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Abstract

We introduce a new kind of branch predictor, the hashed perceptron predictor, which merges the concepts behind the gshare and
perceptron branch predictors. This is done by fetching the perceptron weights using the exclusive-or of branch addresses and
branch history. This predictor can achieve superior accuracy to a path-based and a global perceptron predictor, previously the most
accurate fully dynamic branch predictors known in the literature, at the same storage budgets. Additionally, it reduces the number
of adders by a factor of four compared to a path-based perceptron. We also show how such a predictor can be ahead pipelined to
yield one cycle effective latency, making it the first standalone perceptron predictor. On the SPEC integer set of benchmarks, the
hashed ahead-pipelined path-based perceptron predictor (hashed perceptron for short) improves accuracy by 20% over a path-based
perceptron and improves IPC by 5.8%. We believe these improvements make the perceptron predictor a promising choice as a
branch predictor for a future high-performance microprocessor.

1 Introduction

The trend in recent high-performance commercial microprocessors has been towards ever deeper pipelines to enable
ever higher clockspeeds [2, 6], with the width staying about the same from earlier designs. This trend has put increased
pressure on the branch predictor from two sides. First, the increasing branch misprediction penalty puts increased
emphasis on the accuracy of the branch predictor. Second, the sharply decreasing cycle time makes it difficult to use
large tables or complicated logic to perform a branch prediction in one cycle. The consequence has been that recent
designs often use a small one cycle predictor backed up by a larger and more accurate multi-cycle predictor. This
increases the complexity in the front end of the pipeline, without giving all the benefits of the more accurate predictor.

Recently, it was proposed [7, 9, 16] that a branch predictor could be ahead pipelined, using older history or path
information to start the branch prediction, with newer information being injected as it became available. While there
is a small decrease in accuracy compared to the unpipelined version of the same predictor, the fact that a large and
accurate predictor can make a prediction with one or two cycles latency more than compensates for this.

Using a different approach to reducing the effective latency of a branch predictor, a pipelined implementation for
the perceptron predictor [9] was also proposed. The perceptron predictor is a new predictor which is based not on two
bit saturating counters like almost all previous designs, but on a simple neural network.

Perceptrons have been shown to have superior accuracy at a given storage budget in comparison to the best table
based predictors. Yet they need a large number of small adders to switch every cycle they make a prediction, increasing
both the area of the predictor and the energy per prediction. Finally, hiding the latency of a perceptron predictor
requires that such a predictor be heavily pipelined, leading to problems similar as those encountered when designing
modern hyperpipelined execution cores.

Previous perceptron predictors assigned one weight per local or global branch history bit. This meant that the
amount of storage and the number of adders increased linearly with the number of history bits used to make a predic-
tion. The key insight of this paper is that the 1 to 1 ratio between weights and number of history bits is not necessary.
By assigning a weight not to a single branch but a sequence of branches we can transform the mapping of weights to
history bits from a location based mapping (as used in a bimodal predictor) to a pattern or history based mapping (as
used in a global history predictor). Moreover, combining the location and history pattern based mappings leads very



naturally to the rediscovery of a joint or shared mapping using both sources of information (as used in GAs or gshare
predictors).

Decoupling the number of weights from the number of history bits used to make a prediction allows us to reduce
the number of adders and tables almost arbitrarily.

The main contributions of this paper are:

e We show that a hashed perceptron has equal or better prediction accuracy than a traditional path-based per-
ceptron for a given storage budget, while reducing the number of adders and separate tables by factor of 4 at
40kb.

e We show how such a perceptron can be ahead pipelined to reduce its effective latency to one cycle, obviating
the need for complex overriding scheme.

This paper is organized as follows: Section 2 gives a short introduction to the perceptron predictor and gives an
overview of related work, Section 3 talks about the impact of delay on branch prediction and how it has been dealt
with up to now, as well as the complexity involved in such approaches, Section 4 shows how a perceptron can be ahead
pipelined to yield one cycle effective latency, Section 5 then explains the concept of a hashed perceptron, Section 6
describes the simulation infrastructure used for this paper, Section 7 shows results both for table-based predictors as
well as comparing the hashed perceptron with prior proposals. Finally, Section 8 concludes the paper.

2 The Perceptron Predictor and Related Work
2.1 The Idea of the Perceptron

The perceptron is a very simple neural network. Each perceptron is a set of weights which are trained to recognize
patterns or correlations between their inputs and the event to be predicted. A prediction is made by calculating the
dot-product of the weights and an input vector (see Figure 1). The sign of dot-product is then used as the prediction. In
the context of branch prediction, each weight represents the correlation of one bit of history (global, path or local) with
the branch to be predicted. In hardware, each weight is implemented as an n-bit signed integer, where n is typically 8
in the literature, stored in an SRAM array. The input vector consists of 1’s for taken and -1’s for not taken branches.
The dot-product can then be calculated as a sum with no multiplication circuits needed.
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Figure 1: The perceptron assigns weights to each element of the branch history and makes its prediction based on the
dot-product of the weights and the branch history plus a bias weight to represent the overall tendency of the branch.
Note that the branch history can be global, local or something more complex.

2.2 Related Work

The idea of that perceptron predictor was originally introduced by Vintan [18] and Jiménez showed in [11] that the
global perceptron could be more accurate than any other then known global branch predictor. The original Jiménez
perceptron used a Wallace tree adder to compute the output of the perceptron, but still incurred more than 4 cycles of
latency.

The recently introduced path-based perceptron [9] hides most of the delay by fetching weights and computing a
running sum along the path leading up to each branch. The critical delay of this predictor is thus the sum of the delay
of a small SRAM array, a mux and one small adder. It is estimated that a prediction would be available in the second



cycle after the address became available. For simplicity we will call this organization the overriding perceptron, since
it can only act as a second-level overriding predictor, and not as a standalone predictor. A single cycle predictor is
needed to make a preliminary prediction, which is potentially overriden by the perceptron predictor.

Seznec proposed several improvments to the original global perceptron in [14, 15]. In [15] he introduced the MAC-
RHSP (multiply-add contribution redundant history skewed perceptron) predictor. He reduces the number of adders
needed by a factor of four (16 when using redundant history) over the normal global perceptron predictor, by storing
all the 16 possible combinations of four weights in separate table entries and selecting from them with a 16-to-1 mux
after they have been fetched from the weight tables.

In our terminology, the MAC-RHSP is similar to a global perceptron predictor that uses a concatenation of address
and history information (GAs or gselect) to fetch its weights. However the MAC-RHSP fetches all weights which
share the same address bits from the tables, and then uses a 16-to-1 mux to select among them. This work was partly
inspired by [15] and the MAC representation is one specific instance of an idea, which we generalize in the hashed
perceptron.

The latency of the MAC-RHSP is hidden from the rest of the pipeline by starting the prediction early and computing
all possible combinations of the last 4 branches in parallel. This requires 15 individual adders in addition to the 15-
entry adder tree which is required to calculate the rest of the dot-product. The hashed perceptron only calculates the
two possible outcomes of the last branch in parallel because of its lower latency and in general requires 2 to 3 times
fewer adders because it packs more branch history bits into fewer weights than the MAC-RHSP.

Ipek et al. [7] investigated inverting the global perceptron. Theirs is not a pipelined organization per se, but rather
uses older history to allow prefetching the weights from the SRAM arrays, hiding the associated latency. During fetch,
these prefetched weights are combined with an input consisting of newer history and address bits, but this still incurs
the delay of the Wallace-tree adder. There is no need for this kind of inversion for a pipelined perceptron, since the
critical path is already reduced to a small SRAM array and a single adder. They also looked at incorporating concepts
from traditional caches, i.e. two-level caching of the weights, pseudo-tagging the perceptrons and adding associativity
to the weight tables.

3 Delay in Branch Prediction

An ideal branch predictor uses all the information which is available at the end of the previous cycle to make a
prediction in the current cycle. In a table-based branch predictor this would mean using a certain mix of address, path
and history bits to index into a table and retrieve the state of a two-bit saturating counter (a very simple finite state
machine), from which the prediction is made.

3.1 Overriding Prediction Schemes

Because of the delay in accessing the SRAM arrays and going through whatever logic is necessary, larger predictors
often cannot produce a prediction in a single cycle in order to direct fetch for the next cycle. This necessitates the use
of a small but fast single cycle predictor to make a preliminary prediction, which can be overridden [10] several cycles
later by the main predictor. Typically this is either a simple bimodal predictor or, for architectures which do not use a
BTB, a next line predictor as is used by the Alpha EV6 and EV7 [4].

This arrangement complicates the design of the front of the pipeline in several ways. Most obviously, it introduces
a new kind of branch misprediction and necessitates additional circuitry to signal an overriding prediction to the rest
of the pipeline.

While traditionally processors checkpointed the state of all critical structures at every branch prediction, this method
does not scale for processors with a very large number of instructions in flight. Moshovos proposed the use of selective
checkpointing at low confidence branches [13]. Since the number of low confidence branches is much higher for the
first level predictor than for the overriding predictor, this negates much of the benefit of selective checkpointing.
Other proposals [1, 5] for processors with a very large number of instructions in flight similarly rely on some kind of
confidence mechanism to select whether to checkpoint critical structures or not. As mentioned above, the overriding
scheme introduces a new kind of branch misprediction. In a normal pipeline even without overriding, all structures
which are checkpointed because of branch predictions must be able to recover from a BTB misprediction, signaled
from the front of the pipeline, or a full direction misprediction, which is signaled from the end of the pipeline. The



predictor type | Amount of state to be checkpointed
in bits

overriding ZZ:; 1+ [lg(é — 1)] bits

perceptron

ahead (w-x) Jer:_; 1+ [lg(i — 1)] bits

pipelined

perceptron

table-based 221 _ 1 bits for most significant
bits

Table 1: Amount of state to be checkpointed for each type of predictor. z is the pipeline depth of each predictor and
w is the number of bits for each weight in the perceptron predictor.

depth of | Amount of state to be
pipeline checkpointed in bits
13 133

18 195

20 221

32 377

34 405

37 447

Table 2: Example of amount of state to be checkpointed (in bits) for an overriding perceptron with 8-bit weights. We
use the pipeline depth determined to be optimal in [9] as examples.

case of the slower predictor overriding the faster one introduces a new possible recovery point, somewhere between
the first two.

3.2 Ahead-Pipelined Predictors

A solution to this problem, which was introduced in [9], was to “ahead pipeline” a large gshare predictor. The access
to the SRAM array is begun several cycles before the prediction is needed with the then current history bits. Instead
of retrieving one two-bit counter, 2’ two-bit counters are read from the table, where m is the number of cycles it takes
to read the SRAM array. While the array is being read m new predictions are made. These bits are used to choose the
correct counter from the 2™ counters retrieved from the array.

In an abstract sense, the prediction is begun with incomplete or old information and newer information is injected
into the ongoing process. This means that the prediction can stretch over several cycles, with the only negative aspect
being that only a very limited amount of new information can be used for the prediction.

An ahead pipelined predictor obviates the need for a separate small and fast predictor, yet it introduces other
complications. In the case of a branch misprediction, the state of the processor has to be rolled back to a checkpoint.
Because traditional predictors only needed one cycle, no information except for the PC (which was stored anyway)
and the history register(s) were needed.

3.3 Checkpointing Ahead-Pipelined Predictors

For an ahead pipelined predictor, all the information which is in flight has to be checkpointed or the branch prediction
pipeline would incur several cycles without a prediction being made in the case of a misprediction being detected. This
would effectively lengthen the pipeline of the processor, increasing the branch misprediction penalty. The reason that
an ahead pipelined predictor can be restored from a checkpoint on a branch misprediction and an overriding predictor
cannot, is that the ahead pipelined predictor only uses old information to retrieve all the state which is in flight, while
the overriding predictor would use new information, which would be invalid in case of a branch misprediction.

This problem was briefly mentioned in [16] in the context of 2BC-gskew predictor and it was noted that the need
to recover in one cycle could limit the pipeline length of the predictor. In a simple gshare the amount of state grows



exponentially with the depth of the branch predictor pipeline, if all the bits of new history are used. Hashing the bits
of new history down in some fashion of course reduces the amount of state in flight.

For an overriding perceptron, all partial sums in flight in the pipeline need to be checkpointed. See Table 1 for the
formulas used to determine the amount of state to be checkpointed. Since the partial sums are distributed accross the
whole predictor in pipeline latches, the checkpointing tables and associated circuitry must also be distributed. The
amount of state that needs to be checkpointed/restored and the pipeline length determine the complexity and delay of
the recovery mechanism. Shortening the pipeline and/or reducing the amount of state to be checkpointed per pipeline
stage will reduce the complexity of the recovery mechanism.

A final factor to consider is the loss of accuracy in an ahead pipelined predictor with increasing delay. Since this
was not explicitly investigated in [8], we investigate the response of some basic predictors and the pipelined perceptron
predictor to delay. The first basic predictor is the gshare predictor, since it serves as the reference predictor in so many
academic studies of branch predictors. Unlike the gshare.fast introduced in [8], we vary the delay from zero to four
cycles. Our ahead pipelined version of the gshare predictor also differs from the gshare.fast presented in [8], as can be
seen in Figure 2.

Our ahead pipelined gshare predictor uses a previous branch address along with the then current speculative global
branch history to index into a table and retrieve 2* counters, where x is the number of cycles the predictor is ahead
pipelined. The gshare.fast only uses global history to retrieve the 2% counters. Our ahead pipelined gshare uses the
new global branch history which becomes available in the next x cycles to select from all the counters retrieved from
the table, while the gshare.fast uses a hash of the actual branch address and the new global branch history to do the
same.

normal GAs: [ address(n) J[_glhist. ]
address(n) ]
normal gshare: XOR
[ global history(n) |
pipelined GAs: [ address(n-x) J[new gl. hist. ]
address(n-x)
pipelined gshare: XOR new gl. hist.
global history(n-x)

Figure 2: The ahead pipelined versions of each predictor uses the address information from several cycles before the
prediction to initiate the fetch of a set of counters. In the case of the gshare predictor these are XOR’ed with the
then-current global history. The new bits of global history which become available between beginning to access the
pipelined table and when the counters become available from the sense amps are used to select one counter from the
27 retrieved to make the actual prediction.

In general, when we say a predictor has delay x, we mean that only address bits from cycle (n - x), where cycle n
is the cycle in which the prediction is needed, are used. In the case of the gshare predictor, we XOR the address(n - x)
during cycle (n - x) with the speculative global history shift register and start to fetch a group of 2% 2-bit counters from
the prediction table. We then use the newest x bits of global history, which become available while the table lookup is
still in progress, to select one counter from this group.

A bimodal predictor can similarly be pipelined, by using only the address bits from address(n - x) to initiate the
table read. The bimodal predictor in this case becomes similar to a GAs [19] (also known as gselect [12]), but it uses
a past address as opposed to the present address used by a GAs.

4 Ahead Pipelining a Perceptron Predictor

To bring the latency of the pipelined path-based perceptron down to a single cycle, it is necessary to decouple the
table access for reading the weights from the adder. We note that using the address from the cycle n — 1 to initiate
the reading of weights for the branch prediction in cycle n would allow a whole cycle for the table access, leaving the
whole cycle when the prediction is needed for the adder logic. We can use the same idea as was used for the ahead
pipelined table based predictors to inject one more bit of information (whether the previous branch was predicted taken
or not taken) at the beginning of cycle n. We thus read two weights, select one based on the prediction which becomes
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Figure 3: (top)The original proposal for a pipelined perceptron uses the current address in each cycle to retrieve the
weights for the perceptron. (bottom) Our proposed design uses addresses from the previous cycle to retrieve two
weights and then chooses between the two at the beginning of the next cycle. Note that the mux could be moved ahead
of the pipeline latch if the prediction is available early enough in the cycle.

available at the end of cycle n-1, and use this weight to calculate the result for cycle n. While this means that one less
bit of address information is used to retrieve the weights, perceptrons are much less prone to the negative effects of
aliasing than table based predictors.

In the case of a branch misprediction, the pipeline has to be restored the same as an overriding perceptron. Because
the predictor has to work at a one cycle effective latency, additional measures have to be taken. One possibility is to
checkpoint not just the partial sums but also one of the two weights coming out of the SRAM arrays on each prediction.
Only the weights which were not selected need be stored, because by definition, when a branch misprediction occurred,
the wrong direction was chosen initially. A second possibility is to also calculate the partial sums along the not chosen
path. This reduces the amount of state that needs to be checkpointed to only the partial sums, but necessitates additional
adders. A third possibility is to only calculate the next prediction, for which no new information is needed, and advance
all partial sums by one stage. This would lead to one less weight being added to the partial sums in the pipeline and
a small loss in accuracy. The difference between options two and three is fluid and the number of extra adders, extra
state to be checkpointed and any loss in accuracy can be weighed on a case by case basis.

For our simulations we assumed the first option, and leave evaluation of the second and third option for future work.

5 The Hashed Perceptron

The main idea behind the hashed perceptron predictor is that the gshare indexing approach can be applied within a
perceptron predictor by using the exclusive OR of branch address and branch history to index into the perceptron
weight tables.

However, we also found that combining hashed indexing with path-based indexing increased accuracy, i.e. hashed
indexing only helps with some branches, not all.
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Figure 4: The hashed perceptron fetches weights by indexing into multiple tables with the exclusive OR of a branch
address and the speculative global history.

5.1 The Idea of Hashed Indexing

In a traditional perceptron predictor, each history bit (whether global, local or path history) is assigned one weight.
This means that the number of weights in each perceptron increases linearly with the number of history bits and so
does the number of adders needed to compute the dot product. But this mapping from input (history bits and path
information) to predictor state (perceptron weights) is not the only one possible. The mapping

index = address mod nr_weights

is the same as used in a bimodal predictor, the only difference being that in a bimodal predictor the predictor state is
a 2-bit counter and not an 8-bit weight. (In fact the 2-bit counter can be reinterpreted as a degenerate weight.) We
look at the conventional global perceptron predictor as an accumulation of bimodal predictors, with each predictor
being trained on the correlation between the history bit assigned to it and the outcome of the branch which is being
predicted. The perceptron is trained by training all the predictors based upon the result of their cumulative prediction.
Because each weight is 8-bits and not only 2-bits, weights assigned to branches with higher correlation can implicitly
override the prediction of weights assigned to branches which do not correlate clearly with the outcome of the branch
under consideration, if trained in such a fashion. Changing the mapping from only address to only history results in

index = history mod nr_weights

or the perceptron equivalent of a GAg predictor. Ipek et al.[7] used such a mapping for their inverted perceptron, but
because they inverted a global perceptron all weights in a perceptron still had the same mapping.
Merging these two mappings leads back to the concept of the gshare predictor as introduced by McFarling[12].



index = (address ® history) mod nr_weights

The great advantage of applying the gshare concept to the path-based perceptron is that each weight is fetched
with a different mapping, meaning it is not necessary to use the whole of the branch history we want to use to fetch
each weight. Instead we can use different parts of the history for each weight. By using different parts of the history
for fetching different weights we perform a series of partial pattern matches and use the sum of these individual
predictions to make the overall prediction. By using a series of small gshare-like predictors instead of a single large
predictor we can avoid some of the problems associated with large global predictors, such as excessive training time.

A fundamental problem of the previous perceptron predictors in comparison to two-level correlating predictors such
as the gshare predictor, was that they could not reliably predict linearly inseparable branches[11]. The most common
example of linearly inseparable branches are branches which are dependent on the exclusive OR of two previous
branches.

A hashed perceptron predictor can predict these branches just like the gshare predictor, if they fall within one of the
segments of global history (such as 0-9 or 20-29 in Figure 4) which are used to index into the different weight tables.

5.2 Combining Hashed and Path-Based Indexing

We have found that using path-based indexing for the most recent branches in combination with using hashed indexing
for the rest of the branch history offers superior accuracy to pure hashed indexing.

The intuition behind this combination of hashed and path-based indexing is that the most recent branches are the
most important for the outcome of the branch which is to be predicted. Assigning separate weights to them reduces
aliasing and improves the chances that multiple paths can be distinguished. Techniques improving either one of these
factors have enhanced the accuracy of many previous predictors.

5.2.1 Predicting a Branch

The pseudocode for the a pipelined version of the hashed perceptron is provided in Figure ??. The hashed perceptron
predictor consists of a number of weight tables organized into a pipeline, with each table and associated circuitry
having its own pipeline stage. Let

- p be the number of pipeline stages/weight tables which use path-based indexing,

- h be the number of pipeline stages/weight tables which use hashed indexing,

- t be the number of history bits used to compute the hashed index in each pipeline stage

- n be the number of weights per table

Note that in this work for simplicity we assume that n is always a power of two and that t is always logs(n).
SR[0..h 4+ p + 1] is an array which contains the partial sums for all the predictions in the pipeline at any given point
in time. When predicting a branch, a final weight is added to SR[0] to compute y, the total output of the perceptron
predictor for that branch. If y is greater or equal to zero, the branch is predicted taken, and it is predicted not_taken
otherwise.

5.2.2 Computing Predictions

The first p tables are accessed in parallel using the concatenation of the previous branch PC and the of that branch
modulo n. The next h tables are accessed in parallel using the XOR of the previous branch PC and their respective ¢
history bits.

For example, assume that t = 10 , than the (p + 1)*" table uses history bits 1-10 (history bit O being used for
path-based indexing), the (p + 2)*" table uses history bits 11-20 and so on.

Each of the fetched weights is added to the corresponding partial sum SR[j] and stored in the next entry SR[j - I] in
the array.

5.2.3 Updating the Predictor

Once the actual outcome of a branch is known, the addresses enter delay queues, which ensure that all weights which
contributed to one prediction can be updated at the same time. The predictor is trained if the prediction was wrong



history: long
v[h + p] : integer

function prediction (history , last_pc : long) : { taken, not_taken }
y: integer
begin
path_index := ((last_pc << 1) + (history & 1)) mod n
y := SR[0] + W[ path_index,0]
if y >= 0 then
prediction := taken
else
prediction := not_taken
end_if
v[0] := path_index
for jin /..p - I in parallel do
SR’[j - 11 := SR[jl + W([path_index , j]
v[jl := path_index
end for

for jin 0..h - I in parallel do
hash_index; := ((history >> (j*t + 1)) xor last_pc) mod n
SR’[j+p- 1] :=SR[j +p] +W[hash_indexj,j +pl
v[j+p] = hash,indexj

end for

SR :=SR’

SR[h +p]:=0

history := (history << 1) or prediction

end

Speculative global branch history shift register
Array of indices of weights used

perceptron output
Hash last branch PC with last branch outcome

Calculate perceptron output
Determine branch prediction

Update the next p partial sums in flight

Store index used for easy updating

Compute hashed indices for the next h weights

Store index used for easy updating

Initialize the partial sum for the (p + h) " branch
Update the speculative global history register

Figure 5: Pseudocode for the prediction function of a hashed percpetron

or if the absolute value of y was below the training threshold theta. The formula for theta is the same as for
previous perceptrons, with the number of pipeline stages/weights replacing the number of history bits. All the weights
are incremented if the outcome was taken and decremented otherwise. Note that saturating arithmetic has to be used

because of the limited number of bits with which each weight is represented.

5.2.4 Checkpointing and Restoring the Predictor

When a branch was incorrectly predicted or another type recovery event occurs in the pipeline, the contents of SR have
to be restored to the state they had prior to the misprediction. This means that SR has to be checkpointed for every

branch in flight.

In total, a hashed perceptron with both hashed and path-based indexing has several advantages, some new and some

incorporated from previous perceptrons:

e The hashed perceptron predictor can predict some linearly inseparable branches, something which traditional

perceptron predictors cannot, as long as they are mapped to the same weight.

e Because the hashed perceptron predictor has a shorter pipeline for the same history length than a path-based
perceptron, correlation between the weights and the outcome of the branch which is to be predicted is easier to

establish.

e A shorter pipeline means less noise (as a consequence of aliasing with other branches) is injected into the

prediction process.

e Separate weights for the most recent branches allows the hashed perceptron to distinguish between multiple

paths leading up to a branch.



training threshold for training weights

Delay queues for updating all the weights of one
prediction at the same time
function train (prediction, outcome: {taken , not_taken}, y : integer)

theta : integer
H[h+p—-1,h+ p-1]: integer

begin
for jin 0.4 + p — 1 in parallel do
HIj . j] :=vijl Insert addresses into delay queues
k :=H[O0, /] Retrieve the index for the j™ weight
if prediction = outcome or |yl <= theta then If prediction was incorrect or below threshold
if outcome = true then Increment or decrement weight
Wik, jl =Wlk,jl1+1 in saturating arithmetic
else
Wik, 1 =W[k,jl1-1
end if
end if
end for
shift_down (H) Shift all entries down by one in the first index
end

Figure 6: Pseudocode for the prediction function of a hashed percpetron

Parameter Configuration

L1-Icache 64KB, 32B, 2-way, 3 cycle la-
tency

L1-Dcache 64KB, 32B, 4-way, 3 cycle la-
tency

L2 unified cache 4MB, 128B, 8-way, 15 cycle la-
tency

BTB 4096 entry, 4-way

Processor width 6

Branch Penalty 33

ROB entries 512

1Q, FPQ entries 64

LSQ entries 128

L2 miss latency 200 cycles

Table 3: Configuration parameters of the processor simulated

6 Simulation Setup

We evaluate the different branch predictors using the 12 SPEC2000 integer benchmarks. All benchmarks were com-
piled for the Alpha instruction set using the Compaq Alpha compiler with the SPEC peak settings and all included
libraries. Exploring the design space for new branch predictors exhaustively is impossible in any reasonable time-
frame. To shorten the time needed for the design space exploration, we used 1-billion-instruction traces which best
represent the overall behavior of each program. These traces were chosen using data from the SimPoint [17] project.
Simulations were conducted using EIO traces for the SimpleScalar simulation infrastructure [3]. For our studies of the
effects of delay on branch predictor accuracy, we used the sim-bpred simulator because of its greater speed. For the
main evaluation of all predictors and to collect performance numbers, we used the a greatly enhanced version of the
sim-outorder simulator, called sim-modes, from the Simplescalar [3] suite for simulating the accuracy and performance
of all branch predictors.

For all the main simulations, sim-modes was run for 100M instruction prior to the beginning of the selected traces
to warm up all caches and other microarchitectural structures. All statistics were restarted after this warmup period.
The details of the processor model used can be found in Table 3.
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7 Results

In this section we first show several examples of how using older information to make a branch prediction hurts
accuracy in different predictors. We then go on to discuss how we chose the final configuration of the hashed perceptron
and show performance results comparing the hashed perceptron to other predictors.

7.1 The Impact of Delay

First, we will present results from ahead pipelined versions of basic predictors to show that the impact of delay is
universal and has similar but not equal effects on all branch predictors. Prediction accuracy degrades in a non-linear
fashion for most predictors with increasing delay, most probably due to increasing aliasing between branches. We will
then go on to show the impact of delay on the overriding perceptron predictor, which behaves similarly to table based
predictors with respect to increasing delay, despite its very different structure.

Figure 7 shows the accuracy of a pipelined GAs predictor. We use only address bits to start the prediction and
use the new history bits to select from the fetched predictions. This means that each predictor uses as many bits
of global history as its delay in cycles. This of course implies that the predictor with O cycles of delay is in fact a
bimodal predictor. As can be seen in Figure 7, the addition of global history bits increases the accuracy of such a
predictor. The predictor goes from being a bimodal predictor to being a pipelined GAs predictor. For comparison we
show non-pipelined GAs predictors with O to 4 bits of global history in Figure 8. Such predictors are more accurate
than the pipelined GAs predictors with an equivalent number of global history bits. It should be noted that these are
not meant to be optimal configurations for GAs predictors, but are only meant to illustrate the impact of using older
branch addresses in such a predictor. In contrast to GAs, the gshare predictor in Figure 9 shows a consistent loss

Pipelined GAs ——delay 0
0.08 —-—-delayt
———delay 2
1030 4= ————— delay3 _ |
——delay 4
0.07 -
]
g
$ 0.065 -
£
2
€ 0.06 A
]
5
2 0.055 -
)
=
0.05 -
0.045
0.04 . . : . .

025KB 0.5KB 1KB  2KB  4KB 8KB  16KB 32KB 64KB 128KB
Size in Bytes

Figure 7: The impact on accuracy of using older addresses on a pipelined GAs predictor. The accuracy of the predictor

actually improves with increasing delay, the inclusion of more bits of global history compensating for the effects of

increasing delay.

of accuracy with increasing delay. However, the increase is not linear, with a predictor with one cycle delay showing
only a very mild degradation in comparison to the normal gshare predictor. This can be attributed to the fact that the
gshare predictor gains most of its accuracy from information in the global history and uses the address bits mainly to
more evenly distribute usefull predictions across the whole table [12]. A GAs which uses little global history on the
other hand is dependent upon good address information to make accurate predictions.

Figure 10 shows that the overriding perceptron predictor behaves similarly to the table based predictors; in that the
loss of accuracy with increasing delay is not linear. However, it exhibits different behavior from the gshare predictor in
that the impact of delay decreases much more quickly with increasing size. We attribute this to the very small number
of perceptrons for the smaller hardware budgets, which necessarily means that fewer address bits are used. The loss
of even one bit of address information seems to lead to greatly increased aliasing. At larger hardware budgets the
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Figure 8: Accuracy of non-pipelined GAs predictors with zero (i.e., bimodal) to four bits of global history.

increasing number of perceptrons and the tendency of the perceptron not to suffer from destructive aliasing begin to
dominate.

7.2 Pipelined Perceptron Predictors

In Figure 11 we compare the hashed perceptron to the path-based and global perceptron when varying the history
length. Note that the hashed perceptron is always ahead-pipelined while the global and path-based perceptrons are
not. The global and path-based perceptron predictors have access to h tables, where h is the history length, with each
table containing 4K weights. The large number of weights per table should eliminate the effects of aliasing on this
comparison.

The perceptron predictor using only hashed indexing (denoted as pure hash in Figure 11) has access to h/12 tables,
because twelve bits of branch history are combined into one weight. The second predictor using hashed indexing
(denoted as hash) has three tables which are accessed as in the path-based perceptron and the rest use hashed indexing.

The results show that the global perceptron predictor can make good use of long branch histories, while the path-
based perceptron predictor outperforms at shorter history lengths. The pure hashed perceptron trails behind both the
global and the path-based perceptron predictors, but adding separate tables for the three most recent branches improves
the misprediction rate by 0.35 to 0.8 percent and outperforms the other predictors despite only having 1/8th of their
storage budget.

We found that for optimal accuracy a hashed perceptron should separate out the last 5 bits of global history from
the rest, meaning these are treated as in a regular ahead-pipelined path-based perceptron. As can be seen in Figure 11
the hashed perceptron can uses the maximum history length for optimal accuracy. Table 4 shows the configurations
for hashed and overriding perceptrons used in all the following comparisons. Note that the pipeline depth for the
hashed perceptron was 10 for all configurations, meaning 5 tables were indexed in a pipelined bimodal fashion (as in
an ahead-pipelined perceptron) and 5 were indexed as in a gshare predictor.

It should be noted that the 20 and 40 kb hashed perceptrons access 2 and 4 kb tables respectively, which cannot be
accessed within a single cycle. We thus also include a hashed perceptron (denoted as fast hash in Figure 12) which
uses 1kb tables for the last 3 pipeline stages and larger tables for the hashed weights (we found that this yielded better
performance than the usual 5 - 5 split in this case). The hashed weights can easily be fetched in two cycles, because
they do not need the most recent address information to be effective. Note that the actual size of the fast hash is
actually 17 and 31kb respectively.

We also include a gshare predictor as a baseline for comparisons. We do not pipeline the gshare predictor in any
way, assuming that it always has one cycle latency. Note that all the following comparisons are with gshare predictors
which are 60% larger than the perceptrons they are being compared to. We chose this comparison to illustrate the
hardware saving made possible by using a perceptron predictor.
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Figure 10: The impact on accuracy of using older addresses to fetch the perceptron weights.

Figure 12 shows the arithmetic mean IPC for the hashed perceptron, path-based perceptron and gshare predictors.
It can be seen that the hashed perceptron offers superior performance at all hardware budgets. The hashed perceptron
offers an improvement in IPC of about 4% at 1.25 to 20KB and increases its lead to 5.8% at 40KB. For very aggressive
clockrates, a fast hashed perceptron of 31KB still offers a 4.8% improvement over a 40KB overriding perceptron.

The misprediction rates in Figure 12 show a similar picture, with the improvement in misprediction rate steadily
improving from 11% at 1.25KB to almost 21% at 40KB. The fast hashed perceptron offer improvements of about 17%
in misprediction rate compared to somewhat larger overriding perceptrons.

Gcec, crafty and parser show the largest improvement relative to a overriding perceptron. These are benchmarks with
relatively large branch footprints. This indicates that the larger number of weights per table in a hashed perceptron can
reduce the negative impact of aliasing relative to an overriding perceptron of the same size. We exclude gap from this
group since the misprediction rates for all predictors are so low that no clear conclusion can be drawn.

The results repeat themselves at 40KB, with major improvements again seen in gcc, crafty and parser.

8 Conclusion and Future Work

We have introduced the hashed perceptron predictor, which merges the concepts behind the gshare and path-based
perceptron predictors. This predictor has several advantages over prior proposed branch predictors:

e The hashed perceptron improves branch misprediction rate by 20% over a path-based perceptron on the SPEC2000
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length from 12 to 60 bits.

Size history | history
(kb) length: | length:
hash path
1.25 40 20
2.5 45 20
5 50 20
10 55 40
20 60 40
40 64 40

Table 4: Configurations for the hashed and overriding perceptron

integer set of benchmarks, increasing IPC by over 5.8%.

e The hashed perceptron reduces the number of adders by a factor of four and shortens the predictor pipeline by
the same factor.

e The amount of state that needs to be checkpointed and restored in case of a branch misprediction is also reduced
by a factor of four.

e The update logic is greatly simplified by only having to keep track of 10 weights instead of 40 for each branch.

e By ahead pipelining the hashed perceptron predictor the overhead and added complexity of associated with
having a large predictor overriding a smaller predictor are eliminated.

The hashed perceptron eliminates the need for a preliminary predictor and overriding mechanism, it offers superior
accuracy starting at low hardware budgets and scales better than previous designs to larger configurations. It is an small
enough, fast enough and simple enough to be a promising choice as a branch predictor for a future high-performance
processor.

We think the hashed perceptron offers a good base for further research: The introduction of gshare-style indexing
to perceptron predictors should allow many of the techniques developed to reduce aliasing and increase accuracy in
two-level correlating predictors to be applied to perceptron predictors. In the other direction, it might be possible to
use the idea of matching multiple partial patterns to increase accuracy in two-level correlating predictors.
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and overriding perceptrons, as well as a gshare predictor. Note that the gshare predictor is 64kb while the hashed and
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