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Abstract

Modeling is indispensable in engineering. Safe, effec-
tive modeling methods require languages having clearly
specified and validated semantics, and low-cost, feature-
rich, easy-to-use software tools. Today we lack cost-
effective means to develop such methods, with serious
consequences for engincering. We present and evaluate
an approach combining two technigques: formal methods
to aid in language design and validation; and package-
oriented programming for effective tools at low cost. We
have evaluated the approach in an end-to-end feasibility
experiment. First, we deployed an existing language for
reliability analysis to NASA in a package-oriented tool
and surveyed NASA engineers to assess its industrial ef-
Jectiveness. Second, we designed a formally specified
(and significanily corrected and improved) modeling lan-
guage. Finally, to assess the overall effort required, we
developed a package-based fool from scratch which em-
bodies the new language. The data support the claim that
the approach promises fo enable cost-effective deploy-
ment of sound methods by effective software tools.

1. Introduction

Modeling and analysis methods are at the heart of
engineering design. Any such method provides the mod-
eler with a modeling /fonguage used to describe systems,
the semantics of which are in a mapping of expressions
(i.e., models) to estimates of system properties. Functions
for creating and manipulating models, and implementa-
tions of such mappings, are typically supported by soft-
ware fools.

For a modeling method to be used safely and effec-
tively, it must be semantically sound independent of its
implernentation in any particular tool, and supported by a
high-quality tool. Semantic soundness demands a clear,
abstract, precise, compete, general and validated defini-
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tion of the mapping from models to results. Tool quality
demands both usability and reliability. Usability requires
the provision of a broad set of easy-to-learn and easy-to-
use functions needed in engineering practice—ifimetions
that go well beyond bare-bones model editing and analy-
sis, to include such things as printing large models on en-
gineering-size paper, cut-and-paste of models into presen-
tation tools, and sophisticated graphical editing. Non-
computer scientists have become accustomed to features
and usability on par with mass-market packages; and en-
gineers now rightly demand this level of usabiiity even in
highly specialized modeling tools. Reliability, on the
other hand, demands, first and foremost, that a tool im-
plement the semantics of the modeling language faith-
fully.

The problem we address in this paper is that the safe
and effective use of modeling and analysis in engineering
is impeded by unsolved problems in software engineer-
ing. Today we are Jargely unable to deliver, at low cost,
semantically sound methods supperted by high quality
tools. First, we lack proven cost-¢ffective approaches to
ensuring the semantic soundness of methods too semanti-
cally complex to succumb to casual and informal specifi-
cation. Second, we lack low-cost approaches to producing
high quality tools for specialized engineering markets.

The contribution of this paper is the presentation and
end-lo-end experimental evaluation an approach to this
problem. The approach combines well known formal
methods for semantic specification [8,9] with a package-
oriented approach [31] to component-based tool design.
Savings enabled by package-oriented design enable re-
sources to be devoted to semantic soundness. By end-to~
end, we mean that our experiment includes deployment
and evaluation of a package-based tool mto a production
setting (NASA, International Space Station project), and
the development of a new tool, Nova, combining the
package- and semantical methods. Our data suggest that it
is possible, at a cost that i3 modest by any reasonabie



measure, to deliver sound modeling methods into indus-
trial use supported by high-quality software fools.

In the next section we describe our approach in de-
tail. Section 2 discusses the foundational role that
specification must play in the development and
deployment of modeling methods. Section 3 describes the
approach and basic results. Section 4 introduces the
application domain in which we have evaluated our work.
Section 5 describes our efforts fo build the Nova tool
using the combined approach. Section 6 presents results
from the end-user evaluation of Galileo. Section 7
evaluates our work, Section 8 describes related work, and
Section 9 concludes.

2. Semantic Foundations of Trustworthiness

The essence of a modeling method is in the definition
of the mapping from system models to analysis results.
This mapping is ideally expressed in both specification
and implementation forms. Of the two, the specification is
clearly fundamental. It provides the basis for domain ex-
perts to validate the methed, for programmers to mmple-
ment it, and for users to understand and use it.

Lack of an adequate specification complicates valida-
tion by denying domain experts a definition of the method
in all of its complexity. Users are without the basis for a
definitive reference. And prograrmers, without a clear
definition of precisely what the program has to do, are
placed in the position of making uninformed but semanti-
cally deep decisions about the essence of the modeling
method, and are unable to test against clear statements of
correct functioning.

In such cases, it is impossible for engineers using a
method to have justifiable confidence in its validity, m the
validity of a model relative to the system modeled, or in
the validity of results produced by computer analysis of
the model. Anecdotal evidence suggests the use of such
methods and tools today is widespread and that it puts en-
terprises, and in some cases, the public, at risk.

Knight, in particular, has observed {20] that software
tools are increasingly used in the development of safety
critical systems, and that this role requires the software to
be treated as a critical component of the overall engineer-
ing process, and he has cited numerous instances of seri-
ous lapses in engineering processes with respect fo tools
and the methods they implement.

In 1996 the United States Nuclear Regulatory Corm-
mission issued an alert [24] to all operators and builders
of npuclear power plants, warning of significant errors in
several tools used in nuclear reactor design and analysis.
Hatton and Roberts’ analysis of seismic analysis fools
showed that they produced different results even when
ostensibly computing the same function [16]. The analy-
sis by Amari et al. of several reliability tools revealed the
same error in their analysis algorithms [3].

As domain experts increasingly envision and develop
complex modeling and analysis methods and attempt to
deploy them in software tools, it is incumbent on the soft-
ware engineering research commuunity to help build an
awareness of the risks and impediments, and to provide
approaches to mitigate and overcome them. First and
foremost are the risks presented by inadequate semantic
specification of modeling methods used in critical design
situations. Until these risks are addressed, our inability to
develop highly usable method-deploying tools at low cost
can be viewed as a positive safety mechamism-~but far
from ideal. In this paper, we identify the risks, show that
it is possible to mitigate them both substantially and cost-
effectively, and, having done that, to deploy methods wto
industrial use in the form of highly usable software tools.
We now sketch the approach and discuss its use in one
end-to-end method-and-teol-development experiment.

3. Approach and basic results

Qur approach combines two ideas synergistically.
First, we provide fuil-featured, easy-to-learn and use tools
at low cost by using suites of mass-market packages as
components, in a style we have called package-oriented
programming. Second, we address the soundness of the
method and trustworthiness of the tool through the judi-
cious use of formal methods.

3.1. Package-oriented programming

Several authors have noted that significant progress
in software engineering will ocour as the profession be-
comes increasingly specialized [18,26]. By identifying
and developing practices that exploit characteristics of
particular application domains, software engineering re-
searchers can provide developers with the means fo create
better software than that produced using general-purpose
software development methods.

Our approach to developing a tool, given a definition
of a method and language {often graphical), is based on
several observations. The first, made by Shaw [26], is that
most applications devote less than 10% of their code to
the overt function of the system-—in this case the analysis
of models. 90% of the code is devoted to support func-
tionality such as text editing, graphical editing, data vali-
dation, etc. In other words, much of the development ef-
fort required for a sophisticated tool is devoted to the su-
perstructure which supports the core.

For several years we have been exploring the use of
architecturally compatible mass-market packages as
components to provide the bulk of the superstructure at a
greatly reduced cost. This approach, which we call pack-
age-oriented programming (POP) [7,31], exploits tech-
nologies originally developed by indusiry to support tasks
such as document embedding and package scripting. In



this design approach, multiple packages are specialized
and tightly integrated at both the APT and user interface
Jevels. By using packages as massive components, POP
exploits the vast investments that have been spent in their
design, construction, and refinement, and the tremendous
economies obtained by the volume pricing of mass-
market software. In particular, users benefit from careful
usability engineering, rich functionality, software famili-
arity, and rich interoperability-——all at very low cost.

The evaluation of the approach that we present here
is based on ifs use in the end-to-end (concept-to-
ndustrial-use) development of Galileo [6,12,30]. Galileo
is a richly functional and easy-to-use tool for reliability
modeling and analysis. The development of the tool was
guided by feedback from industrial organizations such as
Lockheed-Martin, and recent versions have been designed
to written requirements provided by NASA. We belteve
that by targeting industrial viability, we can betier avoid a
false positive evaluation of POP that might result from
applying the approach to less sophisticated systems.

It’s clear that packages can be integrated and pro-
grammed to some extent. What is not clear is whether it is
possible to build modeling and analysis tools using these
techniques which are competitive with the best commer-
cial tools. In earlier work, we reported that the approach
offers great promise but that it is also fraught with risk,
mainly integration risk [7]. The unpredictable limitations
of the components forced us into a strongly risk driven
development model, and more than once we had to bend
requirements to find workable designs. What we now re-
port is that the approach has enabled us to deliver a tool
for which there is real industrial demand and acceptance.
Section 6 presents the results of two surveys of end users
who have used Galileo, and discusses adoption of the
tool,

3.2. Formal methods for modeling and analysis

The second aspect of our approach involves the judi-
cious use of formal methods for the definition, validation,
and revision of the syntax and semantics of modeling lan-
guages [8,9]. The savings garnered by package-oriented
design can be enough to permit significant resources to be
devoted to specification. We also limit the scope of this
activity to the core method and language instead of to the
overall tool. The method is “small” in relation to the tool
and its soundness is 5o essential that we expect formaliz-
ing and validating it to have disproportionate benefits.

To evaluate the technical and cost effectiveness of
this aspect of our approach we used Z [28] to formalize—
and in the process to identify and correct significant prob-
lems and improve the orthogonality of--the DIFTree
modeling language for dynamic fault tree analyss [5,11].
That language was originally implemented by the DIFtree

tool, developed by our domain expert colleagues, and a
revised version is now also implemmented by Galileo.

Our specification is 55 double-spaced pages and
about 100 schemas and axioms long. We sfructured our
specification in a denotational style, separately specifying
the abstract syntax of the language and the mapping of
arbitrary expressions in the language through an nterme-
diate semantic domain to the well understood domain of
Markov chains. We developed an initial version of the
specification, which we informally validated against the
understanding of the domain experts. We then also sub-
jeeted the specification to limited formal validation.

Formalizing the language and informally validating it
in collaboration with domain expetts revealed significant
opportunities for improvement in the method, language,
and existing implementations. For example, we found that
neither pre-existing casual specifications nor previous
tool implementations properly addressed semantically
important issues such as whether faifures could ocour si-
multaneously, and if so, what the effects would be on the
analysis results. We also found that modeling language to
be significantly less regular and orthogonal than it needed
to be, and our work led us to significant errors in existing
implementations.

These results are not enormously surprising. Formal
methods have been used to discover and clarify complex
systems many times. The question we were investigating
was primarily that of the cost-effectiveness of developing
and validating such specifications in collaboration with
domain experts in a low-budget setting. We found that the
initial development of the specification and its informal
validation was cost effective and technically productive.
Initial development of the specification took the authors
about four months of part-time effort. Informal validation
involved a sequence of weekly meetings of one to two
hours with domain experts (Joanne Dugan and her stu-
dents), during which time we explained, discussed, and as
necessary, revised each line of the specification,

We are now able to report on our experience with
tool-assisted formal validation. We applied several tools
to our specification: fuzz [27], zte [19], and Z/Eves [25].
The first two tools are syntax checkers, and the third is an
engineer-assisted theorem prover,

We found formal validation using these tools to be
less olearly cost-effective than our initial formalization
effort and informal validation. Fuzz and ztc syntax check-
ers were easy to apply and useful, but syntax checks are
inherently limited. Theorem proving permits validation,
through formal proofs, that the constructs denoted by
specifications have certain desired properties. In this re-
spect, the Z/Eves prover did help us find deeper errors,
but it was quite expensive to use. We proved two types of
theorems: domain check proofs to ensure that no function
is applied to a value outside its domain, and custom theo-



rems which we had formulated during initial development
of the specification.

We encountered three types of problems. First, the
Z/Bves tool itself suffered from the lack of features and
usability problems we described earlier. The user inter-
face was idiosyncratic and did not follow standard con-
ventions. For example, the “File” menu disappears when
the user edits a proof, and the .zev file extension is not
antomatically appended to file names. More seriously, the
user must run prior proofs before starting new ones, and
each proof must be manually invoked in tum. (Our speci-
fication has slightly over 100 proofs.)

Second, the tool requires a high level of expertise of
the user in order to formulate workable proof scripts. We
found the prover to be robust and powerful, but we were
often forced to seek guidance from the author of the tool
for all but the simplest proofs. In more than one case we
could not have continued without his expert guidance.

Third, the prover was computationally expensive to
use. Syntax checking all the paragraphs and proving all of
the theorems requires about two hours of compute time
on a 1.2 GHz PC. When working on proofs near the end
of the specification, we would dread having to change an
early part of the specification, as this would require us to
manually re-check all of the intervening paragraphs.

Despite our difficulties, we did discover three sig-
nificant technical errors in the specification. Two in-
volved the computation of real-number coefficients—real
mimbers are a known weakness of the 7 specification
language, and one which we handled by creating an ab-
straction for reals. The third error involved a feature of
the language called “coverage™—its resolution also re-
vealed an error Galileo’s analysis engine.

We are more confident i the specification with re-
spect to the theorems we were able to prove. However, it
is not clear whether we could have achieved the same re-
sults with additional informal validation. The formal vali-
dation effort did not reveal substantial errors in our un-
derstanding of the DFT language or methodology, which
may indicate that the largest dividends can be had through
initial formalization and informal validation.

3.3. The combined approach

The approach we present in this paper combines the
formal and package-based aspects in a novel, technically
and economically synergistic manner. The component-
based aspect provides usability and superstrocture func-
tions, greatly reducing costs to develop, learn and use the
software. The risk of producing incorrect analysis results
due to the use of mass-market packages (not known for
their reliability) does not appear to be dominant.

On the other hand, the critical nature of the modeling
method impels us to consider the use of formal methods.
We leverage the saving produced by the package-based

approach to focus more resources on the formalization
and validation of the relatively (logically) small vet cru-
ciai modeling method and its language.

4. Case siudy: reliability engineering

The application domain for our work is that of reli-
ability modeling and analysis of fault-tolerant computer-
based systems. In this domain, domain-specific languages
are used to build models of systems with complex failure
management. These models represent the potential fail-
wres and faifure recovery behaviors of the system, and are
analyzed fo provide estimations of key system properties
such as overall system unreliability. These analysis results
are then used by the reliability engineer to assess the reli-
ability of the system being modeled, and perhaps to mod-
ify the design to improve its reliabilify.

The particular modeling and analysis method which
we address is dynamic fault tree analysis, Central to this
method 1s the dynamic fault tree (DFT) language. Dy-
namic fault trees [5,11] are an extension of static faulf
trees [32], which were originally developed for analysis
of the Minuteman missile system [33]. In this language,
the occurrence of low-level events or the failure of basic
components in a system are modeled using probability
distributions. The composition of basic component fail-
ures is modeled using combinatorial or sequence-
dependent constructs called gates.

4,1. The complex and subtle DFT language

Compared to statie fault trees, the dynamic fault tree
language is a more powerful and useful notation, as many
fault-tolerance mechanisms depend upon order. For ex-
amiple, the use of a spare is dependent on the prior failure
of the original component. Unfortunately, the addition of
order-dependent semantics complicates the otherwise
straightforward semantics of static faulf trees,

Prior to our work, the semantics of the DFT language
had been expressed only with informal prose, a few iso-
lated examples, and prololype computer programs
[4,5,11]. Unfortunately, these methods are inadequate for
precisely defining compiex and subtle modeling lan-
guages. Informal prose descriptions are incomplete and
inherently ambiguous. Mappings of individual models to
their semantics do not capture the general case. Source
code and executable implementations are precise, but
procedural code is resistant to human understanding and
validation, and in the absence of a high-level specification
there is no basis for rigorous verification [8]. The pro-
grammer may, perhaps unknowingly, make incorrect de-
cisions about important semantic concerns.

Figure 1 presents a simple dypamio fault tree. In this
model PAND is a priority-AND gate which fails if the in-
puts Event B and Eveni C fail i order. FDEP is a func-
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Figure 1: A small dynamic fault tree

Event A

tional dependency which indicates fhat the dependent
events Event B and Event C fail simultaneously if the trig-
ger event Event 4 fails.

This example demonstrates a semantic error in the
language. In this case, the failure of the trigger Event 4
causes the simuitaneous failure of the dependent events.
However, the original informal semantics of the priority-
AND gate did not address the issue of simultaneous fail-
ure of the inputs. If the ordering is strict, then the PAND
gate shouid not fail if the inputs fail simultanecusly. If the
ordering is not strict, it should fail in this case.

This ambiguity in the language semantics is not sim-
ply an academic curiosity—an engineer at Lockheed-
Martin discovered it while attempting to model a system
with an early version of Galileo. Unfortunately, the in-
formal specification of the language did not address this
case, and the existing implementation could not be used
as a semantic reference because it did not behave consts-
tently. Apparently the implementer did not reahize the
subtlety and therefore left the semantics inconsistent [8].

4.2. Inadequate tool support

Prior to our work, tools for the DFT methodology
lacked the quality that users expect. HARP [13], for ex-
ample, did not support a number of modeling constructs,
and lacked a graphical user interface. DIFTree [14] sup-
ported a more expressive version of the DFT language,
and also implemented an innovative modular solution
technique. However, the graphical interface was idiosyn-
cratio to use and lacked a number of features,

Like most research profotypes, these tools allowed
researchers to explore the modeling language and pro-
vided a testbed for further research. However, the tools
lacked features, were not easy to use, and were tied to
Unix, which was by then not the platformn of choice In
engineering practice. As a result of these tool limitations,
the widespread adoption of the dynamie fault tree model-
ing and analysis methodology appeared to be at risk.

5. Nova

In this section we present our efforts to build Nova, a
demonstration of the feasibility of combining the two ele-
ments of our overall approach. Like Galileo, Nova is a
tool for the construction and analysis of dynamic fault
tree models. Compared to Galileo, Nova is an advanced
prototype tool with several unique properties. First, the
DFT language that it supports is a revised version based
on our formal specification work. Second, the implemen-
tation of the editing interface is based on more aggressive
specialization of the POP components which implements
the fault tree editing operations directly in the compo-
nents. Third, the analysis engine is a new implementation
based on the formal semantics we have defined.

While we recognize the importance of a verified fm-
plementation of the method, this problem is beyond the
scope of our current research. As a result, Nova’s analysis
engine was carefully designed and implemented, but has
not yet been verified correct. The details of the develop-
ment of this analyzer will not be presented here. Instead,
we shall focus on the POP-based user interface.

Figure 2 shows the Nova interface. It consists of a
Word-based textual editor, a Visio-based graphical editor,
and an Excel-based basic event model editor. For the de-
velopment of the interface, we took the opportunity to
explote more aggressive specialization of the POP com-
ponents. For example, the figure illustrates the automatic
syntax highlighting of keywords in the textual editor. For
the sake of brevity, we will only describe the more ad-
vanced Visio-based graphical interface.

Visio provides the general functionality such as
zooming, formatting, saving, printing, efc. In addition, we
utilized Visio’s UpdateUT interface to specialize the mter-
face in several dimensions to support the domain-specific
editing of DFT's in their conerete graphical form.

First, we created a “stencil” which contains graphical
depictions of the DFT modeling constructs. These shapes
have dynamic behavior. For example, connectors auto-
matically “hop” over each other, shapes move autornati-
cally to preveni overlap, and text boxes expand to ac-
commodate long label names. Some of these features
were supported natively by Visto, and others were im-
plemented using the package’s shape design capabilities.

Second, a menu and toolbar of functions hag been
added to perform DFT-specific operations such as chang-
ing a gate’s type or selecting a subtree. In order to umple-
ment these domain-specific operations, we took advan-
tage of Visio’s built~in macro creation capabilities. For
example, consider the “change shape type” task. The code
first checks that a shape is selected. It then displays a dia-
log box with the names of the various shape types. After
the user makes a selection, any connections to the shape
are saved and the original shape is deleted. Then the new
shape is created and moved to the same Jocation. Finally,
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Figure 2: A screenshot of Nova

the prior connections to the original shape are established
for the new shape. By automating this fault-iree-specific
editing operation, we telicve the user of having to per-
form each of these operations manually.

Our third type of customization was to remove or re-
place inappropriate functionality. For example, Visio sup-
ports the notion of shape-to-shape connections in which
the closest connection point 1 automatically selected.
Since the DFT language makes a distinction between
input and output connection points, the editor enforces a
connection-point-to-connection-point policy. To do this,
it detects when new connections are made by trapping the
connection event raised by Visio. The editor then
analyzes the type of comnection, and either automatically
determines the proper connection points in unambiguous
cases, or queries the user otherwise.

Lastly, we enhanced the behavior of Visio to ease the
task of building fault trees. For example, we found during
the Galileo workshops that users often had trouble deter-
mining if both ends of a connector were properly at-
tached. To help with this problem, we decided to imple-
ment a feature in Nova so that the connector is dashed
when one end is not connected, and solid if both ends are
properly connected. Implementing this feature was
easy—it took approximately an hour due to the program-
mability of the Visio package.

6. End-user evaluation of Galileo

On the basis of the potential demonstrated by early
versions of Galileo, NASA Langley Research Center
funded the development of a production version called
Galileo/ASSAP. The tool was built to a rigorous set of
documented requirements and testing procedures, It has
been featured in three workshops on reliability modeling
and analysis. Engineers from a number of NASA divi-
sions were present at the first workshop, while the second

and third workshops involved engineers from the space
station and space shuttie projects.

These workshops provided us with a unique opportu-
nity to assess end user impressions of the Galileo tool. To
that end, we developed two surveys which we distributed
to workshop participants.

6.1. Survey objectives and design

Survey participation in the workshops was optional.
In order to increase participation, we created two surveys:
a short survey with 34 essential questions, and a longer
survey with 77 in-depth questions. The bulk of the ques-
tions were multiple-choice, with a few short-answer and
ranking questions. Participants were given the opportu-
nify to comment on every question in order to clarify their
answers or given additional information. Questions were
designed according to the guidelines suggested by Dill-
man [10]. Bvery effort was made to Linnit the range of in-
terpretation of the questions and to reduce bias.

The overall geal of the surveys was fo understand
user impressions of the tool in terms of its usability and
features. To that end, the surveys contained a number of
questions about the difficulty of performing common
tasks with the tool. There were also several questions re-
lated to the user’s impressions of a fool built using mass-
market applications as components. Because we expected
a small number of respondents and moderate variation in
experience and skills, the surveys also mchided a number
of questions designed to “calibrate” the answers in a sub-
jective manner,

In order to help assess the ability of the POP ap-
proach to deliver an industrially viable tool, we also
asked several questions which compares Galileo to com-
mercially available tools. Questions were included to as-
sess the user’s impressions of tools that they frequently
use, and to compare Galileo’s features and usability.

6.2. Resulés

Sixteen engineers from twelve NASA groups and
contractors answered both surveys. The majority of the
engineers considered themselves to be familiar with reli-
ability analysis techniques, with five engineers using soft-
ware modeling and analysis tools every day. Almost half
of the respondents analyze systems whose failure could

_ lead to over UUS $1B lost and/or loss of life.

The two key requirements which we have identified
were confirmed—the users cited “an eagy-to-use user in-
terface” and “accurate and precise analysis results™ as be-
ing the two most zmportant characteristics of a tool, above
other options such as support for a range of modeling ca-
pabilities and speed. Users also supported our position
that the method is crucial--a formal specification of the



modeling language was second only to a comprehensive
test suite as a means for increasing user trust.

In terms of the usability of Galileo, neasly all respon-
dents indicated that both the Word-based textual view and
the Visio-based graphical view were easy to use. Com-
pared to other tools, one user said the usability was much
worse, while all others said the usability was the same or
better.

To understand user’s impressions of the features of-
fered by Galileo, we asked them about two types of edit-
ing functionality: the general editing functionality pro-
vided natively by the packages, and the domain-specific
editing capability which we implemented via specializa-
tion of the packages. The majority of users indicated that
they were satisfied with the general editing functionality,
and nearly all respondents said that the domain-specific
editing operations met their modeling needs well. All re-
spondents said that the model editing capabilities of Gali-
leo were the same or better than other tools.

We also asked the users about specific features which
were designed to accommodate package constraints, and
which implemented modified versions of requirements.
For example, views are updated using a batch approach
instead of our original goal of incremental update, driven
in part by the limitations of the Visio component {31]. We
found that all users were satisfied with the capabilities
which we were able to implement.

While learning io use Galileo, the users were told
that the tool was constructed from Word and Visio, We
asked the users several gquestions about the use of pack-
ages. All users were familiar with Word, but almost half
were using Visio for the first time. When asked if their
familiarity with the packages helped them use Galileo,
nearly all users said it helped at least a little, and several
said that it helped a iot. The majority of users were also
satisfied with the performance of the feol, even though it
used two fairly large applications as components.

These survey results are encowraging. Eod user
evaluation is the true arbiter of suceess in the use of POP
for the construction of tools. Despite the “beta” status of
Gialileo, the surveys indicate that the Galileo tool meets or
exceeds the expectations of engineers. In most respects
the tool is comparable with cormmercial tools.

When asked what surprised them the most about the
tool, several users cited the usability, saying “the ease of
use was better than expected”, “[the] program is very user
friendly”, and “very friendly user interface”. Several us-
ers liked the use of standard packages as components,
saying they were surprised that it has “transparent linkage
between Word and Visio”. One user went so far as to say
“the reuse of Word/Visio [is] a rather brilliant idea™.

6.3. Adoption of Galilee by industry

Following their experiences using Galileo during the
workshops, NASA engineers involved with the Interna-
tional Space Station project lobbied to adopt the tool. To-
day, the Galileo/ASSAP version of Galileo is used by the
space station’s fault diagnosis and repair group to model
the causes of observed failures. According to feedback
from the engineers, the tool’s fault tree editing interface
provides editing capabilities which far exceed that of
cormunercial tools which they had been using,

In fact, the engineers have reported that Galileo’s
ease-of-use has led to a significant change in their prac-
tice. Previous tools required domain experts to work with
reliability engineers to develop models. With Galileo,
domain experts are able to model the system themselves,
without having to depend on reliability engineers who do
not understand the space station domain.

NASA’s sahisfaction with the Galileo tool has also
led to a request for a new version of the tool. This version
is planned to include new features at the request of both
NASA Langley Research Center (our primary sponsor)
and the ISS group at NASA Johnson Space Center.

The adoption of Galileo by NASA and the desire to
extend the product are good indicators that the POP ap-
proach has succeeded m delivering the tool capabilities
and characteristics that users require. Galileo was devel-
oped by a small team in an academic setting, and yet has
features and usability which rival commereial tools and
satisfy the needs of major industrial organizations.

7. Evaluation

In earlier work, we have presented less mature and
separate evaluations of the constituent efforts. Our previ-
ous work on Galileo tool showed the POP approach was
promising but still subject to risks known and not. The
survey data and industrial acceptance we present in this
paper provide confirmation by end users that the POP ap-
proach to developing tools such as ours is capable of de-
livering tools with the necessary features and usability.

One key assumption that we make 1s that the methods
employed by engineering tools lack a suitable level of
serantic trustworthiness. There are obviously many nota-
tions whose meaning 15 well-defined and for which for-
mal methods are unnecessary. However, we believe that
the continving development of tools to support domain-
specific modeling methods make this increasingly impor-
tant. In such cases, we have shown that with modest ef-
fort it is possible to significantly reduce the number of
methodological, semantic, and implementation errors [8].
However, our experience indicates that the greater effort
involved in formal validation of the resulting specifica-
tion may not result in significant benefit.



The Nova tool shows the feasibility of the combined
approach. We did benefit from our experience with DFT
methods and from having developed Galileo. Someone
trying to invent a modeling method or a POP-based tool
from. scratch would also face a long learning curve. What
Nowva does show is that, in less than two person-years and
with the very modest effort of a graduate student, advi-
sor, and domain expert, it is possible to build a tool with
usability at least as good as Galileo’s and having a formal
foundation for trust.

In terms of lines of code, Nova is Implemented in just
under 30,000 lines of commented code. This count -
cludes 3,100 lines of code specializing Word, 8,800 lines
in specializing Visio, 9,000 lnes for the analysis engine,
and 5,700 lines for overall application control.

Nova has not yet been evaluated by end users, but we
are confident that it will be as well-received as Galileo.
Nova employs more aggressive use of the POP compo-
nents, resuiting in better responsiveness and more sophas-
ticated behaviors and editing operations. Furthermore,
Nova is the first tool which supports a formally defined
and revised version of the DFT Janguage.

Finally, the cost-effective development of a correct
implementation of the analysis method remains a difficult
problem which is beyond the scope of this research. The
identification and possible development of suitable tech-
niques for implementing the analysis engines of engineer-
ing tools is left for future work.

8. Related work

In this section we describe three areas of related
work: package-oriented programming, applied formal
methods, and tool development methods.

8.1. Package-oriented programming

Recent work by Lédeczi et al. [22] describes a
COTS-based generator for design environments. Given a
meta-mode! of a modeling language, their tool generates a
design environment. While their work 1s simmilar to our in
terms of modeling and analysis environments and the
technologies they employ, our work focuses on the inte-
gration of applications as components, whereas theirs
deals primarily with the automatic generation of design
environments. Furthermore the components that are used
in the generation of the environments are mass-market
applications such as Word and Visio.

As in our work, Succi et al. [29] are investigating the
mtegration of POP components. However, they target
cross-platform integration using a Java-based architecture
as the integration mechamism. In contrast to our work,
they do not attempt to achieve tight functional integration,
and do not address user interface integration.

8.2. Applied formal methods

Several efforts are underway to formalize the nota-
tions used within software engineering, such ag architec-
tural diagramming notations [ 1], component connectors in
software architecture [2], and the Unified Modeling Lan-
guage [15]. These efforts place the notations used by
software engineers on mathematically rigorous founda-
tions. This provides a precise semantios for the notations
which enables sophisticated analysis of models expressed
in the languages. For example, architectural compatibility
can be ensured by checking compatibility of connector
types in a method analogous to type checking.

This work supports our basic argument regarding the
necessity and applicability of formal methods to engineer-
ing models, in general. Our work investigates the use of
formal methods in engineering domains other than soft-
ware, and also seeks 1o establish an understanding of the
benefits of formalization relative to the cost.

Our experience using Z/Hves is similar to that of
Knight et al. [21], who used the PVS theorern prover on a
modestly-sized nuclear power plant specification. They
also found it difficult to formulate theorems and associ-
ated proof strategies, and were hindered by the poor us-
ability of the toolset.

8.3. Tool development methods

Much work has been done on the design of tools for
software engineering. More directly related to our work
are techniques for building general modeling and analysis
environments, Examples include the Generic Modeling
Environment [22], Metalidit+ [23], and DOME [17]. The
approach in this research 1s to invest in the development
of a rensable modeling framework which can be used to
instantiate new tools by specifying the aspects specific to
the application domain. Our work is digtinct in several
dimensions. First, our strategy is to address the compo-
nents used to construct tools, as opposed to an overall re-
usable framework. In this respect our work is not incom-
patible with the generic framework approach—it is possi-
ble o use POP components within a generic framework.
Second, developers of reusable frameworks are faced
with the challenge of not only providing a wealth of func-
tionality and high usability, but also making this func-
tionality easily reusable. Lastly, our work assumes that
the modeling language has a semantics which can not be
easily captured using the hierarchical and constraint-
based semantics used by pgeneric frameworks such as
GME.

9, Conclusion

In this paper we presented and evaluated an approach
to developing sound modeling methods and high quality



software tools to support them. Using packages as com-
ponents enabled the development of industrially effective
modeling tools at low cost. The enthusiastic aceeptance of
one such tool by NASA engineers is strong evidence that
the result is acceptable. Using formal methods fundamen-
tally improved the soundness of a novel, sophisticated,
and industrially important modeling method. The Nova
tool combines these two components, implementing a
formally specified and validated language in an improved
package-based interface. Nova demonstrates—for the
first time, to the best of our knowledge—that it is possible
to develop sound methods and to make them readily
available for practical use at a cost that is modest by any
industrially relevant measures. It took less than two per-
son years to develop the specification for a new version
of the modeling language, develop an initial implementa-
tion of the new language, and to embody them in a from-
sorateh package-based tool.

We believe this work has the potential to have a sig-
nificant impact on engineering practice in two dimen-
sions. First, by dramatically reducing the cost to deploy
modeling methods via industrially effective software
tools, it promises to catalyze the transition of such meth-
ods from laboratories into practice. Second, it has become
clear that using modeling methods without sound seman-
tic foundations in critical industrial, governmental, and
mulitary engineering design activities 1s franght with risk,
This paper shows that well known formal methods and a
willingness to work with domain experts are enough to
significantly promote the cost-effective formalization,
correction, improvement, documentation, validation and
implementation of sophisticated modeling methods. It
thus appears reasonable to start to recognize and question
the use of computerized modeling methods lacking ade-
quate formal foundations for their semantics.
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