Marginal Cost-Benefit Analysis for Predictive File
Prefetching

Timothy Highley
Department of Computer Science
University of Virginia

tjhighley@cs.virginia.edu

ABSTRACT

File prefetching can reduce file access latencies and improve
overall performance. Prefetching can be especially important in
on-line software on demand, where network latencies create
unacceptable delays. Prefetching involves predicting future
accesses and establishing when/whether to prefetch, based on
future access predictions. Cost-benefit analysis (CBA) [15]
addresses when/whether to prefetch and it addresses the
interaction between prefetching and caching. CBA weighs the
expected benefits of file prefetching and the cost of expected
buffer usage. We describe 1-Marginal CBA, an approach that
employs probabilistic predictions, as opposed to deterministic
hints [16]. We present a probabilistically optimal, though
intractable, algorithm, Opt, for a representative prediction model,
and demonstrate that any other optimal algorithm under that
model will also be intractable. We argue that in many
circumstances 1-Marginal and Opt will make the same decisions.
Finally, we present simulation results in which 1-Marginal
reduced I/O time by an average of 19% and a maximum of 49%
over other prefetching schemes in the literature, even when using
the same predictor. Since the cost of 1-Marginal is comparable to
that of other published algorithms the improvement is real.
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1. INTRODUCTION

Processing speeds have improved much more quickly than disk
access speeds and network latencies. As a result, improvements
in file system access times have become increasingly important.

File prefetching has been widely researched in order to address
the problem of slow disks, and particularly disk access latency.
Much of the research has focused on how to best predict future
accesses [2][5][13][10][12], though some researchers [4][15]
have examined the question of when to perform prefetches,
assuming knowledge of future accesses. Patterson introduced
cost-benefit analysis for file prefetching, which seeks a good
balance between caching recently used blocks and prefetching
blocks which are predicted for future use (Figure 1). The
approach was extended to systems that assume only a probabilistic
knowledge of future accesses in [18]. In [7], distinctions were
drawn between two types of cost-benefit analysis: absolute and
marginal. An analysis of absolute CBA was also presented there.

Our research follows [15], [18] and [7]; we present an algorithm
for file prefetching using marginal cost-benefit analysis. This
approach employs the concept of marginal gains, similar to the
approach used in [14], [17] and [8]. Marginal gains are the
benefits obtained by taking actions earlier than they otherwise
would have been taken, or allocating more resources than
otherwise would have been allocated. Previous researchers
partitioned the file cache and used marginal gains to establish how
many buffers to assign to each partition. In [17] each partition
corresponded to a different process, while in [8] each partition
corresponded to a different access pattern. Our approach uses the
concept of marginal gains on a per-block basis so that the most
time-critical blocks are prefetched.
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Figure 1. CBA: seeking a balance between caching and
prefetching for file buffers.




We also present Opt, an algorithm that, when provided with a
finite probability tree representing all possible executions of the
program, will prefetch optimally in the average case. A runtime
lower bound for any optimal algorithm on a similar prediction
model is also presented.

Our results capture an effective approach for practical prefetchers.
Our simulations indicate that 1-Marginal CBA can reduce 1/0
time by 19% compared to other prefetching algorithms.

2. ABSOLUTE VS. MARGINAL COST-
BENEFIT ANALYSIS

Cost-benefit analysis identifies which file blocks to place and hold
in a file buffer. Estimators express the cost or benefit of ejecting
or fetching particular blocks. Estimators are expressed in terms of
a common currency, which takes two factors (program execution
time and cache buffer usage) and expresses them as one number
that can be compared for all potential blocks. If the benefit of
initiating a fetch ever exceeds the cost of ejecting a block
currently in the cache, the fetch is initiated [15].

In [7], a distinction is drawn between absolute and marginal CBA.
In absolute CBA, the benefit of a particular action is related to the
difference between taking the action and not taking the action. In
marginal CBA, the benefit of a particular action is related to the
difference between taking the action immediately and the effect of
waiting to take the action at a later point in time. If that later
point in time is assumed to be the next opportunity, we call it 1-
Marginal CBA.

Absolute CBA is somewhat simpler than marginal CBA, and in
systems with very little prefetching it may perform well. With
absolute CBA the question asked is: “If only one block is ever
fetched, which one should it be?” However, in most cases several
blocks are good prefetch options, and in the case of probabilistic
prefetching many predictions will be incorrect.  Frequent
mispredictions imply that, often, buffers become available for
other uses. In this scenario the 1-Marginal assumption is likely to
be true: a prefetch that is not initiated immediately can be initiated
after the next file block access. In 1-Marginal CBA the question
asked is: “Which block should be fetched if other blocks can be
prefetched in the next access period?”

3. SYSTEM MODEL

For our analysis, we assume a program consisting of Nz file
accesses, with a constant amount of processing, Tcpu, after each
access. The time to satisfy a file access when the file resides in
the file block cache is Trnit. If the file block must be fetched from
the disk, it requires Tariver CPU time to prepare the fetch, and
Ta;sk for the block to arrive in the file block cache. Tsra1: is the
time the processor spends waiting for the file block; it is equal to
(Taisk + Tnit) if the block is not prefetched or cached, but it
may be less if it has been prefetched recently or is currently
cached. An access period consists of a file access request, a series
of file fetching decisions, the access of the requested file, and
processing until the next file access request.

We assume that a prediction mechanism provides an accurate
probability tree, rooted at the most recently requested block, that
corresponds to potential future accesses. By accurate, we mean
that the probability associated with a block in the tree corresponds

to the unconditional probability of accessing the block. In a real
system, the predictor will not be perfect; accurate predictors are
an open problem. The tree may be incomplete (i.e. the outbound
edges on a given node may sum to less than one). Predictors
appearing in the literature (e.g. [5][6][13]) could be used to
provide an adequate probability tree.

We use established terminology when discussing nodes and their
relationships in a probability tree: root, leaf, predecessor,
immediate predecessor, descendant and immediate descendant.

4. PREFETCH ESTIMATOR FOR 1-
MARGINAL CBA

We describe an estimator, E, for evaluating the benefit of
prefetching a block in 1-Marginal cost-benefit analysis. E is the
expected change in total I/O time divided by the expected change
in buffer usage (or bufferage [15]).

For a block b that may be potentially prefetched, dy denotes its
depth (or distance) in the probability tree, where depth is
measured as the number of accesses that would precede b, if the
path to the block were to be followed. py is the probability that
the block will be accessed. s is the average number of prefetches,
per access period, in which Tariver for the prefetch is not
overlapped with disk stall.

A prefetch is correct if the block fetched is accessed when it was
predicted to be accessed. If a prefetch is correct, then any
processor activity before the block is needed (up to Tqisx) Will
mask the stall for the block. In addition, if the processor is
currently stalled, then Tariver for the prefetch is overlapped with
that stall time. Let M (r, b, dy) denote

max('Tdriver, 'Tstall(r)) +
max (—dp * (Tceu + Thic + STariver) —
[(Zm = b’s direct ancestors starting with © Tstall(m)) +
max(-Tariver, -Tsta11(r))], —Taisk) (1)

M(r,b,ds) represents the amount of time a correct prefetch of
b will save if b is prefetched at a distance of dj, with r as the root
at the time of the prefetch. The amount of time is negative to
indicate a reduction in I/O time.

The first term of equation (/) indicates that if the processor is
currently stalled, then a prefetch can mask its Tgriver cost with
the current stall time. The second term indicates that stall time for
b can be overlapped with stall time and processing time on
accesses that come before b. It also indicates that Ty, iver for
future prefetches can be overlapped with the stall time for the
current prefetch. In order to avoid double-counting, s does not
take into account all prefetches, but only those where Tqyyriver iS
not overlapped with disk stall.

If a prefetch is incorrect, then the time to prepare the fetch,
Tariver, Was wasted, but if the processor was stalled anyway there
is no effect on the total I/O time. If a block is prefetched then the
expected impact on I/O time is

Pr*[M (root, b, dp) | + (1-pp)*(max (Tariver—Tsta11(root), 0)
(2)

In (2), ‘root’ is the root of the probability tree (i.e. the most
recently requested block).



By waiting one access period before prefetching, one of three
scenarios occurs. 1) If the next block requested does not lead
toward the potential block, b, then b will not be prefetched at all
and a misprediction will be avoided (and thus the program
runtime is unaffected). 2) If b is eventually accessed, then the
prefetch at the next access period will reduce the stall time, but by
a smaller amount than if the block had been prefetched
immediately. 3) b may still be mispredicted, adding Tqriver to
the program runtime. Define py1 to be the probability that one
access period later b is still a candidate for being prefetched. That
is, b is a descendant of the new root node one access period later.
The impact of a prefetch that might be performed one access
period later is

(1 —pp1) *(0) + pp * [M (nextnode, b, dp—1)]+
(po1 — Po) * (Max(Tariver — Tstar1(next node), 0)(3)

In (3) ‘next node’ refers to the node that is an immediate
descendant of root and is either a predecessor of b or is b itself.
The difference between (2) and (3) is the amount of time saved
that can be attributed to prefetching one access period earlier:

po *[M(root, b, dy)]+

(l_pb) * (max (Tdriver_Tstall(rOOI)’ 0) -

[(1 -pp1) *(0)+ pp * [M(nextnode, b, dp,—-1)]+
(Po1 — Pp) * (Max(Tariver — Tscar1(next node), 0)] =

po *[M(root, b, dy) —M(nextnode, b, dp, — 1)]+
(l_pb) * (max (Tdriver_Tstall(rOOt)s 0)) -
(Pp1 — Po) * (Max(Tariver — Tstar1(next node), 0) (4)

Buffer usage is measured in units of “buffer-access” [15], which is
the occupation of a file buffer for one access period. In deriving
E the issue is prefetching a block one access period earlier, so the
bufferage is one buffer-access and the benefit of prefetching block
b at depth dy, is

B(b) = [pp* [M (root, b, dy) —M(nextnode, b, dp—1)]+
(1-pp)(max (Tariver— Tsta11(root), 0)) —
(pbl - pb)(maX(Tdriver - Tstall(neXt node), 0)] / 1
(5)

This is the 1-Marginal benefit estimator, E, for prefetching block
b.

Formula (5) can be simplified without having a significant impact
on performance. If ‘next node’ is assumed to be cached then
Tsta11 (next node) is zero. If it is also assumed that the enforced
maximum of —Tg4;sx in M (r, b, dy) is unnecessary, then part of
the formula simplifies so that dy is no longer a factor. This is a
reasonable assumption in many cases; the maximum only
becomes relevant when a prefetch is performed at the prefetch
horizon. The simplification is:

(M (root, b, dp) —M(nextnode, b, dp-1))=
max(-Tariver, -Tsta11(root)) +
—dp* (Tcpy + Thit + STariver) —
[(Zm =Db’s direct ancestors starting with root Tsta1 l(m)) +
max('Tdriver, 'Tstall(rOOt))] -
[=(db-1) * (Tceu + Thit + STariver) —

[(Zm =Db’s direct ancestors starting with next node Tstall(m))]] =

_(TCPU + Thit + STdriver) - Tstall(rOOt) (6)

Also, when a block is incorrectly prefetched, the Tq.iver Overhead
may prevent a successful prefetch from being initiated, even if
Tariver 18 overlapped with stall time. This gives some
justification to the decision to assume that T4river Overlapped
with stall time should still count as a penalty. By making that
assumption, the last two terms in the numerator of (5) can be
combined.  With these simplifications, the benefit can be
expressed as

B(b) =
pb(_(TCPU + Thic + STdriver) - Tstall(rOOt nOde)) +
(l_pbl)(Tdriver) (7)

This is the simplified 1-Marginal (SIM) benefit estimator for
prefetching block b.

Because the root node is the same for all blocks that might be
prefetched, p» and py: are the only discriminating factors in
deciding which block to prefetch. In cases where Tqgriver iS
negligible, py, is the only factor in determining the most beneficial
block. The S1M benefit estimator is important, though, in
deciding when to prefetch, since the prefetch estimator is
compared with other estimators such as the one for retaining
blocks in the demand cache.

The above derivations for 1-Marginal and S1M are based on the
assumption that each node in the tree represents a different file
block. It is possible that a single block may be replicated several
times in the probability tree, and that the block may be the best
prefetch choice because it appears several times in the tree, even
though the individual probabilities associated with the nodes are
small.

With replication, the analysis changes only slightly. For block b,
P becomes the sum of the probabilities of all instances of nodes
representing b (provided the node is not a descendant of another
instance of a node representing b). The depth of b is no longer
clearly defined, since the nodes may be at different depths.
Fortunately, in the simplified formula, d;, drops out of the benefit
equation because it is only important to note that by waiting to
prefetch, the depth of each node is reduced by one, just as the
depth is reduced by one in the non-replicated case. The definition
for py1 remains the same: the probability that one access period
later b is still a candidate for being prefetched. Thus, the SIM
CBA benefit estimator for prefetching in the replicated case is
expressed the same as that in the non-replicated case, but p, and
po1 are calculated differently in the replicated case.

In [7], absolute CBA with replication was investigated. An
anomaly described there also applies here. Though it may be
counterintuitive, it is possible that considering additional nodes
for a particular block artificially reduces the estimated benefit of
prefetching the block. To counteract this, the benefit of
prefetching a particular block is the maximum value of B(J) where
Jis a subset of the nodes representing block b.

In a previous study, we found that absolute CBA realized no
significant improvement with the addition of replication while the
cost of computation was prohibitively high. It is possible that
replication would have greater benefit in 1-Marginal or SIM
CBA, but experience with absolute CBA indicates otherwise. As
disk speeds and processor speeds continue to diverge, replication
may eventually become a more important issue.



1-Marginal analysis could also be applied to derive estimators
about ejecting blocks from the cache. These estimators would not
be practical, however, because it would not make sense to eject a
block and fetch it again at the next access period.

5. OPTIMAL PREFETCHING ON A
FINITE TREE

In [1], an algorithm is presented to calculate the optimal
prefetching/caching schedule for a single disk problem where the
entire request sequence is given in advance. In [19], a prefetching
algorithm is presented that is optimal in the limit for pure
prefetching. Pure prefetching is when there is time between each
access to prefetch as many blocks as desired. In [9], an algorithm
is presented which optimizes for the worst case, again under the
assumption of pure prefetching. With pure prefetching, the
prefetching problem reduces to a prediction problem. The
literature does not currently offer an optimal algorithm for non-
pure prefetching in the presence of uncertainty. For the new
algorithm we present here, Opt, we assume that the prediction
problem is solved. That is, a finite probability tree is provided
that describes all possible executions of the program. Opt is
optimal in the average case, assuming zero-cost analysis. (Note
that for this problem, the LRU cache is not taken into
consideration since all possible accesses are represented in the
tree.) Opt is intractable in both run-time and space used, but it is
worthwhile to ask: “What should be prefetched here?” and have a
methodology for determining the correct answer.

We first introduce the concept of an opt-mapping, which is a
mapping, for a particular tree node, from cache state to expected
execution time. The cache state is defined by the collection of
blocks in the cache, the blocks that are currently being fetched
into the cache and the arrival times of those blocks being fetched.
The opt-mapping for a particular node of a probability tree is a
mapping from cache state to expected time to complete execution
on the subtree of which that node 1is the root, when
probabilistically optimal prefetching decisions are made on that
subtree. If an opt-mapping is found for each node of the tree, then
probabilistically optimal prefetching can be performed on the tree.
We use om (n, cs) to denote the value of the opt-mapping at
node n when the cache state is ¢s. For example, om (root node,
empty cache) is the expected execution time for the entire
program when optimal prefetching is employed.

If we have an opt-mapping for each child of a parent node, an opt-
mapping can be constructed for the parent node. To determine the
value of om (P, c¢s) for a particular parent node P and cache
state cs, first determine the time needed to access and perform
processing on P’s block. If, for cs, the block is in the cache, the
time needed is (Thit + Tcpy). If the block is not in the cache at
all, it iS (Tariver + Taisk + Tnit + Tcpu). If the block has been
fetched and is on its way to the cache, it is ((Time until block
arrives) + Thit + Tcpy). Define acc (b (n), c¢s) as the time
needed to access and perform computation on the block
represented by node n when the cache state is cs. Second,
determine the set T (cs) of all possible cache states to which it is
possible to transition from cs. Also compute the times needed
for the transitions (i.e. Tariver for each fetch initiated with
possible overlap for stall time and computation time). Define
T(cs, t) as the time needed to change the cache from state cs

to state t. For each possible transition state t, add the access
time, time needed for the transition and the value of the immediate
descendants’ opt-mappings, each evaluated at t and weighted for
probability of following that edge of the probability tree. Find the
transition state m for which the sum of all these (the access and
computation time, the penalty and the weighted opt-mappings,
evaluated for each immediate descendant) is the least. That sum
is the value of om (P, c¢s). The prefetching decisions that
should be made at the parent, if the initial cache state is cs, are
those decisions that will transform the cache state to m. More
formally,

om(P, cs) = (8)
acc(b(P)) + mincgr(esy[t(cs, t) +
Zi:P’s chi]dren(pi *om (ir t)]

Given this recursive method for constructing an opt-mapping, we
can construct an opt-mapping for the root node if we can
construct an opt-mapping for the leaf nodes. An opt-mapping for
a leaf node is trivial. A single node represents a program with one
disk access. For any cache state that does not include the node’s
block in the cache at all, the expected execution time is (Tariver +
Taisk + Thit + Tcpy). For any cache state that has the block in the
cache, the expected execution time is (Thi+ + Tcpy). For any
cache state that has a buffer reserved for the block, with the fetch
initiated but pending, the expected execution time is ((Time until
block’s arrival) + Tnit + Tcey). The only fetching decision to be
made here is whether or not to fetch the leaf node’s block if it is
not already in the cache. It should always be fetched; this is the
optimal action to take regardless of the previous cache state.

Given an opt-mapping for the root node, the initial prefetching
decisions are those suggested by the opt-mapping evaluated at the
empty cache state.

The concept of a prefetch horizon is introduced in [15]. The
prefetch horizon is the depth of the access that is furthest in the
future for which there may be some benefit to prefetching.
Accesses beyond the prefetch horizon may be prefetched one
access-period later and still arrive in the buffer in time to incur no
stall.

We conjecture that 1-Marginal is optimal whenever a sequence of
file accesses does not lead to prefetches that are as deep as the
prefetch horizon.  Proof is left to future work, as is a
characterization of the effects prefetches at the prefetch horizon
may have on 1-Marginal's performance relative to that of Opt.

6. BOUND ON EFFICIENCY OF AN
OPTIMAL PREFETCHER

Opt is not practical for a real system, and it is natural to inquire
whether a prefetcher could make an optimal prefetching decision
without evaluating the entire tree. The following counter-example
demonstrates that any prefetcher that is probabilistically optimal
must in some cases examine the deepest leaf node.

For our counter-example, we assume a cache size of 4 and a
prefetch horizon of 2. In both Figure 2 and Figure 3, blocks a, b
and d should be fetched immediately. In Figure 2 the fourth block
fetched should be block c¢. In Figure 3 it is more beneficial to
prefetch block e instead of block c¢. The difference is the presence
or absence of block n. However, the presence or absence of block



n is not detectable unless the
algorithm considers that leaf
node at the deepest depth of the
tree. This example deals only
with a maximum depth of four,
but is extensible to any depth,
where the  probability of
accessing block m is 99.9 per
cent (or 99 per cent in the case of
Figure 3), the probability of
taking the initial branch to the
right is 10", where n is the
maximum depth minus one, and
the probability of taking any of
the other branches is 9 x 107,
where n is the maximum depth
plus one, minus the depth of the
node being branched to. This

demonstrates that the problem of

H ; Figure 2.
determining an optimal

Figure 3.

prefetching decision with a finite
tree prediction model is Q(n), where n is the depth of the tree.

7. PERFORMANCE RESULTS

There are many possible prediction models. A perfectly accurate
finite probability tree lends itself well to analysis but is
impractical for production level implementations. In our
simulations we chose to use a context model predictor [5], which
can emulate a probability tree. A full rationale for our prediction
model selection can be found in the appendix.

7.1 System Model and Traces

The model of our simulator faithfully represents the theoretical
model discussed in this paper, with the exception of the predictor.
Because we used a context-model instead of a finite tree, the
probability tree is potentially infinite. Also, the theoretical model
is based on a perfect predictor, but the simulator’s predictor is
imperfect. We chose system parameters representative of a typical
desktop workstation. Our model assumes the same type of
processor as [15], so we use similar values, but scaled for current
desktop workstations: Thi: = 5.8 microseconds and Tariver =
10.5 microseconds. The values for Tq4;sx and Tcpy were not the
same for all of our simulations, but unless otherwise stated their
values were 10 milliseconds and 100 microseconds respectively.

Our prediction mechanism is an implementation of a second order
Markov predictor [5], using escape probability method A with
lazy exclusions, found in [3], p. 144. That is, we consider only
the two most recent accesses, and predict future accesses based on
what has previously happened immediately following those two
accesses. If a particular block has not been previously seen in the
context of the two most recent accesses, then the escape
probability is used to determine a probability for that block, based
on lower-order contexts. For efficiency, in order to prevent
probing along a large number of paths at the same time, the
prefetching system considers at most twelve descendants at depth
one. At subsequent depths, at most one immediate descendant per
node is considered for prefetching. This means that at any point
in time, there could be prefetching along twelve different branches
of the probability tree, to a depth limited only by the prefetch
horizon. We use the same predictor with each of three prefetch

estimators in order to see the impact of the prefetch estimators.
We are not attempting to evaluate the performance of the
predictor.

Our traces are the cello, snake and CAD traces from [18]. The
cello and snake traces were previously used in [16] and the CAD
trace was previously used in [5]. Cello is a trace of a timesharing
system and snake is a trace of a file server. Both are traces of
accesses to the file system, so requests that hit in the cache are not
part of the trace. CAD is a trace of object references (rather than
file block accesses) from a CAD tool. More details about the
traces are available in the papers cited.

7.2 Results

For each trace, we report results using three different prefetching
estimators. Two of the estimators are those described in this
paper: 1-Marginal and Simplified 1-Marginal. The third estimator
is the prefetch estimator from [18], which we will call VC. The
performance of VC was shown to be comparable to the best
performances of two approaches that rely on tunable parameters
[11][5], but without relying on tunable parameters itself. This is
important because the optimal tuning for a parameter can change
from one set of data to another.

We vary Tg;isx from 5 ms to 50 ms, representing latencies from
modern disk drives to slow DSL lines. We vary inter-access
processing time from 100 microseconds to 20 milliseconds. We
vary cache size from 10 buffers to 2048 buffers. We also employ
first-order and third-order Markov predictors to see how the
estimators perform with different predictors.

Figures 4 through 7 illustrate that 1-Marginal CBA and SIM
reduce I/O time in comparison with VC. The one exception can
be seen in Figure 5, when processing time is 20 ms, making the
prefetch horizon 1, in which case the performances of the three
estimators are virtually identical (< 0.2% difference between any
two estimators on any of three traces). Figures 6 and 7
demonstrate that our estimators provide improvements
independent of cache size and predictor order. Figure 8 shows
that as disk access time increases the performance improvement
increases. It increases in both absolute terms and percent
difference. As the disk access time increases, the prefetch horizon
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increases, indicating that 1-Marginal and SIM work well when
dealing with deep prefetches. Compared to VC, 1-Marginal
offered an average reduction in I/O time of 19.1%, with a
maximum of 49.8%. S1M offered an average reduction in I/O
time of 20.1% with a maximum of 41.2%.

On the CAD trace, 1-Marginal performs better than S1M, but on
the cello and snake traces SIM outperforms 1-Marginal. Though
our theoretical model is based on a perfect predictor, the context-
model used in the simulator is not perfect. When the actual
success rate of prefetches is much higher than expected, then in
general it would have been better to prefetch more. When the
success rate is less than expected, in general it would have been
better to prefetch less. For the traces we used, 1-Marginal
prefetched many more blocks than S1M did. On all three traces,
the success rate was less than the expected success rate, but on the
cello and snake traces the success rate was much less than
expected. This explains why SIM performed better than 1-
Marginal even though SIM is an approximation of 1-Marginal.
We have been working under the assumption of zero-cost
analysis, but this is not a valid assumption in practice. Extra
prefetches will incur not only the Tqyiver Overhead, but also time
to decide whether or not to prefetch them. Because SIM
compares favorably to 1-Marginal and does so with fewer
prefetches, SIM is the better candidate for practical
implementations.

8. CONCLUSIONS

We have presented Opt, an algorithm for determining
probabilistically optimal prefetching actions when provided with a

finite probability tree. Though intractable in practice, it is of
theoretical value. = We have also demonstrated that any
probabilistically optimal algorithm under this model must in some
cases include one or more leaf nodes of the probability tree in its
analysis to make a correct decision.

We introduced 1-Marginal and Simplified 1-Marginal prefetch
estimators for prefetching in the presence of uncertainty.
Simulations indicate that these estimators reduce I/O time better
than existing techniques. This is particularly true when the
prefetch horizon is large. (As the gap between processor speeds
and disk/network latencies increases, the prefetch horizon grows.)

Our combined results offer more insight into the benefits (1M and
S1IM performance) and limitations (optimality requirements) of
CBA. Although 1M and SIM now become the best CBA
algorithms published to date, there needs to be continued work on
making their implementations more efficient.
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Appendix: Prediction Algorithm for Simulator
of a File Prefetcher

We used a simulator to evaluate the performance of the 1-
Marginal and S1M cost-benefit analysis estimators for file
prefetching. Inaccurate predictions affect the ability to evaluate
the quality of the estimators. We elected to use a context-model
[5] for the predictor in our simulator.

INTRODUCTION

In a file prefetching system, there must be a mechanism to
predict future accesses and a mechanism to establish
when/whether to prefetch, based on those predictions. CBA
addresses when and whether to prefetch. CBA estimators are
formulae that express the benefit of fetching a block into the file
cache or the cost of ejecting a block. The predictor is more
important to performance than the estimator: it is possible to
obtain significant speedup with a good predictor and naive
estimators, but excellent estimators will be of little use if the
predictor has major flaws. However, as we have shown, if the
predictor is good, different estimators can have a considerable
impact on performance.

In order to best evaluate the impact of the estimators, it is
important to have a predictor that is relatively accurate. With a
predictor of lesser quality, it can appear that the better estimator
is the one that prefetches more (if the prefetch success rate is
higher than expected) or prefetches less (if the prefetch success
rate is lower than expected), regardless of which estimator
would perform better with accurate predictions. We sought a
predictor that would enable us to evaluate the newly developed
estimators. Here we describe the predictor we used and our
rationale for its selection.

AVAILABLE APPROACHES

Several prediction algorithms are presented in the literature.
Our main criteria for selecting a predictor were prediction
accuracy and ease of implementation. We rejected some
prediction algorithms because the predictions were based on
whole files rather than file blocks [12]. Any of several other
prediction algorithms may have met our needs [5][6][10][13].

Much prefetching work has dealt with prefetching deeply along
a known access sequence [1][4], or making predictions for only
the next access, if perfect knowledge of future accesses is not
assumed. Since we wanted to prefetch deeply, we needed a
prediction method that would provide predictions beyond the
next access. Our work is based on a model very similar to that
used in [18]. The prediction method utilized there is LZ [5].
The natural implementation for the LZ predictor is a tree,
making deep predictions easy to identify. Additionally, LZ is
optimal in the limit, though it converges slowly.

In our initial experiments, we used LZ but observed the problem
described earlier: the estimator that appeared to perform best
either prefetched more (if the prefetch success rate was higher
than expected) or less (if the prefetch success rate was lower
than expected), with little regard for our theoretical findings.

We sought a better predictor and settled on the context-model
predictor, also described in [5] for reasons described below.

PREDICTOR DESCRIPTION
Context-Models

Context-models are also known as Markov predictors. The
order of a context-model is the length of the sequence that is
used to determine the current context. For example, a third-
order context-model for file prefetching will use the three most
recent accesses to determine the current context, and make
predictions based on what accesses previously occurred in that
context.

Our specific predictor is prediction-by-partial-match (PPM)
described in [5]. “A PPM prefetcher of order m maintains jth-
order Markov predictors (on the page access sequence seen till
now) for all 0 <j <m.” Our default predictor is of order 2.

Escape Probabilities

In [5], a fixed number of blocks were prefetched between any
two accesses, with preference given to blocks predicted by
higher order contexts. With this method, the context-models of
different orders did not need to interact. For our approach,
however, we needed to be sure that the probabilities of all
predictions at any given time (from context-models of different
orders) would not sum to more than one. The method to do this
is called blending, and is described in detail in [3], p. 142.

Briefly, blending reduces the probabilities of the predictions of
lower-order contexts, so that the total of all predictions is less
than or equal to one. Escape probabilities are the probabilities
of “escaping” to lower-order contexts. For instance, assume the
escape probability at the highest-order context is 10%. Then the
sum of the probabilities of the blocks predicted by the highest-
order will be 90%, while the sum of the probabilities of the
blocks predicted by all lower-order contexts will be 10%. There
are a number of ways to assign escape probabilities, none of
which is provably better than all others. We chose method A
from [3], p. 144.

When the same block is predicted by more than one context, a
full blending method will combine the predictions to produce a
blended probability.  Exclusions and lazy exclusions are
methods to avoid that complication for faster, but possibly less
accurate predictions [3]. We employ lazy exclusions.

Chaining

PPM is designed to make predictions for the next access only.
In order to perform deep prefetches, it is necessary to have
predictions for accesses further in the future. In order to
accomplish this with PPM, we chained the predictions. For
instance, if the most recent accesses were A and B, then AB
would be the current context. If block C would be predicted in
that context and then prefetched, then predictions for what



blocks might follow C (if it is accessed) would need to be
determined. To do so, the BC context would be utilized, even
though block C had not been accessed yet. Similarly, if the BC
context were to predict block D and block D were to be
prefetched, then the CD context would be used to predict other
blocks. We call this chaining because on one round of
prefetching decisions, several different contexts might be used
for predicting, but they will all be linked, as AB is linked to BC,
which is linked to CD.

EFFICIENCY

For efficiency in execution time, we restricted the number of
blocks the predictor would predict. Two tunable parameters
were introduced to facilitate this. The first, which we call x,
determined the maximum number of blocks predicted at depth
one. Priority was given to predictions coming from higher-order
contexts. For instance, if X were twelve and the highest-order
context predicted nine blocks, then up to three blocks would be
predicted by the next highest-order context (with appropriate
adjustments based on escape probabilities). We set X to twelve
for the experiments in this paper.

The second parameter, which we call y, determined the
maximum number of children predicted per node at depths
greater than one. Again, priority was given to predictions
coming from higher-order contexts. We set y to one for the
experiments in this paper. We set y to one because high
probability, deep prefetch candidates are likely to all be along
the same branch, and because setting y greater than one has the
potential to exponentially increase the number of blocks
considered for prefetching, greatly slowing the simulation. With
x set to twelve and y to one, there would be prefetching along
twelve branches at most, but the prefetches could be to any
depth (up to the prefetch horizon).

CONCLUSION

The predictor we have described scores well on our criteria of
prediction accuracy and ease of implementation. Additionally,
its execution speed is reasonable. We do not claim that the
predictor is the best possible predictor on any single criterion, or
even that it is the best choice based on some combination, but it
performed well and enabled us to adequately evaluate our cost-
benefit estimators.



