REGISTER TRANSFER STANDARD

Manuel E. Benitez

Department of Computer Science
University of Virginia
Charlottesville, Virginia

Version 1.0

1. INTRODUCTION

This document describes the Register Transfer List (RTL) standard. The intent of the standard is to minim-
ize the effort required to retarget a systems that utilize RTLs as an intermediate representation to new archi-
tectures. In addition, the standard also permits tools developed to manipulate RTLs to work on any set of
RTL regardless of the target architecture of the instructions that the RTLs represent. A secondary con-
sideration of the standard is to increase the efficiency of systems that utilize RTLs. Some aspects of the
standard were motivated by the desire to keep RTL files as compact as possible and to decrease the amount
of time needed to process RTLs.

1.1 Conventions

Characters are represented as they would in a string in a C program.

Registers sequences, even though they are compressed, are depicted as:
reg(type, number)

where type is a hexadecimal number from 0 through F and number is a decimal number between 0 and 512,
inclusively.

Global identifier sequences, even though they are compressed, are depicted as:
global (number)
where number is adecimal number between 0 and 4195, inclusively.
Local identifier sequences, even though they are compressed, are depicted as:
local (number)

where number is adecimal number between 0 and 4195, inclusively.

2. CHARACTERS

The RTL standard uses the 8-bit ASCII character code set. The motivation for this is that the majority of
modern computer systems utilize this character set as their standard for the storage and transmission of
text. The set of characters having values between 0 and 31, inclusively, will be referred to as the control
characters. The set of characters having values between 32 and 127, inclusively, will be referred to as the
printable characters. The remaining set of characters, having values between 128 and 255, inclusively, are
referred to as the extended characters.

2.1 Control Characters
The control characters, having values between 0 and 31, inclusively, must not appear in an RTL.

2.2 Extended Characters

The extended characters, having values between 128 and 255, inclusively, are reserved for denoting regis-
ters, global identifiers and local identifiers.

2.3 Printable Characters

Table 1 describes the designations given to each printable character.

3. REGISTERS

Registersin an RTL are encoded as two characters. The two most-significant-bits of the first character must
be set. The next four bits denote the register type (a total of sixteen different register types are permitted).
The last two bits are the most-significant bits of the register number field. The second character must have
its most-significant-bit set. The remaining seven hits make up the least-significant seven bits of the register

University of Virginia Page 1 Version 1.0

Char Val | Designation Char Val | Designation

T 32 | Left shift, unsigned P 80 | Two character tokens

e 33 | Notequal, signed and unsigned || ' Q 81| Two character tokens

T 34 | Right shift, unsigned 'R 82 | Two character tokens

TH# 35 Modulus, unsigned 'S 83 | Two character tokens

'y 36 | Signextend T 84 | Two character tokens

) 37 Modulus, signed U 85| Two character tokens

& 38 | BitwissAND Vv 86 | Two character tokens

T\ 39 | Lessthanor equal to, signed W 87 | Two character tokens

(7 40 | Numeric expressions "X 88 | Two character tokens

e 41 | Numeric expressions 'Y 89 | Two character tokens

TR 42 | Multiplication, signed 4 90 | Two character tokens

T+ 43 | Addition I 91 | Memory references, macros
T 44 | List separator T\ 92 | Division, unsigned

N 45 | Subtraction, unary minus 1 93 | Memory references, macros
L 46 | Floating point constant A 94 | Bitwise XOR

e 47 | Division, signed T 95 | Unassigned

"0’ 48 | Numeric constant T 96 | Greater than or equal to, signed
1 49 | Numeric constant Ta’ 97 | Unassigned

12’ 50 | Numeric constant b’ 98 | Unassigned

'3 51 | Numeric constant ‘¢’ 99 | Unassigned

T4 52 | Numeric constant T’ 100 | Auto-decrement

'5’ 53 | Numeric constant ‘e’ 101 | Floating-point constant

"6’ 54 | Numeric constant Tfr 102 | Unassigned

T 55 | Numeric constant g’ 103 | Greater than or equal to, unsigned
'8’ 56 | Numeric constant "h’ 104 | Greater than, unsigned

9 57 | Numeric constant i 105 | Auto-increment

Tt 58 | Equal, signed and unsigned T 106 | Unassigned

T 59 | RTL separator Tk’ 107 | Unassigned

T <! 60 Greater than, signed e 108 | Lessthan, unsigned

T 61 | Assignment 'm 109 | Unassigned

TS 62 | Lessthan, signed n’ 110 | Unassigned

e 63 | Compare, signed "o’ 111 | Unassigned

'@ 64 | Multiplication, unsigned ‘p’ 112 | Unassigned

A 65 | Two character tokens q’ 113 | Unassigned

"B 66 | Two character tokens r’ 114 | Unassigned

C 67 | Two character tokens s’ 115 | Lessthan or equal to, unsigned
D 68 | Two character tokens Tt 116 | Unassigned

= 69 | Two character tokens u’ 117 | Compare, unsigned

"F 70 | Two character tokens v’ 118 | Unassigned

"G 71 | Two character tokens T W 119 | Unassigned

"H 72 | Two character tokens "X’ 120 | Unassigned

. 73 | Two character tokens Ty’ 121 | Unassigned

'y 74 | Two character tokens 'z’ 122 | Unassigned

'K 75 | Two character tokens { 123 | Left shift, signed

L 76 | Two character tokens, labels T 124 | Bitwise OR

"M 77 | Two character tokens "} 125 | Right shift, signed

"N 78 | Two character tokens T~ 126 | Unary negate

'O 79 | Two character tokens \N17T 127 | Reserved for future use

TABLE 1. Printable character designations

number. The last two bits from the first character concatenated with the last seven bits from the second
character yield a nine bit number field which allows a total of 512 different registers for each of the sixteen
register types.

University of Virginia Page 2 Version 1.0

For example, the following sequence of characters:
"\312' "\206’
yield the following sequences of hits:
11001010 10000110

The first two hits of the first character are set to indicate that it and the subsequent character represent a
register. The first bit of the second character is set to prevent the character from being mistaken for any
other special character. If we strip out these three bits, the remaining sequences are:

001010 0000110

Now the sequences are re-arranged so that the first four bits are grouped together to form the type field and
the last nine bits are concatenated to comprise the number field:

0010 100000110

Decoding the fields then reveals that the character sequence represents aregister of type 2 and number 262.
Using our standard notation, this sequence would have been represented as:

reg(2, 262)

4. GLOBAL IDENTIFIERS

Global identifiers in an RTL are encoded as two characters. The most-significant-bit of the first character
must be set. The next two bits must be cleared. The remaining five bits are the most-significant-bits of the
global identifier number. The second character must have its most-significant-hit set. The remaining seven
bits make up the least-significant seven bits of the global identifier number. The last five bits from the first
character concatenated with the last seven bits from the second character yield atwelve bit global identifier
number field which allows atotal of 4096 different global identifiers.

For example, the following sequence of characters:
"\211' "\366'
yield the following sequences of hits:
10001001 11110110

The first three hits of the first character indicate that it and the subsequent character represent a global
identifier. The first bit of the second character is set to prevent the character from being mistaken for any
other special character. If we strip out these four bits, the remaining sequences are:

01001 1110110
The sequences of hits are concatenated to comprise the number field:
010011110111

Decoding the field then reveals that the character sequence represents a global identifier whose number is
1271. Using our standard notation, this sequence would have been represented as:

global(1271)

Obviously, the global identifier sequence yields no real information about the nature of the identifier. The
mechanism used to describe the global identifier in detail is described in the document entitled Register
Transfer List File Format.

University of Virginia Page 3 Version 1.0

5. LOCAL IDENTIFIERS

Local identifiers in an RTL are encoded as two characters. The most-significant-bit of the first character
must be set. The next bit must be cleared. The following bit must be set. The remaining five bits are the
most-significant-bits of the local identifier number. The second character must have its most-significant-bit
set. The remaining seven hits make up the least-significant seven bits of the local identifier number. The
last five bits from the first character concatenated with the last seven bits from the second character yield a
twelve bit local identifier number field which allows atotal of 4096 different local identifiers.

For example, the following sequence of characters:
"\211' "\366'
yield the following sequences of hits:
10101001 11110110

The first three bits of the first character indicate that it and the subsequent character represent a local
identifier. The first bit of the second character is set to prevent the character from being mistaken for any
other special character. If we strip out these four bits, the remaining sequences are:

01001 1110110
The sequences of hits are concatenated to comprise the number field:
010011110111

Decoding the field then reveals that the character sequence represents a local identifier whose number is
1271. Using our standard notation, this sequence would have been represented as:

local (1271)

Obviously, the local identifier sequence yields no real information about the nature of the identifier. The
mechanism used to describe the loca identifier in detail is described in the document entitled Register
Transfer List File Format.

6. COMPONENTS

6.1 Numeric Constants

There are two types of numeric constants. integer and floating-point. Integer constants consist of a string
of one or more digit characters ("0’ through’9’). Integer numeric constants are always base ten (decimal).

Floating point constants have the following form:
constant { [*.’ [constant]] | ['€' ['+'/'-'] constant] }
6.2 Numeric Expressions

Numeric expressions are comprised of constants, registers, identifiers and labels joined together by opera-
tors. Parentheses can be used to override operator precedence. No operator precedence is defined in the
RTL standard.

6.3 Assignment

The'=" character isthe assignment operator. Each individual register transfer must have one and only one
assignment operator separating the source item from the destination item.

6.4 Termination

The’;’ character isthe register transfer terminator. Each individua register transfer must have a termina-
tor. Multiple register transfers can be concatenated to signify that the RTL represents an operation that has

University of Virginia Page 4 Version 1.0

more than one effect. When an RTL has multiple effects, each effect executes smultaneously. Thus, all
sources are computed before any assignments are made.

6.5 Memory References

Unlike register references, memory references are not compressed, but certain standards do hold for them.
A memory reference has the following form:

type’[’ address expression’]’

where type is any of the upper-case letters between 'B’ and 'Z’, inclusively. The form of an
address_expression is described in the following subsection.

6.6 Address Expressions

An address expression is similar to a numeric expression. An address expression, however, may need to be
differentiated from numeric expression when the target machine provides addressing modes complex
enough to make it difficult for a yacc grammar to differentiate binary operations form address expressions.
An address expression must have the following form:

"A" [expression’]’

On machines where there is no "load effective address' type instruction to complicate the machine descrip-
tion, this special form for encapsulating address expressions is not needed.

University of Virginia Page 5 Version 1.0

