endpoints. We call this graph the escape
graph. Tt is obvious from Theorem 1 that an optimal
solution to the Steiner problem on the escape graph
for a particular routing instance is an optimal solution
to the original instance. Thus, given an escape graph,
the routing problem from which it was generated is
solved by finding a solution to the Steiner problem in
the escape graph.

3 Escape Graph Generation

The generation of the escape segments from a prob-
lem instance is relatively straightforward and is per-
formed by adapting standard computational geometry

techniques. First, horizontal and vertical line sweeps
of the boundary segments of the obstacles are per-
formed to construct the escape segments [5]. The
sweeps are done in O(mlogm) time, where m is the
number of obstacle boundary segments.

The horizontal sweep at a given z-coordinate is
achieved by performing a binary search to determine
the endpoints of the potential escape segment associ-
ated with the current boundary segment. There is a
potential escape segment above the boundary segment
if the boundary segment represents an upper contour
and similarly below the boundary segment if it rep-
resents a lower contour. For a horizontal boundary
segment that corresponds to a previously placed wire,
there can be escape segments both above and below
the boundary segment.

The final determination of whether a potential es-
cape segment exists requires examining the associated
area of the layout surface to see whether it is a routing
region. This determination is done in constant time
per escape segment by examining the line sweep in-
formation for the previous and successor line sweep
locations [5].

The processing of a vertical sweep 1s performed in
an analogous manner.

The intersections of the escape segments are then
computed. Since the escape segments are generated
in sorted order, the intersections of the escape seg-
ments are determined in O(m + n) time, where n is
the number of intersections [2]. If there are m escape
segments, then n is O(m?) in the worst case (if all
the horizontal escape segments intersect all the ver-
tical escape segments). Construction of the escape
graph from the escape segments and their intersections
can be accomplished in O(n) time in a straightforward
manner; this procedure is not discussed further. The
total time complexity of generating the escape graph
is thus O(max{n, mlogm}), where n is O(m?) in the
worst case.

4 Escape Graph Reduction

Often, many of the vertices in the escape graph
can be deleted, along with their adjacent edges, while
still guaranteeing that an optimal solution exists that
is constrained to the escape graph. We now describe
several tests, the application of which eliminates many
vertices from the escape graph to produce a reduced
escape graph.

The first test i1s called the shortest-path test. The
idea is that any vertex that is not a terminal, and that

appears in an optimal OARST, must lie on a short-
est path between some pair of terminals. This fact
is fairly obvious; if an optimal tree contains a ver-
tex v that does not satisfy this criterion, then » can
be replaced by another vertex that is on a shortest
path between the terminals to which » is connected,
reducing the length of the tree and contradicting its
optimality. Thus, we simply examine each vertex in
the escape graph, and eliminate those that do not lie
on a shortest path between some pair of terminals.
This involves examining every vertex in the escape
graph, with respect to every pair of terminals. If an
all-pairs shortest paths matrix is available, this proce-
dure incurs a time complexity of O(k?n), where k is
the number of terminals and n is the number of poten-
tial Steiner points. Since the escape graph is planar,
all-pairs shortest paths information can be computed
in O(n?) time [8]; this information will also be used
later in the computation of Steiner trees.

The second test is the dimension reduction test de-
scribed by Yang and Wing [26] for the standard RST
problem. Yang and Wing prove that if a vertex v is
a corner vertex, i.e. it is incident to exactly two or-
thogonal edges e; and es, and v is not a terminal, and
edges exist that form the other two sides of a rectan-
gle with e; and es, then v, e1, and e5 can be deleted.
The proof of this theorem holds for escape graphs as
well: any path that might pass through v can be re-
placed by a path with equal length that instead passes
through the sides of the rectangle opposite e; and es.
This test has O(n) time complexity.

Finally, it is clear that any nonterminal vertex v of
degree 2 that remains after the dimension reduction
test can be eliminated, and its neighbors connected
directly by an edge whose weight is the sum of the
weights of the edges adjacent to v, and that any non-
terminal of degree 1 can be deleted along with its ad-
Jjacent edge.

Figure 2 shows the escape graph and reduced es-
cape graph for a randomly generated OARST instance
with 10 terminals and 10 rectangular obstacles.

Empirically, the average fraction of the vertices that
are eliminated by the above tests on randomly gener-
ated instances is dependent only on k, i.e. is indepen-
dent of the number n of vertices. Figure 3(a) shows the
percentage of vertices that are eliminated as a func-
tion of k. Figure 3(b) shows the average number of
vertices n before reduction as a function of the num-
ber m of obstacle boundary segments. For a given k
and m, one can expect the number of vertices in the
reduced escape graph to be, on average, the number of
Steiner points indicated by Figure 3(b) for the given m

W77 7 T T T T 700 T T T
600
500
60 [— 400

Reduction (%)
5
T
1
w
@
g

200
100
oL 1 1 1 1 1 1 1 0 1 1 1

4 6 8 10 12 14 16 18 20 0 50 100 150 200

k m

(a) (b)

Figure 3: (a) Percentage of vertices eliminated by re-
duction tests as a function of number of terminals &
and (b) Number of vertices n in the unreduced escape
graph, as a function of number of obstacle border seg-
ments m.

reduced by the percentage indicated by Figure 3(a) for
the given k.

Note that most of the statistics in this paper are
gathered from randomly generated instances. It might
be argued that random instances are not representa-
tive of problems that arise in practice, but they do
form a worst case of sorts, in that more structure in
the layout of obstacles results in redundant escape seg-
ments and fewer vertices in the escape graph. In par-
ticular, for structured design methodologies such as
standard cell, the escape graph contains O(m) ver-
tices. Note also the shape of the curve in Figure 3(b);
the decrease in the slope of the curve as m grows is
due to increasing density, and thus more redundant
escape segments.

5 Exact Algorithms

Typically, exact solutions to NP-complete problems
are infeasible in practice. However, it is often the case
that small instances can be solved practically. For the
OARST problem, the escape graph model enables us
to compute optimal Steiner trees for three- or four-
terminal nets as efficiently as a typical heuristic solu-

Terminals 2 3 4 5 6
Percentage | 52.8 | 275 | 74 | 2.7 | 3.1
Terminals 7 8 9 10 >10
Percentage | 1.4 | 0.2 1.0 | 0.1 | 3.6

Table 1: Distribution of terminals per net in Pri-
mary 1.

tion.

A folk theorem of VLSI routing is that most nets
contain four or fewer terminals. In an effort to ver-
ify this claim, we examine the SIGDA Benchmark
Suite [22]. Table 1 shows the distribution of termi-
nals per net in the benchmark instance Primary 1.
As can be seen in the table, three- and four-terminal
nets comprise just over one-third of the total nets.
The largest net contains 18 terminals, and the average
number of terminals per net is 3.25. The distribution
for other benchmarks is similar.

For a three-terminal net, an optimal Steiner tree
can have only one of two topologies. It can be a sim-
ple path between the terminals, or all three terminals
can be connected to a single Steiner point. Thus, an
optimal OARST for a three-terminal net may be com-
puted as follows. The length of each of the three pos-
sible simple paths is checked, as well as the length of
every tree formed by connecting the three terminals to
each candidate Steiner point, and the tree with min-
imum length is optimal. The latter topology—where
the tree contains a Steiner point—dominates the com-
putation time, and is examined in O(n) time, where n
is the number of candidate Steiner points, assuming
all-pairs shortest paths information is available. Since
the escape graph is planar, all-pairs shortest paths can
be computed in O(n?) time by the algorithm of Fred-
erickson [8].

Similar observations can be made for four-terminal
nets. For four terminals, the following topologies are
possible:

e A simple path through the four terminals.

e A star in which three terminals are all connected

to the fourth.

e A crossin which all four terminals are connected
to a single Steiner point.

e A T in which three terminals are connected to a
single Steiner point, and the fourth terminal is
connected to one of those three terminals.

e An H in which two terminals are connected to
each of two Steiner points, which are connected
to each other.

These topologies are illustrated in Figure 4. There
are twelve possible orderings of the simple path topol-

Path Star Cross T H

Figure 4: The possible topologies for four terminals.

k=3 k=4
EE | STE | EE | STE
0.04 | 1.45 | 0.08 | 9.06

Table 2: Average running times (in seconds) of ex-
plicit enumeration (EE) and spanning tree enumera-
tion (STE) algorithms.

ogy, four for the star, one for the cross, twelve for the
T, and six for the H, totaling 35 distinct topological
instances—a sufficiently small number to examine ex-
plicitly. An optimal Steiner tree for a four-terminal
net can be efficiently computed by enumerating these
topologies; the path and star topologies are exam-
ined, the cross and T topologies are examined with
respect to every single candidate Steiner point, and
the H topology 1s examined with respect to every pair
of candidate Steiner points. The shortest tree seen is
returned as the optimal tree. This computation incurs
a time complexity of O(n?), dominated by checking
the H topology.

These algorithms are similar to Hakimi’s spanning
tree enumeration algorithm [12]; however, identifying
and examining the various topologies explicitly has
tremendous dividends. For example, a straightforward
implementation of Hakimi’s spanning tree enumera-
tion algorithm using a minimum spanning tree algo-
rithm is many times slower than our explicit enumer-
ation algorithms. For randomly generated instances
with 10 rectangular obstacles, Table 2 shows the av-
erage running time of the explicit enumeration algo-
rithm versus the average running time of a spanning
tree enumeration algorithm using a minimum span-
ning tree routine. As can be seen from the table, the
spanning tree enumeration is far slower than explicit
enumeration.

It is possible to perform the case analyses and con-
struct similar explicit enumeration algorithms for ex-
act solution of problem instances with more than four
terminals. However, the number of possible topolo-
gies increases exponentially, and examining them all
rapidly becomes too expensive. For instance, for five
terminals there are several hundred topological in-

stances. The explicit enumeration approach might be
practically applicable for five terminals, but almost
certainly not for six. We recommend a heuristic ap-
proach for nets with more than four terminals.

6 Heuristics

Although for nets with more than four terminals
exact solution by explicit enumeration is impractical,
heuristics can be used to quickly find good solutions
for such nets. Given the exact three- and four-terminal
algorithms in Section 5, a natural approach is Steiner-
ization. In a Steinerization heuristic, portions of a
minimum spanning tree that contain a few adjacent
terminals are replaced with an optimal Steiner subtree
for those terminals. Typically, such heuristics exam-
ine subsets of a fixed size, i.e. subsets of size K for
some small K. In light of the results in Section 5, we
examine heuristics for K = 3 and K = 4.

The first heuristic, greedy Steinerization, starts
with a minimum spanning tree of the terminals. Tt
then repeatedly examines vertex subsets of size K
that are adjacent in the MST, Steinerizing the one
that improves the minimum spanning tree the most.
The Steiner points introduced by the Steinerization
are candidates for further Steinerization in later iter-
ations. For K = 3, greedy Steinerization is an oft-
repeated idea whose genesis is unclear. For the stan-
dard RST problem, Richards (see Hwang, Richards,
and Winter [16]) first investigated 3-Steinerization in
this greedy form, and more complex variants appear
in Chao and Hsu [3], Lee, Bose, and Hwang [19] and
Smith, Lee, and Liebman [24]; these and others are
summarized in Hwang, Richards, and Winter [16].
For the OARST problem, greedy 3-Steinerization
(henceforth called G3S) has time complexity O(k?n).
For K = 4, greedy Steinerization is similar to the algo-
rithm of Beasley [1], though Beasley’s algorithm com-
putes a new MST at each iteration rather than locally
modifying the current MST. For the OARST problem,
greedy 4-Steinerization (henceforth, G4S) has time
complexity O(k3n?).

We can speed up Steinerization heuristics by a
batching trick similar to the heuristic of Hasan, Vi-
jayan, and Wong [14] for the standard RST problem.
In their neighborhood Steinerization heuristic, each
vertex v is assigned a weight that is the amount of
improvement over the MST that is gained by Steiner-
izing v and its neighbors. Since any vertex in a rec-
tilinear minimum spanning tree can have at most 8
neighbors, each Steinerization can be performed in
constant time. Since we cannot efficiently Steinerize

3 5 7 9 11 | 13 | 15
r 1015|1820 21|22|23

Table 3: Average iteration count for B3S.

large neighborhoods for the OARST problem, in our
heuristic the weight of a vertex v is instead the best
improvement gained by 3-Steinerizing v and any two
of its neighbors.

The heuristic then finds a mazimum-weight inde-
pendent set (MWIS) of the tree; this can be computed
in O(k) time by dynamic programming. The best
3-neighborhood of each vertex in the MWIS is then
Steinerized, and the process is repeated for the new
tree produced by replacing each neighborhood with
its Steiner subtree. The time complexity of this algo-
rithm, which we call batched 3-Steinerization (B3S)
is O(rkn), where r is the number of iterations re-
quired, which 1s a function of k. In the worst case, r
is equal to k, so the worst-case time complexity 1s the
same as for (G3S; however, this bound is quite pes-
simistic. Table 3 shows the average value of r for
various values of k, for randomly generated instances
containing 10 rectangular obstacles. Empirically it ap-
pears that r is O(log k), giving B3S a time complexity
of O(nklogk) in practice.

We can also perform another optimization to reduce
the running time of Steinerization heuristics. Before
computing the Steiner subtree for each subset 7 of the
terminals, perform the reductions described in Sec-
tion 4 on the escape graph, considering only members
of T to be terminals. Since the size K of the subsets
considered is small, the reduction in the size of es-
cape graph is typically substantial. Since the number
of terminals K is constant, the reductions have time
complexity O(n) for each subset. For 3-Steinerization,
this is the same as the time complexity of actually
Steinerizing the subset, so performing the reductions
is not productive. However, for 4-Steinerization, the
cost of Steinerizing each subset is O(n?), so linear-
time preprocessing can be effective if 1t substantially
reduces n. For K = 4, we expect roughly 80% of the
vertices to be eliminated (see Figure 3(b)), and as it
turns out, this approach does indeed dramatically im-
prove the running time of G4S—for the 20-terminal
instances tested, this optimization improves the aver-
age running time by a factor of almost 2.5.

Table 4 shows the result quality (percent improve-
ment over the minimum spanning tree) and runtime
for G3S and B3S, and for G4S with the reduction op-
timization described above, for randomly generated
instances containing 10 rectangular obstacles and the

G3S B3S G4S
k | Qual. | Time | Qual. | Time | Qual. | Time
4 7.83 0.25 7.83 0.25 8.19 0.40
5 8.58 0.48 8.59 0.46 9.21 0.97
6 8.55 0.81 8.61 0.75 9.12 1.81
7
8
9

8.81 1.26 8.82 1.10 9.35 2.94
8.44 1.92 8.40 1.56 9.02 4.55
8.74 2.75 8.72 2.10 9.33 6.61
10 9.02 4.17 9.03 2.96 9.53 9.82
12 8.72 7.59 8.69 4.78 9.14 17.64
14 | 8.93 13.63 8.90 7.48 9.40 31.58
16 8.99 22.66 8.95 11.51 9.48 51.33
18 9.03 34.63 9.04 16.15 9.46 78.79
20 9.02 50.21 8.99 21.53 9.43 112.9

Table 4: Average result quality (percent improve-
ment over MST) and running time (in seconds) for
the heuristics.

indicated numbers of terminals. For the standard RST
problem, the average improvement of optimal RSTs
over the minimum spanning tree is roughly 12% (see
Hwang, Richards, and Winter [16]). For the instances
of the OARST problem tested here, this value is be-
tween 9.5% and 10.5%. Thus, the improvement values
in Table 4 should not be compared with those reported
in the literature for standard RST heuristics. The
reader should note that B3S produces trees roughly as
good as, and sometimes better than, those produced
by G3S. In addition, note that G4S consistently pro-
duces better trees than G3S, but that the difference
in running times is not nearly as pronounced as one
would expect from their relative time complexities—in
particular, the running time of G4S decreases relative
to the running time of G3S as k increases.

Note that the worst-case ratio of the length of a
minimum spanning tree to the length of an optimal
Steiner tree (called the Steiner ratio) for the OARST
problem is 2 (see Appendix A). All three of these
heuristics always produce trees at least as short as the
MST, and thus produce trees that are no more than
twice the length of an optimal tree. In practice, of
course, their performance is rarely that bad.

7 Summary

We have proven a theorem (Theorem 1) that re-
duces any instance of the obstacle-avoiding rectilin-
ear Steiner tree problem to a graph problem, analo-
gous to Hanan’s theorem [13] for the standard rectilin-
ear Steiner tree problem. This theorem enables com-

putation of optimal OARSTs in time corresponding
to the size of the instance rather than to the rout-
ing area. We have also presented algorithms that
quickly compute optimal obstacle-avoiding rectilinear
Steiner trees for three- and four-terminal nets, and
algorithms that compute good heuristic solutions for
larger nets. These results demonstrate that the es-
cape graph model is a viable alternative to previous
methods for multi-terminal routing in the presence of
obstacles. Of course, many interesting avenues of fur-
ther research remain.

In particular, Guha and Suzuki [11] present algo-
rithms that compute the rectilinear Voronoi diagram
for a set of points in the presence of rectangular ob-
stacles, and algorithms that solve a number of prob-
lems, including minimum spanning tree, within this
domain. By combining techniques such as theirs with
our Theorem 1, one might devise improved algorithms
for computing exact and approximate OARSTs.

8 Acknowledgements

The authors’ work has been supported in part
through National Science Foundation grants MIP-
9107717 and CDA-8922545 and Virginia CIT award
5-30971. Their support is greatly appreciated. In ad-
dition, thanks are due to Hans Bodlaender, Andrew
Kahng, and Dana Richards for helpful discussions on
various aspects of this paper.

References

[1] J. E. BEASLEY, A heuristic for Fuclidean and
rectilinear Steiner problems, Furopean Journal of

Operational Research, 58 (1992), pp. 284-292.

[2] J. L. BENTLEY AND T. OTTMANN, Algorithms
for reporting and counting geometric intersec-
tions, IEEE Transactions on Computers, 28

(1979), pp. 643-647.

[3] T. CHAO AND Y. HsU, Rectilinear Steiner iree
construction by local and global refinement, in

Proceedings of the International Conference on
Computer-Aided Design, 1990, pp. 432-435.

[4] C. CHIANG, M. SARRAFZADEH, AND C. K.
Wona, An algorithm for exact rectilinear Steiner
trees for switchbor with obstacles, IEEE Trans-
actions on Circuits and Systems, 39 (1992),
pp. 446-455.

[5] J. P. ConooN AND D. S. RIcHARDS, Optimal
two-terminal «-f wire routing, Integration: the

VLST Journal, 6 (1988), pp. 35-57.

[6] S. E. DREYFUS AND R. A. WAGNER, The
Steiner problem in graphs, Networks, 1 (1972),
pp- 195-207.

[7] R. E. EricksoN, C. L. MONMA, AND
A. F. VEWNoTT JR., Send-and-split method
for minimum-concave-cost network flows, Math-
ematics of Operations Research, 12 (1987),
pp. 634-664.

[8] G. N. FREDERICKSON, Fast algorithms for
shortest paths in planar graphs with applica-
tions, STAM Journal on Computing, 16 (1987),
pp- 1004-1022.

[9] J. L. GANLEY AND J. P. CoHOON, A faster dy-
namaic programming algorithm for exact rectilin-

ear Steiner minimal trees; in Proceedings of the
Fourth Great Lakes Symposium on VLSI, 1994.

[10] M. R. GAREY AND D. S. JoHNSON, The recti-
linear Steiner tree problem is NP-complete, STAM
Journal of Applied Mathematics, 32 (1977),
pp- 826-834.

[11] S. GuHA AND 1. SUZUKI, Prozimity problems
and the Voronoi diagram on a rectilinear plane
with rectangular obstacles, in Proceedings of the
Thirteenth Conference on Foundations of Soft-
ware Technology and Theoretical Computer Sci-

ence, 1993.

[12] S. L. HAKIMI, Steiner’s problem in graphs and its
implications, Networks, 1 (1971), pp. 113-133.

[13] M. HANAN, On Steiner’s problem with rectilinear
distance, STAM Journal of Applied Mathematics,
14 (1966), pp. 255-265.

[14] N. HasaN, G. Visavan, anp C. K. Wong, 4
neighborhood improvement algorithm for rectilin-
ear Steiner trees, in Proceedings of the Interna-
tional Conference on Circuits and Systems, 1990,

pp- 2869-2872.

[15] D. W. HIGHTOWER, A solution to the line-
routing problem on the continuous plane, in Pro-
ceedings of the Sixth Design Automation Work-
shop, 1969, pp. 1-24.

[16] F. K. HwaNG, D. S. RICHARDS, AND P. WIN-
TER, The Steiner Tree Problem, North-Holland,
Amsterdam, Netherlands, 1992.

Figure 5: Instance for which the Steiner ratio is 2.

Theorem 2 The Steiner ratio for the OARST prob-
lem 1is 2, 1.e., over all instances I of the OARST
problem, if MST(I) is the length of an MST for I
and OARST(I) is the length of an OARST for I, then

3 MST(I) _,
P OARST() — ©

Proof: We first show that p > 2. This is accom-
plished by the example shown in Figure 5. In the fig-
ure, each tower is one unit wide and h units tall, and
the towers are 2 units apart horizontally. For k ter-
minals, the length of the minimum spanning tree for
such an instance is (k —1)(2h +5), and an optimal
OARST has length hk 4+ 4k — 3. Thus, for a given £k,
if h is arbitrarily large, then p =2(k — 1)/k. Tf k is
large, then the Steiner ratio is very close to 2.

The following well-
known argument shows that p < 2. Suppose 7 is an
optimal OARST for a given set of terminals and ob-
stacles, whose length is d;. An Euler tour of 7 results
in a spanning tree of the terminals whose length is at
most 2d,. Since the length of the minimum spanning
tree cannot exceed the length of the tour, the Steiner
ratio p cannot exceed 2.]

B Terminals on Obstacle Borders

Often, a routing instance will have all its terminals
on the borders of obstacles, as when the terminals are
the pins of logic cells. A natural question is whether
this restriction improves the inherent complexity of
the OARST problem, especially since it implies that
each terminal must have degree 1—a restriction under
which the standard RST problem is solvable in linear
time.

Unfortunately, however, the OARST problem re-
mains NP-complete under this restriction. We prove
this by transformation from the standard RST prob-
lem.

10

Figure 7: The escape graph for an instance with ter-
minals on the border of the routing region.

for P’ must have length at least 20nK + 34n. From
the OARST for P’ we may easily construct the RST
for P by replacing each widget with a single terminal
at its center, and then dividing the z and y coordinates
of every point in the tree by 20n. 0O

C Terminals on the Border of a Rect-
angle

Another special case of the OARST problem is
when the terminals lie on the border of the routing re-
gion. Mirayala, Hashmi, and Sherwani [20] present an
exact algorithm for the case where the region contains
only one obstacle, and an approximation algorithm for
any number of obstacles. Chiang, Sarrafzadeh, and
Wong [4] present an exact algorithm for this special
case, that runs in time linear in the number of termi-
nals but exponential in the number of obstacles.

As 1t turns out, this special case 1s solvable in poly-
nomial time. The escape graph for any routing in-
stance 1s clearly planar. Furthermore, if the terminals
lie on the border of the routing region, then the ter-
minals in the escape graph all lie on the border of the
infinite face of the escape graph. Figure 7 shows an in-
stance with the terminals on the border of the routing
region, and its escape graph. Erickson, Monma, and
Veinott [7] show that the Steiner problem is solvable in
polynomial time for such a graph. One way to achieve
polynomial-time solution is with a modification of the
Dreyfus-Wagner dynamic programming algorithm [6].
The key to the Dreyfus-Wagner algorithm, and the
source of its exponential time complexity, 1s that it ex-
amines all possible subsets of the set of terminals. For
the case where the graph is planar and all its termi-
nals lie on the border of the infinite face, the Dreyfus-
Wagner algorithm need only consider those subsets of
the set of terminals that are adjacent along the border
of the infinite face. This results in a time complexity

of O(k*n? 4+ k*n?logn + n?).

It should be noted that while the Chiang, Sar-
rafzadeh, and Wong algorithm [4] has exponential time
complexity with respect to the number of obstacles, it
has linear time complexity with respect to the number
of terminals. The modified version of Dreyfus-Wagner
described above is fully polynomial, but is superlinear
in both obstacles and terminals. It would be interest-
ing to devise an algorithm for this special case that is
linear in the number of terminals and polynomial in
the number of obstacles, or vice-versa.

11

