
A Video Mail Distribution System for Networked Personal Computers 

Fraser Street and Alfred C. Weaver 

Computer Networks Laboratory 
Department of Computer Science 

University of Virginia, Charlottesville VA 22903 
[fiaserlweaver]@virginia.edu 

Abstract mance of X F S  to insure that it provides the file access 
bandwidth required by our video mail application. The Computer Networks Laboratory at the University 

of Virginia has used the Xpress TranSferProtocol (XTP) to 
construct the Xpress File System (XFS), a local area net- 
work peer-to-peer file sharing system for MS-DOS based 
IBM Personal Computers. XFS is usable for a variety of 
purposes, most notably the real time delivery of multime- 
dia data streams. Using specialized hardware and soft- 
ware from Fluent Machines Inc., we have shown that XFS 
is capable of maintaining syffrcient file system to fire sys- 
tem throughput to support the real time delivery of the 30 
frames per second audwlvideo data stream generated by 
the Fluent system. This paper provides a general discus- 

Section one of this paper provides the motivation for 
the XFS video mail system. Section two contains a general 
introduction to the hardware and software components of 
the Fluency multimedia system. Sections three and four 
discuss X F S  and the MS-DOS device driver that is the 
core of XFS . In section five we describe the role of X T P  as 
the communication promo1 embedded in XFS. Section 
six summarizes the performance of XFS, and section 
seven explores the requirements for a PC based teleconfer- 
encing system. 

sion of the architecture and operation of X F S ,  and an 
overview of the Fluent system that we use to generate and 2w Oveniew Of 

process motion video data streams. We also describe our 
plans to extend the video mail system into a video confer- 
encing system using XTP. 

1. Introduction 

Science Applications International Corporation 
(McLean, VA) is a value-added reseller of multimedia 
computer products produced by Fluent Machines Inc. 
(Framingham, MA). SAIC approached the Computer Net- 
works Lab at the University of Virginia with a requirement 
to develop a video mail system whereby the synchronized 
voice and video stream emitted by Fluent’s Fluency 
[FLU921 multimedia system could be electronically 
mailed from user to user on a local area network. We have 
designed and implemented this video mail system using a 
peer-to-peer file sharing tool which we call XFS, the 
Xpress File System. XFS gives users transparent client- 
server access to an MS-DOS disk file system on a remote 
PC connected via an Ethernet or FDDI local network (see 
Figure 1). XFS uses the Xpress Transfer Protocol [STR92] 
to provide a reliable transport service between the client 
and server host systems. We have optimized the perfor- 

2.1. Hardware and software environment 

Fluency is an elaborate package of hardware and soft- 
ware for MS-DOS based PC systems. The hardware com- 
ponent of Fluency is the VSA-1000, a set of two ISA- 
compatible 16-bit boards (known as the processor and 
controller) that are inserted into the expansion slots of an 
80486 class PC. The processor board consists of an Intel 
i960 CPU, the C-Cube Microsystems CS550 PEG com- 
pression engine, and a Motorola DSP chip for audio com- 
pression. The controller board, which holds 2 MB of video 
RAM, interfaces with the system VGA card to render the 
motion video on the VGA monitor screen. 

The software component of the Fluency system is 
called FluentStreams (a set of Microsoft Windows appli- 
cations and programming tools). The primary application 
program is the “VideoPad Editor“ which, through a Win- 
dows user interface, provides functionality similar to that 
of a home VCR. Through VideoPad the user can record 
into a disk file a PEG ”911 compressed representa- 
tion of any NTSC audiohideo signal, including those pro- 
duced by standard laserdisks and camcorders. VideoPad 

320 
0742-1303193 $03.00 0 1993 IEEE 

mailto:fiaserlweaver]@virginia.edu


U 

Transmitter & 

I 

Video 
R W  

&------ 

FDDI Ring 

also allows the user to play back and perform h e - b y -  
frame editing of recorded streams. 

The primary programming tool in the FluentStreums 
package is the Digital Video Object (DVO) Application 
Programming Interface (API). The DVO API library pro- 
vides a ‘Cy language interface that gives the Windows 
application programmer control over the creation and 
operation of player objects. For example, the DVO API 
library provides calls to open, close, and edit streams, and 
to control system parameten (such as bit rate) prior to 
recording a stream. The DVO API provides exactly the 
sort of interface that a programmer would need to develop 
an application like the VideoPad Editor. Fluent provides 
no low level programmer interface to the compressed 
audio/video stream output by the VSA-1000 hardware. 

2.2. Operational characteristics 

The Fluency system provides a robust platform for the 
recording, editing, and playback of video streams to or 
from a conventional MS-DOS file system partition on a 
locally attached disk drive. During the recording process 
the Fluency hardware functions as an audio/video frame 
grabber, performing analog-to-digital conversion of the 
input NTSC signal at its full 30 frames per second rate. 
After A D  conversion, the Fluency system uses the C- 
Cube PEG engine to compress each video frame in real 
time. The associated audio component of the input signal 

Figure 1 : The XFS Video Mail System 

I -- 

is passed to the Motorola DSP for compression, and the 
compressed audio and video digital data streams are inte- 
grated and written to the disk as a single file with the .FMI 
extension. The VideoPad Editor can be used to play back 
any FMI file. During play back, the full motion video 
appears in a 320x240 window on the VGA screen, and the 
accompanying synchronized audio signal can be played 
through external speakers. 

Although the exact specification of the FMI file for- 
mat is proprietary to Fluent, it is based on the Intel AVSS 
format. AVSS is a member of the Intel Digital Video Inter- 
active (DVI) family of standards. Within the DVI family, 
the AVSS file format is primarily used for storing Real 
Time Video (RTV) and Production Level Video (PLV) on 
both CD-ROM and disk systems. AVSS files are based on 
the notion of Streams, for which Intel defines two main 
types: Compressed Image and Audio. A hierarchy of data 
structures within an AVSS file allows for browsing, ran- 
dom access to frames, and editing of interleaved streams. 
Fluency exploits the high degree of structure that AVSS 
imposes in order to achieve frame-by-frame random 
access within an FMI file, which is critical to both the 
DVO API library and the VideoPad Editor. There is no 
facility within the FluentStreams software to manipulate a 
video stream stored in any form other than an FMI file. 
The only API provided by Fluent is the DVO library, 
which has a user interface and functionality specifically 

321 



I MS-DOSUser 1 %  Figure 2: The Xpress File System 

‘7’ ‘client 
1 MS-DOS Kemel 1 MS-DOS Kernel 1 

designed for manipulating audio/video data as it is held 
in FMI files. 

3. Xpress File System 

3.1. XFS functionality 

The Xpress File System is a general purpose tool 
that enables peer-to-peer client-server access between a 
PC and an MS-DOS disk file system physically located 
on a remote machine (see Figure 2). Although the pri- 
mary use of XFS has been in our video mail prototyp 
system, it is a general tool that can be used for client- 
server access to any remote MS-DOS file system. To the 
human user, as well as MS-DOS and Windows applica- 
tion programs, a remote MS-DOS file system mounted 
with XFS is functionally indistinguishable from a 
locally attached disk drive. From the user’s perspective, 
XFS extends the array of available disk drives from the 
physically attached floppy and hard disks to include a 
single remote disk accessed over the network through 
XFS. Disk systems of any size, including 3.5” and 5.25” 
floppies, and hard disk partitions greater than 32 MB 
can be mounted by XFS. 

The X F S  system is composed of two separate 
pieces of software: an MS-DOS installable block device 
driver (XFSDRV), and an application program 
(XFSCTL) that provides an VO Control interface to the 
XFSDRV driver. The dynamic state of the XFS client- 
server system is controlled by the user through the 
XFSCTL program. The user issues XFSclz commands 
like mount and unmount which are interpreted by the 
XFSCTL program and passed using the standard DOS I/ 
0 Control mechanism to the XFSDRV driver. 

XFS provides a session layer communication ser- 
vice to the MS-DOS operating system on the client 
machine. The session layer connection is opened with 
the mount command, which causes XFS to establish a 
logical connection between the host system and the 
remote disk device. Once mounted, communication 
occurs between the client and the remote server 
instances of XFSDRV on behalf of MS-DOS on the cli- 
ent machine. The user is free to perform disk file access 
at will on the XFS mounted device. This access can 
occur from the MS-DOS system prompt using simple 
commands like di r or cd, or it can be achieved within 
an application program by using standard library calls 
such as read ( ) and write ( ) ; the remote, networked 
nature of the XFS device is completely invisible to the 
user. Finally, the unmount command is used to close the 
session layer connection, terminating MS-DOS’s access 
to the disk device on the server. At this time the client 
machine reverts to server mode, and is available to any 
other client in the network for mounting. This estab- 
lishes the symmetric peer-to-peer nature of X F S ,  since 
all the machines in the network are equally capable of 
functioning as either a client or a server in an XFS con- 
nection. 

3.2, XFS and Fluency as a video mail system 

The ability to access a remote disk device using 
XFS provides the basis for the “video mail” service that 
was the goal of this project. We use the Fluency Video- 
Pad Editor in conjunction with XFS to record and play 
back FMI streams to and from remote disk drives. 
Before starting Windows, the user issues the XFS mount 
command from the MS-DOS prompt to open a connec- 

322 



tion with one of the XFS servers in the network. Then, 
after starting Windows and the VideoPad Editor, the user 
can select the X F S  disk device from the menu of available 
target drives that is presented by Videoad. Once the XFS 
device is selected, the Videopad Editor will have com- 
pletely transparent access through XFS to the remote file 
system; VideoPA can read or write FMI video streams to 
or from the remote disk device at greater than 2.0 MbiW 
sec, which is sufficient throughput to maintain the 30 fps  
rate supported by the Fluency system. 

4. The XFSDRV device driver 

4.1. XFSDRV 

The core of the Xpress File System is the XFSDRV 
device driver LAI921. MS-DOS Version 5 supports user- 
supplied installable character and block device drivers 
[MIC91]. Microsoft documents an interface of more than 
20 commands, called device service requests (DSR), that 
MS-DOS uses to communicate with installed drivers, MS- 
DOS makes use of seven of these commands when access- 
ing drivers for disks with removable media (e.g., floppy 
drives). As a removable media device, XFSDRV supports 
these seven commands. 

Consider a modem PC system with three physical 
disk drives, named A, B, and C. A and B are usually floppy 
disk drives, and C is usually the hard disk drive. Drivers 
for these physical devices are provided with MS-DOS in 
one of the system files, IO.SYS, which is automatically 
loaded when MS-DOS boots DUN881. As a user-installed 
driver, XFSDRV is loaded at boot time by an entry in one 
of the system configuration files, CONFIG.SYS. As it is 
being loaded, MS-DOS examines some attribute informa- 
tion in the executable code of XFSDRV and recognizes, 
among other things, that the driver will control a remov- 
able media disk device. The operating system then assigns 
the next available block device identifier, in this case D, to 
the new device. From this point on MS-DOS can interact 
with the D drive in fundamentally the same way it interacts 
with A and B. Therefore, as long as XFSDRV faithfully 
emulates the behavior of a standard floppy disk device, 
MS-DOS will not be able to distinguish any difference 
between the physically attached floppy disk devices of the 
host system and the D floppy disk device emulated by 
XFSDRV. 

XFSDRV has purposely been designed so that it 
appears to MS-DOS to be a removable rather than fixed 
disk device. Switching diskettes in a floppy drive is analo- 
gous to mounting a new server disk on the D device using 
XFS. MS-DOS defines a device service request called 

“mediacheck” which it uses to determine whether the 
media in a floppy drive inas been changed by the user. 
Each time the user goes through the XFS mount process, 
XFSDRV notes this as a change in its “media“. Because 
the driver has defined itself as a removable media device, 
MS-DOS precedes every new attempt to access the D 
device with a mediacheck request. On the first mediacheck 
after a new mount, XFSDRV will respond by reporting 
that the media in the D drive has changed. MS-DOS then 
initiates a series of device service requests on XFSDRV to 
determine the operating parameters of the disk that is now 
in the drive (capacity in sectors, location of directory 
entries, etc.). It is this mechanism that enables users to 
mount successively disks of various sizes and formats 
using the singre D device. Because XFSDRV always 
reports that the media in drive D has changed afar a 
mount, MS-DOS is alerted to take the steps necessary in 
order to reorient itself to the new disk configuration. 

Every user level file operation is decomposed by MS- 
DOS into one or more device service requests. Each DSR 
is serviced atomically by a device driver. For example, 
issuingan fopen(”A: \myfile. txt“, “r”) library 
call from a ‘Cy application will result in DSR’s to deter- 
mine whether the A drive has a diskette in it, (and if so 
whether the diskette has been changed since the last 
access), followed by a series of disk sector reads to load 
the disk directory in order to locate a particular file. When 
a file operation is directed to a physically attached disk 
drive, as in this case, each DSR is passed by MS-DOS to 
the I0.SYS resident driver that controls the target device. 
The driver resolves the requests using the ROM BIOS of 
the FC, which provides the lowest level programmer inter- 
face to the hardware of the machine. 

When the target of the file operation is the XFS 
device, a s h  fopen(”D:‘\remote.dat“, “r”),  the 
device service requests generated for the operation are 
passed to XFSDRV, the driver that controls the D drive. 
XFSDRV, now functioning as the client, packetizes each 
DSR into an individual XFS transaction and uses XTP to 
send them one at a time to the server. After each transac- 
tion the client blocks and waits for a response from the 
server. As it receives each response the client passes back 
to MS-DOS the completion status of the DSR and any 
other information required by the particular quest. Con- 
trol is then returned from XFSDRV to MS-DOS. 

4.2. XFSDRV thread of control 

It is important to note that the server responds asyn- 
chronously to XFS transactions from the client. At any 
time when it is not processing a transaction, the single 

323 



thread of control in the server PC remains under the con- 
trol of MS-DOS. However, because of potential file sys- 
tem conflicts between the activity of a local user and the 
“background“ processing of XFS transactions by 
XFSDRV, a local user of the server PC should not attempt 
to write to the disk that has been mounted by the XFS cli- 
ent. In other respects the server PC is able to concurrently 
function as an XFS server and a normal, single-user MS- 
DOS computer. 

The processing cycle described above indicates that 
there are two paths that the single thread of control in the 
PC can take into the code of the XFSDRV driver: 

1) Control can pass from the top of the system (i.e. from 
MS-DOS) down into the driver as the result of a 
device service request, or 

2) Control can pass from the bottom of the system (i.e. 
from the hardware interrupt controller) up into the 
XTP engine embedded in the driver as the result of a 
hardware interrupt generated by the arrival of a MAC 
frame at the network interface. 

Path two allows us to generate the illusion of multi-tasking 
between MS-DOS and XFS on the server PC. 

Our X T P  User Interface provides for event-driven 
call-backs to the user application. XFSDRV exploits this 
feature in order to prevent blocking within the server as it 
waits to receive an XFS transaction from a client. At ini- 
tialization time, XFSDRV registers the address of its main 
transaction processing function as the call-back for the 
arrival of a complete XTP message. Through path two the 
XTP engine receives control as each MAC frame arrives 
from the network interface hardware. When it recognizes 
that an entire message has arrived, the X T P  engine trans- 
fers control to the call-back address. At this point control 
has entered the higher level XFS transaction processing 
code within XFSDRV. This code performs the processing 
necessary to carry out the XFS transaction specified by the 
contents of the message received from the client. After this 
processing is complete the server generates a response 
message which is transmitted to the client, and control in 
the server PC is returned to MS-DOS. 

5. XTP in XFS 

5.1. XTP services 

As a minimum, XFS requires that its underlying com- 
munications service provide a duplex channel that guaran- 
tees reliable, end-to-end delivery of messages between the 

client and server systems. Because each XFS transaction 
directly results in the low level manipulation of a disk file 
system, error free delivery of the transaction data by the 
communications service is critical. XTP, TCP, and IS0 
TP4 can all effectively provide this type of end-to-end 
reliable service. However, the implementation of the com- 
munications service within an MS-DOS device driver, 
combined with the design goals of XFS and the operation 
of the MS-DOS file system, places additional demands on 
the transport protocol within XFS. We have employed the 
unique rate and burst control facilities of XTP to meet 
these demands. 

5.2. Rate and burst control 

XTP’s rate and burst control can be used to reduce the 
problem of buffer overruns, which can be significant when 
the source traffic is bursty and the amount of buffer space 
available at the receiver is limited, both of which are true 
in XFS. Because the X T P  connection opened by XFS is 
fully reliable, XTP’s error recovery mechanisms in the 
receiver recognize that data is missing after a buffer over- 
run and automatically generate a request for retransmis- 
sion of the lost data. These retransmissions substantially 
reduce the aggregate throughput of the connection. The 
likelihood of buffer overruns increases when the processor 
speed of the transmitter exceeds that of the receiver. This 
is becoming a significant issue for MS-DOS systems, 
where MIPS ratings across the range of Intel processors, 
from the original Intel 8086 to the recently announced 
Pentium, span at least two orders of magnitude. 

We have observed the potential utility of rate and 
burst control in XFS when operating between a 20 MHz 
80386 and a 33 MHz 80486 system over Ethernet with 8 
MAC buffers. In this case, the 80486 server system floods 
the slower 80386 client, resulting in dropped packets and 
requests for retransmission by the client. With no rate and 
burst control, the aggregate file system to file system 
throughput of this connection is 896 Kbits/sec. By 
enabling and tuning rate and burst control for this particu- 
lar connection, we can achieve a throughput of 1.96 Mbits/ 
sec. This matches the peak performance of a version of 
XFS operating between these hosts that generates no 
retransmissions, but uses 16 MAC buffers (i.e., an addi- 
tional 12,000 bytes of buffer space in XFSDRV). When 
operating between matched 80486/33 systems the XFS 
receiver is fast enough to prevent buffer overruns, so rate 
and burst control are not required on this connection. 

The value of the rate and burst parameters for an XFS 
connection can be set by the user through the XFSCTL 
throttle-client and throttle-server commands. In addition, 

324 



default values for rate and burst can be defined as part of 
the XFS peer name table, so that when a connection is 
opened, the client and server set their values of rate and 
burst based on the identity of their peer in the XFS con- 
nection. 

Client Access -> 

Ethemet 

53. The MS-DOS “kernelization” of XTP 

Because it is an integral part of a device driver, the 
implementation of XTP used in XFSDRV does not have 
access to operating system services that would normally 
be available to a user-level application. The version of 
XTP that is integrated into XFSDRV has been modified to 
remove all calls for MS-DOS system services. For 
instance, one the most critical system services used in our 
implementation of X T P  is dynamic memory allocation. In 
our new driver implementation of XW, all calls for 
dynamic memory services are handled by a custom inter- 
nal memory manager that performs allocations from a stat- 
ically defined segment of memory reserved within the 
executable hage of the driver. The whole process of inte- 
grating X T P  into the XFSDRV device driver can be 
viewed as an MS-DOS “kemelization” of the XTP soft- 
ware protocol engine. 

READ WRITE 

2.32 1.62 

6. Performance 

FDDI 

The primary design goal of XFS was to provide the 
Fluency system with transparent access to a remote file 
system using XTP, FDDI, and Intel 80486 PC’s. To pro- 
vide this transparent access, XFS must be capable of read- 
ing and writing the FMI byte stream to or from the remote 
device at a rate sufficient to support the full motion multi- 
media data stream produced by Fluency. The VideoPad 
Editor provides a range of user-selectable bit rates for 
recorded streams, ranging between 384 Kbits/sec and 2.0 
MbiWsec. We have measured the throughput of XFS 
while reading and writing 6 MB files, the equivalent of 
approximately 24 seconds of FMI motion video recorded 
at 2.0 Mbitdsec. As shown in Table 1, XFS can support 
the 2.0 MbiWsec rate over FDDI, and can provide read 
access at this rate over Ethemet. 

4.86 2.52 

The theoretical peak throughput of XFS is limited by 
the hard disk device of the Pc system. The disks used for 

these measurements have a sustained throughput of 7.6 
MbiWsec, so X F S  can read the remote device over FDDI 
at 63% of the disks effective rate. XFS writes from the cli- 
ent to the server involve three data copies whereas reads 
require two; this additional data copy explains the lower 
throughput measurements; for write accesses. 

7. Future work: video teleconferencing 

The successful appllication of X F S  to the real-time 
transfer of Fluent FMI files between remote hosts demon- 
strates that our software implementation of XTP is capable 
of providing a transport level service that satisfies the 
throughput and latency constraints imposed by a full 
motion multimedia byte stream. We intend to apply the 
experience gained during the XFS/Fluency video mail 
project by designing and implementing a PC based video 
teleconferencing system using X T P  and specialized frame 
grabber and video compression hardware. We have identi- 
fied three functional requirements that a compression sys- 
tem considered for use in a teleconferencing application 
must meet. Such a system must allow the application soft- 
ware to: 

control the data rate af the compressed bit stream pm- 
cessed by the hardware, 

directly read and write the raw compressed bit stream 
to and from the compression engine, and 

quickly switch the operating “direction” of the PEG 
hardware between coimpression and decompression. 

After surveying the marketplace, two Pc video com- 
pression systems were identified that met these require- 
ments: the Intel AcfionMediu IZ (marketed by IBM) and 
the Ksionury system from Rapid Technology Inc. (Will- 
iamsville, NY). visionary was selected, primarily because 
the application development toolkit provided by the ven- 
dor includes support for both Microsoft Windows and MS- 
DOS. Like the Fluency VSA-1000, Kswnary consists of 
two 16 bit ISA bus boards that perform A/D conversion of 
NTSC video signals and JI’EG compression of each digital 
video frame. 

Rapid Technology provides a full-featured ‘C’ lan- 
guage API that allows the programmer to control the oper- 
ation of the Visionary board set It includes functions that 
control the dimensions of the digital frame passed to the 
compression engine and the coding and quantization 
tables used within the JIPEG algorithm. This interface 
enables the developer to trade lower video quality for 
reduced data rate. This mntrol is critical in a networked 

325 



teleconferencing application, where the rate that data is 
emitted by the compression system must be tuned so as 
not to overwhelm the underlying communication system. 

Unlike the MPEG LEG911 and H.261 PVR931 stan- 
dards, JPEG does not specify any interframe (temporal) 
compression; each frame of video can be compressed, 
packetized, transmitted, and decompressed with no depen- 
dence on neighbor frames. The Wsionary interface pro- 
vides calls to initialize the compression and 
decompression of individual frames, so the operation of 
the Wsionury hardware can be activated from the underly- 
ing communications application based on the presence of 
an incoming compressed frame or available buffer space 
for an outgoing frame. From the user level, data is trans- 
ferred to and from the JPEG engine via a 16-bit register 
that is VO-mapped onto the ISA bus. Therefore, the rate at 
which frames of compressed video can be transferred 
between the communications application and the compres- 
sion hardware is limited only by the bandwidth of the 8 
MHz 16 bit ISA bus. 

We believe that this hardwardsoftware system pro- 
vides the necessary hardware and software functionality 
such that, when integrated with the reliable low latency 
transport service provided by XTP, we can achieve a 10 to 
12 f p s  duplex teleconference service over an FDDI net- 
work. 

8. Summary 

In this project we developed a video mail distribution 
system based on personal computers, MS-DOS, FDDI, 
and the Xpress Transfer Protocol. Our Xpress File System 
provides a general purpose file sharing capability which 
we use to support multimedia capture, transmission, stor- 
age, and retrieval. The throughput and latency characteris- 
tics of XFS are such that a human observer is unable to 
distinguish whether the multimedia bit stream is being 
replayed from the Pc’s local hard disk or from a remote 
disk which is being accessed via XFS using XTP and 
FDDI. 

Acknowledgment 

The authors gratefully acknowledge the technical 
cooperation of Dr. Kevin Vest at Science Applications 
Intemational Corporation (McLean, VA), and the financial 
sponsorship of both SAIC and Virginia’s Center for IMO- 
vative Technology (Herndon, VA). We appreciate the tech- 
nical support provided by Dr. Robert Simoncic and Mr. 
James McNabb, both of whom are Reseatch Scientists in 

the Computer Networks w r y ,  and the additional 
help of Mr. Bert Dempsey. 

References 

[DUN881 R. Duncan, General Editor, The MS-DOS Encyclo- 
pedia. Microsoft Press, 1988. 

m u 9 2 1  Fluency Product Manual, Fluent Machines Inc., 
Framingham, MA, 1992. 

&AI921 R.S. Lai, Writing MS-DOS Device Drivers, Addi- 
son-Wesley, 1992. 

[LEG911 MPEG: A Video Compression Standard for Multi- 
media Applications. Communications of the ACM. April 
1991. 

[MIC91] Microsojt MS-DOS Programmer’s Reference. 
Microsoft Corporation, 1991. 

[STR92] W.T. Strayer, B.J. Dempsey, A.C. Weaver, XTP: The 
Xpress Traqfer Protocol, Addison-Wesley, 1992. 

[TUR92] T. Turletti, “H.261 Software CODEC for Videocon- 
ferencing Over the Intemet”, Report 1834, Institut National 
de Recherche en Infmatique et en Automatique. France, 
January 1993. 

wAL,91] G.K. Wallace. The JPEG Still Picture Compression 
Stundurd, Communications of the ACM. April 1991. 

326 


