Quantifying Information Leakage in Tree-Based
Hash Protocols (Short Paper)

Karsten Nohl and David Evans

University of Virginia, Computer Science Department
{nohl, evans}@cs.virginia.edu

Abstract. Radio Frequency Identification (RFID) systems promise large
scale, automated tracking solutions but also pose a threat to customer
privacy. The tree-based hash protocol proposed by Molnar and Wagner
presents a scalable, privacy-preserving solution. Previous analyses of this
protocol concluded that an attacker who can extract secrets from a large
number of tags can compromise privacy of other tags. We propose a new
metric for information leakage in RFID protocols along with a threat model
that more realistically captures the goals and capabilities of potential at-
tackers. Using this metric, we measure the information leakage in the tree-
based hash protocol and estimate an attacker’s probability of success in
tracking targeted individuals, considering scenarios in which multiple in-
formation sources can be combined to track an individual. We conclude
that an attacker has a reasonable chance of tracking tags when the tree-
based hash protocol is used.

1 Introduction

Radio Frequency Identification (RFID) systems provide more precise identifica-
tion (right down to the item-level) and superior reliability over existing tracking
systems, as well as the possibility of strong authentication. Their capabilities,
however, also pose a threat to individual privacy. Several schemes have been
proposed that preserve consumer privacy by obfuscating the tag identity from
rogue readers. Some proposed schemes, such as Weis et al.’s [13] and Ohkubo et
al.’s [§], provide strong privacy but cannot scale to large RFID systems because
the workload for the backend system scales linearly with the number of tags in
the system. Other schemes, such as the tree-based hash protocol first proposed
by Molnar and Wagner [5], provide scalability but sacrifice some privacy. We
focus on this protocol and describe it in Section

Avoine et al. analyzed the degree to which privacy is scarified in the tree-
based protocol and concluded that a serious privacy threat exists [I]. In this
paper, we revisit their assumptions and derive a different attacker model that we
believe better captures possible capabilities and motives of real-world attackers.
In our model, the attacker wants to track a tag through the system and needs
to distinguish that tag from all other tags. We find that the threat to privacy is
even higher than Avoine et al.’s estimate.

We assume an active attacker who can send arbitrary messages to readers
and tags of the system, but cannot invert the hash function. We also assume our

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 228237 2006.
© Springer-Verlag Berlin Heidelberg 2006

Quantifying Information Leakage in Tree-Based Hash Protocols 229

attacker can extract secrets from a limited number of tags. The attacker tries
to learn as many bits of information as possible about each tag’s identity with
the final goal of distinguishing among passing tags. The amount of information
that the adversary needs to successfully launch an attack depends on properties
of the system and environment. The attack becomes harder if the system has
more tags and also if more of these appear in the limited environment that the
attacker probes. Our attacker model is different from previous models in that
we consider the case in which the attacker sees only a subset of all tags in the
system and tries to distinguish among those. The probability an attack will be
successful increases with the amount of information that each tag leaks, and
with the number of tags that are likely to stay together as a group. Our model
does not make assumptions about how the attacker learns information about
the tags other than that the attacker can extract all the key material from a
number of captured tags. We focus on information leaked from the protocol
layer; information leaked through side channels may further increase the risk of
privacy compromise.

Our main contributions are an improved metric for information leakage that
allows us to combine different information sources and that better follows the
proposed attacker model (Section[d), an analysis of the tree-based protocol based
on this metric (Section M), and an analysis of the relevance of our results o
realistic RFID systems Bl We conclude that the privacy risks associated with the
tree-based hash protocol are more severe than previously thought.

2 Private Authentication Protocols

Several protocols have been proposed through which a tag can identify itself to a
legitimate reader while preserving the customer’s privacy against rogue readers.

Public-key cryptography would provide a clear solution to the privacy prob-
lem, but is usually too expensive to implement on RFID tags. All the protocols
we consider employ symmetric cryptographic hash functions in which keys are
shared between the tag and legitimate readers.

Weis et al. proposed a privacy-preserving RFID protocol in which the tag
hashes a random value (nonce) with a secret key that is only known to the tag
itself and all legitimate readers [I3]. This linear hash protocol provides strong
privacy (as defined in Section [B)) but fails to provide the needed scalability for
large RFID systems. The reader stores one key per tag and has to try all possible
keys in the database. Every tag authentication requires O(N) hashing operations
where N is the number of tags in the system. Since RFID systems must scale to
millions of tags, this cost becomes excessive.

To achieve scalability, Molnar and Wagner [5] proposed a protocol that achieves
sub-linear workload in the backend syste. The main drawback is that secrets are
shared among several tags. Hence, an attacker who can extract secrets from a given

1 Other protocols have been devised that sacrifice reliability for better scalabil-
ity [8][12]. Since we believe that most RFID applications require high availability,
we do not consider these protocols viable solutions.

230 K. Nohl and D. Evans

tag also learns some of the secrets stored on other tags. The tags are structured
in a tree where each tree leaf is a tag. Secrets are assigned to each tree branch and
every leaf stores all secrets on the path from the root to itself. The tree has a depth
d. Each node in the tree (except for the leaves) has k children. Each tag holds d
secrets, one for each level of the tree. Using the notation from Avoine et al. []
we denote the ith secret on the j level of the tree as r; ;. The secrets on each tag
correspond to a unique path through the tree; hence, every tag has at least one
secret that is not shared with any other tag.

To authenticate a tag in the tree, the reader initiates the protocol by sending
a nonce, Nr. The tag responds with a second nonce, Np, and one hash for each
level of the tree. The tag response is: Ny, H (r1;||N7||Ngr) .-+, H (raq||Nr||NRr),
where H is a cryptographic hash function (our analysis assumes the attack can-
not compromise H). The nonce provided by the tag provides privacy by making
consecutive responses from the same tag unlinkable. The reader-supplied nonce
prevents replay attacks. On reception, the backend system generates hashes for
all possible secrets corresponding to the first-level branches with the two session-
specific nonces. The one hash that matches the transmitted hash on this level
points to a node on the next level. This step is repeated until a leaf is reached.

If the tree is balanced, it holds N = k¢ tags. On each of the d levels, up
to k hashing operations are needed to find the responding secret. Hence, the
database performs up to dk = d</N hashing operations. The tag performs d
times the number of hash operations than were required with the linear hash
protocol, and the transmitted response is approximately d times larger (ignoring
the framing and protocol overhead that does not grow with d). The memory
needed to store and process the hashes grows with d. Therefore, it is necessary
to keep d small to minimize the tag processing and memory requirements. The
parameter k£ does not affect the tag, but determines the computational cost in
the backend database. When designing a tree it can be chosen more freely than
d. It can also be dynamically adapted to a changing system size.

Different tags can have different probabilities of being broken. Tags that are
more likely to be broken should have fewer secrets (i.e., be placed higher in the
tree) than tags that are know to be hard to break. The question of the optimal
number of secrets was answered by Poovendran and Baras [9] in the context of
multicast keys. If tag i has a probability of being broken of p; then the optimal

number of secrets for this tag is d; = —log(p;). Note that for the special case
in which all tags have the same probability of being broken (Vi : p; = %), this
resolves to a balanced tree as introduced earlier d = —logi (%) = logi(IN). The

rest of this paper assumes equal probabilities of being captured for all tags and
a balanced tree.

3 Privacy Definition

Several different notions of RFID privacy have been developed. The first papers
that targeted RFID privacy [13][8] focused on the requirement that tags should
protect product information from being disclosed. This is a weak notion because

Quantifying Information Leakage in Tree-Based Hash Protocols 231

it leaves tags traceable. A stronger property, unlinkability, means that an adver-
sary should not be able to differentiate between readings that originated from
the same tag and readings that originated from different tags.

A system achieves strong privacy when an adversary cannot distinguish be-
tween two tags with a probability better than random guessing [4]. Since scalable
protocols have to sacrifice strong privacy, we need a more flexible measure of pri-
vacy. Our notion captures shades of privacy where a tag can be distinguishable
from some tags but not from others.

Our notion of privacy is closely related to anonymity, which has been studied
in the context of mix-nets [10][3]. Mix-nets try to make sender and recipient of
a message anonymous. The anonymity set is defined as the set of all potential
senders of a given message. The degree to which anonymity is achieved depends
on the size of the anonymity set. Perfect anonymity is achieved if the set includes
all members capable of sending messages in the system. The metric used by
Serjantov and Danezis is similar to the metric we propose in this paper. Both
are based on Shannon’s information theory [I1]. They use entropy to describe
the number of possible elements in a group (in our case, the set of RFID tags
in the system). Nohara et al. were the first to use entropy in the analysis of
the tree-based RFID protocols [6] They only considered the case of a single
compromised tag and concluded that almost no information is leaked if the
number of tags in the system is large enough. Our results are consistent with
this, but extend to the more likely scenario where multiple tags are compromised.

Buttyan, Holczer and Vajda recently published an analysis of the privacy of
tree-based hash protocols also employing an information-theoretic metric similar
to ours [2]. Their notion of privacy is different from ours in that they employ
the average anonymity set size as their metric. In this metric the impact of de-
creasing the anonymity set size is independent of the initial set size. We believe
that the attacker’s actual incentive is better modeled by a logarithmic measure.
Decreasing the size from 100 to 50 should have the same impact as from 2 to 1
since both advances help to distinguish tags twice as well.

Measuring Privacy. We define privacy as the degree to which two authen-
tication sessions of the same tag are not linkable. An authentication session is
the interaction between a reader (legitimate or rogue) and a tag at the pro-
tocol level. Sessions are unlinkable if an attacker cannot discover whether two
responses originated from the same tag with a probability better than random
guessing. The highest degree of unlinkability exits if any pair of tags is indistin-
guishable. The metric that we derive in this paper measures the unlinkability
as a value between zero (unlinkable) and loga2(N) (all tags linkable). Our metric
closely follows our attacker model as described in Section [l

We measure privacy as the degree to which a member of the group is indis-
tinguishable from other elements of the group. The degree to which elements
in the group are distinguishable can be measured in bits. If we have a group of
size N and the adversary can, with absolute certainty, divide our group into two

2 Poovendran and Baras use entropy to analyze multicast keys [J].

232 K. Nohl and D. Evans

disjoint subgroups of size % each then we have disclosed 1 bit of information.
We can extend this to two arbitrarily sized subgroups, S1 and S;, where % tags
are placed into group S; and the remaining (1 — %) Ntags are placed into Ss.
The adversary can place every tag in either Sy or So. We use I to denote average
amount of information disclosed (that is, the amount of information that can be

learned about all tags divided by the number of tags). The information disclosed
is: I:%~l092(s)+%~logg< -)

s—1
In general, an attacker will be able to split the group of all tags, G, into k
disjoint groups, S;, of arbitrary size. Then, the information disclosed is:

= i (et 1o (151)) ®

=1

The amount of disclosed information increases when there are more groups
and is maximized when the groups are equal in size (This is consistent with
Shannon’s information theory that states that the entropy of a source grows
as the probabilities of possible symbols become more similar [I1]). Information
theory also gives us that a loga(IN)-bit identifier uniquely identifies elements in a
group of size N. The values of I range from I = 0 (strong privacy) to I = loga2(N)
(no privacy). In the latter case we can identify each tag uniquely, which means
that we have N groups of size 1.

4 Information Leakage

The tree-based protocol shares secrets among tags, so extracting the secrets from
one tag compromises the privacy of other tags. This section analyzes the amount
of information that can be gathered by an adversary. The amount of information
depends on the tree-structure and the tree positions of broken tags. We first look
at the worst case in which the adversary can select the tags to compromise based
on their tree position in Section [£.I] and then at the random case in Section

4.1 Selected Tags Scenario

In the selected tag scenario, the attacker can select which tags to compromise.
This enables the attacker to select tags such that the number of redundant
secrets is minimized, thereby maximizing the information leakage. We consider
the information leaked when an attacker breaks b tags, and denote the broken
tags as t1,to, - - ,tp. The first broken tag, t1, always reveals d new secrets to the
adversary. The second through k" broken tags (recall that k is the number of
children of a node), can each reveal between 1 and d new secrets. The number
of new secrets depends on how many branches are shared between the broken
tag and previously broken tags. This can be as few as one new secret if the tags
are siblings in the tree. Assuming the worst case the tags t(yiyq) - - tgi+1 reveal
d — i new secrets each — that is, all secrets at level ¢ are known to the attacker
and each newly broken tag adds one secret to each level below i.

Quantifying Information Leakage in Tree-Based Hash Protocols 233

Group of n tags
Stolen secret

Broken tag

Fig. 1. Distinguishable groups of tags after 4 tags have been broken

For the purpose of our analysis we assume a completely filled k-ary tree with
depth d, containing N = k¢ tags. The secrets have been extracted from b tags.
The adversary always selects tags to break that maximize the number of secrets
learned. We define level j of the tree as the deepest level on which all secrets
are known: j = |logk(b)] On the next level of the tree, level j + 1, the adversary
knows b secrets. Recall, that we are considering the worst case first in which
there exists as little redundancy among the secrets as possible. Each of these
secrets is the root to a subtree with height d — 7 with one known path from
the root to one of the leaves. Each of these subtrees split the leaves of the tree
into subgroups of size N}gf;l), N}c(j]i_gl) AN N'(:d_l), kﬂd Maximum information
is disclosed if the groups of tags are of similar size. Therefore, the remaining
tags cluster in groups of only two sizes. These sizes are the ones closest to the
average size.

Figure[dshows an example of the maximal information leakage in a 3-ary tree,
in which 4 tags have been broken. For the subgroups in which one of the leaves
has been broken, the final level is either the broken tag, or one of two unbroken
tags. The remaining unbroken keys at level 2 correspond to tag groups of size 3
and 6. The next broken tag should be selected from one of the groups of size 6.

The unbroken level j keys correspond to tag groups of two sizes, ¢; and ca,
where r1 and 79 are the numbers of times these groups appear. The overall
number of groups add up to the number of keys at level j (11 +72 = k7), because
each node on level j has exactly one group (potentially with size 0) below it.
Thus, 7 = bmod k7 and ry = k9 — rq.

The number of nodes on the next level, k711, is equal to the number of groups
times their sizes plus the number of broken tags:

kj+1:c1'rl+02~7"2+b

i+1 _p_
ca=c1+1and ¢; = KT —bory T1+I;2 T2
For the example in Figure [II we get one group of size 3 (j = 1; r1 = 1;

c1=1= 1%)7 two groups of size 6 (ro =2; co =2 = %

4 groups of size 2, and 4 groups of size 1 at level j + 1.
Using equation [Il we can compute the worst case average information leakage
as

rtean = 3 (¢ (5F) o0 ()| oot () oo (50

i=j+2

); in addition, there are

234 K. Nohl and D. Evans

where the information leakage due to a group of size o is ¥ (o) = 1 - logs (o).

The first term quantifies the information leakage due to b subtrees, each of
which contains one broken tag. The second and third term denote the leakage
due to the groups of tags that are not part of these subtrees.

For the example in Figure [, this formula resolves to I = 3.132 bits. After
just 4 of the 27 tags in the tree have been broken (which means that 11 of the
39 secrets have been revealed), a significant portion of the maximally achievable
information (= log2(27), approximately 4.75, bits) is disclosed.

The information leakage for a few example cases is shown in Figure
The figure shows the amount of information leakage over the number of broken
tags for several different system sizes. An attacker who compromises 20 tags in a
system with 100,000 tags obtains 2.9 bits of information when a tree with depth
3 is used and 4.3 bits when a tree of depth 5 is used. These values are small
enough to only allow tracking of individuals in very limited environments.

The worst case scenario will only occur if the attacker can select tags that
maximize the number of different secrets compromised. This is entirely possible
if the attacker has access to many tags. The attacker could probe every tag for
secrets on the tag that match those that were already extracted from other tags,
thus identifying a tag to break that has a high number of unknown secrets.

4.2 Random Tags Scenario

The attacker in this scenario breaks tags that are chosen at random. The in-
formation disclosure of this scenario cannot be easily captured in a closed-form
equation. We choose to simulate this case instead.

We simulated the random case for systems with system sizes in between N =
10% and N = 107, and a tree depth d = 5, and number of broken tags up to b =
100. The results are shown in Figure The difference between this simulated
random case leakage and the selected tag leakage (Figure is at most 34%
(for N = 107 and b = 25) and typically less than 10%. The average difference

Information Leakage [bits]
IS

Information Leakage [bits]
IS

24 2 ¥
/ —e— 10
4/ O 10
—v- 10 —v— 10
0 T T T T 0 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
of broken tags # of broken tags
(a) Tree with d=5, selected tags sce- (b) Tree with d=5, random tags sce-
nario nario

Fig. 2. Information leakage in the tree-based hash-protocol

Quantifying Information Leakage in Tree-Based Hash Protocols 235

over all simulated cases is 9%. Simulations of trees with different heights lead to
similar results [7].

The information leakage in the random tags scenario is always upper-bounded
by the selected tags scenario. Our results suggest that the closed-form solution
for the selected tags scenario is tight enough, typically within a ten percent, for
cases where attackers have no control over which tags they break. Since a smart
attacker with access to many tags could obtain nearly the worst case information
leakage, the derived closed-form solution can be used to analyze the information
leakage in the tree-based protocol in nearly all scenarios.

5 Relevance

An attacker can only track people whose tags can be distinguished from all other
people’s tags. This definition is different from Avoine et al.’s [1]. They considered
an attack to be successful if an attacker can distinguish between two tags. In
our model an attacker needs to be able to distinguish a tag from all other tags
for a tracking attack to be successful which we believe better captures a realistic
attacker. In this section, we estimate the likelihood of a successful attack for
different key parameters.

Our threat model and the described tracking attack are not limited to infor-
mation disclosed at the protocol layer. The most notable additional source of
information is the physical layer of a tag. Different tags have different physical
characteristicsd.

Few bits of information are encoded in the number of tags that an individual
carries. Additional information could be encoded in the timestamp of readings
(e.g. if the same tag was always read at around the same time of the day).

Our analysis in limited to the information leaked on the protocol layer. Privacy
on this layer can be seen as a required but not sufficient property of RFID privacy.

For simplicity of the analysis we assume that the tags are partitioned into
g = |27] groups of equal size where I is the amount of information leakage.
A second parameter of our attack, 7, is the number of tags in the focus of the
attacker (e.g. all the tags that have entered the subway system at a given day).
Note that this number is typically much smaller than the total number of tags
in the system. A tag can be uniquely identified if it is the only tag in one of the g
groups. First we look at the case where every individual carries exactly one tag
and then we consider the case in which multiple tags stay together as a group.

5.1 Tracking Single Tags

The probability that at least one tag can be uniquely identified (that is, this tag
can be distinguished from all other tags) is

3 Based on radio characteristics, several additional bits of information may be ex-
tracted from the tag. Our experiment and preliminary results are reported in an
extended version of this paper [7].

236 K. Nohl and D. Evans

Pi(g,n) = <%)”1 :

The probability that at least j tags of the 1 tags can be identified is

J gfl n—i
P(Qﬂ?d)H(m) :

i=1

Given a system with 100,000 tags of which 20 have been broken, and a tree
with depth 5, we get 20 groups (g = 20). The probability that in small group of
tags (n = 10), half of the tags can be uniquely identified is 14%. As the number
of tags grows, this probability becomes smaller.

5.2 Tracking Collections of Tags

For many RFID applications, it is common for each individual to carry several
tags. Even if a given RFID application gives individuals only a single tag, other
tags they carry for different RFID applications are equally helpful to the attacker
in distinguishing the individual. We assume that these collections comprise ran-
domly selected tags. The number of ways in which [tags can fall into the g
groups is given by ((l]) When combined with the earlier result, the probability
that in a group of 7 individuals who each carry [tags, at least j can be uniquely

identified is _ .
P(g.n.1.5) = ﬁ i)
g’ 777 7.7 - (?) _ Z + 1 .

=1

Looking at the example from the last section with N = 10%, d = 5, = 10 but
now assuming two tags per individual (I = 2), the attacker can uniquely identify
5 individuals (j = 5) with a probability of 83%. If each individual carries 5 tags
(I = 5), this probability exceeds 99%. Looking at an example of larger attack, we
assume 50 compromised tags (b = 50 and | = 5); the probability of identifying
half of 1,000 individuals (n = 1000, I = 500) is 88%.

These results illustrate that tracking attacks on large groups of individuals
are practical under the assumption that each individual carries a fixed collection
of tags.

6 Conclusion

The resource constraints of RFID tags, combined with the strict requirements
for large-scale scalability and high availability, mean that strong privacy is not
possible. All proposed protocols that provide strong privacy fail to scale to large
systems or suffer from a degraded availability. The tree-based protocol provides
a trade-off between privacy and scalability, but raises the need to better quantify
the amount of privacy compromised.

Quantifying Information Leakage in Tree-Based Hash Protocols 237

Privacy must be measured in a way that accounts for a realistic attacker’s
ability to combine partial information to compromise individuals’ privacy with-
out necessarily being able to uniquely distinguish tags. Our proposed metric for
information leakage provides useful guidance for estimating the privacy a system
provides. An attacker is not likely to distinguish between individuals that each
carry only a single tag, but is very likely to be successful in distinguishing in-
dividuals that carry several tags. If additional information sources are factored
into the attack tracking of very large tag populations becomes entirely possi-
ble. Our results indicate that protocol designs previously considered to provide
adequate privacy, may in fact be insufficient against more realistic threat mod-
els. Designers of RFID applications must be careful to balance the needs for
scalability with realistic assessments of the threats of privacy compromise.

References

1. Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing time complexity
in RFID systems. In Selected Areas in Cryptography — SAC, 2005.

2. Levente Buttyan, Tamas Holczer, and Istvan Vajda. Optimal key-trees for tree-
based private authentication. In Privacy Enhancing Technologies Workshop — PET,
2006.

3. Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Privacy Enhancing Technologies Workshop — PET, 2002.

4. Ari Juels and Stephen Weis. Defining strong privacy for RFID, 2006.

5. David Molnar and David Wagner. Privacy and security in library RFID: Issues,
practices, and architectures. In Conference on Computer and Communications
Security — ACM CCS, 2004.

6. Yasunobu Nohara, Sozo Inoue, Kensuke Baba, and Hiroto Yasuura. Quantitative
evaluation of unlinkable id matching schemes. In Workshop on Privacy in the
Electronic Society — WPES, 2006.

7. Karsten Nohl and David Evans. Quantifying information leakage in tree-based
hash protocols. Technical Report CS-2006-20, University of Virginia, Computer
Science Department, October 2006.

8. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach
to “privacy-friendly” tags. In RFID Privacy Workshop, 2003.

9. Radha Poovendran and John S. Baras. An information-theoretic approach for
design and analysis of rooted-tree-based multicast key management schemes. I[EEE
Transactions on Information Theory, 2001.

10. Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Privacy Enhancing Technologies Workshop — PET, 2002.

11. C. E. Shannon. A mathematical theory of communication. 1948.

12. Gene Tsudik. YA-TRAP: Yet another trivial RFID authentication protocol. In
PerCom, 2006.

13. Stephen Weis, Sanjay Sarma, Ronald Rivest, and Daniel Engels. Security and
privacy aspects of low-cost radio frequency identification systems. In International
Conference on Security in Pervasive Computing — SPC, 2003.

	Introduction
	Private Authentication Protocols
	Privacy Definition
	Information Leakage
	Selected Tags Scenario
	Random Tags Scenario

	Relevance
	Tracking Single Tags
	Tracking Collections of Tags

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

