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Introduction

The Isotach version 1.0 prototype implements isotach logical time on a clus-
ter of Intel-based personal computers linked with a Myrinet local area net-
work. A performance study was conducted on this unoptimized version of
the prototype with the following goals:

e determine Isotach’s performance characteristics
e look for problems in the software and hardware design

e discover ways to optimize the Isotach implementation

Tests were conducted using custom developed programs and the Commu-
nications Analysis and Simulation Tool (CAST), a network benchmarking
tool developed by the U.S. Navy and used at their request. In order to give
us a baseline, we also performed tests on Fast Messages 1.1, a messaging
layer known to provide good performance.

CAST measurements were not as accurate as our custom developed tests
due to software overhead in the tool. We explain the reasons for this over-
head, and show that CAST accuracy is degraded on networks with sub-
millisecond latencies.

Our performance study measured throughput, latency, server perfor-
mance under contention, effects of isochron size, and effects of token traffic
on non-isotach traffic. The all-software Isotach version 1.0 prototype ex-
ceeded many of its performance goals. We expect performance to improve
even more when custom-built hardware components replace software. Lim-
itations in the design of the Isotach prototype were discovered, and recom-
mendations were made to improve performance in future Isotach systems.
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Background

This chapter provides a brief overview of isotach networks, our Isotach pro-
totype, and the components that went into building the prototype. It is
assumed the reader is already familiar with isotach networks, and the tech-
nologies included in the prototype. The interested reader should turn to
[15, 14, 1, 13] for more detailed information.

2.1 Isotach Networks

Isotach networks [20, 15] are a new class of network designed to reduce syn-
chronization costs in parallel computations. They provide strong guarantees
about the order in which messages are received. To obtain these guarantees,
normally a process or system would use delays or locks that are very ex-
peunsive to implement. Isotach networks can provide these guarantees with
a simple, yet scalable, implementation.

2.1.1 Isotach Logical Time

The key component of an isotach network is isotach logical time, an extension
of the logical time Lamport described in his classic paper [6]. Lamport pro-
posed a simple distributed algorithm for assigning logical times that captures
the “happens before” relation, otherwise referred to as potential causality.
Isotach logical times extend this relation by constraining the times to be
consistent with an invariant relating logical distance to logical time.
Isotach logical times are lexicographically ordered n-tuples of non-nega-
tive integers. The first component is the pulse, and the interpretation of the
remaining components can vary. In our prototype, logical time is a 3-tuple
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of the form (pulse, pid(m), rank(m)). The isotach invariant requires that a
message sent at time (7, j, k) will be received at time (i + 9§, j, k), where
0 is the logical distance between the sender and receiver. One of several
measures can be used for logical distance; our prototype uses the number of
switches through which a message is routed.

The isotach invariant provides a powerful mechanism for coordinating
access to shared data. Given the isotach invariant, a process that knows the
logical distance for messages that it sends can control the logical times at
which its messages are received. This solves race conditions in many types
of applications. One important feature of isotach networks is the ease in
which a process can send atomic multicasts, called isochrons. An isochron
is a set of operations that a process wants executed within the same logical
time pulse. These operations can be both local and remote, and appear to
be executed at the same time.

2.1.2 Isotach Network Implementation

The isonet algorithm [15] can be used to implement isotach logical time in
a network of arbitrary topology. In this network, each node is either a host
or a switch, and all communication is conducted over FIFO links. For the
purposes of this discussion, we will assume a failure-free model, although
significant progress has been made recently in the area of fault-tolerant
isotach networks [21].

Each host in the network has a switch interface unit (SIU) between the
host’s network access (normally a network interface card) and the physical
network. Each SIU and switch maintains a logical clock that keeps the pulse
component of logical time. SIUs and switches remain loosely synchronized
by exchanging tokens, which separate pulses of logical time. The sending
of a token marks the end of one pulse of logical time, and the beginning of
another. Hence, switches and SIUs increment their logical time clocks when
they send tokens. When a switch receives token ¢ from all of its neighbors,
it sends token ¢ + 1 on all outputs. All messages are time-stamped by the
sending SIU with the desired logical execution time. This timestamp must
be at least current logical time + d, where d is the logical distance to the
receiver of the message. During a pulse, switches and SIUs always handle
the available message with the earliest logical timestamp.
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2.2 Isotach Prototype

The isonet algorithm will maintain isotach logical time. In practice, this
algorithm is difficult to implement without making significant changes to the
network hardware. The Isotach prototype [14] modifies the isonet algorithm,
while still maintaining the isotach invariant. The new algorithm allows
messages to traverse the network as quickly as possible. They are then
buffered at the receiving node until the correct logical time is reached for
execution. The prototype guarantees that once a token ending logical time
pulse t is received at host n, there are no more messages time-stamped with
logical time t that haven’t been received at host n.

One way to maintain logical time and exchange tokens is to build this
functionality into a network switch. This was not a realistic goal for our
prototype, so we designed a token manager (TM) that sits on one output
port of every network switch. Version 1 of the prototype is completely
implemented in software on the host and network interface card. Version
2 will be realized shortly, and will have custom-fabricated hardware for the
SIUs and TMs.

The prototype was implemented using a Myrinet physical layer for the
network. We use a modified messaging layer (FM), which now contains
much of the isotach functionality. The hosts have Pentium and Pentium
Pro processors ranging in speed from 166 to 200 Mhz, and are running
Linux kernel 2.0.30.

2.2.1 Switch Interface Unit

The SIU sits between the host and the physical network. In version 1, the
SIU is implemented on the Myrinet network interface. In version 2, it will
be a custom hardware device located between the network interface and
the Myrinet switch. Two key pieces of information that the SIU maintains
are the current logical time, and the logical distance to every other host in
the network. The SIU maintains logical time by exchanging tokens with its
adjacent TM. Logical distance is easily computed for each message in our
prototype by counting the number of routing flits in the message header.
When the SIU receives an isotach message that the host wants sent onto the
network, it timestamps the message with the logical time of execution, at
least current logical time + logical distance to receiver. The network guar-
antees that the message will arrive before the token signifying the message’s
logical time of execution.

Additionally, the STU notifies the host of significant logical times by



6 Background

sending an end of pulse (EOP) marker to the host. A logical time is signif-
icant if the host has some operation that needs to be executed within that
logical time pulse. The SIU is aware of significant logical times because it
sees all messages coming from the network to the host process, and extracts
from these messages the logical time of execution. In the other direction
when a host sends an isochron, it needs to know the logical time of exe-
cution of the isochron in the event there are any local components to be
executed. The SIU notifies the host of isochron execution times by sending
an end of isochron (EOI) marker to the host. Eventually the EOI marker
will be followed by an EOP marker when the isochron’s logical execution
time passes.

Because the SIU sits between the host and the switch, it sees all message
traffic, isotach and non-isotach. The SIU can immediately tell from a mes-
sage header whether or not the message is an isotach message. Non-isotach
traffic is forwarded immediately in the direction it was traveling.

2.2.2 Token Manager

A TM is attached to one output port of every switch in our prototype
network. Currently, the TM is implemented in software on the network
interface. In version 2, the TM will be a custom fabricated hardware device.
The TM exchanges tokens with all neighbors. A neighbor is defined as the
hosts attached to the TM’s switch and TMs attached to adjacent switches.
When a TM receives the ith token from all its neighbors, it sends out the
1 + 1 token to each neighbor. This maintains a consistent progression of
logical time.

2.2.3 Shared Memory Manager

The shared memory manager (SMM) is a host-level application library !
that performs high level isotach functionality. It receives isochrons from an
isotach application, and splits them into local and remote components. The
local component is placed in the hit buffer until an EOP marker is received
from the SIU corresponding to the component’s logical time of execution.
The remote component is shipped to the SIU where it is time-stamped and
sent onto the network.

Operations in our isotach prototype are referred to as srefs. While await-
ing execution, srefs are stored in pulse buckets, each bucket corresponding

!Eventually, we would like to implement the SMM in hardware as we have done with
the SIU and TM
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to a different logical time pulse. When the SMM receives an EOP marker
from the SIU, it executes the srefs contained in the bucket that matches
the time in the EOP marker. Additionally, the EOP marker contains a sort
vector that has the correct execution order of srefs in the bucket. The srefs
are sorted in accordance with the three components of logical time. This
gives a total ordering to all operations in our isotach network. When the
SMM executes the operations contained in a bucket, it may also handle an
EOI marker in the bucket. This signifies that an isochron with remote com-
ponents was sent time-stamped with this pulse. The hit buffer is checked at
this time to execute any local srefs in this remote isochron. Additionally, the
SMM can execute any srefs that were issued in purely local isochrons, up to
the next pending isochron with remote components, while still maintaining
sequential consistency.

When an isotach application is building an isochron, it sends each opera-
tion individually to the SMM. The operations are buffered in the SMM until
the application signals that it has sent the last operation of the isochron. At
this time the buffered isochron is shipped to the SIU. This additional buffer-
ing in the SMM is significant because it impacts performance as discussed
in chapter 5.

As its name implies, the SMM manages an isotach shared memory sys-
tem. It provides strong consistency, with operations to read, write, schedule,
and assign values to shared memory variables. The copyset of shared mem-
ory variables is maintained in the SMM. An API is exported to an isotach
application allowing it to read and write shared variables transparently while
maintaining consistency.

The SMM also exports an API allowing isotach applications to pass
messages. Upon execution, messages are passed to user-defined handlers.
The prototype has no notification mechanism for message arrival; users must
poll in order to extract messages. Infrequent polling may delay a messages’
execution in real time, but the message is always guaranteed by isotach to
maintain total/causal ordering and sequential consistency.

2.3 Myrinet

Myrinet [1] is a local area network with an extremely high data rate devel-
oped from technology used for massively parallel processors. A Myrinet link
is a full-duplex pair of 1.28 Gbit/s point-to-point channels. The Myrinet
physical layer provides a very low error rate combined with high bandwidth
and low latency. Flow control is provided on every link. The switches use
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cut-through routing. Myrinet networks can be of an arbitrary topology, and
performance is very scalable because they don’t use a common bus like many
data-link layer protocols [8, 2, 16].

The distinguishing features of the Myrinet network interface are its gen-
eral purpose microprocessor, called a LANai, and up to 1 MB of high-
performance SRAM. The network interface is distributed with source code
and a C programming language compiler, allowing any customer to tailor
the network interface to its needs. This combination of interface, LANai,
SRAM, source code, and compiler has recently facilitated a push in the
research of high performance messaging layers.

The Myrinet network interface makes use of send and receive DMA en-
gines to move data to and from the network. The host is given access to the
SRAM through programmed I/O, and the LANai can move data from the
SRAM to the host memory and back with a third DMA engine. The LANai
only operates at 30-40 Mhz, so the use of this third DMA engine is critical
to obtaining good performance.

2.4 Fast Messages

Fast Messages (FM) 1.1 [13] is a high performance user-level messaging layer
that runs over Myrinet. Like most recent experimental protocols, FM keeps
the operating system out of the critical path by giving the user process
access to the network. FM is a good match for isotach networks because
it provides reliable FIFO delivery of messages. FM uses sender-based flow
control that forces hosts to allocate buffer space for every other host on the
network, thereby guaranteeing that buffers cannot be overrun. FM assumes
the network is reliable, a good assumption with Myrinet.

FM uses polling as the means of delivering messages to the user. How-
ever, when the user polls, all available messages are extracted from the net-
work. In many applications, this type of nondeterministic polling forces the
user application to implement its own buffering layer, thereby not allowing
the application to realize the full bandwidth potential of FM. Upon message
delivery, FM calls a handler specified by the sender. Handlers shouldn’t do
much more than pass the message to the user application, as they are in the
critical path on the receive side.

FM 1.1 achieves a one way latency of about 11 us for small messages,
and a bandwidth of over 250 Mbits/s for large messages. FM’s performance
numbers are competitive with other messaging layers for the small message
sizes used by most applications.
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We modified FM 1.1 for our prototype. First, we ported FM to Linux,
an effort that focused on byte endian issues. Additionally, function calls
were added that supported isotach functionality. A key point, however, is
that the code path for messages using the FM API was not modified; only
isotach messages are affected by the modifications.

2.5 Chapter Summary

The Isotach prototype was implemented by modifying Fast Messages 1.1 and
running it on hosts linked with a Myrinet network. Although the isotach
invariant is simple in concept, it is not necessarily simple in implementa-
tion. This chapter gave an appreciation for the complexity involved in one
implementation of an isotach network.



10

Background



3

Communications Analysis and Simulation
Tool

The Communications Analysis and Simulation Tool (CAST) is a program
to help evaluate the performance of a network [11]. The tool was developed
by the Naval Surface Warfare Center, Dahlgren Division (NSWCDD). It is
an extension of ttcp, a transport control protocol (TCP) benchmark used to
measure throughput. NSWCDD extended ttcp to measure latencies and give
the experimenter much more flexibility in setting up experiments [3]. Isotach
is currently under consideration by NSWCDD for use in future Department
of Defense systems. NSWCDD requested that we run CAST over our Isotach
prototype so we could give them performance results using their tool. This
chapter describes CAST and the work that went into implementing Isotach
and FM modules for CAST. Results of performance tests on our Isotach
prototype using CAST will be presented in chapter 5.

3.1 Description

CAST is a very flexible network performance tool. The user gives com-
mand line options to customize a performance experiment. The most typi-
cal command-line options determine the architecture to use (sockets, ATM),
protocol (TCP, UDP), the name of the remote host, and message size. Other
settings include buffer alignment, amount of data or number of packets to
send, thread priorities, and output reports. CAST is also useful as a back-
ground load while running other experiments. A typical CAST measurement
consists of three phases. The first phase determines the offset between the
client and server clocks. The second phase measures the one-way and round-
trip latencies between the client and server. The third phase measures the

11
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throughput of the data channel.

CAST works well over popular local area network technologies with typ-
ical latencies measured in milliseconds. However, in high-performance sys-
tem area networks where latencies are measured in tens of microseconds, any
overhead that is included in the measurement has a much greater impact on
the results. We did not notice CAST overhead when we initially tested the
tool between hosts on our department LAN where latencies are measured
in milliseconds. But when we moved CAST to our Isotach cluster (with
sub-millisecond latencies), the overhead’s effect on the test results became
apparent.

3.1.1 Offset Measurement

In addition to round-trip latencies, CAST reports one-way latencies between
a client and a server. Typically to obtain one-way latencies, either the host
clocks must be synchronized, or the difference between the client and server
clocks must be known. There are many network clock synchronization algo-
rithms [9]. The Network Time Protocol (NTP) [10] is a standard in common
use, but it only keeps clocks synchronized to within a few milliseconds. Any
algorithm that can keep clocks synchronized at a level of granularity useful
to system area network performance tests (~1 us) would put enough load
on the host processors and the network (in the form of control traffic) to
affect the results. CAST takes another approach and measures the offset
between the client and server clocks.

CAST uses a round-trip message and the following formula for the offset
computation:

Offset = ((tp — ta) — (ta — to)) = 2 (3.1)

where

t, is time message is sent by client according to client clock

tp is time message is received by server according to server clock
t. is time message is returned by server according to server clock
tq is time message is received by client according to client clock

This formula is accurate only if the one-way latencies are equal on the round-
trip used to calculate the offset. Therefore, the offset can only be considered
an approximation of the difference between the client and server clocks, be-
cause it can not be verified that one-way latencies are exactly equal. In order
to make this approximation more accurate, CAST records the timestamps
on 1000 round-trips, and uses the round-trip with the lowest delay to obtain
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the offset measurement. The delay is computed as:
Delay = ((tg — ta) — (tc —tp)) + 2 (3.2)

CAST is assuming that the round-trip with the lowest average one-way delay
will have one-way latencies that are close to equal. As will be discussed in
section 3.3, we found that while this assumption is strong enough for slower
legacy LANSs like Ethernet, it is not valid for high-performance messaging
layers that measure latencies in microseconds.

Computer clocks will drift apart in time. The CAST documentation
claims that if the clock drift is less than 300 parts per million, then the
offset is accurate for the duration of the test. At a rate of 300 parts per
million, clocks will drift apart by 1 us every 3.33 milliseconds. As will be
discussed in section 3.3, this is too much clock drift for use in our Isotach
measurements.

If the CAST user decides to run more than one test iteration in an
experiment, the clock offset is recomputed for each iteration to account for
clock drift. CAST also gives the user an option to compute the clock drift
to help determine the validity of the offset.

3.1.2 Latency Measurement

In phase II of a CAST measurement, 100 packets (this number can be
changed on the command line) are sent round-trip, and four timestamps
are recorded for each packet. These timestamps are taken at the same
points as they were in the offset measurement in equation 3.1. From these
timestamps, the average round-trip latency (minus the turn-around time) is
calculated:

Latency = (tg — tq) — (tc — tp) (3.3)

Additionally, the average one-way latencies in each direction are calculated
using the offset:
SendLatency =ty —t, — Of fset (3.4)

ReturnLatency = tqg —t. + Of fset (3.5)

For each of these figures, CAST reports the average, minimum, maximum,
standard deviation, and variance.
3.1.3 Throughput Measurement

Phase IIT of a CAST experiment is the throughput measurement. Through-
put is measured at both the client and server interfaces. CAST computes
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interface throughput as follows:
T hroughput = S + (t2 — t1) (3.6)

where

S is amount of data sent over the channel

t1 is time first data byte leaves client (sender throughput)or arrives at server
(receiver throughput)

to is time last data byte leaves client or arrives at server

Additionally, CAST uses the offset to measure an end-to-end throughput:
T hroughput = S + (ta —t1 + Of fset) (3.7)

where
t; is time first data byte leaves client according to client clock
to is time last data byte arrives at server according to server clock

End-to-end throughput is distinct from the interface throughput because
it includes the time the data spends on the wire. In a throughput test that
measures a packet burst, the end-to-end throughput is an interesting figure
because the network latency can potentially dominate the measurement.
However, as § increases, the amount of time it takes to conduct the test
increases, and the latency has a much smaller impact on the result. In other
words, the end-to-end throughput converges toward the minimum interface
throughput as § increases.

3.2 Implementation of Isotach Module

CAST is designed with a modular structure that simplifies the implemen-
tation of new communication protocols and architectures. The CAST main
module defines generic functions and data structures. A network module is
required for each specific type of network and/or protocol the experimenter
wishes to use (e.g. isotach). CAST requires that the network modules imple-
ment specific functions (setup, close, send, receive, etc.) and data structures.
At runtime, the addresses of these specific functions and data structures are
linked to the main module’s generic functions and structures. The main
module can then open/close a channel and send or receive transparently
using its generic function calls.
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3.2.1 Logical Channels

It takes four logical channels to conduct a CAST experiment. The data chan-
nel carries the data during the latency and throughput tests. The handshake
channel is used for control information. The remote channel carries results
of the test from the server back to the client. Finally, the offset channel is
used to exchange the timing information to calculate the offset.

CAST does not require use of the same network architecture for the
different channels. For example, if there are Ethernet and ATM networks
running parallel among hosts, the ATM network can be used for the data
channel, and Ethernet sockets can be used for the other three channels. The
command line parameters determine what network is used for each channel.

The hosts in our Isotach prototype are connected to a common file server
through an Ethernet. In the first implementation of our isotach module, we
decided only to implement the data channel. We used the Ethernet for the
other three channels with a sockets module provided in the CAST software
distribution. Each channel implemented within a module requires a mini-
mum of five specific functions: open client, open server, send, receive, and
close. There are other functions required of all modules regardless of which
channels it implements. We saved a significant amount of development time
by using the existing sockets code to run the remote, offset, and handshake
channels.

3.2.2 Reliance on UNIX

CAST is programmed for the UNIX operating system and relies on UNIX file
descriptors to identify channels when sending and receiving. One advantage
to this is the ability to do asynchronous I/O operations by utilizing the
select () system call to test if any data is available for reading from a
file descriptor. The select() system call is also useful for multiplexing
file descriptors to see if one of a set has data to read. In the CAST main
module, the select () system call is utilized in several places, thus assuming
that all protocol modules utilize file descriptors to identify channels. Isotach
1.0 and FM 1.1 use node identification numbers in the form of integers to
identify channels, and these node identification numbers are not compatible
with the select () system call. Therefore, some creative modifications were
made to the CAST main module to work around I/O multiplexing while
implementing the Isotach and FM modules. This “hacking” of the main
module was inconsistent with one of CAST’s design goals. In theory, a
protocol module implementation in CAST should not require any changes
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to the main module.

3.2.3 Additional Buffering Layer

Isotach and FM extract messages from the network using an explicit polling
mechanism. During a poll, each waiting message is examined sequentially
in arrival order. An index to the appropriate handler is obtained from the
message header, and the handler is executed, passing the address and length
of the message as parameters. When the handler returns, the message buffer
is returned to the system to accept another message. If the user desires that
data persist beyond the life of the handler, the data must be copied to user
space. The number of messages obtained in each poll is nondeterministic,
because the handlers for every waiting message are executed.

When the CAST main module calls a receive function, it passes the
receive buffer address as a parameter, and expects one message to be placed
at that address. But if the CAST receive is linked to the Isotach or FM
receive, then the corresponding poll might bring in more than one message.
This forced us to implement a buffering layer in the FM and Isotach modules
of CAST to handle the event of more than one available message upon the
call of the receive function. This gives CAST an additional memory copy on
the receive side. It will be shown later that this affects our CAST latency
results, but has no effect on the throughput.

The need for this additional copy in the application layer would not
have been necessary had the Isotach API allowed the application to specify
the number of messages to extract during a poll. This is an option we are
exploring for future versions of Isotach.

3.2.4 Packet Size

Messages on the CAST data and offset channels contain a data structure
holding timestamp information for the latency and offset computations.
This data structure is 44 bytes. Isotach messages carry a 20 byte header,
so the minimum packet size allowed using the CAST Isotach module is 64
bytes. All Isotach and FM packets are a constant size, determined at compile
time.

FM 1.1 fragmented messages that were larger then the compiled packet
size, while Isotach 1.0 did not fragment messages. It may be decided that fu-
ture versions of Isotach contain this functionality. At compile time, the max-
imum isotach message size was determined by subtracting the header size (20
bytes) from the packet size. This number was set in the MAX_IS0_MSG_SIZE
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constant. The CAST isotach module reduced the test message size if it
was larger than the compiled MAX_ISO_MSG_SIZE. The drawback to setting
the packet size at compile time was the compilation effort to run tests with
larger message sizes. The alternative would have been to implement frag-
mentation and reassembly in the cast isotach module, but this would have
added overhead that we did not want included in the measurements.

3.3 Offset Accuracy

CAST measurements that were computed using the offset appeared to be
skewed. We expected the one-way latency from the client to the server
to be very close to the return latency. CAST results did not support this
hypothesis. The measured one-way latency results were very inconsistent,
with results varying by as much as 150%, even giving negative one-way
latency results on occasion. At the same time, the round-trip results, which
did not rely on the offset, were very consistent with very little variance.

As explained in section 3.1.1, the offset is computed from a single round-
trip where it is assumed the one-way latencies on that round-trip are equal.
To save development time, we did not implement the offset channel over
Isotach, but rather used the available Ethernet sockets offset channel imple-
mentation. Ethernet is a CSMA-CD protocol, with the potential for multiple
resends of frames with random backoff times if collisions are detected. The
Ethernet link among our hosts carries NF'S and other control traffic, so the
potential for collisions is likely. If the round-trip used to compute the offset
measurement suffers any collisions, then the offset measurement will likely
be skewed.

Increasing the number of offset samples did not improve the accuracy
of the offset measurement. In fact, because increasing the number of offset
samples increased the length of time to obtain the offset measurement, the
offset became even more inaccurate probably due to the effects of clock drift.

The offset measurement client to server receive () function did not par-
allel the server to client receive (). On the server side, the offset packet is
received with an asynchronous notification, and multiplexing is conducted
between the offset and handshake channels. It takes a series of select()
system calls to perform this type of receive. The client’s receive is a syn-
chronous blocking receive, and uses a lot less overhead than the server’s
receive. These unequal receives contribute to unequal one-way latencies,
and hence to an inaccurate offset measurement.

We added offset channel functionality to the Isotach and FM CAST



18 Communications Analysis and Simulation Tool

modules. To make one-way latencies equal, we implemented the receives
on both sides without I/O multiplexing. By removing multiplexing and
implementing over more predictable messaging layers, we believed we would
obtain much more accurate offset measurements. The results supported
our views. The one-way latencies were now much closer together, and only
occasionally would we obtain one-way latency results that appeared skewed
by the offset. This skewing still happened often enough to give us doubt
about one-way results.

We measured the clock drift on our test hosts as 10-15 parts per million.
This translates to a drift of 10-15 us for every second. The typical latency
test is only 100 round trips, so a latency test finishes long before the clock
drift becomes a factor. However, we were sending enough data for the
throughput test to last as long as 8 seconds, which would allow the clocks
to drift more than 100 us further apart. This discrepancy is unacceptable
in a system area network where round trip latencies are typically less than
100 ps.

The inaccuracies in the CAST offset measurement were not noticeable
when we ran CAST over an Ethernet network that measured latencies in
milliseconds. However, when we moved CAST to our Isotach cluster where
latencies were measured in microseconds, the offset inaccuracy quickly be-
came apparent. For these reasons, we lost confidence in any computations in
CAST that used the offset measurement. However, we still had confidence
using CAST to measure round-trip latencies, and throughputs at the client
and server interfaces.

There was little impact to not using all the CAST measurements. One-
way latencies were no more significant to us than round-trip latencies. As ex-
plained in section 3.1.3, we sent enough data on the throughput test to make
the end-to-end throughput result almost equal to the interface throughput
results.

3.4 Chapter Summary

CAST is a network performance tool that gives the experimenter flexibility
to customize tests. CAST provides an offset measurement that measures the
difference between the client and server clocks, allowing additional computa-
tions such as one-way latencies. However, we did not gain enough confidence
in the offset measurement to find it useful for our performance study, and did
not use measurements that relied on the offset. The results of performance
tests using CAST are presented in chapter 5.
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Test Design

Before conducting any testing, we determined the characteristics we wanted
to learn about Isotach, and translated those characteristics into measurable
metrics. We designed tests to measure these metrics independently of other
variables. We decided to run some tests on FM and use the results as a
baseline for comparison with Isotach.

4.1 Isotach and FM

We ran some of our tests using both Isotach and FM. It is important to note
that the comparison was not for the purpose of competition, but rather for
establishing a baseline against which we could compare Isotach’s perfor-
mance. We knew the Isotach ordering guarantees were not without cost,
and the additional overhead to achieve these guarantees would keep Isotach
from achieving the performance of FM 1.1. Isotach 1.0 was implemented by
modifying FM 1.1, so keeping Isotach’s performance close to FM’s perfor-
mance was a goal. We ensured that tests comparing Isotach and FM were
run under similar conditions. Due to Isotach’s 20 byte header, for a given
packet size, FM can carry 20 more bytes of data per message. For all FM
and Isotach measurements using a given packet size, the amount of data per
packet was always 20 bytes less than the packet size. This amount of data
maximized Isotach’s throughput, but not FM’s throughput. We wanted to
see Isotach’s performance compared to FM with equal size packets carrying
equal amounts of data. FM would have had a higher round-trip latency and
higher bandwidth than the numbers reported in chapter 5 had we maximized
the data load per packet.

19
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4.2 Message Passing versus Shared Memory

For Isotach tests, we chose to use the message passing API instead of the
shared memory API (see section 2.2.3 for a discussion of the difference be-
tween these two interfaces). We wanted to compare Isotach to our baseline
of FM 1.1, and the shared memory API did not lend itself well to this
comparison. The shared memory API sends reads and writes through the
network, and the amount of data in a read or write is fixed (either 32 or
64 bit variables). With the shared memory API, we could not get a good
indication of how Isotach performance changed as packet size and payload
changed.

Since we wanted to compare Isotach to a baseline of FM, we chose to
use the Isotach message passing API because it is in the same paradigm as
FM, two hosts exchanging messages. However, using the message passing
API gave us significantly higher latency measurements for Isotach. Because
the shared memory API does not perform a memory copy of data to the
user at the turn-around point in round-trip latency measurements, it has
lower round-trip latency than the message passing model. Additionally, the
return trip on a shared memory read is made using FM, since no ordering
guarantees are necessary once the variable value is read. See [14] for initial
performance measurements using the shared memory model.

4.3 Other Test Parameters

Studies indicate that most network traffic utilizes small packets [4], so we
were most interested in Isotach’s performance at packet sizes of 256 bytes
and fewer. We chose to test a minimum packet size of 64 bytes, because
it was the smallest allowable packet size using CAST (due to the minimum
44 bytes of data). However, we needed to see how Isotach scaled to larger
packet sizes, and selected 1024 bytes as a representative maximum packet
size.

We ran the experiments on both 1 and 2-switch networks. Equipment
limitations prevented tests on clusters with larger network diameters. Add-
ing only one switch to the network provided a very modest insight to Iso-
tach’s scalability.

We did not have a homogeneous system. We have 2 different processors,
3 CPU speeds, and 2 types of LAN connections. All tests with which results
are compared against one another were run on the same equipment, in order
to keep other variables from becoming a factor. New equipment will soon
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be in place to make the cluster homogeneous.

4.4 Latency Test

Latency is a very important measure in tightly coupled systems with fine
grain communication patterns. In our tests, latency measures the travel time
from the sender’s application to the receiver’s application. Studies suggest
that, in general, applications are most sensitive to software and hardware
overhead, as opposed to the gap between packets (affecting bandwidth) or
the physical link latency [7]. More specifically, findings indicate that this
overhead is the dominant factor in determining communication performance
for applications with request-response communication patterns using small
messages [5]. An original goal of the Isotach project was (and is) to incur
no more than twice the latency of the messaging layer upon which it was
built.

Our custom latency test sent 500 messages round trip, one at a time,
between a client and a server. The clock began immediately before the first
byte was sent, and it ended when the last byte of the last message was
received. Upon return from a round trip, the message was copied from the
user-defined handler to the user’s address space. The average round-trip was
computed by taking the total time and dividing it by the number of round-
trips. This sequence completed one measurement. We took the average of
50 measurements. The round-trip latency figures excluded the turnaround
time at the server (~0.5 us).

This test was run using 1-switch and 2-switch network configurations on
both Isotach and FM across the entire range of packet sizes.

4.5 Throughput Test

Although current focus in system area network research is moving away
from bandwidth toward latency, throughput is still a very important met-
ric. Many applications need to move a large amount of data as quickly as
possible.

The custom throughput test measured bandwidth at the client and server
interfaces. At each interface, the clock was started when the first byte of
data crossed the interface, and stopped when the last byte crossed. The
computation was the same as equation 3.6. The measurement was taken
5 times sending 40 Mbytes of data through the link in each measurement,
reporting the average measurement in the final result. We decided on 40
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Mbytes after running many tests using CAST, and finding this data amount
consistently gave results with a variance of less than 1 Mbits/s.

This test was run using 1-switch and 2-switch network configurations on
both Isotach and FM across the entire range of packet sizes.

4.6 Contention Test

It was discovered early in our performance study that the sender was clearly
the bottleneck in our Isotach system. We wanted to see how much room
we had to improve the sender’s efficiency before the receiver became the
bottleneck. We designed a test in which many clients sent messages as
rapidly as possible to a common server. This test gave us the ability to
observe the maximum throughput at the server interface. It also provided a
feel for the stability of the Isotach system under high contention, hence the
test name.

The setup phase of this test included the determination of how many
clients can send to a common server before adding another client fails to give
more throughput at the server interface. Once this was accomplished, the
throughput was measured at the client and receiver interfaces, with all clients
sending data continuously at their maximum rate for 30 seconds. The code
was instrumented to see if flow control throttled the clients. Additionally,
the amount of sent data was checked against the amount of received data
to see if any packets were dropped. This test was run on both Isotach
and FM, at 64 and 1024 byte packet sizes, using only a l-switch network
configuration.

The round-trip latency was also computed under contention by adding a
client that only exchanged round-trip messages with the server. We expected
the latencies to be very high due to the large number of messages queued on
the server. In this test, round trip messages were exchanged with the server
for 30 seconds, after which the average round-trip latency was computed.

4.7 Isochron Test

A characteristic of an isotach network is its ability to send isochrons, groups
of operations that appear to be executed atomically. The simplest way to
implement isochrons is to buffer the operations while the isochron is built,
and then send the isochron messages in the same logical time pulse with
the same receive time. Therefore, in our prototype, isochron elements are
held up at the sender while the isochron is constructed. We expected sender
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bandwidth to decrease as the size of isochrons increased, because we were
buffering messages longer in the sender.

The isochron test measured bandwidth as the size of isochrons increased.
The interesting bandwidth measurement was at the sender, because we knew
the sender to be the bottleneck. The sender continued to send isochrons
until a total of 40 Mbytes of data were sent, and then the resulting sender
bandwidth was computed and reported.

4.8 Impact of Tokens on Non-Isotach Traffic

Our Isotach prototype ensures that non-isotach traffic is not delayed any-
where in the system due to Isotach overhead. We wanted to show this
by measuring FM’s performance with an FM background load versus FM’s
performance with an Isotach background load. We did not resolve the ex-
perimental design issue of how to ensure the test streams were comparable.
Therefore, we decided to run tests with the more modest goal of examining
the effects of token traffic on FM.

We reran the latency and throughput tests on FM, except this time we
had the SIUs and TMs exchanging tokens while we were executing these
tests. This test at least showed the effect of token traffic on non-isotach
streams of data. We expected negligible impact on the FM latencies and
bandwidth from the token traffic, since token passing utilizes less than 5%
of the available network bandwidth (tokens are only 5 bytes in length), and
the SIUs should pass FM traffic on to the host with minimal delay.

4.9 Chapter Summary

Tests were designed to measure latency, throughput, performance under
contention, impact from the increasing size of isochrons, and the effect of
token passing on non-isotach traffic. This chapter detailed the test designs,
and the conditions under which the tests were run.
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Results

In this chapter, we present the results of our performance study. In general,
the results are consistent with expectations, although in some instances,
Isotach did not perform as well as expected. In these cases, we investigated
further to discover the reasons for the lower than expected performance.
In all cases, we were able to explain the performance results with a high
degree of confidence in our explanations. The knowledge gained through
this performance study has led to recommendations to optimize current and
future implementations of our Isotach prototype.

5.1 CAST

The results of latency and throughput tests on a 1-switch network configu-
ration are presented in figures 5.1 and 5.2. The CAST latency results are
significantly higher than those measured by our custom latency test as de-
scribed in section 4.4. However, the CAST and custom test bandwidths are
almost equal. Additionally, we noted that the CAST latencies diverged from
our custom test latencies as packet size increased. This section explains our
observations.

5.1.1 Overhead

CAST latency results were higher than expected. We ran a custom la-
tency test program that measured round-trip latencies between a client and
server. At 64 byte packets, CAST round-trip latencies were 14% higher
than latencies measured by our custom test. At 1024 byte packets, CAST
measurements were 18% higher. There were several reasons why the CAST
and custom test measurements were different.

25
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System Calls

CAST uses the gettimeofday() system call for time stamps. This is an
expensive system call, costing an average of 5 us on our system. Our custom
test uses inline assembly code that reads the CPU cycle counter from a
register. Cycles are converted to microseconds by measuring the system
clock rate and converting. The cost to obtain a time stamp in our custom
test is less than a quarter microsecond.

Memory Copies

As explained in section 3.2.3, CAST costs Isotach and FM an extra memory
copy on the receive side that we did not implement in our custom test. In
our custom test, we eliminated this extra copy leaving a single copy from
the receive buffer in host memory to the application. Additionally, there is
a small cost to do the buffer management associated with the extra memory
copy in CAST.

Function Layering

An additional cost of CAST’s modular implementation is function layer-
ing in conducting sends and receives. For example, to receive a message
through the Isotach module, Nread() is called in the main module, which
calls read_data generic(), which calls

intrfc_strct ptr->intrfc funct_strct.recv.data(), which is a pointer
to the recv_data_isotach() function in the isotach module. After the data
is received, in some cases there is other code to be executed, before the
functions return, that adds to the critical path of the latency measurement.
A send has similar layering, but with one less function call. In fairness to
CAST, it was only discovered after the performance testing was completed
that the optimizer was turned off during compilation of the CAST source
code. The optimizer can do function inlining that can make this function
layering much more efficient. To see what the optimizer would do, we re-
compiled CAST with the maximum optimization level, and ran an Isotach
performance test with a large packet size. The round-trip latency dropped
from 266 ps to 261us, a gain of less than 2%. Therefore, this slight op-
timization is not reflected in the performance numbers presented in this
chapter.



28 Results

Test to Remove Overhead

To verify that CAST overhead was causing the increase in latency, we modi-
fied CAST to remove some of the overhead. The modification consisted of in-
serting time stamps using inline assembly code within the Isotach module im-
mediately before the send, and right after the receipt of the data. This mod-
ification removed the cost of the function layering and the gettimeofday ()
system calls from the latency test, but still included the additional mem-
ory copy and buffer management costs. Without our modification, CAST
measured the average Isotach round-trip at 266.1 us for 1024 byte packets.
The modified version of CAST measured 230.3 ps. This dramatic decrease
in latency shows the cost of the CAST overhead! Our custom latency test
measured an average round trip of 225.7 us, less than the modified CAST
measurement, in part because there were two fewer memory copies on a
round-trip.

Latency Divergence

Figure 5.1 shows that CAST results diverged from the custom test results
as packet size increased. This divergence was a direct result of the addi-
tional memory copy forced by the non-deterministic retrieval of data during
polling. The size of this divergence showed how the memory copy dominates
the difference between the custom tests and CAST at 1024 bytes. As dis-
cussed in chapter 3, the expensive system calls and function layering also
play a role in the additional CAST overhead.

Bandwidth

In figure 5.2, we present the throughput results at the client interface.l
CAST performed much more closely to our custom tests measuring band-
width because two of the three CAST overhead issues were not in the critical
path of the bandwidth measurement. CAST did not take expensive time
stamps for each message in the throughput test. We will show later that
for Isotach and FM, the bandwidth bottleneck is on the client side, not the
receiver side. Therefore, there is plenty of time to do the additional memory
copy on the receiver before the next message arrives for processing. That
only leaves the function layering as a CAST overhead issue for the through-
put test, and this layering is less on the client side, where we know the
bandwidth bottleneck is located.

'In all throughput measurements, the results at the client and server interfaces were
essentially equal, so we only present the client results.
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5.1.2 Recommendations

The CAST overhead can be reduced significantly with one minor change.
CAST should obtain time stamps in the protocol modules, immediately be-
fore sends and after receives. The obvious benefit of this is to reduce the
cost of the function layering. This would also allow module implementers
to find creative ways to obtain time stamps without using expensive system
calls. But to allow this, CAST would also have to require modules to im-
plement a function translating the difference between two time stamps into
microseconds.

The other recommendation for the CAST designers does not affect per-
formance, but rather ease of module implementation. CAST should not be
reliant on UNIX. Many modern messaging layers do not use file descriptors
to identify channels, and these systems are not compatible with CAST with-
out modifications to the main module. Module implementers should not be
forced to make any modifications to the main module.

5.1.3 CAST Summary

CAST is a network performance tool that allows maximum flexibility in the
execution of network experiments. CAST has additional overhead in its ar-
chitecture that adds as much as 18% to our round trip latency measurement.
This overhead is the result of expensive system calls, function layering, and
additional memory copies. When all overhead minus the additional memory
copy was stripped from CAST measurements, the results were similar to la-
tencies obtained from custom latency tests. The CAST throughput results
were very close to what we measured in our custom bandwidth tests. This is
because most of the CAST overhead was not in the critical path of sending
messages from the client to the server as quickly as possible.

5.2 Latency and Throughput Test Results

Figures 5.3 and 5.4 provide a comparison between Isotach 1.0 and FM 1.1 for
both one and two switch networks. When a second switch was added to the
Isotach cluster, latency increased with no loss in bandwidth. As discussed
in section 5.2.1, the increase in latency is due to the later receive time. This
did not affect the bandwidth due to the pipelining of messages within the
system.

A goal of the Isotach project was to achieve 50% of the available band-
width and no more than twice the latency of FM 1.1, the messaging layer
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that was modified to implement Isotach 1.0. For 64 byte packets, Isotach’s
latency was three and a half times the latency of FM, with that number
reduced to just over one and a half times at 1024 byte packets. Thus, we
did not meet our goal at small packet sizes. For bandwidth, Isotach achieved
63% of FM’s bandwidth at large packet sizes, but only 43% with small pack-
ets. Once again, we fell short of our goal at small packet sizes. As discussed
in section 5.2.2; the memory and I/O bus contention in the host was the
main cause of Isotach’s lower than expected performance with small packets.

5.2.1 Impact of Network Configuration on Performance

Isotach demonstrated increased latency when the second switch was added
to the network. This increase was predictable, because the average token
inter-arrival time (under no load) increased from 11.6 to 13.2 us with the
addition of the second switch. Additionally, the isotach invariant forced the
SIU to assign later timestamps because of the additional logical distance to
travel. At this rate of token exchange, messages will usually have a real-
time delay at the receiver waiting for logical pulses of execution. When the
Isotach version 2.0 hardware is placed into the network in the near future,
we expect these delays to become negligible as the token inter-arrival time
may be less than a microsecond.

Even though the latency increased, adding a second switch had no effect
on the network bandwidth. The bandwidth was stable because messages
were pipelined, and the rate at which they were pushed onto the network
did not change. This stable bandwidth was a good sign of the scalability of
Isotach networks, though a more convincing result will come when a larger
cluster is tested.

5.2.2 Evaluating the Results
Message Passing versus Shared Memory Latency

The Isotach round-trip latency with 64 byte packets was 99.1 us. This was
considerably higher than the shared memory remote read latency reported
in [14], 54 ps. The reason for this difference was two-fold. First, the mes-
sage passing API had two layers of handlers and two copies on each receive
(one copy from the host receive buffer into the SMM, and a second copy
from the SMM to the application), versus one handler and one copy for
the shared memory read at the turnaround point. Additionally, the shared
memory remote read was returned via the FM API, so it did not have the
Isotach SMM overhead on the return trip. We modified the SMM code to
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turn around messages in the isotach layer and return them with an FM
send, similar to the treatment of a remote read. This resulted in a message
round-trip latency that was equal to a shared memory remote read latency.
There was no inherent difference between the Isotach shared memory model
and message based model, except in the additional layer of handlers on the
receiver.

Nondeterministic Wait

Isotach networks have the potential for additional latency while messages
wait for their logical time of execution. There is a set of events that must
occur before an sref is executed. First, the sref is consumed from the receive
buffer and placed in a bucket. Some time later, a corresponding EOP marker
is consumed which flags the bucket as executable. Then the bucket is sorted
and drained, executing each sref’s handler in logical time order. Figures
5.5 and 5.6 present two possible receive scenarios. In the first figure, the
EOP marker is consumed in the same poll as the sref, thereby draining the
bucket before the poll returns control to the user application. In the second
figure, the sref is consumed, but the EOP marker has not yet arrived at the
host. The sref waits in the bucket until the poll following the EOP marker’s
arrival in the receive buffer. Once the EOP marker is consumed, the bucket
is sorted and drained. The sref’s delay in the SMM is dependent upon the
frequency of polling, the arrival of the EOP marker, and the number of
other operations the SMM must execute for other packets that have arrived
in the host receive buffer. For our latency performance test, the real issue
is whether the EOP marker is in the host receive buffer when the message
is consumed. Stated differently, the issue is whether it takes one poll or
many polls before the user level handler is executed. If the user polls often,
and the token inter-arrival time is low, messages will have minimal delays
in the SMM. We expect these circumstances to be the case in most isotach
applications.

Additional Memory Copies

We were not surprised to see that Isotach had higher latency than FM. The
Isotach messaging layer was implemented with 2 levels of handlers resulting
in twice as many copies as FM on both the sender and receiver. The first
sender copy is placed into the to_niu buffer while the isochron is built. From
there it is copied to the network interface using programmed I/O. On the
receiver side, a handler copies the message out of the receive buffer into a
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bucket. Once the bucket is executed, the user-defined handler copies the
message into user space.

Isolating the Overhead

Although we understood Isotach to have higher overhead than FM due to
layering of handlers and additional memory copies, this explanation did not
account for 71 us of latency difference between FM and Isotach at 64 byte
packets. It also did not account for the fact that this latency difference
stayed relatively constant as packet size increased. If the data copies were
dominating the overhead, then we expected to see this difference increase
linearly as packet size increased. The bandwidth difference between Isotach
and FM also stayed relatively constant.

We determined that the sender was the bandwidth bottleneck. The
sender was not blocking on sends due to the FM flow control mechanisms.
Yet, the sender and receiver bandwidths were equal. This observation meant
that the receiver was keeping up with the sender, without blocking the
sender. We instrumented the test code to measure the cost of the Isotach
send sequence. This sequence consists of three function calls to build and
send an isochron: iso_start(), iso_sendmsg(), and iso_end(). With
1024 byte packets, this sequence takes on average 58.2 us. If a process was
doing nothing but this send sequence at the rate of one send every 58.2 us,
it would achieve a theoretical throughput of 138.0 Mbits/s (with 1004 bytes
of payload per packet). Our Isotach throughput test at 1024 byte packets
reported a bandwidth of 138.5 Mbits/s. We appeared to have exceeded the
theoretical maximum throughput, but that is only because we averaged the
send time to the nearest tenth of a microsecond. More significantly, since the
measured throughput corresponded to the maximum sending rate achievable
by the sender, it proved the sender to be the bottleneck in our system.

Excessive Polling

The sender was polling the receive queue for every isochron sent. It was
necessary for the SMM to poll in order to keep queues from being overrun.
Every sent isochron reserves an element of the hit buffer and causes the SIU
to send an EOI marker followed some time later by an EOP marker. If
a host continually sends without polling, eventually the hit buffer will be
overrun or the host receive buffer will fill up with EOI and EOP markers
that need to be extracted. The SMM can not afford to assume the user
application will poll, but at the same time it does not need to poll every
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send, just periodically. We discovered that when polling every eighth send,
the SMM kept the buffers from being overrun, while amortizing the cost of
this poll over eight sends. This gained us 10 Mbits/s of throughput at 64
byte packets and 4 Mbits/s with 1024 byte packets. All performance test
results listed in this report were obtained with this small optimization in
place in the system.

One issue with this optimization is that in Isotach 2.0, the EOI markers
might be used for SIU flow control. EOI markers are only returned by the
SIU once the isochron is on the wire and the buffer space is available. It
may be necessary for the host to see these EOI markers to know that the
buffer space is available, and polling every 8 sends may need to be studied
with this flow control mechanism in mind.

Bus Contention

While we gained back some of the difference in throughput with the polling
modification, it didn’t account for most of the performance difference be-
tween FM and Isotach. We determined that the programmed I/O moving
data from the host to the network interface card was taking more time than
expected. The only explanation for the long programmed I/O was bus con-
tention on the memory and I/O buses. We conjectured that possibly the
EOI and EOP markers moving from the network interface to the host were
blocking the programmed I/O from the host to the network interface.

In our throughput tests, we were sending purely remote isochrons. Es-
sentially, the EOI and EOP markers were overhead on the sender and were
not necessary because we knew there were no local isochron components for
execution on the sender. For this reason, we were able to instrument the
SMM and SIU so that a sent isochron did not trigger the return of markers
from the SIU. The receiver still handled EOP markers to mark significant
pulses for the received Isotach messages. We reran the throughput tests,
and noticed an 82% improvement in bandwidth at 64 byte packets, and a
29% improvement at 1024 byte packets. Figure 5.7 shows the cost of an Iso-
tach send sequence with and without the EOI/EOP markers traveling from
the SIU to the host. Additionally, we measured the cost of the additional
copy into the to_niu buffer to see the effect of eliminating the host to_niu
buffer. The cost of the FM_send () call is listed for comparison. The columns
labeled “Send” display how the bus contention affects the one-way latency
by slowing down the sender. Additionally for each send measurement, the
theoretical bandwidth is listed in the “BW” column for a host doing nothing
but sending at the rate shown by the send measurement. This table illus-
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64 Bytes 1024 Bytes
Send (us) | BW (Mb/s) | Send (us) | BW (Mb/s)
Isotach 9.4 37.4 58.2 138.0
w/o markers 5.2 67.7 49.8 161.3
and w/o memcopy 4.3 81.9 46.1 174.2
FM 3.3 106.7 37.5 214.2

Figure 5.7: Send Cost and Corresponding Bandwidth

trates the cost of the bus contention and a memory copy on both latency
and throughput.

The fact that the programmed I/O can potentially contend for the buses
with the DMA of EOI/EOP markers is further compounded because our
current prototype DMAs an entire PACKETSIZE of data for each EOI and
EOP marker, even though they may only contain a few bytes of data. For
packet sizes of 1024 bytes, this is quite expensive, because an eight byte EOI
marker is the payload for a one kilobyte packet.

5.3 Contention Test

Results for the contention test described in section 4.6 are summarized in
figures 5.8 and 5.9. The Isotach prototype network maintained stability
with no dropped packets in a high contention situation where a receiver
host was overwhelmed. The throughput data shows that we can improve
the performance of the sender significantly before the receiver host will start
becoming the bottleneck. Of the four data points obtained in the throughput
results in figure 5.8, only Isotach at 64 bytes was obtained without flow
control blocking the senders. The Isotach receiver at 64 byte packets could
process 83.0 Mbits/s. Without optimizing the receive sequence, this is the
maximum receiver throughput, no matter how much we optimize the send
sequence. With the other three data points, flow control was blocking the
senders. It is not apparent whether the receiver could have attained more
throughput, because the blocking prevented us from knowing if the receiver
was always busy processing packets.

The results in figure 5.9 show large latencies when sending to a busy
receiver. The packets spent a lot of time in the receive buffer (and pulse
buckets for Isotach) waiting for other packets in front to be processed. The
latencies were low for Isotach at 64 byte packets relative to FM because the
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Isotach receive queue was shorter than the FM queue. The Isotach receiver
was keeping up with the senders as evidenced by the lack of flow control
blocking. If we had added more load on the Isotach receiver, these latencies
would have increased as the receive queue length increased and the senders
started blocking. At 1024 byte packets, both FM and Isotach senders were
blocking, so the receive queues were both filled up. Yet the FM latency was
much less than the Isotach latency because FM has less overhead on the
receive side and can service its queue more quickly.

In running this test, we determined how many senders we could add and
still see increases in the receiver throughput 2. If we continued to add load
after that saturation point, the receiver throughput would stay relatively
stable, but the measured latencies would increase due to a longer receive
queue. Eventually, adding further load on the receiver would cause the
senders to time-out waiting for send credits.

5.4 Isochron Test

The isochron test described in section 4.7 provided counterintuitive results,
as displayed in figures 5.10 and 5.11. We hypothesized that increasing the
size of isochrons would decrease the available bandwidth. As Isochrons are
built, messages are buffered in the host, thus increasing the wait period
on the sender host between sends. However, now that we know that the
limiting factor on our bandwidth is bus contention between programmed
I/O of messages and DMAs of markers, if we limit this contention, then
we increase bandwidth. By increasing the size of isochrons, we amortized
the cost of sending EOI and EOP markers from the SIU to the host over
more messages. Thus, there was less bus contention per message for the
sending host. With 64 byte packets, our bandwidth increased from 38.8 to
60.1 Mbits/s as isochron size increased from one to four. With 1024 byte
packets, bandwidth increased from 137.8 to 171.5 Mbits/s. This result shows
that we could have improved Isotach throughput test results significantly by
sending isochrons with multiple messages instead of just one message.

2Three senders saturated the receiver using Isotach at 1024 byte packets. For Isotach
at 64 byte packets, and FM at 64 and 1024 byte packets, it took 4 senders to saturate the
receiver.
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5.5 Impact of Tokens on Non-Isotach Traffic

Figures 5.12 and 5.13 compare the network performance of FM with and
without token traffic in the background. In section 4.8, we stated our pre-
diction that tokens (only 5 bytes in length) would have a negligible impact
on FM latencies and bandwidth. The results were encouraging, with almost
no effect on network latencies. The bandwidth dropped 25% at small pack-
ets, but caught up with no discernible effect at large packet sizes. The small
packets were probably blocking during the programmed I/O from the host
to the network interface card while the SIU processed tokens. We expect
when the hardware SIUs are placed in the network, the network interface
will process packets from the host more quickly, since it will no longer need
to process tokens and determine packet receive times.

5.6 Comparison With Other Messaging Layers

Our tests show that Isotach compares very favorably against traditional
TCP/IP networking. For 64 byte packets, Ethernet socket and Myrinet
socket latencies exceeded Isotach latencies by a factor of 9 and 4 respectively.
Consequently, Isotach bandwidth exceeded Ethernet socket and Myrinet
socket bandwidths by factors of 9 and 2. Isotach provides strong ordering
guarantees, and still outperforms TCP /IP. However, TCP/IP provides re-
liable message delivery over unreliable networks, something Isotach cannot
provide.

In the past decade, a flurry of research has led to the development of high
performance messaging layers that have made TCP /IP networking obsolete
on system area networks [12, 17, 18]. These messaging layers have focused
on reducing the cost of protocol stacks, keeping the operating system out
of the critical path, and optimizing data movement between the host and
network interface. The result has been one way latencies ranging between
10 and 30 ps and bandwidths exceeding hundreds of megabits per second.
However, these high performance protocols do not provide the guarantees
found in Isotach. For a software version of Isotach to be within a factor of
three (in both latency and throughput) with the cutting edge of messaging
technology is very impressive.
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5.7 Chapter Summary

We implemented CAST modules for Isotach and FM, and presented perfor-
mance results using the CAST benchmarking tool. We discovered overhead
in CAST that is not present in our custom network performance programs,
and presented our own performance study numbers in comparison.

Although Isotach 1.0 does not meet all the performance goals originally
set for the project, we are very pleased with the performance of this in-
terim unoptimized version of the prototype. The addition of custom built
hardware TMs and SIUs should improve the performance even more. We
investigated and discovered the reasons for Isotach falling short of some of
its performance goals.
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Recommendations for Next Generation
Isotach

Our performance study reveals the cost of some of the design decisions in the
Isotach prototype. Many of the components limiting Isotach’s performance
can be improved by rewriting parts of the SMM.

6.1 Reduce the Cost of EOI/EOP Markers on the
Sender

It was shown that bus contention between programmed I/O of data and the
DMA of markers is the most significant issue limiting Isotach’s performance.
There are several ways to relieve this contention.

First, the current implementation uses FM to send up an entire
PACKETSIZE of data, regardless of the size of the original message. A rewrite
of the messaging layer should include dynamically sized DMAs from the net-
work interface to host memory, thereby limiting bus contention.

Currently, all data moving from the host to the network interface is
copied with programmed I/O. Programmed I/O is inefficient for large packet
sizes. We need to investigate moving packets from the host to the network
interface using DMA to see if it would be more efficient.

To reduce the potential for bus contention, we should investigate schemes
that batch EOI and EOP markers from the network interface to the host.
This could amortize the cost of these markers over many sends. However,
one potential tradeoff to executing this type of scheme is the unnecessary
delayed execution of local isochron components.
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6.2 Reduce System Polling

On every Isotach send, the SMM polls. This frequent system polling helps
ensure that buffers and queues in the host are not overrun. This is a safety
valve to ensure the application doesn’t continually send without allowing
the SMM to execute the Isotach functionality that needs to occur (extract
packets, place messages in buckets, drain buckets, etc.). It is not necessary
to poll with every send, because polling can be done every ith send, where ¢
is tuned for system performance. If we assume the application will poll fre-
quently, or as necessary for the application’s workload, then we should only
make the SMM poll often enough to keep those infrequently polling applica-
tions from blocking other processes and over-running SMM data structures.
Then well-behaved Isotach applications that poll frequently won’t have to
pay the price of frequent system polling in addition to their own polling.
The tradeoff is that those applications that don’t poll frequently, but rely
on the system to poll for them, will have much longer polls because the
system will have a higher workload per poll.

6.3 Reduce the Number of Copies

The sending host copies a message twice. The first copy moves the data
into the to_niu buffer while the isochron is built. The second copy moves
the message from the host to the network interface. If the to_niu buffer
is moved from the host to the network interface, this will reduce one copy
per message on the host sender. Messages can be buffered on the network
interface card until it receives a signal from the host to push them onto the
network. In addition to saving a copy, this has a pipelining effect allowing
the host and network interface to work in parallel. Buffering isochrons on
the network interface becomes more feasible in Isotach version 2.0 when the
SIU functionality is removed from the network interface. Since the LANai
processor only operates at 30-40 Mhz, we will need to study whether the
buffering puts too much load on the network interface, taking it away from
its main mission of sending and receiving packets.

The receiver also has two data copies. The first data copy is from the host
receive buffer into the SMM. The second copy is from the SMM into the user
application (if the user chooses for the data to persist beyond the life of the
handler). A rewrite of the messaging layer could employ a mechanism similar
to the endpoints used in U-Net [18] and extended in the VIA standard [19].
There would be a linked list of message descriptors for the receive queue.
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When a message is received, it is copied directly into the buffer corresponding
to the first free descriptor in the receive queue. The SMM takes descriptors
off the receive queue and manages them through the receive sequence until
the user-defined handler is called. At this point, the descriptor is passed
to the user. When the user is finished with the buffer, it would place the
descriptor back on the end of the receive queue. This integrated application-
protocol buffer management could also be employed on the send side to save
copies. The tradeoff is that passing buffer pointers around saves copies at
the expense of increased complexity in buffer management.

Currently, isotach applications may be required to implement their own
buffer management due to the nondeterministic number of messages received
in a poll. This sometimes costs an additional copy, and buffer management is
not free. This copy may eventually reduce the amount of Isotach bandwidth
available to the user application. To prevent applications from having to
implement their own buffering, a messaging layer rewrite could allow the
user to retrieve one message at a time. At this time, the receiver is not
the throughput bottleneck, so this kind of mechanism may not give us an
increase in performance. However, it would simplify implementing Isotach
applications.

6.4 Chapter Summary

Recommendations were made to improve the performance of future versions
of Isotach. Optimizing the movement of data from the host to the network
interface, and the movement of markers in the opposite direction, will reduce
bus contention. Reducing unnecessary system polls will make the sender
more efficient. Reducing the number of data copies will significantly improve
the latency of Isotach packets, especially with larger packet sizes.
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Summary and Future Work

A performance study was completed on Isotach 1.0. This study accom-
plished the following objectives:

e Measured the performance of Isotach using a proprietary benchmark-
ing tool and custom developed tests. These tests reported:
— Latency
— Throughput

— Performance under contention

Effects of increasing isochron size

— Effects of token traffic on non-isotach traffic
e Discovered limitations in the design of the Isotach prototype.

e Proposed solutions to optimize the performance of current and future
generations of Isotach.

The unoptimized Isotach prototype performed very well, exceeding many
of the original goals of the project. We expect the performance to improve
even more when we implement optimizations suggested by this study and
when custom hardware components replace firmware components.

In the future, we want to perform these same tests on Isotach 2.0 with
its custom hardware. Additionally, we suggest implementing the next gen-
eration of Isotach using some of the recommendations in this report.
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Isotach Addendum to CAST
Documentation

This appendix describes the details necessary to successfully run CAST over
Isotach. The reader should be familiar with both the Isotach API [14] and
the CAST documentation [11]. This appendix assumes the reader is using
the Isotach 1.0 API. CAST will work on future generations of the Isotach
prototype as long as there are no modifications to the syntax or semantics of
the Isotach 1.0 API. If the API is modified, then the CAST isotach module
must be inspected for compliance with the API. This module is located in
the cast/isotach module directory.

A.1 File Structure

There is a main cast directory that includes the Makefile and CAST doc-
umentation. Under this directory are the module subdirectories, each con-
taining a Makefile, source code, executables, and scripts. The cast_main
subdirectory is the main module that comprises all the generic CAST algo-
rithms to run the tests. The other subdirectories implement the protocol
modules: sockets module, isotach module, and fm module.

A.2 Compiling Isotach and CAST

To compile CAST on the Isotach cluster, in the cast directory enter make
clean followed by make linux. To compile for the Solaris operating system
on another network, enter make clean followed by make solaris.
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A.3 Running CAST on Isotach

CAST has a long command line, so it is best to save it and modify it in
a script file. The following command lines will successfully execute CAST
over sockets:

cast -t -W d=sockets,rhost=kermit-m,prot=tcp -W \
o=sockets,rhost=kermit-m,prot=udp -W h=sockets -W r=sockets

cast -r -W o=sockets,prot=udp

In the first command line, the -t designates this host as the client. The -W
argument sets up the data, offset, handshake, and remote channels. Each
-W designates the channel, architecture, protocol, and remote host. Those
arguments to -W not specified will use defaults. The second command line
designates the host as the server (-r). In this example, the server lets all the
channel options default except for the offset channel, where UDP is specified
for the protocol. The server does not need to designate a remote host, as it
listens to a well-known port for connections from any client.

The following command lines were used to run the CAST Isotach per-
formance tests:

cast -t -v -i 5 -1 44 -f 40000000 -j 10 -W d=isotach \
-W o=isotach -W h=sockets,rhost=kermit,prot=tcp \
-W r=sockets,rhost=kermit,prot=tcp

cast -r -v -I -W d=isotach -W o=isotach \
-W h=sockets,prot=tcp -W r=sockets,prot=tcp

The first command line is for the client. The -v designates verbose mode
that prints out more statistics. The -i option designates the number of
iterations of the test. The -1 option sets the size of the data buffer sent
in each message. The -f option designates the amount of data to send in
bytes during the throughput phase. The -j option sets a timeout. We
found it necessary to override the default timeout on our Isotach cluster to
keep the program running during channel setup. The next four -W options
set Isotach as the architecture for the data and offset channels and sockets
for the handshake and remote channels. The second command line is for
the server. The only new item here is the -I which tells CAST to print
the server statistics on the server’s terminal. Otherwise, all statistics are
printed on the client. To run FM tests using CAST, replace each occurrence
of “isotach” with “fm” in the previous two command lines.
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A.4 Other Test Parameters

The following bullets are in no particular order and are notes to facilitate
CAST performance testing on Isotach or FM.

e The MAX OFFSET constant in cast.h gives the largest allowable differ-
ence between the client and server clocks in microseconds. Occasion-
ally, our clocks moved farther apart and this constant needed to be
increased.

e Channels that use sockets default to the Ethernet links. In order
to run TCP/IP tests over the Myrinet physical links, first run the
ip-up script located in ~rgb2u/cast. Then to use the Myrinet link,
designate -m immediately following the host name (e.g. kermit-m).
To bring the Myrinet IP interface back down, run the ip-down script.
Isotach and FM applications cannot be executed when the Myrinet IP
interface is up.

e The node identification numbers for the client and server are hard-
coded constants in cast_isotach.h and cast_fm.h. The server is
always 0, and the client is always 1. These node identification numbers
must also be hard-coded in the fmconfig file by placing :<NODE_ID>
after the host name. Here’s an example fmconfig file for a 1 switch
network:

0 bert.cs.virginia.edu:T kermit.cs.virginia.edu:0 \
cookie.cs.virginia.edu:1 - - - - -

e isofm/tmhost is the token manager application. FM 1.1 as modified
in our system also requires a token manager. Turn off token traffic
when using FM by changing the initialization value of send_clock in
isofm/1lcp.c from O to 1.

e Several changes need to be made when testing for different packet sizes
because Isotach doesn’t fragment messages in its current implementa-
tion. First, modify PACKETSIZE in isofm/1lcp.h to a packet size that
is a power of 2. Then change MAX_TSO0_MSG_SIZE in iso.h to 20 bytes
less than the PACKETSIZE. This allows room for the Isotach header in
the packet. If for some reason Isotach is being run in paranoid mode,
then the Isotach header size changes to 24 bytes and room must be
allowed for this in MAX_ISO_MSG_SIZE!. Finally, change the -1 option

!Since CAST requires a minimum of 44 bytes of data, and the paranoid mode header
is 24 bytes, the minimum allowable packet size in paranoid mode is 128 bytes.
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on the client’s CAST command line to specify the number of bytes to
send in each message. If the command line specifies a message size
larger than MAX_IS0_MSG_SIZE, then the Isotach module automatically
overrides the user and brings the buffer size down to the maximum
allowed.

Always recompile CAST after compiling Isotach, as CAST links to the
Isotach library.

The Isotach and FM CAST modules implement a buffering layer. The
number of message buffers is statically allocated at compile time with
the NUM_BUFFERS constant in cast_isotach.h and cast_fm.h. If these
buffers are overrun, CAST will print an error and exit. The user must
then increase this constant and recompile.

The Isotach and FM modules do not implement the handshake or
remote channels. These channels must be run over sockets.

If the token manager or CAST receives a segmentation fault dur-
ing the FM initialization routines, or if the system slows down to
the point where it appears to be page thrashing, there may not be
enough available RAM for the system. This can happen with very
large packet sizes. One way to fix this is to decrease the NUM_BUCKETS
and HIT BUF _SIZE constants in isofm/smm.c. The user should not
do this without intimate knowledge of the Isotach design, as there are
minimum values for these constants for the system to operate properly.
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Administrative Guide for Isotach
Performance Testing

This appendix has several administrative tips for conducting follow-on per-
formance studies on Isotach that do not belong anywhere else in the docu-
ment. These bullets are in no particular order.

e Isotach host-to-host mode brings logical time into user space. This
mode is good for debugging Isotach, but brings a significant perfor-
mance penalty to the system. To compile Isotach in host-to-host mode,
in the Isotach Makefile, remove tmlcp from the 0BJS line and define
HH.

e The Isotach files used to conduct this performance study are located
on the file server in the ~rgb2u/isofm directory, and are period-
ically archived in the /mnt/uf7/iso-share/rgb2u directory. The
iso-share directory is mounted on the department file servers, and
backed up daily. However, files must be manually moved to this direc-
tory by the account holder.

o The CAST files are located on the file server in ~rgb2u/cast. Addi-
tionally, they are also archived in /mnt/uf7/iso-share/rgb2u. The
CAST files are checked into an RCS repository for version control.
The CAST files can be archived with cast/make tar.

e It is not recommended to use the Isotach paranoid mode. This mode
prevents message pipelining, and therefore will not give good perfor-

mance numbers.
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e The Isotach and CAST code used in this performance study contains

a lot of instrumentation that can be conditionally compiled into the
executable. If MEASURE SEND is defined in the CAST Makefile, then
the output will contain the average cost of the Isotach or FM send se-
quence (e.g. iso_start(), iso_send msg(), and iso_end () in Isotach,
FM_send () in FM). Defining FIND_BLOCKING in the Isotach Makefile
will output to the screen if the host is blocking due to flow control.
Defining SMM_MEASUREMENT in both the Isotach and CAST Makefiles
allows the cost of any piece of code within isofm/smm. ¢ to be measured
while running CAST. See the current code base in ~rgb2u/isofm
for an example of how to surround the measured code with condi-
tional compilations. Likewise, the same measurements can be made in
isofm/fastmsgs.c by defining FM_MEASUREMENT in both the Isotach
and CAST Makefiles. If STRIP CAST OVHD is defined in the CAST
Makefile, instrumented code will take timestamps closer than CAST
to the actual sends and receives, and will output to the screen a more
accurate round-trip latency and server turnaround time. The server
turnaround time must be subtracted from the client round-trip la-
tency to obtain the actual round-trip latency measurement. It is not
recommended to turn on more than one of these conditionally com-
piled instrumentations at a time, as the instrumentations can impact
the system performance.

The token manager’s host will output every five seconds to the terminal
the logical clock times of each host and the average token inter-arrival
time. The current prototype contains an anomaly in token inter-arrival
times. For no apparent reason, Isotach has three inter-arrival times,
and the set of three vary with host speed and network configuration.
For example, on our most common configuration, the unloaded® token
inter-arrival time would bounce between 7.62, 11.64, and 11.76 us,
with 11.64 the most common number. Therefore, we ensured that all
tests were run with an unloaded token inter-arrival of 11.64 us. This
number can affect the performance results slightly, with more effect
on latency than bandwidth.

!The unloaded token inter-arrival time is the separation between tokens when there is

no other network traffic.
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Source Code

C.1 1iso_lat.c

/*

* iso_lat - latency test for Isotach message based model

*/

#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
/* REPS

int clie
int serv

<stdio.h>
<sys/time.h>
<sys/types.h>
<iso.h>
<unistd.h>
<stdlib.h>
<string.h>
<prof.h>

COUNT 50 /*
CLIENT 1 /*
SERVER 0 /*
BUF_SIZE 44 /%
HANDLER 22 /x*
SLEEP 5 /*
LOOPS 3 /*

# times to run test */

nodeid of client */

nodeid of server */

size of data bufferx/

index to message handler */

sleep time while determining speed*/
number of loops to average cpu speed */

defined in prof.h */

nt_flag

0; /* 1 when mesg returned from server */

er_flag = 0; /* 1 if message arrived at server */
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/* these variables used to measure turn_around time */
long long turnaround_begin;

long long turnaround_end;

long long turnaround_cycles = 0;

char* buf; /* data buffer */

/*
* this function sends REPS number of
* round-trip messages and returns

*/
void time_messages (){
int x;

for (x=0; x<REPS; x++) {
client_flag = O;
/* send message to server */
iso_start();
iso_send_msg (SERVER, HANDLER, buf, BUF_SIZE);
iso_end();
/* wait for the message to return from server */
while (!client_flag) {

iso_poll();

}

}

}

/*
* receives REPS * COUNT messages from client
*/

void receive_messages () {
unsigned int total, x;

total = REPS * COUNT;
/* receive "total" messages from client */
for (x = 0; x < total; x++) {
server_flag = 0;
/* wait for next message */
while (!server_flag) {
iso_poll();
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}

/* turnaround time ends */

fast_timer (&turnaround_end);

/* return the message to the client */
iso_start();

iso_send_msg (CLIENT, HANDLER, buf, BUF_SIZE);
iso_end();

/* add to cumulative turnaround cycles */
turnaround_cycles += turnaround_end - turnaround_begin;

/*

* copies data to user space and sets flag signalling
* message arrival

*/

void handler (int id, void *data, int len) {

if (NODEID == SERVER) {
/* copy the data to user space */
memcpy( (void*) buf, (const void*) data, BUF_SIZE);
server_flag = 1; /* signal that message arrived */
/* begin turnaround time */
fast_timer (&turnaround_begin);

}

else { /* client */
/* copy the data to user space */
memcpy( (void*) buf, (const void*) data, BUF_SIZE);
client_flag = 1; /* signal that message arrived */

/*
* take a timestamp from CPU cycle counter, sleep,
and take another timestamp. Do this LOOP times,

and determine CPU speed.
Returns average CPU speed in Hz.

*
*/
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long get_cpu_speed(){
long long timer_1, timer_2, cycles;
long speed;
int x;

printf ("taking %d seconds to calculate CPU speed for
the fast_timer measurements\n",
LOOPS*SLEEP) ;
speed = 0;
/* calculate cpu speed */
for (x=0; x<LOOPS; x++){
fast_timer (&timer_1);
sleep (SLEEP);
fast_timer (&timer_2);
cycles = timer_2 - timer_1;
speed += (cycles / SLEEP);
}
/* get the average speed */
speed /= LOOPS;
printf("cpu speed is %1d Hz\n", speed);
fflush (stdout);
return(speed) ;

void main()

{
struct timeval start, stop;
double us, us_sum = 0;
int i;
double cum_turnaround_time;
long cpu_speed;
double avg_turnaround_time;

/* initialize the isotach system and set handler */
iso_init();
iso_set_handler (HANDLER, handler);

/* allocate and initialize data buffer x*/
buf = (char*) malloc (BUF_SIZE);
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bzero (buf, BUF_SIZE);
printf ("I’m node %d\n", NODEID);

if (NODEID == SERVER) {
receive_messages ();
/* calculate and output the average turnaround time */
cpu_speed = get_cpu_speed ();
cum_turnaround_time = ((double)turnaround_cycles *
1000000) / (double) cpu_speed;
avg_turnaround_time = cum_turnaround_time /
(REPS * COUNT);
printf ("Average turnaround time is %f us\n",
avg_turnaround_time) ;
printf ("done\n");
}
else { /* client */
/* each loop is a test; each test executes REPS #
of msg round trips; */
for (i=0; i<COUNT; i++) {
gettimeofday (&start, NULL);
time_messages ();
gettimeofday (&stop, NULL);
/* calculate and output avg latency for this test */
subtracttime (&stop, &start); /* defined in prof.h */
us = (double)stop.tv_sec *1e6 + (double)stop.tv_usec;
printf ("executed ’%d round trips in %f usecs;
%f us/round trip\n", REPS, us, us/REPS);
fflush (stdout);
/* add to total number of microseconds */
us_sum += us;
}
/* calculate and output average latency */
printf ("Average round trip latency: %f us\n",
us_sum/ (REPS*COUNT) ) ;
printf ("done\n");
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C.2 1iso_thru.c

/*
* iso_thru - throughput test for Isotach message based model

*/

#include <stdio.h>
#include <sys/time.h>
#include <iso.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <prof.h>

#define CLIENT 1 /* nodeid of client */

#define SERVER O /* nodeid of server */

#define BUF_SIZE 1004 /* data buffer size */

#define FIRST_HANDLER 24 /* index to first msg handler */
#define HANDLER 25 /* index to other message handler */
#define DATA_SIZE 40000000/#* bytes to push through pipe */
#define ITERATIONS 5 /* times to run the test */

struct timeval start, stop; /* test start and end times */

long received_bytes; /* number of bytes received */
long sent_bytes; /* number of bytes received */
char* buf; /* data buffer for messages */
/*

* gends a fixed amount of data to the server

*/

void send_messages () {

sleep (5); /* gets rid of race condition between loops*/
sent_bytes = 0;

gettimeofday (&start, NULL);/* start the clock */

/* send first message to start receiver’s clock */
iso_start Q;

iso_send_msg (SERVER, FIRST_HANDLER, (void*) buf, BUF_SIZE);
iso_end ();
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sent_bytes += BUF_SIZE;
/* send until you’ve sent enough */
while (sent_bytes < DATA_SIZE) {
iso_start Q;
iso_send_msg (SERVER, HANDLER, (voidx*) buf, BUF_SIZE);
iso_end ();
sent_bytes += BUF_SIZE;
}
gettimeofday (&stop, NULL);/* stop the clock */

/*
*
*/

void receive_messages () {

received_bytes = 0;
/* keep extracting messages until we’ve received enough */
while (received_bytes < DATA_SIZE) {
iso_poll();
}
gettimeofday (&stop, NULL);/* stop the clock */

void handler (int id, void *data, int len) {

/* copy the data to the user space */
memcpy ( (voidx*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

}

void first_message_handler (int id, void* data, int len) {

gettimeofday (&start, NULL);/* start the clock */
/* copy the data to the user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

void main() {
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double sec; /* number of seconds test took */
double throughput; /* data rate, in Mbps */

/* used to get average throughput */
double throughput_sum = O;
double avg_throughput = O;

int x;

/* allocate and initialize data buffer */
buf = (char*) malloc (BUF_SIZE);
bzero (buf, BUF_SIZE);

/* initialize the system */
iso_init();
iso_set_handler (HANDLER, handler);
iso_set_handler (FIRST_HANDLER, first_message_handler);
printf ("I’m node %d\n", NODEID);
/* run the test a few times */
for (x = 0; x < ITERATIONS; x++) {
sec = 0;
throughput = 0;

if (NODEID == SERVER) {
receive_messages ();

}

else { /* client */
send_messages ();

}

/* defined in prof.h; puts result in stop */
subtracttime (&stop, &start);

/* translate to seconds */

sec = (double)stop.tv_sec + (double)stop.tv_usec / 1le6;

if (NODEID == SERVER) {
/* calculate and output server results */
throughput = ((received_bytes * 8) / sec) / 1le6;
printf ("Received %1d bytes in %f seconds\n",
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received_bytes, sec);
printf ("Measured receiver throughput for iteration

%d is %f Mbps\n",

x, throughput);

}

else

/*

{ /% CLIENT =/
calculate and output client results in Mbps*/

throughput = ((sent_bytes * 8) / sec) / 1e6;
printf("Sent %1d bytes in %f seconds\n", sent_bytes,
sec);

printf ("Measured sender throughput for iteration

%d is %f Mbps\n",

x, throughput);

}

fflush (stdout);
throughput_sum += throughput;

}

/* calculate and output the overall average of the tests */
avg_throughput = throughput_sum / ITERATIONS;

printf ("Average %s throughput is %f\n", NODEID ?
"sender":"receiver", avg_throughput) ;

}

C.3 1iso_contention lat.c

/*

* iso_contention_lat - measure latency in a
* contentious network

*/

#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<sys/time.h>
<sys/types.h>
<iso.h>
<unistd.h>
<stdlib.h>
<string.h>
<prof.h>
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#define SERVER O /* nodeid of server */

#define CLIENT 1 /* nodeid of client */

#define BUF_SIZE 1004 /* data buffer size */

#define FIRST_HANDLER 24 /* index to first msg handlerx/
#define HANDLER 25 /* index to other msg handlerx/
#define LAST_HANDLER 26 /* index to last msg handlerx*/
#define CLIENT_MSG_HANDLER 27 /* handle client msgs*/

#define RETURN_TRIP_HANDLER 28 /* handler on return trip*/
#define SECONDS 30 /* number of sec to sendx*/
#define NUM_CLIENTS 4 /* number of clients sending*/
#define TIMEOUT O /* gap between sends in us */
#define SLEEP 5 /* sleep to determine speed */
#define LOOPS 3 /* loops to average speed */
struct timeval start, stop, stop_lat;/* hold timing info */
long received_bytes = 0; /* # bytes received */
long sent_bytes = 0; /* # bytes sent*/

int clients_stopped = 0; /* # clients finished */
long cpu_speed; /* in Hz */

char* buf; /* data for msg trafficx*/

long round_trips = O;
int client_flag;
int received_from_client = O;

/*

/*
/*
/*

# messages in test */
1 if mesg arrived */
1 if mesg arrived */

* send round-trip packets to server until time runs out

*/

void send_latency_packets () {
0; /* 1 if time is up */

int done =

gettimeofday (&start, NULL);/* start the clock */

while (!done) {

/* keep sending until time runs out */

iso_start ();

iso_send_msg (SERVER, CLIENT_MSG_HANDLER,

(voidx) buf, BUF_SIZE);
iso_end ();

/* good nassumption that these calculations

*are not in critical path



C.3. iso_contention_lat.c 65

* of sending round-trip packets as fast as possible
*/
sent_bytes += BUF_SIZE;
gettimeofday (&stop_lat, NULL);
subtracttime (&stop_lat, &start);
/* check to see if we have time remaining */
if (stop_lat.tv_sec >= SECONDS) {
done = 1;
}
/* wait for message to return from server */
while (!client_flag) {
iso_poll ();
}
client_flag = O;
}
/* stop clock after receipt of last round-trip packet */
gettimeofday (&stop_lat, NULL);/* stop latency clock */

/* tell server we are done */

iso_start ();

iso_send_msg (SERVER, LAST_HANDLER, (void*) buf, BUF_SIZE) ;
iso_end ();

gettimeofday (&stop, NULL);/* stop throughput time */
sent_bytes += BUF_SIZE;

/* handler for returned packets on client */
void return_trip_handler (int id, void *data, int len) {

/* copy data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
/* signal message has arrived */

client_flag = 1;

round_trips++;

/*
* send as quickly as possible to server until time runs out

*/
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void send_messages () {
long long begin, end; /* timing info */
double us; /* number of microseconds elapsed */

/* start the send timer */
gettimeofday (&start, NULL);

fast_timer (&begin);/* start the gap timer */
/* send first message */
iso_start ();
iso_send_msg (SERVER, FIRST_HANDLER, (void*) buf, BUF_SIZE);
iso_end ();
sent_bytes += BUF_SIZE;
/* keep sending while time remains */
do {
/* gap can be used to quicken or slow the senders */
/* pause for gap*/
do {
fast_timer (&end);
us = ((double) (end - begin) * 1000000) /
(double) cpu_speed;
} while (us < TIMEQUT);

fast_timer (&begin);/* start the gap timer */
/* send the next message */
iso_start ();
iso_send_msg (SERVER, HANDLER, (voidx*) buf, BUF_SIZE);
iso_end ();
sent_bytes += BUF_SIZE;
gettimeofday (&stop, NULL);
subtracttime (&stop, &start);/* in prof.h */
} while (stop.tv_sec < SECONDS) ;

/* send last message after send time runs out */

iso_start Q;

iso_send_msg (SERVER, LAST_HANDLER, (void#*) buf, BUF_SIZE);
iso_end ();

gettimeofday (&stop, NULL); /* stop the clock */

sent_bytes += BUF_SIZE;
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/*

* receive messages until all senders signal they have
* sent their final message

*/

void receive_messages () {

/* receive until all senders have sent their last message */
while (clients_stopped < NUM_CLIENTS) {
iso_poll();
/* if you get a message from the client, return it */
if (received_from_client) {
iso_start ();
iso_send_msg (CLIENT, RETURN_TRIP_HANDLER,
(void*) buf, BUF_SIZE);
iso_end ();
received_from_client = O;
}
}
gettimeofday (&stop, NULL); /* stop the clock */
}

/*
* receive messages from client
*/

void client_msg_handler (int id, void *data, int len) {

/* copy data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

/* signal that message received from client */
received_from_client = 1;

/*
* handler for messages from other senders
*/

void handler (int id, void *data, int len) {

/* copy data to user spacex*/
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memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;
}

/*
* receive first message from each client
*/

void first_message_handler (int id, void* data, int len) {

gettimeofday (&start, NULL);/* start the clock */
/* copy data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

/*
* receive last message from each sender
*/

void last_message_handler (int id, void* data, int len) {

/* increment number of senders that have stopped */
clients_stopped++;

/* copy data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

b
/*

* take a timestamp from CPU cycle counter, sleep,
and take another timestamp. Do this LOOP times,
and determine CPU speed.

* Returns average CPU speed in Hz.

*/

long get_cpu_speed(){
long long timer_1, timer_2, cycles;
long speed;
int x;

printf("taking %d seconds to calculate CPU speed for
the fast_timer measurements\n",
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LOOPS*SLEEP) ;
speed = 0;
/* calculate CPU speed */
for (x=0; x<LOOPS; x++){
fast_timer(&timer_1);
sleep(SLEEP);
fast_timer(&timer_2);
cycles = timer_2 - timer_1;
speed += (cycles / SLEEP);
}
/* calculate and ouput avg speed */
speed /= LOOPS;
printf("cpu speed is %1d Hz\n", speed);
fflush (stdout);
return(speed) ;

void main() {

double sec = 0;
double throughput = O;
double us = 0;

/* allocate and initialize the data buffer */
buf = (char*) malloc (BUF_SIZE);
bzero (buf, BUF_SIZE);

/* calculate the cpu speed */
cpu_speed = get_cpu_speed ();

/* initialize the system x*/

iso_init();

iso_set_handler (HANDLER, handler);

iso_set_handler (FIRST_HANDLER, first_message_handler);
iso_set_handler (LAST_HANDLER, last_message_handler);
iso_set_handler (RETURN_TRIP_HANDLER, return_trip_handler);
iso_set_handler (CLIENT_MSG_HANDLER, client_msg_handler) ;
printf ("I’m node %d\n", NODEID);

if (NODEID == SERVER) {
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receive_messages ();
}
else if (NODEID == CLIENT) {
send_latency_packets ();
}
else { /* SENDERS */
send_messages ();
}
/* defined in prof.h; puts result in stop */
subtracttime (&stop, &start);
/* translate into seconds */
sec = (double)stop.tv_sec + (double)stop.tv_usec / 1e6;

if (NODEID == SERVER) {
/* calculate and output the throughput */
throughput = (((double) (received_bytes) * 8)
/ sec) / 1e6; /* in Mbps */
printf ("Received %1d bytes in %f seconds\n",
received_bytes, sec);
printf ("Measured receiver throughput is %f Mbps\n",
throughput) ;
}
else if (NODEID == CLIENT) {
/* calculate and output the throughput */
throughput = (((double) (sent_bytes) * 8)
/ sec) / 1e6; /* in Mbps */
printf("Sent %1d bytes in %f seconds\n", sent_bytes,
sec);
printf("Measured client throughput is %f Mbps\n",
throughput) ;
/* calculate and output the average latency */
subtracttime (&stop_lat, &start);
us = (double)stop_lat.tv_sec *1le6 +
(double)stop_lat.tv_usec;
printf ("executed %1d round trips in %f usecs;
%f us/round trip\n",
round_trips, us, us/round_trips);
}
else { /* SENDERS */
/* calculate and output the throughput */
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ughput = (((double) (sent_bytes) * 8) / sec) / 1le6;
printf("Sent %1d bytes in %f seconds\n", sent_bytes, sec);
printf("Measured sender throughput is %f Mbps\n",

ghput) ;

C.4 1iso_contention _thru.c

/*

* iso_contention_thru - measure throughput in

* a con

*/

#include
#include
#include
#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

tentious network

<stdio.h>
<sys/time.h>
<sys/types.h>
<iso.h>
<unistd.h>
<stdlib.h>
<string.h>
<prof.h>

SERVER 0 /*
BUF_SIZE 1004 /x*
FIRST_HANDLER 24/%*
HANDLER 25 /*

LAST_HANDLER 26 /x*
SECONDS 30 /*
NUM_CLIENTS 3 /%
TIMEOUT O /*
SLEEP 5 /*

LOOPS 3 /*

nodeid of server */

data buffer size */

index to first handler */

index to other message handler */
index to last message handler */
number of seconds for hosts to */
number of clients sending */

gap between sends in us */

sleep time while getting speed */
number of loops to average speed */

struct timeval start, stop; /* timing info */

long rec

eived_bytes = 0;

long sent_bytes = 0;

int clie

nts_stopped = 0;

long cpu_speed;

/* # bytes received thus far */
/* # bytes sent thus far */

/* # senders finished */

/* in Hz */
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char* buf; /* data buffer for messages */

/*
* Lkeep sending messages to server until time runs out
*/
void send_messages () {
long long begin, end;
double us;

/* start the send timer */
gettimeofday (&start, NULL);

fast_timer (&begin);/* start gap timer */
/* send the first message */
iso_start Q;
iso_send_msg (SERVER, FIRST_HANDLER, (void*) buf, BUF_SIZE);
iso_end ();
sent_bytes += BUF_SIZE;
/* send messages while time remains */
do {
/* can use gap to turn up or down the senders */
/* pause for gap*/
do {
fast_timer (&end);
us = ((double) (end - begin) * 1000000) /
(double) cpu_speed;
} while (us < TIMEQUT);

fast_timer (&begin);/* start gap timer */
/* send next message */
iso_start ();
iso_send_msg (SERVER, HANDLER, (voidx*) buf, BUF_SIZE);
iso_end ();
sent_bytes += BUF_SIZE;
gettimeofday (&stop, NULL);
subtracttime (&stop, &start);
} while (stop.tv_sec < SECONDS);/* if time remaining */

/* send last message after send time runs out */
iso_start ();
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iso_send_msg (SERVER, LAST_HANDLER, (void#*) buf, BUF_SIZE) ;
iso_end ();

gettimeofday (&stop, NULL);/* stop the clock */

sent_bytes += BUF_SIZE;

/*
* keep receiving until all clients have stopped sending
*/

void receive_messages () {

/* receive until all clients have sent their last message */
while (clients_stopped < NUM_CLIENTS) {
iso_poll();
}
gettimeofday (&stop, NULL);/* stop the clock */

/*
* receive messages
*/

void handler (int id, void *data, int len) {

/* copy data to user space */
memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

}

/*
* receive first message and start the clock
*/

void first_message_handler (int id, void* data, int len) {

gettimeofday (&start, NULL);/* start the clock */
/* copy the data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

/*
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* receive last message from each sender
*/

void last_message_handler (int id, void* data, int len) {

/* increment the number of senders finished */
clients_stopped++;

/* copy the data to user space */

memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

b
/*

* take a timestamp from CPU cycle counter, sleep,
and take another timestamp. Do this LOOP times,
and determine CPU speed.

* Returns average CPU speed in Hz.

*/

long get_cpu_speed(){
long long timer_1, timer_2, cycles;
long speed;
int x;

printf("taking %d seconds to calculate CPU speed for
the fast_timer measurements\n",
LOOPS*SLEEP) ;
speed = 0;
/* calculate CPU speed */
for (x=0; x<LOOPS; x++){
fast_timer (&timer_1);
sleep (SLEEP) ;
fast_timer (&timer_2);
cycles = timer_2 - timer_1;
speed += (cycles / SLEEP);
}
/* calculate and ouput average */
speed /= LOOPS;
printf ("cpu speed is %1d Hz\n", speed);
fflush (stdout);
return(speed) ;
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void main() {

double sec = 0;
double throughput = O;

/* allocate and initialize data buffer */
buf = (char*) malloc (BUF_SIZE);
bzero (buf, BUF_SIZE);

/* calculate the cpu speed */
cpu_speed = get_cpu_speed ();

/* initialize the system */

iso_init();

iso_set_handler (HANDLER, handler);

iso_set_handler (FIRST_HANDLER, first_message_handler);
iso_set_handler (LAST_HANDLER, last_message_handler);
printf ("I’m node %d\n", NODEID);

if (NODEID == SERVER) {
receive_messages ();
}
else { /* clients */
send_messages ();
}
/* determine number of seconds */
/* defined in prof.h; puts result in stop */
subtracttime (&stop, &start);
sec = (double)stop.tv_sec + (double)stop.tv_usec / 1le6;

if (NODEID == SERVER) {
/* calculate and ouput the throughput */
throughput = (((double) (received_bytes) * 8) / sec) / 1le6;
printf ("Received ’%1d bytes in %f seconds\n",
received_bytes, sec);
printf ("Measured receiver throughput is %f Mbps\n",
throughput) ;
}
else { /x CLIENT x*/
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/* calculate and output the throughput */
throughput = (((double) (sent_bytes) * 8) / sec) / 1le6;
printf("Sent %1d bytes in %f seconds\n", sent_bytes, sec);
printf ("Measured sender throughput is %f Mbps\n",
throughput) ;
}
}

C.5 1isochron.c

/*

*

isochron - measure bandwidth while changing size
of isochron; each isochron sends 1 message to a
different host

*  *

*/

#include <stdio.h>
#include <sys/time.h>
#include <iso.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <prof.h>

#define SENDER O /* nodeid of sender */

#define ISOCHRON_SIZE 1 /* number of isochron mesgs */
#define BUF_SIZE 44 /* data buffer size */

#define FIRST_HANDLER 24 /* index to first mesg handlerx*/
#define HANDLER 25 /* index to other mesg handlerx*/
#define DATA_SIZE 40000000 /* bytes to send in test */
#define ITERATIONS 5 /* number of tests*/

struct timeval start, stop; /* timing info */

long received_bytes; /* # bytes received thus far */
long sent_bytes; /* # bytes sent thus far */
char* buf; /* data buffer */

/*

* gsend a fixed amount of data in isochrons
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*/
void send_messages () {
int x;

sleep (5); /* gets rid of race condition*/
sent_bytes = 0;
gettimeofday (&start, NULL);/* start the clock */
/* send the first message to each receiver */
iso_start Q;
for (x = 1; x <= ISOCHRON_SIZE; x++) {
iso_send_msg (x, FIRST_HANDLER, (void*) buf, BUF_SIZE);
}
iso_end ();
sent_bytes += BUF_SIZE * ISOCHRON_SIZE;
/* keep sending until we’ve sent enough */
while (sent_bytes < DATA_SIZE ) {
/* send a message to each receiver */
iso_start ();
for (x = 1; x <= ISOCHRON_SIZE; x++) {
iso_send_msg (x, HANDLER, (void*) buf, BUF_SIZE);
}
iso_end ();
sent_bytes += BUF_SIZE * ISOCHRON_SIZE;
}
gettimeofday (&stop, NULL);/* stop the clock */
}

/*

* receive messages from sender
*/

void receive_messages () {
double amount_to_receive;

/* calculate how much data we should receive so we know
* when to stop
*/

amount_to_receive = DATA_SIZE / ISOCHRON_SIZE;

received_bytes = 0;
/* keep receiving while there’s data to receive */
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while (received_bytes < amount_to_receive) {
iso_poll();
}
gettimeofday (&stop, NULL);/* stop the clock */
}

/* handle incoming messages */
void handler (int id, void *data, int len) {

/* copy the data to user space */
memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

}

/*
* receive the first message to start the clock
*/
void first_message_handler (int id, voidx* data, int len) {
/* start the clock */
gettimeofday (&start, NULL);
/* copy the data to user space */
memcpy( (void*) buf, (const void*) data, BUF_SIZE);
received_bytes += BUF_SIZE;

void main() {

double sec;

double throughput;
double throughput_sum = O;
double avg_throughput

Il
O

int x;

/* allocate and initialize the data buffer */
buf = (char*) malloc (BUF_SIZE);
bzero (buf, BUF_SIZE);

/* initialize the system */
iso_init();
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iso_set_handler (HANDLER, handler);
iso_set_handler (FIRST_HANDLER, first_message_handler) ;
printf ("I’m node %d\n", NODEID);

/* run the test a fixed number of times */
for (x = 0; x < ITERATIONS; x++) {

sec = 0;

throughput = 0;

if (NODEID == SENDER) {
send_messages ();
}
else { /* client */
receive_messages ();
}
/* determine how much time test took */
/* defined in prof.h; puts result in stop */
subtracttime (&stop, &start);
sec = (double)stop.tv_sec + (double)stop.tv_usec / 1le6;

if (NODEID != SENDER) {
/* calculate and ouput throughput */
throughput = ((received_bytes * 8) / sec) / 1le6;
printf("Received %1d bytes in %f seconds\n",
received_bytes, sec);
printf ("Measured receiver throughput for iteration
%d is %f Mbps\n",
x, throughput);
}
else { /* SENDER */
/* calculate and output throughput */
throughput = ((sent_bytes * 8) / sec) / 1e6;
printf("Sent %1ld bytes in %f seconds\n", sent_bytes,
sec);
printf("Measured sender throughput for iteration %d is
%f Mbps\n",
x, throughput);
}
fflush (stdout);
/* increment throughput total used for averaging */
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throughput_sum += throughput;
}
/* calculate and output average throughput*/
avg_throughput = throughput_sum / ITERATIONS;
printf("Average %s throughput is %f\n",
NODEID ? "receiver":"sender", avg_throughput);

}
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