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Abstract—This paper presents a formal, general algebraic
theory of design space tradeoff analysis tools, and a map-reduce-
based framework, derived mechanically from the theory, for
implementing such tools. The theory is organized as a hierarchy
of Coq typeclasses in a style similar to that being used elsewhere
to formalize abstract mathematics. From this theory, using Coq’s
extraction function, we produce a polymorphic framework (in
Scala) that developers specialize and extend to produce domain-
specific trade-off analysis tools. As a test and demonstration,
we instantiated this framework using code re-engineered from
an earlier, ad hoc, only partially automated system for tradeoff
analysis of object-relation mappings. Our new tool reduced the
time taken by one analysis from weeks to hours.

I. INTRODUCTION

When the consequences of variations in design decisions in
candidate implementations of a given specification are unclear,
it can be important to conduct systematic tradeoff studies. Such
studies help reveal how system properties in multiple dimen-
sions vary across implementations, revealing how stakeholders
might be impacted, and what implementations might best serve
the needs of a given project.

To conduct such a study, one starts with a specification,
generates many variant implementations, and applies property
measurement (or estimation) functions to each implementa-
tion. The result is a tradespace that associates a vector of
property estimates with each candidate implementation. One
then analyzes the tradespace to rule out strictly suboptimal so-
lutions, identify Pareto-optimal solutions, understand tradeoffs
on the Pareto front, and ultimately select a best solution.

Tradeoff analysis can help decision-makers by revealing
designs that people might miss [9], illuminating sensible and
non-sensical tradeoffs, and helping decision-makers to balance
tradeoffs that design decisions impose on diverse stakeholders.
Ultimately it can provide evidence in support of principled
decisions about which path or paths to pursue toward a realized
system. Such studies can be done at different modeling and
measurement granularities; for whole systems or individual
components; and at many points in system development and
evolution, even runtime.

Yet, today, systematic tradeoff analysis remains rare. We
lack both science and technologies to support it. Instead,
developers are usually given specifications that constrain cer-
tain choices (often function) but that leave other relevant
properties unspecified (often non-functional properties such

as performance, reliability, evovability). Developers are then
trusted to use design heuristics, tacit knowledge, and other
such methods in developing point solutions that, it is hoped,
will be good enough for stakeholders in all key dimensions.

Similarly, when tools automatically produce implementa-
tions, they often use single-point strategies. Consider object-
relation mapping (ORM) tools, now provided in many pro-
gramming environments. They map object-oriented data mod-
els to relational schemas and code for managing application
data. They often use a single mapping strategy, and do not help
engineers to understand available solutions or the tradeoffs in
time and space performance, evolvability, etc. that they entail.

Single-point, heuristic methods are increasingly inadequate.
Key decisions are often made early and locked in by sub-
sequent development without a full understanding of their
impact on other system properties. Consequences are felt in
opportunity costs of suboptimal systems, reduced stakeholder
satisfaction, trouble late in development, cancelled projects,
and failed systems.

Our aim is to develop scientific foundations and general-
purpose software technology for practical analysis of system
properties, tradeoffs, and value. We leverage advances in
several areas to start to build such a science and technology
base. The main contributions of this paper are (1) a formal,
general algebraic “theory” of, and (2) a mechanically derived,
polymorphic, map-reduce-based, general-purpose framework
for, tradeoff analysis tools, along with (3) a demonstration
system built on the framework that strongly suggests that the
approach works.

II. OVERVIEW OF APPROACH AND CONTRIBUTIONS

In this section we described how our approach leverages
advances in several areas of computer science and engineering.

A. Constructive Logic Proof Assistants

First, we use the enormous expressiveness of dependent type
theory in modern constructive logic proof assistants to produce
precise, abstract, general, computationally effective theories of
domains such as tradeoff analysis. We present an algebraic
theory of tradeoff analysis tools structured as a hierarchy of
Coq [5] typeclasses, in a style similar to that being used by
mathematicians [16], [18] to formalize hierarchies of abstract
algebraic structures (e.g., groups, fields, topological spaces).



B. Certified Programming with Dependent Types

Second, from this theory, we use Coq’s extraction facility to
derive a certified [1] implementation of a general-purpose tool
framework (in Scala). It is then specialized and extended with
user-defined, domain-specific types and functions (and in some
cases, proofs), subject to the specified laws, to create domain-
specific analysis tools. The theory provides implementations
of functions common to all instances and expresses laws that
all instances must obey.

C. Formal Synthesis from Specifications

Third, as we [3], Dwivedi et al. [11], and others have
been showing, we can increasingly synthesize many imple-
mentations from given specifications, often in large numbers,
particularly for tradeoff analysis. We recently showed that
we can use a relational logic model finder to exhaustively
synthesize relational database schemas as well as test inputs
for dynamic analysis of performance from relational logic
specifications of object-oriented data models [2], [3].

Our framework is meant to be specialized using any types of
specification, implementation, and property estimation func-
tion. When specification-driven implementation synthesizers
are available, they should be easy to plug in. When they are
not, other hand-crafted functions can be used. To test this idea
we re-engineered and extended our earlier, Alloy-based [8]
ORM synthesizer to produce a fully automated, synthesis-
driven framework-based ORM tradespace analysis tool.

With this tool, we are now able to fully replicate the largely
manual analysis of synthesized database schemas that we
reported in our earlier work [3]. The tool works with far
higher reliability, and is just one of many possible specialized
instance of a general, theory-based framework. We can now
rapidly produce tool variants. Our tool has reduced the time
required to analyze thousands of candidate solutions from
weeks (involving tedious manual execution of synthesized
benchmarks) to just hours.

D. Scalable “Big Data” Analytics

Fourth, we plan to use big data analytics, particularly map-
reduce [7], to reduce analysis runtimes. While synthesizing
spaces of solutions from specifications may not always be
easily parallelized, applying independent property estimation
functions to independent implementations is. The problem has
a natural map-reduce structure. The use of scalable map-reduce
technology can benefit many instances of our framework, so
it is sensible to support it as a common middleware plug-in.
We have not yet implemented this middlware, but it is on our
near-term roadmap.

We can give a sense of the performance benefits we expect
based on experiences with our ORM tool. For several specifi-
cations, our tool takes roughly three hours to generate roughly
one thousand candidate ORM solutions. It then takes over
eight hours to measure them all. Each measurement function,
applied to each solution, creates a database and then runs
several dynamic loads to profile time and space performance
for reads and writes. On a typical Intel Core i7 PC, it takes

about thirty seconds to measure each database. Using a 64-
node Hadoop cluster should reduce measurement time from
eight hours to somewhere between ten and twenty minutes,
reducing overall runtime from about eight hours to three.

E. Relationship to Our Recent Work

This paper builds on results reported in two earlier works. In
one [2] we used relational logic model finding to synthesize
spaces of relational database schemas and to evaluate these
schemas by applying multiple previously published static
measurement functions. By static we mean that these functions
predict properties based on schema structure only.

This work formulated an ORM domain-specific specifica-
tion language embedded in the Alloy logic; an Alloy rep-
resentation for MySQL schemas as a semantic domain; and
constraints embodying a semantic mapping associating ORM
specifications with Alloy representations of MySQL schemas.
We showed that by solving the constraints of this mapping
function, we could exhaustively generate spaces of MySQL
schemas for a given specification.

In our most recent paper [3], we showed that we could
also generate test loads for dynamic analysis of properties of
MySQL solutions. Fair comparison of variant designs required
that they all be benchmarked under a common application-
level load, but such a load has to be specialized to the
interfaces that variant schemas present to an application. We
showed that implicit in Alloy representations of MySQL
schemas was an abtraction function that could be used to
specialize common loads to the diverse interfaces presented
by different schemas derived from a given specification. We
then used this technology to test the predictive power of the
static measurement functions. We found them to be at best
weak predictors of performance as seen in dynamic testing.

Several important questions, problems, and opportunities
were left unaddressed by this previous work. How might the
approach generalize? Can we formalize a general theory? How
could such a theory be leveraged to yield a general-purpose
framework for implementing diverse anaysis tools? Can such
a framework support automation in a manner that is readily
scalable using big data technologies?

This paper directly addresses these and related questions.
As a test and demonstration, we use a heavily re-engineered
and significantly extended version of code developed in our
previous work. We do not claim novelty in synthesis in this
paper. Rather, the novelty is in the production of a formal
theory linked to a general-purpose tool framework, validated
by the instantiation of an ORM tool instance. We present ORM
tradespace analysis only as a concrete and useful example and
test case, but no longer as a novel result.

III. SEPARATIONS OF CONCERNS EFFECTED BY
INCOMPLETENESS IN SPECIFICATION

In this section, we discuss how incompleteness in specifi-
cation gives rise to important separations of concerns and the
need for a systematic understanding and application of tradeoff
analysis.



A. Strategic Incompleteness in Specification
Specifications are often incomplete with respect to the full

range of properties that stakeholders value in a given system.
Such incompleteness is often not a flaw. Rather, it can serve a
strategic function in structuring the process of complex system
design. When a specification is silent on system properties
relevant to stakeholders, it partitions the design process, the
representation of acceptable solutions, and the set of design
decisions to be made. We address each of these separations
of concerns and explain how they create a need for a better
theory of and technology for tradeoff analysis.

B. Partitioning of the Design Process
Incompleteness partitions the design process into at least

two distinct parts. The first is a deductive process, in which
candidate solutions are derived from a specification, con-
strained only by the condition that they satisfy its terms. Such
solutions generally differ in stakeholder-relevant properties on
which the specification was silent. The second part is thus
an optimization process, in which solutions are evaluated for
additional properties, tradeoffs are identified, candidates are
ranked, and one is selected for use or development.

C. Partitioning of Design Representations
This deductive vs. optimization partitioning of the design

process is mirrored by an explicit vs. implicit partitioning of
the representation of what constitutes an acceptable solution.
The explicit part is given by the specification. The implicit part
is represented in the property estimation functions that will
be used to evaluate solutions, the stakeholder utility functions
(emergent or documented) that map property estimates to
stakeholder utilities, and the stakeholder tradeoff functions
(emergent or documented) that map the multiple stakeholder
utilities to a final ranking of, and ultimately to a choice from
among, candidate design solutions. We defer formal treatment
of stakeholder utility to another paper.

D. Partitioning of Design Decision Spaces
The deductive vs. optimization and explicit vs. implicit

dichotomies extend to a split between decisions that are
understood and agreed on well enough to be pinned in a
specification, and those that are not. This is a split between
settled vs. unsettled decisions. A specification speaks explicitly
on design decisions that are settled while remaining silent on
relevant but as yet unsettled aspects, leaving them to be worked
out in downstream, optimization-oriented design activities.

E. The Evolution of Incompleteness in Design
These separations of concerns can also sometimes be seen

in the evolution dynamics of complex systems. As initially
unsettled concerns are settled, they can migrate from being
represented implicitly in measurement and utility functions to
being explicit in specifications. System architectures can be
seen as settled and explicit specifications, for example, that
remain incomplete in other key areas. As optimization-based
processes produce knowledge and agreement, these results can
migrate into specifications.

F. Examples

Consider object-relational mapping. Object-oriented data
models serve as specifications for application database
schemas. While these specifications constrain schemas, they
are silent on such properties as performance. At the same
time, degrees of freedom in ORM mappings (e.g., in how
inheritance is mapped to relations) give rise to spaces of
satisfying schemas that vary in these properties. Class diagram
specifications are incomplete regarding these other properties.

Incompleteness is generally resolved today by policies hard-
wired into ORM packages. One straightforward solution is
created for any given specification, without much considera-
tion of stakeholder preferences. Such tools impose tradeoffs
on stakeholders that might or that might not be desirable.

As a second example, consider a type of specification that
defines the invokes relation on methods in an object-oriented
system. A method, A, invokes a method, B, if evaluating A
in certain states results in the execution of B. There are several
ways to implement an invokes relation. A can call B explicitly,
or A can emit an event that invokes B implicitly [17]. Given
a specification with n invokes tuples, there are 2n ways to
realize the specification using implicit and explicit invocation.

While all of them are equally good at satisfying the spec-
ification, they will differ in other properties of interest in
design. Explicit calls statically couple callers to callees. These
calls can be typechecked and resolved statically, but they
complicate code, reduce reusability, and have other negative
consequences. Implicit invocations, created dynamically by
registering callbacks with events, have higher overhead and
are hard to check statically, but they also avoid static cou-
pling and can greatly improve modularity, reconfigurability,
and evolvability. A specification that includes only invokes
relationships and is silent on these other properties, requiring
downstream activities to select combinations of implicit and
explicit invocations that produce desireable overall results.

G. The Upshot of Silence in Specification

The upshot of this analysis is that tradespace analysis is an
important part of practical design, in general. The motivation
for this paper is the current lack of adequate scientific foun-
dations and technologies for tradespace analysis in software
and systems engineering. The consequences are significant, in
opportunity costs, stakeholder dissatisfaction, and in underper-
forming and failed projects and systems. The rest of this paper
presents details of one approach, linking theory to technology,
for addressing the underlying shortcomings in the current state
of knowledge, art, technology, and practice.

IV. A CONSTRUCTIVE LOGIC THEORY OF TRADEOFFS

We now present a formal theory of tradeoff analysis tools
as a hierarchy of typeclasses in Coq. Our style is similar
to that used by some mathematicians to formalize algebraic
hierarchies for computer verification of proofs of theorems.
We introduction such uses of Coq and then we explain how
we borrow from this work to define a hierarchy of algebraic
structures expressing a certain theory of tradeoff analysis tools.



A. Typeclass Hierarchies for Formalizing Mathematics

Recent years have seen major breakthroughs in the use of
Coq and other proof assistant technologies for research-level
mathematics. Results include Gonthier’s computer-verified
proofs (using Coq) of both the four-color theorem (2005) and
the Feit-Thompson theorem (2012), which states that every
finite group of odd order is solvable [12], [13]; and Hales’
(2014) computer-verified proof (using Isabelle and HOL Light)
of Kepler’s 400 year old conjecture on the efficiency of
pyramidal packing of spheres [10]. Hales’ previously informal
proof was three hundred pages long and took a team of twelve
mathematicians four years to verify by hand to an estimated
99% level of confidence. The Fields Medalist Voevodsky is
now using a version of Coq, with an international team of
mathematicians and type theorists, to rebuild the foundations
of mathematics on homotopy type theory. This work is based
on insights into deep connections between types in construc-
tive logic and topology [18].

The work we report in this paper is based on work
that formalizes the standard algebraic hierarchy of monoids,
groups, rings, fields, categories, functors, and so forth, and
standard instances (such as the integers, rationals, exact reals,
etc.) using typeclasses. One key goal in such work is to
define general-purpose concepts, such as group, in a way
that establishes a common interface to diverse instances (e.g.,
integers under addition). A second goal is to express and
leverage the natural inheritance relationships among different
structures. For example, a group inherits of the structure of a
semi-group, and adds more, and can always be coerced into a
semi-group by forgetting that additional structure.

Typeclasses are first-class constructs in Coq that generalize
and extend the notion of typeclasses as introduced in Haskell.
Abstract algebraic structures are expressed as typeclasses that
define records whose fields are of types representing carrier
sets, operations and relations on these carrier sets, and laws
that these collections of elements must follow [16].

To formalize the concept of a group, for example, one might
define a typeclass with four component values (whether as
fields or parameters—a detail that we need not discuss here).
The four values would include one, T , of sort Set (i.e., a type)
representing the carrier set of elements in the group; another,
of type T, specifying the neutral element of the group of the
given type; a third, of type T− > T− > T , representing the
binary operation of the group; and a fourth, of a type express-
ing the proposition that every element of has an inverse under
the given operation. A value of this type would represent a
proof of this proposition for a given carrier set, operation, and
neutral element. Coq’s dependent typechecking mechanism
will prevent the instantiation of a typeclass without proper
values for these elements. In particular, the representation of
laws as propositional types, and the need to provide proofs as
values of these types, ensures that typeclass instances always
satisfy their invariants.

At bottom, Coq typeclasses support the definition of generic
structures using ad hoc polymorphism. Indeed, one of the basic

purposes of typeclasses in Coq, Haskell and other languages
is to support overloading of operations common to a diversity
of objects that share algebraic structure but that are otherwise
unrelated. For example, to overload the plus operation of a
group typeclass to apply to both a group of natural numbers
under addition and to a group of symmetries of a regular poly-
gon under rotations one would simply instantiate the group
typeclass with appropriate parameters defining the necessary
carrier sets and operations and providing proofs of the group
laws for these particular values.

B. A Typeclass Hierarchy for Tradeoff Analysis Tools

We formalize a hierarchy of abstract algebraic structures for
trade-off analysis as a hierarchy of typeclasses linked by co-
ercive subtyping relationships. Each typeclasses characterizes
a class of possible instances in terms of fields whose values
represent carrier sets, operations, and laws. At a minimum,
the components of a typeclass characterize the types of such
elements. When values are shared across all instances of a
typeclass, a typeclass can bind such values, as well.

1) Tradespace Typeclass: Let us begin by looking at the
most abstract, least structured typeclass in our hierarchy. We
called it Tradespace. Read as a specification, it expresses the
functionality of a broad family of tradespace analysis tools at
a high level of abstraction. It can also be read as an abstract,
indeed algebraic, definition of a broad class of mathematical
structures: in essence, a family of tradespace analysis tools
that behave in a certain manner.

Class Tradespace := {
SpecificationType: Set

; ImplementationType: Set
; MeasurementFunctionSetType: Set
; MeasurementResultSetType: Set
; synthesize : SpecificationType → list (Implementa-

tionType × MeasurementFunctionSetType)
; runBenchmark: ImplementationType ×Measurement-

FunctionSetType → (ImplementationType × Measure-
mentResultSetType)

; analyze (input: list (ImplementationType × Mea-
surementFunctionSetType)) : list (ImplementationType ×
MeasurementResultSetType) :=

map runBenchmark input
; tradespace (spec: SpecificationType): list (Implementa-

tionType × MeasurementResultSetType) :=
analyze (synthesize spec)

}.

The first four lines accommodate variation in the carrier sets
of Tradespace tool instances. The types of these fields are the
Coq sort called Set. All computational (data and function)
types in Coq have Set as their type. (Types have types, called
sorts.) The Coq type, nat, for example, represents the natural
numbers; and the type of nat is Set. Thus the type nat can
be given as the value of a field of type Set. In this way the
idea can be expressed that a typeclass instance has the natural
numbers as a carrier set.
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:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes
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:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4/stdlib/Coq.Init.Datatypes


Our structure has four carrier sets: (1) a type of input
specifications for which tradespaces are to be generated; (2)
a type of design implementations that could be generated
from such specifications; (3) a type of measurement func-
tions to be generated for purposes of assessing properties of
implementations; and (4) a type of measurement results that
the measurement functions will return. We generally expect
measurement functions and results to be vector-valued, i.e.,
to comprise sets of finer-grained measurements and results.
No values are given for these fields in the typeclass. Values
(i.e., types defining carrier sets) have to be provided when the
typeclass is instantiated.

These definitions set us up to specify a framework, poly-
morphic in all of these types, in which a function takes a spec-
ification (of whatever type is given in a particular instance),
then generates a set of implementations (of whatever type is
defined), a set of corresponding measurement functions (again
of an arbitary type), and that then applies the functions to the
implementations to produce a result—a dictionary associating
implementation to computed property vectors (once again of
any type). The great generality of this definition is made
explicit in the lack of constraints on the types of objects than
can be used in an instance of this typeclass. The remainder of
the typeclass definition makes these idea precise.

The synthesize component has a function type: from
specifications to lists of implementation/measurement-function
pairs. We intend that measurement functions (or benchmarks)
provide fair performance comparisons of variant implementa-
tions. Note that the types in this function signature are values
of the carrier set fields. Here we see the use of dependent
types in Coq. No implementation is provided for this function
in this typeclass. Rather, a function implementation (value) is
required when the typeclass is instantied. The framework is
thus highly flexible with respect to the mechanism to be used
to generate candidate solutions from specifications.

The runBenchmark component has as as its type a
function that takes an implementation/measurement-function
pair and returns an implementation/measurement pair. We
intend that this is implemented by a procedure that runs the
benchmark (measurement function) against the given imple-
mentation. Again, no implementation is bound in the typeclass;
we leave it to typeclass instances to define how benchmarking
actually works. (We recognize possibilities for restructuring
this typeclass to represent measurement functions as function
types, in which case we could actually define this function as
applying a given measurement function to an implementation
and returning the (implementation, result) pair. We do plan to
refactor our hierarchy in light of the experience we have had
in developing this work to date. For now, we leave this task
as future work, as it is not essential to this report.)

The analyze component of the typeclass has as its type
a function that takes a list of implementation/measurement-
function pairs, presumed to be generated by the synthesize
function, and that then maps the runBenchmark function
over this list to produce a list of implementation/measurement
pairs. The result is the desired tradespace output. Because

this functionality is common to all typeclass instances in the
theory as we have defined it here, we bind an implementation
(function value) in the typeclass itself.

Finally, the tradespace component has as its type a function
mapping a specification to a list of implementation/measure-
ment pairs. We provide an implementation for all typeclass
instances that simply composes analyze and synthesize.
When this function is applied to a specification it first gen-
erates an intermediate list of implementation/measurement-
function pairs, and then runs all the measurement functions (in
a map-reduce style) yielding an output list of implementation-
measurement pairs, namely the desired tradespace.

2) ORM-Specific Tradespace Instance: To make these ideas
concrete, we explain how we might use them to create a
framework-based ORM tradeoff analysis tool. Suppose we
want to compute a space-time performance tradespace for vari-
ant SQL schemas that could be used to implement the object
model for a given application. We’d like to provide OO (e.g.,
UML or SysML) class diagrams as input specifications and get
lists of schemas and corresponding benchmark results back.
An instance of the Tradespace typeclass for this application
could be produced with the following parameters.

• SpecificationType: OO class diagram
• ImplementationType: SQL schema
• MeasurementFunctionSetType: an instrumented test har-

ness for profiled execution of synthesized SQL scripts
• MeasurementResultSetType: a tuple of performance mea-

sures from instrumented benchmark execution
• synthesize: given a class diagram, produce a list of SQL

schema / benchmark script pairs
• runBenchmark: run a profiled SQL benchmark script on

a database with the given schema and return the schema-
measurement pair

Note that no implementations need (or may) be given for
the analyze and tradespace functions. Their implemenations
belong to the typeclass/framework/theory, not to individual
instances. We thus have a simple example of how typeclasses
can capture a concept central to the notion of frameworks: that
frameworks can factor out common code, leaving “hotspots”
for user-supplied, instance-specific code. We also note that this
particular typeclass does not require proofs of any laws.

We can fill in such hotspots in one of two ways. First, we
could write complete, instance-specific data type definitions
and function implementations in Coq, suitable for use as
parameters when constructing a typeclass instance. A benefit
would be that the extracted code for these definitions would
be certifiably correct with respect to the Coq specification. On
the other hand, we operated on the assumption that in many
cases, it would be easier to write “stubbed out” datatype and
function definitions in Coq, extract these stubs to Scala, and
then write the actual implementation code in Scala. This is the
approach that we used to implement the framework instances
we describe in this paper.

The benefit of this “stub-based” approach is that we can
write domain-specific code flexibly in an ordinary program-
ming language. To produce our ORM tradeoff tools using



re-engineered code from our earlier work, we needed code
interoperable with Java. Extracting stubs to Scala (which runs
on the Java Virtual Machine and interoperates seamlessly with
Java) and being able to write implementations that used Alloy
and parts of our earlier code based was very helpful. It would
have been impractical to try to port all of this code into Coq.
The downside is that we lose the benefits of proof checking.
The propositional content of a Coq specification is erased in
extraction to ordinary code. What does remain, however, are at
least explicit specifications of any laws. They are documented,
but it is then left to the programmer to prove (or in practice
to test and intuit) that they are satisfied.

To make these ideas clear, we present “stubbed out” ORM-
specific data type and function definitions, and we show how,
in Coq, we can instantiate our typeclass with these values. In
cases where proofs of laws have to be provided at instance
construction time, we have to be careful in defining “stubs” to
ensure that actually satisfy the laws! We will see an example
further in this paper.

We define four ORM-specific, but stubbed-out data types,
and two stubbed-out functions (see the Coq code immediately
below). Inductive introduces a data type definition. Then
comes the name of the data type and its type (Set). Following
the := are available constructors. We provide just one constant
constructor (value) for each stubbed-out type. The function
definitions that follow have standard signatures and return
minimal values of the required types using the values made
available by the stubbed-out data type definitions. Finally,
we use these types and functions as parameter values to
instantiate an ORM-specific instance, DBTradeSpace, of
the Tradespace typeclass in Coq. The ability to instantiate
a typeclass proves at least that its definition is consistent.
Extracting this instance to Scala provides us with both the
general-purpose framework framework code and stubs for the
ORM-specific types and functions that we require. We just
override and the stubbed-out definitions in Scala.

Inductive DBSpecification: Set := DBSpecification1.
Inductive DBImplementation: Set :=
DBImplementation1.
Inductive DBMeasurementFunctionSet: Set :=
DBMeasurementFunctionSet1.
Inductive DBMeasurementResultSet: Set :=
DBMeasurementResultSet1.

Definition dbSynthesize (spec: DBSpecification) :
list (DBImplementation × DBMeasurementFunction-
Set) :=
(DBImplementation1, DBMeasurementFunction-

Set1) :: nil.

Definition dbRunBenchmark (mfPair : DBImplemen-
tation × DBMeasurementFunctionSet) : (prod DBIm-
plementation DBMeasurementResultSet) :=
(DBImplementation1, DBMeasurementResultSet1).

Instance DBTradeSpace: Tradespace := {
SpecificationType := DBSpecification

; ImplementationType := DBImplementation
; MeasurementFunctionSetType := DBMeasurement-

FunctionSet
; MeasurementResultSetType := DBMeasurementRe-

sultSet
; synthesize := dbSynthesize
; runBenchmark := dbRunBenchmark

}.

This approach provides (and tightly connects) both a gen-
eralized theoretical model of tradeoff analysis in a formal
notation and style suitable for abstract mathematics, and an
efficient, well-structured, general framework that certifiably
works as expressed in the formal specification. The example
is simple but it nevertheless illustrates key features of our
approach.

While developing our current theory, framework, and ORM
demonstration system, we repeatedly evolved the theory, re-
generated framework code, and refactored our instance im-
plementation code to conform to changes in the framework.
We took as a hard constraint that, as users of the framework
code extracted from the general-purpose typeclasses, we were
not allowed to change it. We are limited to instantiating
the framework just by providing necessary type and func-
tion parameter values to the framework instance constructors.
We found it completely practical to keep the mathematical
theory, framework, and domain-specific instance consistent.
Incremental changes in the theory propagate mechanically
to framework code updates, and these in turn were readily
accommodated by incremental refactoring of our domain-
specific code.

3) Trademaker Typeclass: The Tradespace typeclass cap-
tures a very general notion of tradespace analysis, and nicely
illustrates some of the aspects of our approach, but it provides
far too little structure to really help the implementor of a
tradespace analysis tool. We introduce a new typeclass, called
Trademaker, to that enriches the Tradespace typeclass to
provide a far finer-grained, but still general, implementation
architecture for tradespace analyzers.

The following diagram graphically depicts the structure
of the extended typeclass, within which the more abstract
Tradespace is embedded. Let’s first point out where the
Tradespace elements appear. The basic tradespace function-
ality takes a user-oriented specification (Spec in the dia-
gram), maps it to a dictionary (m) that associates imple-
mentations (Impl) with (vectors of) measurement functions
(MeasFn), and from there produces a dictionary (rm) that
associates implementations (Impl) with (vectors of) mea-
surements (Meas), produced by running the measurement
functions against the implementations. That is the general
nature of a Tradespace instance.
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The Trademaker typeclass extends the Tradespace type-
class, adding structure to define an implementation architec-
ture for tradespace analysis tools. This extended typeclass
expresses a specialized, but still very general theory of how
a Tradespace instances can be implemented. We sketched
core elements of this implementation theory in our 2014 ICSE
paper. The sketch was not formalized. There was no type
theory-based formalization. The laws were not made explicit.
Our software did not remotely conform to this model, as there
was no general-purpose framework to instantiate. This paper
extends, formalizes, and validates that early sketch, yielding
a properly mathematical expression of the theory, a general-
purpose implementation framework, and a proof-of-concept
ORM-specific instance that recapitulates our earlier work but
now in the form of but one instance of a general theory.
The remainder of this section describes our implementation
architecture.

The idea is that we map an end-user specification (Spec),
such as a UML class model, to a formal specification, such as
an Alloy-based object model (Formal Spec in the diagram).
The c (concretization) function maps the formal specifica-
tion to a set of formal representations of implementations
(Formal Impl). In our demonstration system, these are
basically Alloy objects that satisfy the constraints imposed by
the specification and the semantic rules mapping object models
to representation of SQL schemas. The a (abstraction) function
explains how each implementation represents and satisfies its
specification. The l (load) function maps the same formal
specification to a set of “abstract” measurement functions
(FormalAbstractMeasFn) that will be used to produce
concrete measurement function (FormalConcMeasFn) to
produce comparable measures of the properties of the various
implementations. The ta function is responsible for special-
izing the common abstract measurement functions to the
particular interfaces exposed by the variant implementations.
The subscript a indicates that this function needs and uses
the abstraction function a to do its work. The result of this
process is an induced relation, mf , that associates a (vector
of) implementation-specific measurement function(s) to each
implementation. The diagram commutes. The i function un-

parses the formal/internal representation of implementations to
usable forms: e.g., Alloy solutions representing SQL schemas
to actual SQL schema definitions. The b function similarly
unparses formal/internal representation of implementation-
specific measurement functions to useful forms: e.g., to objects
that run actual SQL scripts against actual databases in order
to profile their performance properties. The final result is
the relation rm that associates implementations with their
corresponding property measurements.

The key idea is that users of our framework need only pro-
vide domain-specific types for the nodes in this diagram and
domain-specific function implementations for the solid arcs
(the other dashed-line mappings being implicit or computed).
The bulk of our tool implementation effort was in producing
Scala types and functions exactly in correspondence with this
diagram, as required by the framework code extracted from
our Coq specification. To give concrete examples, we defined
a DB Formal Spec class as an actual parameter for the
Formal Spec slot in this architecture. Concretely, it is a wrap-
per around a file handle to an Alloy specification of an object
model. (Soon it will be a wrapper around a relational database
entry holding such a specification.) Similarly Impl is a class
that wraps a file containing a MySQL schema definition.
Our implementation of the c function implements our Alloy-
based approach to synthesing database schemas from object
models. Our other ORM-specific values are similar in their
structure: classes (Scala types) wrapping representation details
and function implementations that hide details of computations
of the various mappings required to implement our tradespace
analysis approach.

Below is the Coq typeclass that extends the Tradespace
typeclass to add this implementation structure, including laws
that require that the diagram commutes. To produce a frame-
work implementation we instantiate this framework in Coq
with a set of stubbed-out, ORM-specific types and functions,
minimally elaborated to satisfy the specified laws. Extracting
this instance using recursive extraction in Coq produces stubs
for the ORM-specific types and functions and a framework
based on the underlying typeclasses. We elide the details of
typeclass instantiation. We thus also elide the Coq scripts
by which we build the proof terms needed to instantiate the
framework. These details can be found in the actual Coq
specification, which we will make available.

Class Trademaker := {
tm Tradespace :> Tradespace

; tm ParetoFront :> ParetoFront

; FormalSpecificationType: Set
; FormalImplementationType: Set
; FormalAbstractMeasurementFunctionSetType: Set
; FormalConcreteMeasurementFunctionSetType: Set

; cFunction: FormalSpecificationType → list For-
malImplementationType

; aFunction: FormalImplementationType → Formal-
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SpecificationType
; lFunction: FormalSpecificationType → FormalAb-

stractMeasurementFunctionSetType
; tFunction: FormalAbstractMeasurementFunctionSet-

Type→ list ImplementationType→ list FormalConcrete-
MeasurementFunctionSetType

; sFunction: SpecificationType → FormalSpecification-
Type

; iFunction: FormalImplementationType → Implemen-
tationType

; bFunction: FormalConcreteMeasurementFunction-
SetType → MeasurementFunctionSetType

; aInvertsC: ∀ (spec: FormalSpecificationType) (fImpl:
FormalImplementationType), In fImpl (cFunction spec) →
(spec = aFunction fImpl)

; implementationLine: ∀ (spec: SpecificationType) (fImpl:
FormalImplementationType) (impl: ImplementationType)
(fSpec: FormalSpecificationType),

(fSpec = sFunction spec)
→ (In fImpl (cFunction fSpec)) → (impl = iFunction fImpl)

→ In
impl (map (@fst ImplementationType MeasurementFunc-
tionSetType) (synthesize spec))

; testLoadsLine: ∀ (spec: SpecificationType)
(mfs: MeasurementFunctionSetType) (fCMFs:
FormalConcreteMeasurementFunctionSetType)

(fSpec: FormalSpecification-
Type) (fAMFs: FormalAbstractMeasurementFunctionSet-
Type) (impl: ImplementationType)

(fImpl: FormalImplementa-
tionType),

(fSpec = sFunction spec) →
(In fImpl (cFunction fSpec))→ (fAMFs = (lFunction fSpec))
→

(In fCMFs (tFunction fAMFs
(map iFunction (cFunction fSpec)))) → (mfs = bFunction
fCMFs) →

In mfs (map (@snd Imple-
mentationType MeasurementFunctionSetType) (synthe-
size spec))
}.

The first two lines of the definition state that the Trade-
maker class extends (and is coercible to) the Tradespace
and ParetoFront typeclasses. The latter provides structure
for computing Pareto fronts of sets of vector-valued objects.
Including this “mix-in” sets up the Trademaker typeclass
to be futher extended to generate Pareto-optimal subsets
of computed tradespaces. We elide further details of the
ParetoFront typeclass. This structure does illustrate the use
of multiple inheritance, as employed in defining algebraic
hierarchies, in which, for example, a ring extends both an
abelian (additive) group and a (multiplicative) group.

The following four components provide for parameteriza-
tion of typeclass instances with respect to the key additional
carrier sets (types) of the implementation framework. Fol-
lowing the declarations of these type-valued parameters are
seven lines that specify the dependently typed signatures of
the mapping functions required to instantiate the Trademaker
typeclass, as illustrated in our commutative diagram. (With
apologies to the reader, we note that our diagram uses ab-
breviations of the rather verbose type names defined in the
typeclass. A careful reading will reveal the intended corre-
spondences between these names.)

The final three components, (somewhat unintuitively) called
aInvertsC, implementationLine, and testLoadsLine,
specify laws that the other components of the typeclass
must follow. These components are of types defined by the
given logical propositions. In Coq, propositions are types
(themselves of type Prop, as opposed to Set, which is
used for computational types, whose content is preserved by
extraction). In a nutshell, these laws state that the abstraction
function, a, must invert the concretization function, c, and
that the two paths from specification to measurements yield
the same results: the diagram commutes. (With apologies to
reviewers, the formatting of this material, which was produced
by automated conversion of the Coq specification to LaTeX,
will be cleaned up in a future, e.g., camera-ready, version of
this paper.)

The inclusion of such propositionally-typed fields in this
typeclass requires that proofs of the propositions be supplied
as field values when the typeclass is instantiated. As noted
previously, one in principle has the option of formalizing all
parts of a tradeoff tool as a typeclass instance in Coq, in which
case proofs of the laws would guarantee the integrity of a
typeclass instances. In our work to date, for reasons explained
above, we chose to produce a minimal, stubbed-out, instance
(elided), for which producing the proofs was straightforward;
and we extracted framework and framework instance code
(the latter to be completed with Scala code) from these Coq
constructs.

V. EVALUATION

This work has shown the potential for selective use of
constructive logic proof assistants to develop and present
formal, algebraic “theories” of interesting families of tools,
modeled on the way that hierarchies of algebraic abtractions
are being formalized by mathematicians working to revolution-
ize the foundations of mathematics and the conduct of proof
verification. As supporting evidence, we offer a simple “alge-
braic hierarchy” expressing both a general view of tradespace
analysis, and a refined view that carries the structure of our
particular implementation architecture. We leverage both the
pure, dependently typed, polymorphic functional program-
ming, and propositional-and-proof aspects of the constructive
logic of Coq. Moreover, we exhibit a certified isomorphism
between this theory and extracted and demonstrably useful
framework code, maintained without undue effort as theory,
framework, and instances evolved.
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The result is, in our view, more than just an academic
curiosity. This fairly simple example of an algebraic hierarchy
for a family of tools embodies a significant generalization of
an approach that was mostly implicit and certainly under-
developed in our earlier work on dynamic ORM tradespace
analysis. Moreover, the form of mathematical formalization we
selected has given us the capability to mechanically develop
and maintain a useful, efficient, well structured, and general-
purpose implementation framework for tradeoff analysis tools.
A framework instance certifiably implements the theory mod-
ulo proofs that must be discharged by human developers
(unless they’re willing to completely develop their implemen-
tations in Coq, which we do not expect to be practical soon,
except perhaps in special cases).

To test the capability of our theory and framework to support
meaningful tradeoff analysis, as we have stated, we rebuilt
our previous, ad hoc tradespace analysis tool to instantiate
this theoretical framework. The old code had essentially none
of the structure expressed in our commutative diagram and
our Coq specification. The tool is now completely refactored
and also extended (e.g., to run measurement functions au-
tomatically!) into the types and functions required by our
framework. Whereas our previous prototype software left
running of dynamic tests to the manual dexterity of a graduate
student, our instantiation of our new framework with these
types and functions has provided us with completely auto-
mated, relational-logic-based, synthesis-driven, map-reduce-
ready ORM tradeoff analysis tool.

The following three figures present visualizations of 2D
projections of the 3D tradespace that we computed for one
particular object-oriented data model (for an E-commerce
application, the details of which are described in our 2014
ICSE paper). The points reflect performance properties and
tradeoffs in this space. Pareto-optimal solutions (calculated
here in 2D projections) are highlighted in red and connected
by red lines. From these figures one can quickly see that there
are meaningful tradeoffs to be made in such design spaces.

Fig. 1. My caption goes here.

We are satisfied with the results of this effort. The theory,
framework, and tool instance co-evolved easily, and we now

Fig. 2. My caption goes here.

Fig. 3. My caption goes here.

have a framework capable of supporting meaningful tradeoff
analyses far beyond what we could previously carry out. In
our previous work, we limited dynamic analysis to a subset of
solutions predicted by static measures to be Pareto optimal. It
still took several weeks of effort to carry out this analysis, as
our analysis approach evolved. We now have a tool that in a
matter of a few hours on a desktop PC can evaluate multiple
non-functional performance characteristics of thousands of
variant database designs without human assistance. We hope
and expect to scale to analysis of millions of solutions in
reasonable runtimes using map-reduce platforms.

We have developed a few relatively minor variants of the
tool to test the flexibility of the framework in various dimen-
sions. Our results are positive so far. For example, our first
tool instance defined measurement functions as three-tuples
of fine-grained functions for measuring space, read/query, and
write performance of databases under relative small, formally
synthesized loads. We tested the ease of extension afforded by
our framework by adding measurement functions that measure
the same properties using far larger, randomly generated
database loads. We found that the framework accommodated
the addition of measurement functions to a tradespace analysis
readily. We have also taken early steps to substitute an



alternative to Alloy as a relational logic model solver [15].
It appears that this will be largely a “drop-in” substitution, as
we have already validated the ability of the tool to carry out
the synthesis tasks we require.

The major types in our current implementation generally
wrap files stored on the file system, including, for example,
many thousands of SQL schemas, XML representations of
satisfying solutions to Alloy specifications, and measurement
results. The modularity and abstraction required by our frame-
work has forced our code into a state of information hiding
modularity in which it will be straightforward to substitute
relational database storage for the file system. This enhance-
ment, in turn, will ease the application of scalable data
management and analytics tools to tradespace data. This will
include the use of Hadoop map-reduce and related methods.
We are also now in the process of redesigning our web-based
client software for interacting with our framework instance
(including visualization, e.g., using D3.js), and producing a
REST web service interface to allow our tool(s) to be called
by diverse clients.

What we have not yet done is to use the framework to imple-
ment a completely different tradeoff analysis functionality—
other than ORM. We are now confident, however, that the
framework could easily, elegantly, and profitably support
synthesis-driven tradeoff analysis functions such as those
that Garlan et al. [11] are exploring in a wholly different
application domain.

VI. CONCLUSIONS AND FUTURE WORK

We have argued that tradespace analysis has a natural,
important, indeed crucial role to play throughout the software
and systems engineering life-cycle. However, our science and
technology base for sysematically carrying out such analyses is
very under-developed, and without good tools, such analysis
is costly, tedious, and error-prone, due to the large sizes of
realistic design spaces. It is thus quite rare to see software or
systems engineers engaged in systematic tradeoff analysis.

This paper contributes an approach to developing, and an
instance of, a formal theory of tradespace analysis tools,
and a general software framework, derived from this theory,
that can readily be specialized to implement diverse tradeoff
analysis tools. In our experience, such a tightly coupled
theory-implementation pair co-evolves readily as the theory
is enhanced, sometimes as a result of insights gained during
implementation-level instantiation of the tool framework.

In the future we hope to see more work of this kind:
delivering not only useful software artifacts but accompanying
theories expressed in ways that suitably trained mathemati-
cians would recognize and respect as natural and appropriate.
We futher hope and expect to see such theories driven to evolve
as their corresponding implementations meet the demands
of actual use. The result will be a virtous cycle in which
formal scientific theories are driven to evolve to states of
greater utility, and where such advances in theory can rapidly
be turned around into theory-driven advances in software
implementations. In other words, we hope that an approach

such as ours can help to “close the loop” between theory and
practice in software and systems engineering.

Our plans for short-term future work are evolving rapidly.
We plan to transition storage of tradespace data from file
system storage to a proper database. We plan then to connect
such data into advanced analytics software, such as map-
reduce. At the theory level, a high priority is to further extend
our algebraic to another level to include stakeholders, individ-
ual stakeholder utility functions, and multi-stakeholder value
reconciliation functions. Stakeholder utility functions will map
the vector-valued measures for solutions to scalar utilities,
which in general will differ from stakeholder to stakeholder.
The value reconciliation function will convert stakeholder-
indexed sets of utilities to scalar values for each candidate
solution in a tradespace. These extensions will provide a high-
level, formal theory for value-based, Theory-W [4] software
and systems engineering.
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